W986432AH
512K × 4 BANKS × 32 BITS SDRAM
Publication Release Date: December 1999
- 1 - Revision A1
GENERAL DESCRIPTION
W986432AH is a high-speed synchronous dynamic random access memory (SDRAM), organized as
512K words × 4 banks × 32 bits. Using pipelined architecture and 0.20 µm process technology,
W986432AH delivers a data bandwidth of up to 732M bytes per second (-55). For different
application, W986432AH is sorted into four speed grades: -55, -6, -7 and -8.
Accesses to the SDRAM are burst oriented. Consecutive memory location in one page can be
accessed at a burst length of 1, 2, 4, 8 or full page when a bank and row is selected by an ACTIVE
command. Column addresses are automatically generated by the SDRAM internal counter in burst
operation. Random column read is also possible by providing its address at each clock cycle. The
multiple bank nature enables interleaving among internal banks to hide the precharging time.
By having a programmable Mode Register, the system can change burst length, latency cycle,
interleave or sequential burst to maximize its performance. W986432AH is ideal for main memory in
high performance applications.
FEATURES
3.3V ±0.3V power supply
524288 words × 4 banks × 32 bits organization
Auto Refresh and Self Refresh
CAS latency: 2 and 3
Burst Length: 1, 2, 4, 8, and full page
Sequential and Interleave burst
Burst read, single write operation
Byte data controlled by DQM
Power-down Mode
Auto-precharge and controlled precharge
4K refresh cycles/64 mS
Interface: LVTTL
Packaged in 86-pin TSOP II, 400 mil - 0.50
PIN CONFIGURATION
86
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
37
38
39
40
41
42
43
28
29
30
31
32
33
34
35
36
50
49
48
47
46
45
44
58
57
56
55
54
53
52
51
85
V
ss
DQ15
V
SS
Q
DQ14
DQ13
V
CC
Q
DQ12
DQ11
V
SS
Q
DQ10
DQ9
V
CC
Q
DQ8
NC
V
SS
DQM1
NC
NC
CLK
CKE
A9
A8
A7
A6
A5
A4
A3
DQM3
V
SS
NC
DQ31
V
CC
Q
DQ30
DQ29
V
SS
Q
DQ28
DQ27
V
CC
Q
DQ26
DQ25
V
SS
Q
DQ24
V
SS
VCC
DQ0
V
CC
Q
DQ1
DQ2
V
SS
Q
DQ3
DQ4
V
CC
Q
DQ5
DQ6
VSSQ
DQ7
NC
VCC
DQM0
WE
CAS
RAS
CS
NC
BS0
BS1
A10/AP
A0
A1
A2
DQM2
V
CC
NC
DQ16
V
SS
Q
DQ17
DQ18
V
CC
Q
DQ19
DQ20
V
SS
Q
DQ21
DQ22
V
CC
Q
DQ23
V
CC
W986432AH
- 2 -
PIN DESCRIPTION
PIN NAME FUNCTION DESCRIPTION
A0A10 Address Multiplexed pins for row and column address.
Row address: A0A10. Column address: A0A7.
A10 is sampled during a precharge command to determine if
all banks are to be precharged or bank selected by BS0, BS1.
BS0, BS1 Bank Select
Select bank to activate during row address latch time, or bank
to read/write during address latch time.
DQ0DQ31 Data Input/
Output Multiplexed pins for data output and input.
CS
Chip Select Disable or enable the command decoder. When command
decoder is disabled, new command is ignored and previous
operation continues.
RAS
Row Address
Strobe Command input. When sampled at the rising edge of the
clock
RAS
,
CAS
and
WE
define the operation to be
executed.
CAS
Column Address
Strobe Referred to
RAS
WE
Write Enable Referred to
RAS
DQM0
DQM3
Input/output mask
The output buffer is placed at Hi-Z (with latency of 2) when
DQM is sampled high in read cycle. In write cycle, sampling
DQM high will block the write operation with zero latency.
CLK Clock Inputs System clock used to sample inputs on the rising edge of
clock.
CKE Clock Enable CKE controls the clock activation and deactivation. When
CKE is low, Power Down mode, Suspend mode, or Self
Refresh mode is entered.
VCC Power (+3.3V) Power for input buffers and logic circuit inside DRAM.
VSS Ground Ground for input buffers and logic circuit inside DRAM.
VCCQ
Power (+3.3V) for
I/O buffer Separated power from VCC, to improve DQ noise immunity.
VSSQ Ground for I/O
buffer Separated ground from VSS, to improve DQ noise immunity.
NC No Connection No connection
W986432AH
Publication Release Date: December 1999
- 3 - Revision A1
BLOCK DIAGRAM
DQ0
DQ31
DQM0~3
CLK
CKE
A10
CLOCK
BUFFER
COMMAND
DECODER
ADDRESS
BUFFER
REFRESH
COUNTER
COLUMN
COUNTER
CONTROL
SIGNAL
GENERATOR
MODE
REGISTER
COLUMN DECODER
SENSE AMPLIFIER
CELL ARRAY
BANK #2
COLUMN DECODER
SENSE AMPLIFIER
CELL ARRAY
BANK #0
COLUMN DECODER
SENSE AMPLIFIER
CELL ARRAY
BANK #3
DATA CONTROL
CIRCUIT DQ
BUFFER
COLUMN DECODER
SENSE AMPLIFIER
CELL ARRAY
BANK #1
NOTE:
The cell array configuration is 2048 * 256 * 32
ROW DECODER ROW DECODER
ROW DECODERROW DECODER
A0
A9
BS0
BS1
CS
RAS
CAS
WE
W986432AH
- 4 -
FUNCTIONAL DESCRIPTION
Power Up and Initialization
The default power up state of the mode register is unspecified. The following power up and
initialization sequence need to be followed to guarantee the device being preconditioned to each user
specific needs.
During power up, all VCC and VCCQ pins must be ramp up simultaneously to the specified voltage
when the input signals are held in the "NOP" state. The power up voltage must not exceed VCC +0.3V
on any of the input pins or VCC supplies. After power up, an initial pause of 200 µS is required
followed by a precharge of all banks using the precharge command. To prevent data contention on
the DQ bus during power up, it is required that the DQM and CKE pins be held high during the initial
pause period. Once all banks have been precharged, the Mode Register Set Command must be
issued to initialize the Mode Register. An additional eight Auto Refresh cycles (CBR) are also
required before or after programming the Mode Register to ensure proper subsequent operation.
Programming Mode Register
After initial power up, the Mode Register Set Command must be issued for proper device operation.
