128M GDDR SDRAM
K4D263238G-GC
- 1 - Rev 1.4 (Nov 2004)
128Mbit GDDR SDRAM
Revision 1.4
November 2004
1M x 32Bit x 4 Banks
Graphic Double Data Rate
Samsung Electronics reserves the right to change products or specification without notice.
(144-Ball FBGA)
with Bi-directional Data Strobe and DLL
Synchronous DRAM
128M GDDR SDRAM
K4D263238G-GC
- 2 - Rev 1.4 (Nov 2004)
Revision History
Revision 1.4(Nov 30, 2004)
• Typo Corrected in DC table
Revision 1.3(Nov 12, 2004)
• Changed AC spec format
• Changed DC spec measurement condition from VDD(typ) to VDD(max)
Revision 1.2(Oct 18, 2004)
• Changed unit of tWR and tWR_A from ns to tCK to avoid misuse.
• Added lower speed timing set
Revision 1.1(August 31, 2004)
• Added 100% driver strength option as A6A1="11"
Revision 1.0 (July 12, 2004)
• Defined DC spec
Revision 0.4 (June 20, 2004)
• Removed K4D26323QG-GC40/45 from the spec
• Added dummy cycle (20tCK) between EMRS and MRS during the power-up sequence.
Revision 0.3 (June 8, 2004)
• Internal only
Revision 0.2 (April 22, 2004)
• Changed CAS latency of K4D263238G-GC2 A from 4tCK to 5tCK
• Changed tWR & tWR_A of K4D263238G-GC2A from 4tCK to 5tCK
• Changed tWR of K4D263238G-GC33 from 4tCK to 5tCK
• Changed tWR & tWR_A of K4D263238G-GC40 from 3tCK to 4tCK
• Changed tWR of K4D263238G-GC45 from 3tCK to 4tCK
• Changed tDAL of K4D26323 8G-GC40 from 7tCK to 8tCK
Revision 0.1 (April 19, 2004)
• Changed tRCDRD of K4D263238G-GC33/36 from 4tCK to 5tCK
• Changed tRCDWR of K4D263238G-GC33/36 from 2tCK to 3tCK
• Changed tWR of K4D2632 38G-GC2A/33/36 from 3tCK to 4tCK.
• Changed tDAL of K4D263238G-GC2A from 8tCK to 9tCK
• Changed tDAL of K4D263238G-GC33/36 from 7tCK to 8tCK
Revision 0.0 (April 7, 2004) - Target spec
• Defined Target specification
128M GDDR SDRAM
K4D263238G-GC
- 3 - Rev 1.4 (Nov 2004)
The K4D263238G is 134,217,728 bits of hyper synchronous data rate Dynamic RAM organized as 4 x1,048,576 words by
32 bits, fabricated with SAMSUNGs high performance CMOS technology. Synchronous features with Data Strobe allow
extremely high performance up to 2.8GB/s/chip. I/O transactions are possible on both edges of the clock cycle. Range of
operating frequencies, p rogrammable burst length and programmable latencies a llow the device to be useful for a variety
of high performance memory system applications.
• 2.5V ± 5% power supply for device operati on
• 2.5V ± 5% power supply for I/O interfa c e
• SSTL_2 compatible inputs/outputs
• 4 banks operation
• MRS cycle with address key programs
-. Read latency 3, 4 (clock)
-. Burst le ngth (2, 4 and 8)
-. Burst type (sequential & interleave)
• All inputs except data & DM are sampled at the positive
going edge of the system clock
• Differential clock input
GENERAL DESCRIPTION
FEATURES
• No Wrtie-Interrupted by Read Function
• 4 DQS’s ( 1DQS / Byte )
• Data I/O transactions on both edges of Data strobe
• DLL aligns DQ and DQS transitions with Clock transition
• Edge aligned data & data strobe output
• Center aligned data & data strobe input
• DM for write masking only
• Auto & Self refresh
• 32ms refresh period (4K cycle)
• 144-Ball FBGA
• Maximum clock frequency up to 350MHz
• Maximum data rate up to 700Mbps/pin
FOR 1M x 32Bit x 4 Bank DDR SDRAM
1M x 32Bit x 4 Banks Graphic Double Data Rate Synchronous DRAM
with Bi-directional Data Strobe and DLL
ORDERING INFORMATION
K4D263238G-VC is the Lead Free package part number.
