NPN Silicon Power Transistor
1 kV SWITCHMODE Series
These transistors are designed for high–voltage, high–speed, power
switching in inductive circuits where fall time is critical. They are
particularly suited for line–operated SWITCHMODE applications.
Typical Applications:
Switching Regulators
Inverters
Solenoids
Relay Drivers
Motor Controls
Deflection Circuits
Features:
Collector–Emitter Voltage — VCEV = 1000 Vdc
Fast Turn–Off Times
80 ns Inductive Fall Time — 100C (Typ)
120 ns Inductive Crossover Time — 100C (Typ)
800 ns Inductive Storage Time — 100C (Typ)
100C Performance Specified for:
Reverse–Biased SOA with Inductive Load
Switching Times with Inductive Loads
Saturation Voltages
Leakage Currents
Extended FBSOA Rating Using Ultra–fast Rectifiers
Extremely High RBSOA Capability
Preferred devices are ON Semiconductor recommended choices for future use and best overall value.
ON Semiconductor
Semiconductor Components Industries, LLC, 2001
April, 2001 – Rev. 6 1Publication Order Number:
MJH16006A/D
POWER TRANSISTORS
8 AMPERES
500 VOLTS
150 WATTS
MJH16006A
CASE 340D–02
MJH16006A
http://onsemi.com
2
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Rating
ÎÎÎÎÎ
ÎÎÎÎÎ
Symbol
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Value
ÎÎÎÎ
ÎÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Voltage
ÎÎÎÎÎ
ÎÎÎÎÎ
VCEO
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
500
ÎÎÎÎ
ÎÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Voltage
ÎÎÎÎÎ
ÎÎÎÎÎ
VCEV
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
1000
ÎÎÎÎ
ÎÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter–Base Voltage
ÎÎÎÎÎ
ÎÎÎÎÎ
VEB
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
6
ÎÎÎÎ
ÎÎÎÎ
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Current Continuous
Peak(1)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
IC
ICM
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
8
16
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Base Current Continuous
Peak(1)
ÎÎÎÎÎ
ÎÎÎÎÎ
IB
IBM
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
6
12
ÎÎÎÎ
ÎÎÎÎ
Adc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Total Power Dissipation@ TC = 25C
@ TC = 100C
Derate above TC = 25C
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
PD
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎ
Î
Î
ÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
125
50
1
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
Watts
W/C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Operating and Storage Junction
Temperature Range
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
TJ, Tstg
ÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎ
–55 to 150
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
C
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
THERMAL CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎÎ
ÎÎÎÎÎ
Symbol
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
Max
ÎÎÎÎ
ÎÎÎÎ
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Thermal Resistance, Junction to Case
ÎÎÎÎÎ
ÎÎÎÎÎ
RθJC
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
1
ÎÎÎÎ
ÎÎÎÎ
C/W
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Lead Temperature for Soldering Purposes:
1/8 from Case for 5 Seconds
ÎÎÎÎÎ
ÎÎÎÎÎ
TL
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
275
ÎÎÎÎ
ÎÎÎÎ
C
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%.
MJH16006A
http://onsemi.com
3
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25C unless otherwise noted)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
ÎÎÎÎÎ
ÎÎÎÎÎ
Symbol
ÎÎÎÎ
ÎÎÎÎ
Min
ÎÎÎ
ÎÎÎ
Typ
ÎÎÎÎ
ÎÎÎÎ
Max
Unit
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
OFF CHARACTERISTICS(1)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Sustaining Voltage (Table 1)
(IC = 100 mA, IB = 0)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VCEO(sus)
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
500
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
Î
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Cutoff Current
(VCEV = 1000 Vdc, VBE(off) = 1.5 Vdc)
(VCEV = 1000 Vdc, VBE(off) = 1.5 Vdc, TC = 100C)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
ICEV
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
0.003
0.020
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
0.15
1.0
Î
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector Cutoff Current
(VCE = 1000 Vdc, RBE = 50 , TC = 100C)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
ICER
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
0.020
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
1.0
Î
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Emitter Cutoff Current
(VEB = 6 Vdc, IC = 0)
ÎÎÎÎÎ
ÎÎÎÎÎ
IEBO
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
0.005
ÎÎÎÎ
ÎÎÎÎ
0.15
mAdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SECOND BREAKDOWN