All banks must be in a precharged state and CKE must be high at least one cycle before the Mode
Register Set Command can be issued. The Mode Register Set Command is activated by the low
signals of
RAS
,
CAS
,
CS
and
WE
at the positive edge of the clock. The address input data during
this cycle defines the parameters to be set as shown in the Mode Register Operation table. A new
command may be issued following the mode register set command once a delay equal to tRSC has
elapsed. Please refer to the next page for Mode Register Set Cycle and Operation Table.
Bank Activate Command
The Bank Activate command must be applied before any Read or Write operation can be executed.
The operation is similar to RAS activate in EDO DRAM. The delay from when the Bank Activate
command is applied to when the first read or write operation can begin must not be less than the RAS
to CAS delay time (tRCD). Once a bank has been activated it must be precharged before another Bank
Activate command can be issued to the same bank. The minimum time interval between successive
Bank Activate commands to the same bank is determined by the RAS cycle time of the device (tRC).
The minimum time interval between interleaved Bank Activate commands (Bank A to Bank B and
vice versa) is the Bank to Bank delay time (tRRD). The maximum time that each bank can be held
active is specified as TRAS (max.).
Read and Write Access Modes
After a bank has been activated, a read or write cycle can be followed. This is accomplished by
setting
RAS
high and
CAS
low at the clock rising edge after minimum of tRCD delay.
WE
pin voltage
level defines whether the access cycle is a read operation (
WE
high), or a write operation (
WE
low).
The address inputs determine the starting column address. Reading or writing to a different row within
an activated bank requires the bank be precharged and a new Bank Activate command be issued.
When more than one bank is activated, interleaved bank Read or Write operations are possible. By
using the programmed burst length and alternating the access and precharge operations between
multiple banks, seamless data access operation among many different pages can be realized. Read
or Write Commands can also be issued to the same bank or between active banks on every clock
cycle.
W986432AH
Publication Release Date: December 1999
- 5 - Revision A1
Burst Read Command
The Burst Read command is initiated by applying logic low level to
CS
and
while holding
RAS
and
WE
high at the rising edge of the clock. The address inputs determine the starting column
address for the burst. The Mode Register sets type of burst (sequential or interleave) and the burst
length (1, 2, 4, 8, full page) during the Mode Register Set Up cycle. Table 2 and 3 in the next page
explain the address sequence of interleave mode and sequence mode.
Burst Command
The Burst Write command is initiated by applying logic low level to
CS
,
CAS
and
WE
while holding
RAS
high at the rising edge of the clock. The address inputs determine the starting column address.
Data for the first burst write cycle must be applied on the DQ pins on the same clock cycle that the
Write Command is issued. The remaining data inputs must be supplied on each subsequent rising
clock edge until the burst length is completed. Data supplied to the DQ pins after burst finishes will be
ignored.
Read Interrupted by a Read
A Burst Read may be interrupted by another Read Command. When the previous burst is interrupted,
the remaining addresses are overridden by the new read address with the full burst length. The data
from the first Read Command continues to appear on the outputs until the CAS latency from the
interrupting Read Command the is satisfied.
Read Interrupted by a Write
To interrupt a burst read with a Write Command, DQM may be needed to place the DQs (output
drivers) in a high impedance state to avoid data contention on the DQ bus. If a Read Command will
issue data on the first and second clocks cycles of the write operation, DQM is needed to insure the
DQs are tri-stated. After that point the Write Command will have control of the DQ bus and DQM
masking is no longer needed.
Write Interrupted by a Write
A burst write may be interrupted before completion of the burst by another Write Command. When
the previous burst is interrupted, the remaining addresses are overridden by the new address and
data will be written into the device until the programmed burst length is satisfied.
Write Interrupted by a Read
A Read Command will interrupt a burst write operation on the same clock cycle that the Read
Command is activated. The DQs must be in the high impedance state at least one cycle before the
new read data appears on the outputs to avoid data contention. When the Read Command is
activated, any residual data from the burst write cycle will be ignored.
Burst Stop Command
A Burst Stop Command may be used to terminate the existing burst operation but leave the bank
open for future Read or Write Commands to the same page of the active bank, if the burst length is
full page. Use of the Burst Stop Command during other burst length operations is illegal. The Burst
Stop Command is defined by having
RAS
and
CAS
high with
CS
and
WE
low at the rising edge of
the clock. The data DQs go to a high impedance state after a delay, which is equal to the CAS
W986432AH
- 6 -
Latency in a burst read cycle, interrupted by Burst Stop. If a Burst Stop Command is issued during a
full page burst write operation, then any residual data from the burst write cycle will be ignored.
Addressing Sequence of Sequential Mode
A column access is performed by increasing the address from the column address which is input to
the device. The disturb address is varied by the Burst Length as shown in Table 2.
Table 2 Address Sequence of Sequential Mode
DATA ACCESS ADDRESS
BURST LENGTH
Data 0 n BL = 2 (disturb address is A0)
Data 1 n + 1 No address carry from A0 to A1
Data 2 n + 2 BL = 4 (disturb addresses are A0 and A1)
Data 3 n + 3 No address carry from A1 to A2
Data 4 n + 4
Data 5 n + 5 BL = 8 (disturb addresses are A0, A1 and A2)
Data 6 n + 6 No address carry from A2 to A3
Data 7 n + 7
Addressing Sequence of Interleave Mode
A column access is started in the input column address and is performed by inverting the address bit
in the sequence shown in Table 3.
Table 3 Address Sequence of Interleave Mode
DATA ACCESS ADDRESS BUST LENGTH
Data 0 A8 A7 A6 A5 A4 A3 A2 A1 A0 BL = 2
Data 1 A8 A7 A6 A5 A4 A3 A2 A1
A0
Data 2 A8 A7 A6 A5 A4 A3 A2
A1
A0 BL = 4
Data 3 A8 A7 A6 A5 A4 A3 A2
A1
A0
Data 4 A8 A7 A6 A5 A4 A3
A2
A1 A0 BL = 8
Data 5 A8 A7 A6 A5 A4 A3
A2
A1
A0
Data 6 A8 A7 A6 A5 A4 A3
A2
A1
A0
Data 7 A8 A7 A6 A5 A4 A3
A2
A1
A0
W986432AH
Publication Release Date: December 1999
- 7 - Revision A1
Auto-precharge Command
If A10 is set to high when the Read or Write Command is issued, then the auto-precharge function is
entered. During auto-precharge, a Read Command will execute as normal with the exception that the
active bank will begin to precharge automatically before all burst read cycles have been completed.
Regardless of burst length, it will begin a certain number of clocks prior to the end of the scheduled
burst cycle. The number of clocks is determined by CAS latency.