Part NO. Max Freq. Max Data Rate Interface Package
K4D263238G-GC2A 350MHz 700Mbps/pin
SSTL_2 144-Ball FBGAK4D263238G-GC33 300MHz 600Mbps/pin
K4D263238G-GC36 275MHz 550Mbps/pin
128M GDDR SDRAM
K4D263238G-GC
- 4 - Rev 1.4 (Nov 2004)
PIN CONFIGURAT ION (Top View)
PIN DESCRIPTION
CK,CK Differential Clock Input BA0, BA1 Bank Select Address
CKE Clock Enable A0 ~A11 Address Input
CS Chip Select DQ0 ~ DQ31 Data In pu t/Output
RAS Row Address Strobe VDD Power
CAS Column Address Strobe VSS Ground
WE Write Enable VDDQ Power for DQs
DQS Data Strobe VSSQ Ground for DQs
DM Data Mask NC No Connection
RFU Reserved for Future Use MCL Must Connect Low
DQS0
VSS
RFU1
Thermal VSS
Thermal VSS
Thermal VSS
Thermal
VSS
Thermal
VSS
Thermal
VSS
Thermal
VSS
Thermal
VSS
Thermal VSS
Thermal VSS
Thermal VSS
Thermal
VSS
Thermal
VSS
Thermal
VSS
Thermal
VSS
Thermal
VSSQ
VSSQ VSSQ VSSQ
VSSQ
VSSQ
VSSQ
VSSQ
VSSQ
VSSQ
VSSQ
VSSQ
VSSQ VSSQ
VSSQ
VSSQ
VSSQ
VSSQ
VSSQ
VSSQ
VSS VSS VSS VSS
VSSVSSVSSVSS
VSS
RFU2A5
A6
DQ4
DQ6
DQ7
DQ17
DQ19
DQS2
DQ21
DQ22
CAS
RAS
CS
DM0
VDDQ
DQ5
VDDQ
DQ16
DQ18
DM2
DQ20
DQ23
WE
NC
NC
NC
VDD
VDDQ
VDDQ
NC
VDDQ
VDDQ
VDD
NC
BA0
BA1
A0
DQ3
VDDQ
DQ31
DQ1
A10
A2
A1
VDD VDD
VDD
DQ2
VDDQ
VDD
A11
A3
A9
A4
DQ0
VDDQ
VDD
DQ29
DQ30
DQ28
VDDQ NC
VSS
A7
VDDQ
VDDQ
NC
VDDQ
VDDQ
VDD
CK
A8/AP
DM3
VDDQ
DQ26
VDDQ
DQ15
DQ13
DM1
DQ11
DQ9
NC
CK
CKE
DQS3
DQ27
DQ25
DQ24
DQ14
DQ12
DQS1
DQ10
DQ8
NC
VREF
2345678910111213
B
C
D
E
F
G
H
J
K
L
M
N
NOTE:
1. RFU1 is reserved for A12
2. RFU2 is reserved for BA2
3. VSS Thermal balls are optional
MCL
128M GDDR SDRAM
K4D263238G-GC
- 5 - Rev 1.4 (Nov 2004)
INPUT/OUTPUT FUNCTIONAL DESCRIPTION
*1 : The timing reference point for the diff erential clocking is the cross point of CK and CK.
For any applications using the single ended clocking, apply VREF to CK pin.
Symbol Type Function
CK, CK*1 Input The differential system clock Input.
All of the inputs are sampled on the rising edge of the clock except
DQs and DMs that are sampled on both edges of the DQS.
CKE Input Activates the CK signal wh en high and deactivates the CK signal
when low. By deactivating the clock, CKE low indicates the Power
down mode or Self refresh mode.
CS Input CS enable s the command decoder when lo w an d di sa bled the com-
mand decoder when high. When the command decoder is disabled,
new commands are ignored but previous operations continue.
RAS Input Latches row addresses on the positive going ed ge of the CK with
RAS low. Enables row access & precharge.
CAS Input Latches column addresses on the positive going edge of the CK with
CAS low. Enables column access.