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Second Breakdown Collector Current with Base Forward Biased
ÎÎÎÎÎ
ÎÎÎÎÎ
IS/b
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
See Figure 14a or 14b
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Clamped Inductive SOA with Base Reverse Biased
ÎÎÎÎÎ
ÎÎÎÎÎ
RBSOA
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
See Figure 15
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ON CHARACTERISTICS(1)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Collector–Emitter Saturation Voltage
(IC = 3 Adc, IB = 0.6 Adc)
(IC = 5 Adc, IB = 1 Adc)
(IC = 5 Adc, IB = 1 Adc, TC = 100C)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VCE(sat)
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
0.35
0.50
0.60
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
0.7
1
1.5
Î
Î
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Base–Emitter Saturation Voltage
(IC = 5 Adc, IB = 1 Adc)
(IC = 5 Adc, IB = 1 Adc, TC = 100C)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
Î
ÎÎÎ
Î
ÎÎÎÎÎ
VBE(sat)
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
Î
Î
Î
ÎÎÎ
1
1
ÎÎÎÎ
Î
ÎÎ
Î
Î
ÎÎ
Î
ÎÎÎÎ
1.5
1.5
Î
Î
Vdc
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DC Current Gain
(IC = 8 Adc, VCE = 5 Vdc)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
hFE
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
5
ÎÎÎ
Î
Î
Î
ÎÎÎ
8
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DYNAMIC CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Î
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Output Capacitance
(VCB = 10 Vdc, IE = 0, ftest = 1 kHz)
ÎÎÎÎÎ
Î
ÎÎÎ
Î
ÎÎÎÎÎ
Cob
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
ÎÎÎ
Î
Î
Î
ÎÎÎ
ÎÎÎÎ
Î
ÎÎ
Î
ÎÎÎÎ
350
Î
pF
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SWITCHING CHARACTERISTICS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Inductive Load (Table 1)
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
tsv
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
800
ÎÎÎÎ
ÎÎÎÎ
2000
ns
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Fall Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
(I = 5 Adc
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
(TJ = 100C)
ÎÎÎÎÎ
ÎÎÎÎÎ
tfi
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
80
ÎÎÎÎ
ÎÎÎÎ
200
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Crossover Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
(IC = 5 Adc,
IB1 = 0.66 Adc,
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
(J)
ÎÎÎÎÎ
ÎÎÎÎÎ
tc
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
120
ÎÎÎÎ
ÎÎÎÎ
300
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
IB1
=
0
.
66
Adc
,
VBE(off) = 5 Vdc,
VCE( k) = 400 Vdc)
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
tsv
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
1000
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Fall Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
VCE(pk) = 400 Vdc
)
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
(TJ = 150C)
ÎÎÎÎÎ
ÎÎÎÎÎ
tfi
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
90
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Crossover Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
(J)
ÎÎÎÎÎ
ÎÎÎÎÎ
tc
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
150
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Resistive Load (Table 2)
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Delay Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
td
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
25
ÎÎÎÎ
ÎÎÎÎ
100
ns
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Rise Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
(
I
C
= 5 Adc,
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
(IB2 = 1.3 Adc,
ÎÎÎÎÎ
ÎÎÎÎÎ
tr
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
400
ÎÎÎÎ
ÎÎÎÎ
700
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
(IC
=
5
Adc
,
VCC = 250 Vdc,
IB=066Adc
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
(IB2
1
.
3
Adc
,
RB1 = RB2 = 4 )
ÎÎÎÎÎ
ÎÎÎÎÎ
ts
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
1400
ÎÎÎÎ
ÎÎÎÎ
3000
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Fall Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
IB1 = 0.66 Adc,
PW = 30 µs,
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
tf
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
175
ÎÎÎÎ
ÎÎÎÎ
400
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Storage Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
PW
=
30
µs
,
Duty Cycle 2%)
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
(V 5 Vdc)
ÎÎÎÎÎ
ÎÎÎÎÎ
ts
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
475
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
Fall Time
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
(VBE(off) = 5 Vdc)
ÎÎÎÎÎ
ÎÎÎÎÎ
tf
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
100
ÎÎÎÎ
ÎÎÎÎ
(1) Pulse Test: PW = 300 µs, Duty Cycle 2%.