A Read or Write Command with auto-precharge cannot be interrupted before the entire burst
operation is completed for the same bank. Therefore, use of a Read, Write, or Precharge Command
is prohibited during a read or write cycle with auto-precharge. Once the precharge operation has
started, the bank cannot be reactivated until the Precharge time (tRP) has been satisfied. Issue of
Auto-Precharge command is illegal if the burst is set to full page length. If A10 is high when a Write
Command is issued, the Write with Auto-Precharge function is initiated. The SDRAM automatically
enters the precharge operation one clock delay from the last burst write cycle. This delay is referred
to as write tDPL. The bank undergoing auto-precharge cannot be reactivated until tDPL and tRP are
satisfied. This is referred to as tDAL, Data-in to Active delay (tDAL = tDPL + tRP). When using the Auto-
precharge Command, the interval between the Bank Activate Command and the beginning of the
internal precharge operation must satisfy tRAS (min).
Precharge Command
The Precharge Command is used to precharge or close a bank that has been activated. The
Precharge Command is entered when
CS
,
RAS
and
WE
are low and
CAS
is high at the rising edge
of the clock. The Precharge Command can be used to precharge each bank separately or all banks
simultaneously. Three address bits, A10, BS0, and BS1 are used to define which bank(s) is to be
precharged when the command is issued. After the Precharge Command is issued, the precharged
bank must be reactivated before a new read or write access can be executed. The delay between the
Precharge Command and the Activate Command must be greater than or equal to the Precharge
time (tRP).
Self Refresh Command
The Self Refresh Command is defined by having
CS
,
RAS
,
and CKE held low with
WE
high
at the rising edge of the clock. All banks must be idle prior to issuing the Self Refresh Command.
Once the command is registered, CKE must be held low to keep the device in Self Refresh mode.
When the SDRAM has entered Self Refresh mode all of the external control signals, except CKE, are
disabled. The clock is internally disabled during Self Refresh Operation to save power. The device
will exit Self Refresh operation after CKE is returned high. A minimum delay time is required when
the device exits Self Refresh Operation and before the next command can be issued. This delay is
equal to the tAC cycle time plus the Self Refresh exit time.
If, during normal operation, AUTO REFRESH cycles are issued in bursts (as opposed to being evenly
distributed), a burst of 4,096 AUTO REFRESH cycles should be completed just prior to entering and
just after exiting the self refresh mode.
Power Down Mode
The Power Down mode is initiated by holding CKE low. All of the receiver circuits except CKE are
gated off to reduce the power. The Power Down mode does not perform any refresh operations,
therefore the device can not remain in Power Down mode longer than the Refresh period (tREF) of the
device.
W986432AH
- 8 -
The Power Down mode is exited by bringing CKE high. When CKE goes high, a No Operation
Command is required on the next rising clock edge, depending on tCK. The input buffers need to be
enabled with CKE held high for a period equal to tCES (min.) + tCK (min.).
No Operation Command
The No Operation Command should be used in cases when the SDRAM is in a idle or a wait state to
prevent the SDRAM from registering any unwanted commands between operations. A No Operation
Command is registered when
CS
is low with
RAS
,
, and
WE
held high at the rising edge of the
clock. A No Operation Command will not terminate a previous operation that is still executing, such
as a burst read or write cycle.
Deselect Command
The Deselect Command performs the same function as a No Operation Command. Deselect
Command occurs when
CS
is brought high, the
RAS
,
CAS
, and
WE
signals become don't cares.
Clock Suspend Mode
During normal access mode, CKE must be held high enabling the clock. When CKE is registered low
while at least one of the banks is active, Clock Suspend Mode is entered. The Clock Suspend mode
deactivates the internal clock and suspends any clocked operation that was currently being executed.
There is a one clock delay between the registration of CKE low and the time at which the SDRAM
operation suspends. While in Clock Suspend mode, the SDRAM ignores any new commands that are
issued. The Clock Suspend mode is exited by bringing CKE high. There is a one clock cycle delay
from when CKE returns high to when Clock Suspend mode is exited.
W986432AH
Publication Release Date: December 1999
- 9 - Revision A1
TABLE OF OPERATING MODES
Fully synchronous operations are performed to latch the commands at the positive edges of CLK.
Table 1 shows the truth table for the operation commands.
TABLE 1 TRUTH TABLE (NOTE (1), (2))
Command Device state CKEn-1
CKEn DQM BS0, 1
A10 A0-A9 CS RAS
CAS
WE
Bank Active Idle H x x v v V L L H H
Bank Precharge Any H x x v L x L L H L
Precharge All Any H x x x H x L L H L
Write Active (3) H x x v L v L H L L
Write with Autoprecharge Active (3) H x x v H v L H L L
Read Active (3) H x x v L v L H L H
Read with Autoprecharge Active (3) H x x v H v L H L H
Mode Register Set Idle H x x v v v L L L L
No-Operation Any H x x x x x L H H H
Burst Stop Active (4) H x x x x x L H H L
Device Deselect Any H x x x x x H x x x
Auto-Refresh Idle H H x x x x L L L H
Self-Refresh Entry Idle H L x x x x L L L H
Self Refresh Exit idle
(S.R)
L
L
H
H
x
x
x
x
x
x
x
x
H
L
x
H
x
H
x
x
Clock suspend Mode
Entry Active H L x x x x x x x x
Power Down Mode Entry Idle
Active (5)
H
H
L
L
x
x
x
x
x
x
x
x
H
L
x
H
x
H
X
H
Clock Suspend Mode Exit Active L H x x x x x x x X
Power Down Mode Exit Any
(power
down)
L
L
H
H
x
x
x
x
x
x
x
x
H
L
x
H
x
H
X
H
Data write/Output Enable Active H x L x x x x x x x
Data Write/Output Disable
Active H x H x x x x x x x
Notes:
(1) v = valid, x = Don't care, L = Low Level, H = High Level
(2) CKEn signal is input leve l when commands are provided.
(3) These are state of bank designated by BS0, BS1 signals.
(4) Device state is full page burst operation.
(5) Power Down Mode can not be entered in the burst cycle.
When this command asserts in the burst cycle, device state is clock suspend mode.
W986432AH
- 10 -
DC CHARACTERISTICS
Absolute Maximum Rating
PARAMETER SYM. RATING UNIT NOTES
Input, Column Output Voltage VIN, VOUT -0.3 VCC +0.3 V 1
Power Supply Voltage VCC, VCCQ -0.3 4.6 V 1
Operating Temperature TOPR 0 70 °C 1
Storage Temperature TSTG -55 150 °C 1
Soldering Temperature (10s) TSOLDER 260 °C 1
Power Dissipation PD 1 W 1
Short Circuit Output Current IOUT 50 mA 1
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the
device.