WE Input Enables write operation and row precharge.
Latches data in starting from CAS, WE active.
DQS0 ~ DQS3Input/Output Data input and output are synchronized with both edge of DQS.
DQS0 for DQ0 ~ DQ7, DQS1 for DQ8 ~ DQ 15, DQS2 for DQ16 ~ DQ23,
DQS3 for DQ24 ~ DQ31.
DM0 ~ DM3Input Data In mask. Data In is masked by DM Latency=0 when DM is high
in burst write. DM0 for DQ0 ~ DQ7, DM1 for DQ8 ~ DQ15, DM2 for
DQ16 ~ DQ23, DM3 for DQ24 ~ DQ31.
DQ0 ~ DQ31 Input/Output Data inputs/Outputs are multiplexed on the same pins.
BA0, BA1Input Selects which bank is to be active.
A0 ~ A11 Input Row/Column addresses are multiplexed on the same pins.
Row addresses : RA0 ~ RA11, Column addresses : CA0 ~ CA7.
Column address CA8 is used for auto precharge.
VDD/VSS Power Supply Power and ground for the input buffers and core logic.
VDDQ/VSSQ Power Supply Isolated power supply and ground for the output buffers to provide
improved noise immunity.
VREF Power Supply Reference voltage for inputs, used for SSTL interface.
NC/RFU No connection/
Reserved for future use This pin is recommended to be left "No connection" on the device
MCL Must Connect Low Must connect low
128M GDDR SDRAM
K4D263238G-GC
- 6 - Rev 1.4 (Nov 2004)
BLOCK DIAGRAM (1Mbit x 32I/O x 4 Bank)
Bank Select
Timing Register
Address Register
Refresh Counter
Row Buffer
Row Decoder Col. Buffer
Data Input Register
Serial to parallel
1Mx32
1Mx32
1Mx32
1Mx32
Sense AMP
2-bit prefetch
Output BufferI/O Control
Column Decoder
Latency & Burst Length
Programming Register
Strobe
Gen.
CK,CK
ADDR
LCKE
CK,CK CKE CS RAS CAS WE DMi
LDMi
CK,CK
LCAS
LRAS LCBR LWE LWCBR
LRAS
LCBR
CK, CK
64
64 32
32
LWE
LDMi
x32
DQi
Data Strobe
Intput Buffer
DLL (DQS0~DQS3)
128M GDDR SDRAM
K4D263238G-GC
- 7 - Rev 1.4 (Nov 2004)
Power-Up Sequence
DDR SDRAMs must be powered up and initialized in a predefined manner to prevent undefined operations.
1. Apply power and keep CKE at low state (All other inputs may be undefined)
- Apply VDD before VDDQ .
- Apply VDDQ before VREF & VTT
2. Start clock and maintain stable condition for minimum 200us.
3. The minimum of 200us after stable power and clock(CK,CK ), apply NOP and take CKE to be high .
4. Issue precharge command for all banks of the device.
5. Issue a EMRS command to enable DLL.
(Minimum 20 clock cycles are recommended prior to MRS command, however not mandatory just in case tMRD met)
*1 6. Issue a MRS command to reset DLL. The additional 200 clock cycles are required to lock the DLL.
*1,2 7. Issue precharge command for all banks of the device.
8. Issue at least 2 or more auto-refresh commands.
9. Issue a mode register set command with A8 to low to initialize the mode register.
*1 The additional 200cycles of clock input is required to lock the DLL after enabling DLL.
*2 Sequence of 6&7 is rega rdless of the order
FUNCTIONAL DESCRIPTION
Power up & Initialization Sequence
Command
012345678910111213141516171819
tRP tMRD
precharge
ALL Banks 2nd Auto
Refresh Mode
Register Set Any
Command
tRFC
1st Auto
Refresh
tRFC
EMRS MRS
tMRD<
DLL Reset
~
~~
~~
~
~
~~
~~
~
precharge
ALL Banks
tRP
Inputs must be
stable fo r 200us
~
~
200 Clock min.
~
~
tMRD.
CK,CK
* When the operating frequency is changed, DLL reset should be required again.
After DLL reset again, the minimum 200 cycles of clock input is needed to lock the DLL.