MJH16006A
http://onsemi.com
4
VBE, BASE-EMITTER VOLTAGE (VOLTS)
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
IC, COLLECTOR CURRENT (AMPS)
0.2 1
2
0.5
0.3
1
IB, BASE CURRENT (AMPS)
0.5
0.3
0.2
0.2
100
0.2
Figure 6. DC Current Gain
IC, COLLECTOR CURRENT (AMPS)
10.3 0.5 1 5 10 20
30
10
5
Figure 7. Collector–Emitter Saturation Region
0.1
IC, COLLECTOR CURRENT (AMPS)
0.1 0.3 0.5
3
1
0.5
50
hFE, DC CURRENT GAIN
3
123 10
Figure 8. Collector–Emitter Saturation Region
50.50.1 0.2 0.3 1 10250.5
Figure 9. Base–Emitter Saturation Region
Figure 10. Capacitance
10
2
10 k
1
VR, REVERSE VOLTAGE (VOLTS)
10
10
1 k
100 850
C, CAPACITANCE (pF)
100
0.1
TJ = 25°C
Cib
3 A
TJ = 100°C
-55°C
25°C
20
23
IC/IB = 10
TJ = 100°C
IC/IB = 10
TJ = 25°C
1.5
1
210
0.1
2
5
0.3
0.2
0.2 5
3
5 A
8 A
1 A
IC/IB = 10
TJ = 25°C
5
0.3 3
Cob
TYPICAL STATIC CHARACTERISTICS
MJH16006A
http://onsemi.com
5
tc, CROSSOVER TIME (ns) tfi, COLLECTOR CURRENT FALL TIME (ns)
IC, COLLECTOR CURRENT (AMPS)
Figure 11. Storage Time Figure 12. Storage Time
3000
2000
1000
700
500
300
, STORAGE TIME (ns)tsv
400
tfi, COLLECTOR CURRENT FALL TIME (ns)tc, CROSSOVER TIME (ns)
IC, COLLECTOR CURRENT (AMPS)
23 5710
3000
2000
1000
700
500
300
, STORAGE TIME (ns)tsv
1
400
IC, COLLECTOR CURRENT (AMPS)
23 5710
400
300
200
100
70
40
1
50
IC, COLLECTOR CURRENT (AMPS)
IC, COLLECTOR CURRENT (AMPS)
23 5710
500
300
200
100
50
1
70
IC, COLLECTOR CURRENT (AMPS)
Figure 13. Collector Current Fall Time Figure 14. Collector Current Fall Time
2 V
VBE(off) = 0 V
IC/IB1 = 5, TC = 75°C, VCE(pk) = 400 V IC/IB1 = 10, TC = 75°C, VCE(pk) = 400 V
5 V
23 57101
2 V
5 V
2 V
5 V
0 V
2 V
5 V
23 5710
400
300
200
100
70
40
1
50
2 V
5 V
2 V 5 V
23 5710
500
300
200
100
50
1
70
*βf = IC
IB1
VBE(off) = 0 V
VBE(off) = 0 V VBE(off) = 0 V
VBE(off) = 0 V VBE(off) = 0 V
2 V
5 V
TYPICAL INDUCTIVE SWITCHING CHARACTERISTICS
MJH16006A
http://onsemi.com
6
+15
150 100 100 µF
MTP8P10
MPF930
MPF930
MUR105
MJE210
150
500 µF
Voff
50
+10
MTP12N10
MTP8P10
RB1
RB2
A
1 µF
1 µF
Drive Circuit
*Tektronix AM503
*P6302 or Equivalent Scope — Tektronix
7403 or Equivalent T1Lcoil (ICpk)
VCC
Note: Adjust Voff to obtain desired VBE(off) at Point A.
T1 adjusted to obtain IC(pk)
T1+V
-V
0 V
A
*IB
*ICL
T.U.T
.MR918
Vclamp VCC
IC(pk)
VCE(pk)
VCE
IB
IC
IB1
IB2
VCEO(sus)
L = 10 mH
RB2 =
VCC = 20 Volts
Inductive Switching
L = 750 µH
RB2 = 0
VCC = 20 Volts
RB1 selected for desired IB1
RBSOA
L = 750 µH
RB2 = 0
VCC = 20 Volts
RB1 selected for desired IB1
Table 1. Inductive Load Switching
IB2, REVERSE BASE CURRENT (AMPS)
Figure 17. Inductive Switching Measurements Figure 18. Peak Reverse Base Current
VBE(off), REVERSE BASE VOLTAGE (VOLTS)
0
8
6
4
2
IB1 = 1 A
0.5 A
024 68
IC = 5 A
TJ = 25°C
tfi
trv
t, TIME
IC
90% IB1
IC(pk) VCE(pk)
90% VCE(pk) 90% IC(pk)
10% VCE(pk) 10%
IC(pk) 2% IC
IB
tsv tti
tc
VCE
MJH16006A
http://onsemi.com
7
td and trts and tf
H.P. 214
OR
EQUIV.