RECOMMENDED DC OPERATING CONDITIONS
(TA = 0 to 70°C)
PARAMETER SYM. MIN. TYP. MAX. UNIT NOTE
S
Power Supply Voltage VCC 3.0 3.3 3.6 V 2
Power Supply Voltage (for I/O
Buffer) VCCQ 3.0 3.3 3.6 V 2
Input High Voltage VIH 2.0 - VCC +0.3 V 2
Input Low Voltage VIL -0.3 - 0.8 V 2
Note: VIH (max.) = VCC/VCCQ+1.2V for pulse width < 5 nS
VIL (min.) = VSS/VSSQ-1.2V for pulse width < 5 nS
CAPACITANCE
(VDD = 3.3V, TA = 25 °C, f = 1 MHz)
PARAMETER SYM. MIN. MAX. UNIT
Input Capacitance
(A0 to A11, BS0, BS1, CS , RAS , CAS , WE , DQM, CKE)
CI 2.5 4 pf
Input Capacitance (CLK) 2.5 4 pf
Input/Output capacitance (DQ0DQ31) CO 4 6.5 pf
Note: These parameters are periodically sampled and not 100% tested
W986432AH
Publication Release Date: December 1999
- 11 - Revision A1
DC CHARACTERISTICS
(VCC = 3.3V ±0.3V, TA = 0°~70°C)
PARAMETER SYM. -55 -6 -7 -8 UNIT NOTES
MAX. MAX. MAX. MAX.
Operating Current
tCK = min., tRC = min.
Active precharge command
cycling without burst operation
1 bank operation ICC1 105 100 90 80 3
Standby Current
tCK = min., CS = VIH
VIH/L = VIH (min.)/VIL (max.)
CKE = VIH ICC2 55 50 45 40 3
Bank: inactive state CKE = VIL (Power
Down mode) ICC2P 1 1 1 1 3
Standby Current
CLK = VIL, CS = VIH
VIH/L=VIH (min.)/VIL (max.)
CKE = VIH ICC2S 8 8 8 8
BANK: inactive state CKE = VIL (Power
Down mode) ICC2PS 1 1 1 1 mA
No Operating Current
tCK = min., CS = VIH (min.) CKE = VIH ICC3 70 65 55 45
BANK: active state (4 banks) CKE = VIL (Power
Down mode) ICC3P 3 3 3 3
Burst Operating Current (tCK = min.)
Read/Write command cycling
ICC4 160 155 145 125 3, 4
Auto Refresh Current (tCK = min.)
Auto refresh command cycling
ICC5 145 135 125 105 3
Self Refresh Current (CKE = 0.2V)
Self refresh mode
ICC6 1 1 1 1
PARAMETER SYMBOL MIN. MAX. UNIT NOTES
Input Leakage Current
(0V VIN VCC, all other pins not under test = 0V)
II(L) -5 5 µA
Output Leakage Current
7(Output disable, 0V VOUT VCCQ)
VO(L) -5 5 µA
LVTTL Output H Level Voltage
(IOUT = -2 mA)
VOH 2.4 - V
LVTTL Output "L Level Voltage
(IOUT = 2 mA)
VOL - 0.4 V
W986432AH
- 12 -
AC CHARACTERISTICS
(VCC = 3.3V ± 0.3V, VSS = 0V, Ta = 0 to 70 °C) (Notes: 5, 6, 7, 11)
PARAMETER -55 -6 -7 -8 UNIT NOTE
MIN.
MAX. MIN.
MAX. MIN.
MAX. MIN.
MAX.
Ref/Active to Ref/Active Command Period tRC 60 60 70 72 nS 9
Active to precharge Command Period tRAS 38.5
100000 42 100000
48 100000
48 100000
9
Active to Read/Write Command Delay Time
tRCD 16.5
18 20 20 9
Read/Write(a) to Read/Write(b)Command
Period tCCD 1 1 1 1 Cycle
9
Precharge to Active(b) Command Period tRP 18 18 20 20 nS 9
Active(a) to Active(b) Command Period tRPD 11 12 14 16 9
Write Recovery Time CL* = 2 tWR
10 10 10 10
CL* = 3 5.5 6 7 8
CLK Cycle Time CL* = 2 tCK 10 1000 10 1000 10 1000 10 1000
CL* = 3 5.5 1000 6 1000 7 1000 8 1000
CLK High Level tCH 2 2.5 3 3 10
CLK Low Level tCL 2 2.5 3 3 10
Access Time from CLK CL* = 2 tAC 7 7 7 7
CL* = 3 5 5.5 5.5 6
Output Data Hold Time tOH 2 2 2.5 3
Output Data High Impedance Time tHZ 2 5.5 2 6 2.5 7 3 8 8
Output Data Low Impedance Time tLZ 0 0 0 0
Power Down Mode Entry Time tSB 0 5.5 0 6 0 7 0 8
Transition Time of CLK (Rise and Fall) tT 0.3 10 0.3 10 0.3 10 0.3 10
Data-in-Set-up Time tDS 1.5 2 2 2
Data-in Hold Time tDH 1 1 1 1
Address Set-up Time tAS 1.5 2 2 2
Address Hold Time tAH 1 1 1 1
CKE Set-up Time tCKS 1.5 2 2 2
CKE Hold Time tCKH 1 1 1 1
Command Set-up Time tCMS
1.5 2 2 2
Command Hold Time tCMH
1 1 1 1
Refresh Time tREF 64 64 64 64 mS
Mode Register Set Cycle Time tRSC 11 12 14 16 nS 9
W986432AH
- 14 -
(2) A.C Latency Characteristics
CKE to clock disable (CKE Latency) 1 Cycle
DQM to output to HI-Z (Read DQM Latency) 2
DQM to output to HI-Z (Write DQM Latency) 0
Write command to input data (Write Data Latency) 0
CS to Command input ( CS Latency) 0
Precharge to DQ Hi-Z Lead time CL = 2 2
CL = 3 3
Precharge to Last Valid data out CL = 2 1
CL = 3 2
Bust Stop Command to DQ Hi-Z Lead time CL = 2 2
CL = 3 3
Bust Stop Command to Last Valid Data out CL = 2 1
CL = 3 2
Read with Auto-precharge Command to Active/Ref
Command CL = 2 BL + tRP Cycle + nS
CL = 3 BL + tRP
Write with Auto-precharge Command to Active/Ref
Command CL = 2 BL + tRP
CL = 3 BL + tRP
W986432AH
Publication Release Date: December 1999
- 13 - Revision A1
Notes:
1. Operation exceeds "ABSOLUTE MAXIMUM RATING" may cause permanent damage to the
devices.
2. All voltages are referenced to VSS
3. These parameters depend on the cycle rate and listed values are measured at a cycle rate with the
minimum values of tCK and tRC.
4. These parameters depend on the output loading conditions. Specified values are obtained with
output open.
5. Power up Sequence
(1) Power up must be performed in the following sequence.
(2) Power must be applied to VCC and VCCQ (simultaneously) while all input signals are held in the NOP state. The CLK
signals must be started at the same time.