128M GDDR SDRAM
K4D263238G-GC
- 8 - Rev 1.4 (Nov 2004)
The mode register stores the data for controlling the variou s operating modes of DDR SDRAM. It programs CAS latency,
addressing mode, burst length , test mode, D LL rese t and variou s vendor spe cific op tions to make DDR SD RAM useful fo r
variety of different applications. The default value of the mode register is not defined, therefore the mode register must be
written after EMRS setting for proper operation. The mode register is written by asserting low on CS, RAS, CAS and
WE(The DDR SDRAM should be in active mode with CKE already high prior to writing into the mode register). The state of
address pins A0 ~ A11 and BA0, BA1 in the same cycle as CS, RAS, CAS and WE going low is written in the mode register .
Minimum two clock cycles are requested to complete the write operation in the mode register . The mode register contents
can be changed using the same command and clock cycle requirements during operation as long as all banks are in the
idle state. The mode register is divided into various fields depending on functionality. The burst length uses A0 ~ A2,
addressing mode uses A3, CAS latency(read latency from column address) uses A4 ~ A6. A7 is used for test mode. A8 is
used for DLL reset. A7,A8, BA0 and BA1 must be set to low fo r normal MRS operation. Refer to the table for specific codes
for various burst length, addressing modes and CAS latencie s.
MODE REGISTER SET(MRS)
Address Bus
Mode Register
CAS Latency
A6A5A4Latency
000Reserved
001Reserved
010Reserved
011 3
100 4
101Reserved
110Reserved
111Reserved
Burst Length
A2A1A0Burst Type
Sequential Interleave
0 0 0 Reserve Reserve
001 2 2
010 4 4
011 8 8
1 0 0 Reserve Reserve
1 0 1 Reserve Reserve
1 1 0 Reserve Reserve
1 1 1 Full page Reserve
Burst Type
A3Type
0 Sequential
1 Interleave
* RFU(Reserved for future use)
should stay "0" during MRS
cycle.
MRS Cycle
Command
*1 : MRS can be issued only at all banks precharge state.
*2 : Minimum tRP is required to issue MRS command.
0
CK, CK
Precharge NOP NOPMRS NOPNOP
201 534 867
Any
NOP All Banks Command
tRP tMRD=2 tCK
BA1BA0A11 A10 A9A8A7A6A5A4A3A2A1A0
RFU 0 RFU DLL TM CAS Latency BT Burst Length
BA0An ~ A0
0MRS
1EMRS
DLL
A8DLL Reset
0No
1Yes
Test Mode
A7mode
0 Normal
1Test
NOP
128M GDDR SDRAM
K4D263238G-GC
- 9 - Rev 1.4 (Nov 2004)
The extended mode register stores the data for enabling or disabling DLL and selecting output driver
strength. The default value of the extended mode register is not defined, therefore the extened mode register
must be written after power up for enabling or disabling DLL. The extended mode register is written by assert-
ing low on CS, RAS, CAS, WE and high on BA0(The DDR SDRAM should be in all bank precharge with CKE
already high prior to writing in to the extended mode reg ister). The state of ad dress pins A0, A2 ~ A5, A7 ~ A11
and BA1 in the same cycle as CS, RAS, CAS an d WE going low are written i n the extende d mode regist er. A1
and A6 are used for setting driver strength to normal, weak or matched impedance. Two clock cycles are
required to complete the write operation in the extended mode register. The mode register contents can be
changed using the same command and clock cycle requirements during operation as long as all banks are in
the idle state. A0 is used for DLL enable or disable. "High" on BA0 is used for EMRS. All the other address
pins except A0,A1,A6 and BA0 must be set to low for proper EMRS operation. Refer to the table for specific
codes.
A0DLL Enable
0 Enable
1 Disable
BA0An ~ A0
0MRS
1EMRS
Figure 7. Extended Mode Register set
EXTENDED MODE REGISTER SET(EMRS)
Address Bus
Extended
*1 : RFU(Reserved for future use) should stay "0" during EMRS cycle.