P.G.
50
RB = 8.5
*IB
*IC
T.U.T
.RL
VCC
Vin
0 V
11 V
tr 15 ns
*Tektronix AM503
*P6302 or Equivalent
VCC 250 V
RL50
IC5 A
IB0.66 A
+15
150 100 100 µF
MTP8P10
MPF930
MPF930
MUR105
MJE210
150
500 µF
Voff
50
+10 V
MTP12N10
MTP8P10
RB1
RB2
A
1 µF
1 µF
T.U.T
.*IC
*IB
A
RL
VCC
V(off) adjusted
to give specified
off drive
RL50
Table 2. Resistive Load Switching
MJH16006A
http://onsemi.com
8
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
IC, COLLECTOR CURRENT (AMPS)
20
0.1
Figure 19. Maximum Rated Forward Biased Safe Operating Area
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
0.02
1 10 2000
5
2
1
10
0.5
0.2
0.1
BONDING WIRE LIMIT
THERMAL LIMIT
SECOND BREAKDOWN
100 1000
a. MJ16006A
REGION II  EXPANDED FBSOA USING
REGION II  MUR8100 ULTRA-FAST
REGION II  RECTIFIER, SEE FIGURE 17
TC = 25°C
10µs1ms
dc
II
20
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
0.02
5
2
1
10
0.5
0.2
0.1
a. MJH16006A
REGION II 
EXPANDED FBSOA USING
MUR8100 ULTRA-FAST
RECTIFIER, SEE FIGURE 17
TC = 25°C10µs
1ms
dc
20
VCE(pk), COLLECTOR-EMITTER VOLTAGE (VOLTS)
0100
0
16
12
8
4
100 200 300 400 900
Figure 20. Maximum Reverse Biased
Safe Operating Area
IC/IB1 4
TJ 100°C
POWER DERATING FACTOR (%)
100
0
TC, CASE TEMPERATURE (°C)
040 200
80
60
40
20
80 120 160
Figure 21. Power Derating
500 600 700 800
VBE(off) = 0 V
SECOND BREAKDOWN DERATING
THERMAL DERATING
3
0.3
3
0.3
0.1 1 10 2000100 1000
IC, COLLECTOR CURRENT (AMPS)
IC(pk), PEAK COLLECTOR CURRENT (AMPS)
BONDING WIRE LIMIT
THERMAL LIMIT
SECOND BREAKDOWN
II
0
VBE(off) = 5 V
100ns 100ns
GUARANTEED SAFE OPERATING AREA LIMITS
MJH16006A
http://onsemi.com
9
Figure 22. Switching Safe Operating Area
+15
150 100 µF
MTP8P10
MPF930
MPF930
MUR105
MJE210
150
500 µF
Voff
50
+10
MTP12N10
RB1
RB2
1 µF
1 µF100
MTP8P10
MUR105
MUR1100
T.U.T
.
MUR8100
VCE (1000 V MAX)
10 µF
10 mH
Note: Test Circuit for Ultra–fast FBSOA
Note: RB2 = 0 and VOff = –5 Volts
t, TIME (ms)
1
0.01
0.01
0.7
0.2
0.1
0.05
0.02
r(t), EFFECTIVE TRANSIENT THERMAL
0.05 1 2 5 10 20 50 100 200 500
RθJC(t) = r(t) RθJC
RθJC = 1.17 or 1°C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) - TC = P(pk) RθJC(t)
P(pk)
t1
t2
DUTY CYCLE, D = t1/t2
D = 0.5
0.2
0.02
SINGLE PULSE
0.1
0.1 0.50.2
RESISTANCE (NORMALIZED)
1000
Figure 23. Thermal Response
0.5
0.3
0.07
0.03
0.03 0.3 3 30 3000.02
0.05
0.01
MJH16006A
http://onsemi.com
10
SAFE OPERATING AREA INFORMATION
FORWARD BIAS
There are two limitations on the power handling ability of
a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC – VCE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to greater
dissipation than the curves indicate.
The data of Figures 14a and 14b is based on TC = 25C;
TJ(pk) is variable depending on power level. Second
breakdown pulse limits are valid for duty cycles to 10% but
must be derated when TC 25C. Second breakdown
limitations do not derate the same as thermal limitations.
Allowable current at the voltages shown on Figures 14a and
14b may be found at any case temperature by using the
appropriate curve on Figure 16.
TJ(pk) may be calculated from the data in Figure 18. At
high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations
imposed by second breakdown.