(3) After power-up a pause of at least 200 ìseconds is required. It is required that DQM and CKE signals then be held
high (VCC levels) to ensure that the DQ output is impedance.
(4) All banks must be precharged.
(5) The Mode Register Set command must be asserted to initialize the Mode Register.
(6) A minimum of eight Auto Refresh dummy cycles is required to stabilize the internal circuitry of the device.
6. AC Testing Conditions
PARAMETER CONDITIONS
Output Reference Level 1.4V
Output Load See diagram below
Input Signal Levels (VIH/VIL) 2.4V/0.4V
Transition Time (Rise and Fall) of Input Signal 1 nS
Input Reference Level 1.4V
50 ohms
1.4 V
AC TEST LOAD
Z = 50 ohmsoutput 30pF
1. Transition times are measured between VIH and VIL.
2. tHZ defines the time at which the outputs achieve the open circuit condition and is not referenced to output level.
3. These parameters account for the number of clock cycles and depend on the operating frequency of the clock, as
follows the number of clock cycles = specified value of timing/ clock period
(count fractions as whole number)
(1) tCH is the pulse width of CLK measured from the positive edge to the negative edge referenced to VIH (min.).
tCL is the pulse width of CLK measured from the negative edge to the positive edge referenced to VIL (max.).
W986432AH
Publication Release Date: December 1999
- 15 - Revision A1
TIMING WAVEFORMS
Command Input Timing
t
CK
CLK
A0-A10
BS0, 1
VIH
VIL
t
CMH
t
CMS
t
CH
t
CL
t
T
t
T
t
CKS
t
CKH
t
CKH
t
CKS
t
CKS
t
CKH
CS
RAS
CAS
WE
CKE
t
CMS
t
CMH
t
CMS
t
CMH
t
CMS
t
CMH
t
CMS
t
CMH
t
AS
tAH
W986432AH
- 16 -
Read Timing
Read CAS Latency
t
AC
t
LZ
t
AC
t
OH
t
HZ
t
OH
Burst Length
Read Command
CLK
CS
RAS
CAS
WE
A0-A10
BS0, 1
DQ Valid
Data-Out Valid
Data-Out
W986432AH
Publication Release Date: December 1999
- 17 - Revision A1
Control Timing of Input Data
*DQM2,3="L"
CLK
(Word Mask)
t
CMH
t
CMS
t
CMH
t
CMS
DQM0
t
CMS
t
CMH
t
CMH
DQM1
DQ0 -DQ7
DQ16 -DQ23
DQ8-DQ15
DQ24-DQ31
t
DH
t
DS
t
DH
t
DS
t
DH
t
DS
t
DH
Valid
Data-in Valid
Data-in Valid
Data-in Valid
Data-in
t
DS
t
DH
Valid
Data-in
Valid
Data-in
t
DH
Valid
Data-in
t
DH
t
DS
t
DH
t
DS
Valid
Data-in
Valid
Data-in
t
DH
Valid
Data-in
t
DH
Valid
Data-in
t
DS
t
DH
t
DS
t
DH
t
DS
Valid
Data-in
Valid
Data-in
t
DH
Valid
Data-in
t
DH
Valid
Data-in
t
DS
t
DH
t
DS
t
DH
t
DH
t
DH
t
DS
t
DS
t
DS
t
DS
DQ0 -DQ7
CLK
CKE
t
CKH
t
CKS
t
CKH
t
CKS
t
DS
t
DH
t
DS
t
DH
t
DH
t
DS
t
DS
t
DH
Valid
Data-in
Valid
Data-in
Valid
Data-in
Valid
Data-in
DQ24 -DQ31
DQ16 -DQ23
DQ8 -DQ15
(Clock Mask)
t
DS
t
DH
t
DS
t
DH
t
DH
t
DS
t
DS
t
DH
Valid
Data-in
Valid
Data-in
Valid
Data-in
Valid
Data-in
t
DS
t
DH
t
DS
t
DH
t
DH
t
DS
t
DS
t
DH
Valid
Data-in
Valid
Data-in
Valid
Data-in
Valid
Data-in
t
DS
t
DH
t
DS
t
DH
t
DH
t
DS
t
DS
t
DH
Valid
Data-in
Valid
Data-in
Valid
Data-in
Valid
Data-in
t
DS
t
DS
t
DS
Valid
Data-in
Valid
Data-in
Valid
Data-in
t
CMS
W986432AH
- 18 -
Control Timing of Output Data
DQ0 -DQ7
Valid
Data-Out Valid
Data-Out Valid
Data-Out
t
OH
t
AC
t
OH
t
AC
t
OH
t
HZ
t
LZ
t
AC
t
OH
t
AC
OPEN
CLK
(Output Enable)
DQM0
t
CMH
t
CMS
t
CMH
t
CMS
t
CMH
t
CMS
t
CMH
t
CMS
DQM1
t
OH
t
AC
t
AC
t
HZ
t
AC
t
AC
Valid
Data-Out Valid
Data-Out
t
OH
t
AC
t
OH
t
AC
t
OH
t
AC
t
OH
DQ8 -DQ15
t
AC
t
HZ
t
LZ
OPEN
DQ24 -DQ31
DQ16 -DQ23
Valid
Data-Out Valid
Data-Out
t
OH
t
AC
t
OH
t
AC
t
OH
t
HZ
t
AC
t
OH
t
AC
t
OH
Valid
Data-Out Valid
Data-Out
t
OH
t
OH
t
LZ
t
OH
Valid
Data-Out
Valid
Data-Out
Valid
Data-Out
Valid
Data-Out
Valid
Data-Out
t
OH
t
AC
t
OH
t
AC
t
OH
t
AC
t
OH
t
AC
Valid
Data-Out Valid
Data-Out
Valid
Data-Out
DQ16 -DQ23
t
OH
t
AC
t
OH
t
AC
t
OH
t
AC
t
OH
t
AC
Valid
Data-Out Valid
Data-Out
Valid
Data-Out
DQ24 -DQ31
t
CKH
t
CKS
t
CKH
t
CKS
t
OH
t
AC
t
OH
t
AC
t
OH
t
AC
t
OH
t
AC
Valid
Data-Out Valid
Data-Out
Valid
Data-Out
DQ0 -DQ7
CKE
CLK
t
OH
t
AC
t
OH
t
AC
t
OH
t
AC
t
OH
t
AC
Valid
Data-Out Valid
Data-Out
Valid
Data-Out
DQ8 -DQ15
(Clock Mask)
*DQM2,3="L"
W986432AH
Publication Release Date: December 1999
- 19 - Revision A1
Mode Register Set Cycle
A0
A1
A2
A3
A4
A5
A6
Burst Length
Addressing Mode
CAS Latency
(Test Mode)
A8 Reserved
A0A7
A0
A9 A0Write Mode
A10
BS0
A0A11
A0BS1
"0"
"0"
A0A3 A0Addressing Mode
A00A0Sequential
A01A0Interleave
A0A9 Single Write Mode
A00A0Burst read and Burst write
A01A0Burst read and single write
A0
A0A2 A1 A0
A00 0 0
A0
0 0 1
A00 1 0
A00 1 1
A01 0 0
A0
1 0 1
A0
1 1 0
A01 1 1
A0Burst Length
A0Sequential A0Interleave
1A01
A0