A6A1Output Driver Impedence Control
00 N/A Do not use
01 Weak 60%
10 N/A Do not use
11 Full 100%
RFU 1 RFU D.I.C RFU D.I.C DLL
BA1BA0A11 A10 A9A8A7A6A5A4A3A2A1A0
Mode Register
128M GDDR SDRAM
K4D263238G-GC
- 10 - Rev 1.4 (Nov 2004)
Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.
Functional operation should be restricted to recommended operating condition.
Exposure to higher than recommended voltage for extended periods of time could affect device reliability.
Note :
POWER & DC OPERATING CONDITIONS(SSTL_2 In/Out)
Recommended operating conditions(Voltage referenced to VSS=0V, TA=0 to 65°C)
Parameter Symbol Min Typ Max Unit Note
Device Supply voltage VDD 2.375 2.5 2.625 V 1
Output Supply voltage VDDQ 2.375 2.5 2.625 V 1
Reference voltage VREF 0.49*VDDQ - 0.51*VDDQ V2
Termination voltage Vtt VREF-0.04 VREF VREF+0.04 V 3
Input logic high voltage VIH(DC) VREF+0.15 - VDDQ+0.30 V 4
Input logic low voltage VIL(DC) -0.30 - VREF-0.15 V 5
Output logic high voltage VOH Vtt+0.76 - - V IOH=-15.2mA, 7
Output logic low voltage VOL - - Vtt-0.76 V IOL=+15.2mA, 7
Input leakage current IIL -5 - 5 uA 6
Output leakage current IOL -5 - 5 uA 6
ABSOLUTE MAXIMUM RATINGS
Parameter Symbol Value Unit
Voltage on any pin relative to Vss VIN, VOUT -0.5 ~ 3.6 V
Voltage on VDD supply relative to Vss VDD -1.0 ~ 3.6 V
Voltage on VDD supply relative to Vss VDDQ -0.5 ~ 3.6 V
Storage temperature TSTG -55 ~ +150 °C
Power dissipation PD3.3 W
Short circuit current IOS 50 mA
1. Under all conditions VDDQ must be less than or equal to VDD.
2. VREF is expected to equal 0.50*VDDQ of the transmitting device and to track variations in the DC level of the same. Peak to
peak noise on the VREF may not exceed + 2% of the DC value.
3. Vtt of the transmitting device must track VREF of the receiving device.
4. VIH(max.)= VDDQ +1.5V for a pulse width and it can not be greater than 1/3 of the cycle rate.
5. VIL(mim.)= -1.5V for a pulse width and it can not be greater than 1/3 of the cycle rate.
6. For any pin under test input of 0V < VIN < VDD is acceptable. For all other pins that are not under test VIN=0V.
7. Output logic high voltage and low vo ltage is depend on output channel condition.
Note :
128M GDDR SDRAM
K4D263238G-GC
- 11 - Rev 1.4 (Nov 2004)
DC CHARACTERISTICS
Note : 1. Measured with outputs open.
2. Refresh period is 32ms.
3. Current measured at VDD(max)
Parameter Symbol Test Condition Version Unit Note
-2A -33 -36
Operating Current
(One Bank Active) ICC1 Burst Lenth=2 tRC tRC(min)
IOL=0mA, tCC= tCC(min) 315 285 270 mA 1
Precharge Standby Current
in Power-down mode ICC2PCKE VIL(max), tCC= tCC(min) 15 15 15 mA
Precharge Standby Current
in Non Power-down mode ICC2NCKE VIH(min), CS VIH(min),
tCC= tCC(min) 75 65 65 mA
Active Standby Current
power-down mode ICC3PCKE VIL(max), tCC= tCC(min) 75 70 65 mA