REVERSE BIAS
For inductive loads, high voltage and high current must be
sustained simultaneously during turn–off, in most cases,
with the base–to–emitter junction reverse biased. Under
these conditions the collector voltage must be held to a safe
level at or below a specific value of collector current. This
can be accomplished by several means such as active
clamping, RC snubbing, load line shaping, etc. The safe
level for these devices is specified as Reverse Biased Safe
Operating Area and represents the voltage current condition
allowable during reverse biased turnoff. This rating is
verified under clamped conditions so that the device is never
subjected to an avalanche mode. Figure 15 gives the
RBSOA characteristics.
SWITCHMODE III DESIGN CONSIDERATIONS
1. FBSOA —
Allowable dc power dissipation in bipolar power
transistors decreases dramatically with increasing collector
emitter voltage. A transistor which safely dissipates 100
watts at 1 0 volts will typically dissipate less than 10 watts at
its rated VCEO(sus). From a power handling point of view,
current and voltage are not interchangeable (see Application
Note AN875).
2. TURN–ON —
Safe turn–on load line excursions are bounded by pulsed
FBSOA curves. The 10 µs curve applies for resistive loads,
most capacitive loads, and inductive loads that are clamped
by standard or fast recovery rectifiers. Similarly, the 100 ns
curve applies to inductive loads which are clamped by
ultra–fast recovery rectifiers, and are valid for turn–on
crossover times less than 100 ns (see Application Note
AN952).
At voltages above 75% of VCEO(sus), it is essential to
provide the transistor with an adequate amount of base drive
VERY RAPIDLY at turn–on. More specifically, safe
operation according to the curves is dependent upon base
current rise time being less than collector current rise time.
As a general rule, a base drive compliance voltage in excess
of 10 volts is required to meet this condition (see Application
Note AN875).
3. TURN–OFF —
A bipolar transistor s ability to withstand turn–off stress
is dependent upon its forward base drive. Gross overdrive
violates the RBSOA curve and risks transistor failure. For
this reason, circuits which use fixed base drive are often
more likely to fail at light loads due to heavy overdrive (see
Application Note AN875).
4. OPERATION ABOVE VCEO(sus)
When bipolars are operated above collector–emitter
breakdown, base drive is crucial. A rapid application of
adequate forward base current is needed for safe turn–on, as
is a stiff negative bias needed for safe turn–off. Any hiccup
in the base–drive circuitry that even momentarily violates
either of these conditions will likely cause the transistor to
fail. Therefore, it is important to design the driver so that its
output is negative in the absence of anything but a clean crisp
input signal (see Application Note AN952).
SWITCHMODE DESIGN CONSIDERATIONS (Cont.)
5. RBSOA —
Reverse Biased Safe Operating Area has a first order
dependency on circuit configuration and drive parameters.
The RBSOA curves in this data sheet are valid only for the
conditions specified. For a comparison of RBSOA results in
several types of circuits (see Application Note AN951).
6. DESIGN SAMPLES —
Transistor parameters tend to vary much more from wafer
lot to wafer lot, over long periods of time, than from one
device to the next in the same wafer lot. For design
evaluation it is advisable to use transistors from several
different date codes.
7. BAKER CLAMPS —
Many unanticipated pitfalls can be avoided by using
Baker Clamps. MUR105 and MUR1100 diodes are
recommended for base drives less than 1 amp. Similarly,
MUR405 and MUR4100 types are well–suited for higher
drive requirements (see Article Reprint AR131).
MJH16006A
http://onsemi.com
11
PACKAGE DIMENSIONS
CASE 340D–02
ISSUE B
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
A
D
VG
K
SL
U
BQEC
J
H
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A--- 20.35 --- 0.801
B14.70 15.20 0.579 0.598
C4.70 4.90 0.185 0.193
D1.10 1.30 0.043 0.051
E1.17 1.37 0.046 0.054
G5.40 5.55 0.213 0.219
H2.00 3.00 0.079 0.118
J0.50 0.78 0.020 0.031
K31.00 REF 1.220 REF
L--- 16.20 --- 0.638
Q4.00 4.10 0.158 0.161
S17.80 18.20 0.701 0.717
U4.00 REF 0.157 REF
V1.75 REF 0.069
123
4
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR
MJH16006A
http://onsemi.com
12
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–spanish@hibbertco.com
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –
then Dial 866–297–9322
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
MJH16006A/D
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Email: ONlit–german@hibbertco.com
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
Email: ONlit–french@hibbertco.com
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)
Email: ONlit@hibbertco.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, UK, Ireland