2A0
2
A04A04
A08A08
A0Reserved A0
Reserved
A0Full Page
A0CAS Latency
A0Reserved
A0Reserved
2
A03
Reserved
A0A6 A5 A4
A00 0 0
A0
0 1 0
A00 1 1
A01 0 0
A00 0 1
tRSC
tCMS tCMH
tCMS tCMH
tCMS tCMH
tCMS tCMH
tAS tAH
CLK
CS
RAS
CAS
WE
A0-A10
BS0,1 Register
set data
next
command
A0
Reserved
"0"
"0"
"0"
"0"
W986432AH
- 20 -
OPERATING TIMING EXAMPLE
Interleaved Bank Read (Burst Length = 4, CAS Latency = 3)
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
(CLK = 100 MHz)
CLK
DQ
CKE
DQM
A0-A9
A10
WE
CS t
RC
t
RC
t
RC
t
RC
t
RAS
t
RP
t
RAS
t
RP
t
RP
t
RAS
t
RAS
t
RCD
t
RCD
t
RCD
t
RCD
t
AC
t
AC
t
AC
t
AC
t
RRD
t
RRD
tRRD t
RRD
Active Read
Active Read
Active
Active
Active
Read
Read
Precharge
Precharge
Precharge
RAa RBb RAc RBd RAe
RAa CAw RBb CBx RAc CAy RBd CBz RAe
aw0 aw1 aw2 aw3 bx0 bx1 bx2 bx3 cy0 cy1 cy2 cy3
Bank #0
Idle
Bank #1
Bank #2
Bank #3
RAS
CAS
BS1
BS0
W986432AH
Publication Release Date: December 1999
- 21 - Revision A1
Interleaved Bank Read (Burst Length = 4, CAS Latency = 3, Autoprecharge)
01234567891011 12 13 14 15 16 17 18 19 20 21 22 23
(CLK = 100 MHz)
CLK
CKE
DQM
A0-A9
A10
BS1
WE
CAS
RAS
CS
BS0
t
RC
t
RC
t
RC
t
RAS
t
RP
t
RAS
t
RP
t
RAS
t
RP
t
RAS
t
RCD
t
RCD
t
RCD
t
AC
t
AC
t
AC
t
AC
t
RRD
t
RRD
t
RRD
t
RRD
Active Read
Active Read
Active
Active
Active
Read
Read
t
RC
RAa RAc RBd RAe
DQ aw0 aw1 aw2 aw3 bx0 bx1 bx2 bx3 cy0 cy1 cy2 cy3 dz0
* AP is the internal precharge start timing
Bank #0
Idle
Bank #1
Bank #2
Bank #3
AP* AP*
RAa CAw RBb CBx RAc CAy RBd RAe
CBz
RBb
AP*
t
RCD
W986432AH
- 22 -
Interleaved Bank Read (Burst Length = 8, CAS Latency = 3)
012345678 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
tRC
tRAS tRP tRAS
tRP tRAS
tRCD tRCD tRCD
tRRD tRRD
RAa
RAa CAx
RBb
RBb CBy
RAc
RAc CAz
ax0 ax1 ax2 ax3 ax4 ax5 ax6 by0 by1 by4 by5 by6 by7 CZ0
(CLK = 100 MHz)
CLK
DQ
CKE
DQM
A0-A9
A10
BS1
WE
CAS
RAS
CS
Active Read
Precharge Active Read
Precharge Active
tAC tAC
Read
Precharge
tAC
Bank #0
Idle
Bank #1
Bank #2
Bank #3
BS0
W986432AH
Publication Release Date: December 1999
- 23 - Revision A1
Interleaved Bank Read (Burst Length = 8, CAS Latency = 3, Autoprecharge)
A0-A9
Bank #0
Idle
Bank #1
Bank #2
Bank #3
0123456 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
t
RC
t
RAS
t
RP
t
RAS
t
RCD
t
RCD
t
RCD
t
RRD
t
RRD
ax0 ax1 ax2 ax3 ax4 ax5 ax6 ax7 by0 by1 by4 by5 by6 CZ0
RAa
RAa
CAx
RBb
RBb CBy
(CLK = 100 MHz)
RAc
RAc CAz
* AP is the internal precharge start timing
Active Read
Active
Active Read
t
CAC
t
CAC
t
CAC
CLK
DQ
CKE
DQM
A10
WE
CAS
RAS
CS
Read
AP*
AP*
BS1
BS0
W986432AH
- 24 -
Interleaved Bank Write (Burst Length = 8)
0123456 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
tRC
tRAS tRP
tRAS
tRCD tRCD tRCD
tRRD tRRD
RAa
RAa CAx
RBb
RBb CBy
RAc
RAc CAz
ax0 ax1 by4 by5 by6 by7 CZ0 CZ1 CZ2
(CLK = 100 MHz)
Write
Precharge
Active
Active Write
Precharge
Active Write
CLK
DQ
CKE
DQM
A0-A9
A10
BS1
WE
CAS
RAS
CS
Idle
Bank #0
Bank #1
Bank #2
Bank #3
BS0
ax4 ax5 ax6 ax7 by0 by1 by2 by3
W986432AH
Publication Release Date: December 1999
- 25 - Revision A1
Interleaved Bank Write (Burst Length = 8, Autoprecharge)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
tRC
tRAS tRP
tRAS
tRCD tRCD tRCD
tRRD tRRD
RAa
RAa CAx
RBb
RBb CBy
RAb
RAc
ax0 ax1 ax4 ax5 ax6 ax7 by0 by1 by2 by3 by4 by5 by6 by7 CZ0 CZ1 CZ2
CAz
(CLK = 100 MHz)
* AP is the internal precharge start timing
CLK
DQ
CKE
DQM
A0-A9
A10
BS1
WE
CAS
RAS
CS
Active Write Write
Active
Bank #0
Idle
Bank #1
Bank #2
Bank #3
AP*
Active Write AP*
BS0
W986432AH
- 26 -
Page Mode Read (Burst Length = 4, CAS Latency = 3)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
tCCD tCCD tCCD
tRAS
tRAS
tRCD tRCD
tRRD
RAa
RAa CAI
RBb
RBb CBx CAy CAm CBz
a0 a1 a2 a3 bx0 bx1 Ay0 Ay1 Ay2 am0 am1 am2 bz0 bz1 bz2 bz3
(CLK = 100 MHz)
* AP is the internal precharge start timing
CLK
DQ
CKE
DQM
A0-A9
A10
BS1
WE
CAS
RAS
CS
Active Read
Active Read
Read Read
Read
Precharge
tAC
tAC
tAC
tACtAC
Bank #0
Idle
Bank #1
Bank #2
Bank #3
AP*
BS0
W986432AH
Publication Release Date: December 1999
- 27 - Revision A1
Page Mode Read/Write (Burst Length = 8, CAS Latency = 3)
0123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23
tRAS
tRCD
tWR
RAa
RAa CAx CAy
ax0 ax1 ax2 ax3 ax4 ax5 ay1
ay0 ay2 ay4
ay3
Q Q Q Q Q Q D DD
D
D
(CLK = 100 MHz)
CLK
DQ
CKE
DQM
A0-A9
A10
BS1
WE
CAS
RAS
CS
Active Read Write Precharge
tAC
Bank #0
Idle
Bank #1
Bank #2
Bank #3
BS0
W986432AH
- 28 -
Autoprecharge Read (Burst Length = 4, CAS Latency = 3)