Active Standby Current
in Non Power-down mode ICC3NCKE VIH(min), CS VIH(min),
tCC= tCC(min) 240 220 210 mA
Operating Current
( Burst Mode) ICC4 IOL=0mA ,tCC= tCC(min),
Page Burst, All Banks activated. 505 465 445 mA
Refresh Current ICC5 tRC tRFC(min) 280 250 230 mA 2
Self Refresh Current ICC6 CKE 0.2V 8 8 8 mA
Operating Current
(4Bank interleaving) ICC7 Burst Length=4 tRC tRC(min)
IOL=0mA, tCC= tCC(min) 600 550 520 mA
Recommended operating conditions Unless Otherwise Noted, TA=0 to 65°C)
1. VID is the magnitude of the difference between the input level on CK and the input level on CK
2. The value of VIX is expected to equal 0.5*VDDQ of the transmitting device and must track variations in the DC level of the same
Note :
AC INPUT OPERATING CONDITIONS
Recommended operating conditions(Voltage referenced to VSS=0V, TA=0 to 65°C)
Parameter Symbol Min Typ Max Unit Note
Input High (Logic 1) Voltage ;DQ VIH VREF+0.35 - - V
Input Low (Logic 0) Voltage; DQ VIL --VREF-0.35 V
Clock Input Differential Voltage; CK and CK VID 0.7 - VDDQ+0.6 V 1
Clock Input Crossing Point Voltage; CK and CK VIX 0.5*VDDQ-0.2 - 0.5*VDDQ+0.2 V 2
128M GDDR SDRAM
K4D263238G-GC
- 12 - Rev 1.4 (Nov 2004)
RT=50
Output
CLOAD=30pF
(Fig. 1) Output Load Circuit
Z0=50VREF
=0.5*VDDQ
Vtt=0.5*VDDQ
DECOUPLING CAPACITANCE GUIDE LINE
Recommended decoupling capacitance added to power line at board.
Parameter Symbol Value Unit
Decoupling Capacitance between VDD and VSS CDC1 0.1 + 0.01 uF
Decoupling Capacitance between VDDQ and VSSQ CDC2 0.1 + 0.01 uF
1. VDD and VDDQ pins are separated each other.
All VDD pins are connected in chip. All VDDQ pins are connected in chip.
2. VSS and VSSQ pins are separated each other
All VSS pins are connected in chip. All VSSQ pins are connected in chip.
Note :
AC OPERATING TEST CONDITIONS (TA= 0 to 65 °C)
Note 1 : In case of differential clocks(CK and CK), input reference voltage for clock is a CK and CK ’s crossing point
Accordingly, clock duty should be measured at a CK and CK ’s crossing point.
Parameter Value Unit Note
Input reference voltage for CK(for single ended) 0.50*VDDQ V1
CK and CK signal maximum peak swing 1.5 V
CK signal minimum slew rate 1.0 V/ns
Input Levels(VIH/VIL)VREF+0.4/VREF-0.4 V
Input timing measurement reference level VREF V
Output timing measurement reference le vel Vtt V
Output load condition See Fig.1
CAPACITANCE (TA= 25°C, f=1MHz)
Parameter Symbol Min Max Unit
Input capacitance( CK, CK )CIN1 1.0 5.0 pF
Input capacitance(A0~A11, BA0~BA1)CIN2 1.0 4.0 pF
Input capacitance( CKE, CS, RAS,CAS, WE )CIN3 1.0 4.0 pF
Data & DQS input/output capacitance(DQ0~DQ31)COUT 1.0 6.5 pF
Input capacitance(DM0 ~ DM3) CIN4 1.0 6.5 pF
128M GDDR SDRAM
K4D263238G-GC
- 13 - Rev 1.4 (Nov 2004)
AC CHARACTERISTICS
*1. The cycle to cycle jitter over 1~6 cycle short term jitter.