0123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23
(CLK = 100 MHz)
CLK
DQ
CKE
DQM
A0-A9
A10
WE
CAS
RAS
CS
BS1
tRC
tRAS tRP tRAS
tRCD tRCD
tAC tAC
Active Read AP* Active Read AP*
RAa RAb
RAa CAw RAb CAx
aw0 aw1 aw2 aw3
* AP is the internal precharge start timing
Bank #0
Idle
Bank #1
Bank #2
Bank #3
BS0
bx0 bx2bx1 bx3
W986432AH
Publication Release Date: December 1999
- 29 - Revision A1
Autoprecharge Write (Burst Length = 4)
0123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23
(CLK = 100 MHz)
CLK
DQ
CKE
DQM
A0-A9
A10
WE
CAS
RAS
CS
BS1
tRC tRC
tRP tRAS tRP
RAa
tRCD tRCD
RAb RAc
RAa RAb CAx RAc
bx0 bx1 bx2 bx3
Active
Active Write AP* Active Write AP*
* AP is the internal precharge start timing
Bank #0
Idle
Bank #1
Bank #2
Bank #3
tRAS
BS0
CAw
aw0 aw1 aw2 aw3
W986432AH
- 30 -
Autorefresh Cycle
0123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23
(CLK = 100 MHz)
All Banks
Prechage Auto
Refresh Auto Refresh (Arbitrary Cycle)
tRCtRP tRC
CLK
DQ
CKE
DQM
A0-A9
A10
WE
CAS
RAS
CS
BS0,1
W986432AH
Publication Release Date: December 1999
- 31 - Revision A1
Self-refresh Cycle
0123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23
(CLK = 100 MHz)
CLK
DQ
CKE
DQM
A0-A9
A10
BS0,1
WE
CAS
RAS
CS
tCKS
tSB tCKS tCKS
All Banks
Precharge Self Refresh
Entry Arbitrary Cycle
tRP
Self Refresh Cycle tRC
No Operation Cycle
W986432AH
- 32 -
Bust Read and Single Write (Burst Length = 4, CAS Latency = 3)
0123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23
CLK
(CLK = 100 MHz)
Q Q Q Q D DD Q Q Q Q
Read Read
Single WriteActive
Bank #0
Idle
Bank #1
Bank #2
Bank #3
CS
RAS
CAS
WE
BS1
A10
A0-A9
DQM
CKE
DQ
tRCD
RBa
RBa CBv CBw CBx CBy CBz
av0 av1 av2 av3 aw0 ax0 ay0 az0 az1 az2 az3
tAC tAC
BS0
W986432AH
Publication Release Date: December 1999
- 33 - Revision A1
Power-down Mode
012345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
(CLK = 100 MHz)
RAa CAa RAa CAx
RAa RAa
ax0 ax1 ax2 ax3
tSB
tCKS tCKS tCKS
tSB
tCKS
Active Standby
Power Down mode Precharge Standby
Power Down mode
Active NOP Precharge NOPActive
Note: The PowerDown Mode is entered by asserting CKE "low".
All Input/Output buffers (except CKE buffers) are turned off in the PowerDown mode.
When CKE goes high, command input must be No operation at next CLK rising edge.
CLK
DQ
CKE
DQM
A0-A9
A10
BS
WE
CAS
RAS
CS
Read
W986432AH
- 34 -
Auto-precharge Timing (Write Cycle)
D0
Write ActAP
0 1110987654321
D0
D0
D0
D0
AP Act
D1
AP Act
D1
D1
D2
D2
D3
D3 D4 D5 D6 D7
AP Act
AP Act
AP Act
D1
D0
AP Act
D1 D2 D3
AP Act
D0 D1 D2 D3
D4
D5 D6 D7
Write
Write
Write
Write
Write
Write
Write
D0
(1) CAS Latency=2
(2) CAS Latency=3
Write
Act
AP
When the Auto precharge command is asserted, the period from Bank Activate
command to the start of internal precgarging must be at least tRAS (min.)
represents the Write with Auto precharge command.
represents the start of internal precharging.
represents the Bank Activate command.
Note:
tRPtWR
tRPtWR
tRPtWR
tRPtWR
tRPtWR
tRPtWR
tRPtWR
tRP
tWR
( a ) burst length = 1
Command
( b ) burst length = 2
Command
( c ) burst length = 4
Command
( d ) burst length = 8
Command
DQ
DQ
DQ
DQ
( a ) burst length = 1
Command
( b ) burst length = 2
Command
( c ) burst length = 4
Command
( d ) burst length = 8
Command
DQ
DQ
DQ
DQ
W986432AH
Publication Release Date: December 1999
- 35 - Revision A1
Auto-precharge Timing (Read Cycle)
Read AP
0 1110987654321
Q0
Q0
Read AP Act
Q1
Read AP Act
Q1 Q2
AP ActRead
Act
Q0
Q3
(1) CAS Latency=2
Read
Act
AP
When the Auto precharge command is asserted, the period from Bank Activate command to
the start of internal precgarging must be at least t
RAS
(min).
represents the Read with Auto precharge command.
represents the start of internal precharging.
represents the Bank Activate command.
Note:
t
RP
t
RP
t
RP
( a ) burst length = 1
Command
( b ) burst length = 2
Command
( c ) burst length = 4
Command
( d ) burst length = 8
Command
DQ
DQ
DQ
DQ
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7
t
RP
Q0
Read AP Act
Q0
Read AP Act
Q1
Q0
Read AP Act
Q1 Q2 Q3
Read AP Act
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7
(2) CAS Latency=3
t
RP
t
RP
t
RP
t
RP
( a ) burst length = 1
Command
( b ) burst length = 2
Command
( c ) burst length = 4
Command
( d ) burst length = 8
Command
DQ
DQ
DQ
DQ
W986432AH
- 36 -
Timing Chart of Read to Write Cycle
Note: The Output data must be masked by DQM to avoid I/O conflict.
Read Write
1110987654321
Read
Read
Read Write
Write
D0 D1 D2 D3
Write
DQ
DQ
( a ) Command
0
DQ
DQ
DQM
( b ) Command
DQM
( b ) Command
DQM
DQM
D0 D1 D2 D3
D0 D1 D2 D3
D0 D1 D2 D3
(1) CAS Latency=2
( a ) Command
(2) CAS Latency=3
In the case of Burst Length = 4
W986432AH
Publication Release Date: December 1999
- 37 - Revision A1
Timing Chart of Write to Read Cycle
01110987654321
In the case of Burst Length = 4
Q0
Read
Q1 Q2 Q3
Read
Write
Write
D0 D1
DQ
DQ
( a ) Command
( b ) Command
DQM
DQM
(2) CAS Latency = 3
Q0 Q1 Q2 Q3D0
ReadWrite
Read
Write
Q0 Q1 Q2 Q3
Q0 Q1 Q2 Q3
( a ) Command
DQ
DQ
DQM
( b ) Command
DQM
(1) CAS Latency = 2
D0
D0 D1
W986432AH
- 38 -
Timing Chart of Burst Stop Cycle (Burst Stop Command)
Read BST
0 1110987654321
DQ
DQ
Q0 Q1 Q2 Q3
Q0 Q1 Q2 Q3
Read BST
( a ) CAS latency =2
Command
( b ) CAS latency = 3
Command
(3) Read cycle
Q4
Q4
DQ
D0 D1 D2 D3
Write BST
Command
(2) Write cycle
D4
Note:
represents the Burst stop command
BST
W986432AH
Publication Release Date: December 1999
- 39 - Revision A1
Timing Chart of Burst Stop Cycle (Precharge Command)
In the case of Burst Lenght = 8
Note: represents the Precharge command
PRCG
Read PRCG
0 1110987654321
Q0 Q1 Q2 Q3
Q0 Q1 Q2 Q3
Read PRCG
Q4
Q4
( a )CAS latency =2
( b )CAS latency = 3
DQ
DQ
(1) Read cycle
(2) Write cycle
Commad
Commad
Write
PRCG
D0 D1 D2 D3
D0 D1 D2 D3
Write
PRCG
D4
D4
( b ) CAS latency = 3
DQ
( a ) CAS latency =2
DQM
DQM
DQ
t
WR
t
WR
Commad
Commad
W986432AH
- 40 -
CKE/DQM Input Timing (Write Cycle)
7
6
5432
1
CKE MASK
( 1 )
D1 D6D5D3D2
CLK cycle No.
External
Internal
CKE
DQM
DQ
7
6
5432
1
( 2 )
D1 D6
D5
D3D2
CLK cycle No.
External
Internal
CKE
DQM
DQ
76
5432
1
( 3 )
D1 D6D5D4
D3D2
CLK cycle No.
External
CKE
DQM
DQ
DQM MASK
DQM MASK CKE MASK
CKE MASK
Internal
CLK
CLK
CLK
W986432AH
Publication Release Date: December 1999
- 41 - Revision A1
CKE/DQM Input Timing (Read Cycle)
7
6
5432
1
( 1 )
Q1 Q6
Q4Q3Q2
CLK cycle No.
External
Internal
CKE
DQM
DQ Open Open
7
6
5432
1
Q1 Q6
Q3
Q2
CLK cycle No.
External
Internal
CKE
DQM
DQ Open
( 2 )
765432
1
Q1 Q6
Q3
Q2
CLK cycle No.
External
Internal
CKE
DQM
DQ Q5Q4
( 3 )
Q4
CLK
CLK
CLK
W986432AH
- 42 -
Self Refresh/Power Down Mode Exit Timing
Asynchronous Control
Input Buffer turn on time (Power down mode exit time) is specified by t
CKS
(min.) + t
CK
(min.)
Command
NOP
CLK
CKE
Command
A ) t
CK
< t
CKS
(min.) + t
CK
(min.)
Input Buffer Enable
Command
CLK
CKE
Command
B) t
CK
>= t
CKS
(min.) + t
CK
(min.)
Input Buffer Enable
Note:
Command
NOP
All Input Buffer (Include CLK Buffer) are turned off in the Power Down mode
and Self Refresh mode
Represents the No-Operation command
Represents one command
tCK
tCK
t
CKS
(min)+t
CK
(min)
t
CKS
(min)+t
CK
(min)
W986432AH
Publication Release Date: December 1999
- 43 - Revision A1
PACKAGE DIMENSIONS
86L TSOP (II)-400 mil
SEATING PLANE
E
D
A2
A1
A
b
ZD
1 43
86 44
e
HE
Y
L
C
L1
q
ZD 0.61 0.024
0.002
0.007
MAX.MIN. NOM.
A2
b
A
A1
0.17 1.00
0.05
0.27
1.20
0.15
SYM.
DIMENSION
(MM)
MAX.MIN. NOM.
e0.50 0.020
0.016
L0.40 0.50 0.60 0.020 0.024
0.396
E10.06 10.16 10.26 0.400 0.404
0.871
D22.2222.12 22.62 0.875 0.905
0.039 0.011
0.047
0.006
DIMENSION
(INCH)
L1 0.80 0.032
c0.12 0.005
0.45511.7611.56 11.96 0.463 0.471
HE
Y0.10 0.004
Controlling Dimension: Millimeters
0.21 0.008
W986432AH
- 44 -
Headquarters
No. 4, Creation Rd. III,
Science-Based Industrial Park,
Hsinchu, Taiwan
TEL: 886-3-5770066
FAX: 886-3-5796096
http://www.winbond.com.tw/
Voice & Fax-on-demand: 886-2-27197006
Taipei Office
11F, No. 115, Sec. 3, Min-Sheng East Rd.,
Taipei, Taiwan
TEL: 886-2-27190505
FAX: 886-2-27197502
Winbond Electronics (H.K.) Ltd.
Rm. 803, World Trade Square, Tower II,
123 Hoi Bun Rd., Kwun Tong,
Kowloon, Hong Kong
TEL: 852-27513100
FAX: 852-27552064
Winbond Electronics North America Corp.
Winbond Memory Lab.
Winbond Microelectronics Corp.
Winbond Systems Lab.
2727 N. First Street, San Jose,
CA 95134, U.S.A.
TEL: 408-9436666
FAX: 408-5441798
Note: All data and specifications are subject to change without notice.