Parameter Symbol -2A -33 -36 Unit Note
Min Max Min Max Min Max
CK cycle time CL=3 tCK -4-10 -10 ns
CL=4 2.86 3.3 3.6 ns
CK high level width tCH 0.45 0.55 0.45 0.55 0.45 0.55 tCK
CK low level width tCL 0.45 0.55 0.45 0.55 0.45 0.55 tCK
DQS out access time from CK tDQSCK -0.55 0.55 -0.55 0.55 -0.6 0.6 ns
Output access time from CK tAC -0.55 0.55 -0.55 0.55 -0.6 0.6 ns
Data strobe edge to Dout edg e tDQSQ - 0.35 - 0.35 - 0.40 ns 1
Read preamble tRPRE 0.9 1.1 0.9 1.1 0.9 1.1 tCK
Read postamble t RPST 0.4 0.6 0.4 0.6 0.4 0.6 tCK
CK to valid DQS-in tDQSS 0.85 1.15 0.85 1.15 0.85 1.15 tCK
DQS-In setup time tWPRES 0 - 0 - 0 - ns
DQS-in hold time tWPREH 0.35 - 0.35 - 0.35 - tCK
DQS write postamble tWPST 0.4 0.6 0.4 0.6 0.4 0.6 tCK
DQS-In high level width tDQSH 0.45 0.55 0.45 0.55 0.45 0.55 tCK
DQS-In low level width tDQSL 0.45 0.55 0.45 0.55 0.45 0.55 tCK
Address and Control input setup tIS 0.8 - 0.8 - 0.9 - ns
Address and Control input hold tIH 0.8 - 0.8 - 0.9 - ns
DQ and DM setup time to DQS tDS 0.35 - 0.35 - 0.40 - ns
DQ and DM hold time to DQS tDH 0.35 - 0.35 - 0.40 - ns
Clock half period tHP tCLmin
or
tCHmin -tCLmin
or
tCHmin -tCLmin
or
tCHmin -ns1
Data Hold skew factor tQHS - 0.4 - 0.4 - 0.45 ns
Data output hold time from DQS tQH tHP-tQHS - tHP-tQHS - tHP-tQHS - ns 1
Jitter over 1~6 clock cycle error tJ*1 - 75 - 85 - 95 ps
Cycle to cyde duty cycle error tDCERR - 75 - 85 - 95 ps
Rise and fall times of CK tR, tF - 600 - 700 - 700 ps
13467
tCL
tCK
CK, CK
DQS
DQ
CS
DM
25
tIS
tIH
8
tDS tDH
01
tRPST
tRPRE
Db0 Db1
tDQSS tDQSH tDQSL
tCH
Qa1 Qa2
COMMAND READA WRITEB
tDQSQ tWPRES
tWPREH
tDQSCK
tAC
Simplified Timing @ BL=2, CL=4
128M GDDR SDRAM
K4D263238G-GC
- 14 - Rev 1.4 (Nov 2004)
Note 1 :
- The JEDEC DDR specification currently defines the output data valid window(tDV) as the time period when the data
strobe and all data associated with that data strobe are coincidentally valid.
- The previously used definition of tDV(=0.35tCK) artificially penalizes system timing budgets by assuming the worst case
output vaild window even then the clock duty cycle applied to the device is better than 45/55%
- A new AC timing term, tQH which stands for data output hold time from DQS is difined to account for clock duty cycle
variation and replaces tDV
- tQHmin = tHP-X where
. tHP=Minimum half clock period for any given cycle and is defined by clock high or clock low time(tCH,tCL)
. X=A frequency dependent timing allowance account for tDQSQmax
tQH Timing (CL4, BL2)
1tHP
CK, CK
DQS
DQ
CS
25
01
COMMAND READA
tQH
Qa0
tDQSQ(max)
tDQSQ(max)
34
Qa1
VALID NOP NOP NOP NOP NOP NOP VALID
t
IS
t
IS
CK, CK
CKE
Command
Exit Powr Down mode
Enter Power Down mode
(Read or Write operation
must not be in progress)
3t
CK
Power Down Timing
128M GDDR SDRAM
K4D263238G-GC
- 15 - Rev 1.4 (Nov 2004)
AC CHARACTERISTICS (II)
K4D263238G-GC2A
Frequency Cas Latency tRC tRFC tRAS tRCDRD tRCDWR tRP tRRD tDAL Unit
350MHz ( 2.86ns ) 4 15 17 10 5 3 5 4 10 tCK
300MHz ( 3.3ns ) 4 13 15 9 4 2 4 3 9 tCK
275MHz ( 3.6ns ) 4 13 15 9 4 2 4 3 9 tCK
K4D263238G-GC33
Frequency Cas Latency tRC tRFC tRAS tRCDRD tRCDWR tRP tRRD tDAL Unit
300MHz ( 3.3ns ) 4 13 15 9 4 2 4 3 9 tCK
275MHz ( 3.6ns ) 4 13 15 9 4 2 4 3 9 tCK
K4D263238G-GC36
Frequency Cas Latency tRC tRFC tRAS tRCDRD tRCDWR tRP tRRD tDAL Unit
275MHz ( 3.6ns ) 4 13 15 9 4 2 4 3 9 tCK
200MHz ( 5.0ns ) 3 10 11 7 3 2 3 3 8 tCK
166MHz ( 6.0ns ) 3 8 9 6 3 2 3 2 8 tCK
AC CHARACTERISTICS (I)
Note : 1. For normal write operation, even numbers of Din are to be written inside DRAM
2. The number of clock of tRP is restricted by the number of clock of tRAS and tRP
3. The number of clock of tWR_A is fixed. It can’t be changed by tCK
4. tRCDWR is equal to tRCDRD-2tCK and the nu m b er of clock can not be lo wer than 2tCK.
5. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and then
rounding off to the next higher integer unconditionally.
Parameter Symbol -2A -33 -36 Unit Note
Min Max Min Max Min Max
Row cycle time tRC 42.9 - 42.9 - 46.8 - ns 2,5
Refresh row cycle time tRFC 48.6 - 49.5 - 54 - ns 5
Row active time tRAS 28.6 100K 29.7 100K 32.4 100K ns 5
RAS to CAS delay for Read tRCDRD 13.2 - 13.2 - 14.4 - ns 5
RAS to CAS delay for Write tRCDWR 6.6 - 6.6 - 7.2 - ns 4
Row precharge time tRP 13.2 - 13.2 - 14.4 - ns 5
Row active to Row active tRRD 9.9 - 9.9 - 10.8 - ns 5
Last data in to Row precharge tWR 14.3 - 16.5 - 18 - ns 5
Last data in to Row precharge
@Auto Pr echarge tWR_A 5 - 5 - 5 - tCK 3
Auto precharge write recovery +
Precharge tDAL 10 - 9 - 9 - tCK 3,5
Last data in to Read command tCDLR 2 - 2 - 2 - tCK 1
Col. address to Col. address tCCD 1 - 1 - 1 - tCK
Mode register set cycle time tMRD 2 - 2 - 2 - tCK
Exit self refresh to read command tXSR 200 - 200 - 200 - tCK
Power down exit time tPDEX 3tCK+
tIS -3tCK+
tIS -3tCK+
tIS -ns
Refresh interval time tREF 7.8 - 7.8 - 7.8 - us
128M GDDR SDRAM
K4D263238G-GC
- 16 - Rev 1.4 (Nov 2004)
012345678
BAa
Ra
Ra
tRCD
ACTIVEA ACTIVEB WRITEA WRITEB
13 14 15 16 17 18 19 20 21
BAa BAb
Ca Cb
BAa
Ca
9101112
PRECH
BAa
22
Ra
Normal Write Burst
(@ BL=4) Multi Bank Interleaving Write Burst
(@ BL=4)
BAa
Ra
Ra
BAb
Rb
Rb
tRAS
tRC
tRP
tRRD
COMMAND
DQS
DQ
WE
DM
CK, CK
A8/AP
ADDR
(A0~A7,
BA[1:0]
A9,A10)
ACTIVEA WRITEA
Da0 Da1 Da2 Da3
Simplified Timing(2) @ BL=4
Db0 Db1 Db3
Da0 Da1 Da2 Da3 Db2
13467
tCL
tCK
CK, CK
DQS
DQ
CS
DM
25
tIS
tIH
8
tDS tDH
01
tRPST
tRPRE
Db0 Db1
tDQSS tDQSH tDQSL
tCH
Qa1 Qa2
COMMAND READA WRITEB
tDQSQ tWPRES
tWPREH
tDQSCK
tAC
Simplified Timing @ BL=2, CL=4
128M GDDR SDRAM
K4D263238G-GC
- 17 - Rev 1.4 (Nov 2004)
PACKAGE DIMENSIONS (144-Ball FBGA)
Unit : mm
12.0
12.0
0.8
0.8
0.35 ± 0.05
1.40 Max
<Top View>
<Bottom View>
0.45 ± 0.05
0.8x11=8.8
0.40
0.8x11=8.8
0.40
B
C
D
E
F
G
H
J
K
L
M
N13 12 11 10 9 8 7 6 5 4 3 2
A1 INDEX MARK
A1 INDEX MARK
0.10 Max