This document is a general product description and is subject t o change without notice. Hynix Semiconductor do es not assume any
responsibility for use of circuits described. No patent licenses are implied.
Rev. 1.2 / Feb. 2006 1
512Mb DDR SDRAM
HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
Rev. 1.2 / Feb. 2006 2
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
Revision History
Revision No. History Draft Date Remark
1.0 First Version Release Jun. 2005
1.1 IDD specification revised July 2005
1.2 IDD6 specification revised Feb. 2006
Rev. 1.2 / Feb. 2006 3
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
DESCRIPTION
The HY5DU12422C(L)TP, HY5DU12822C(L)TP and HY5DU121622C(L)TP are a 536,870,912-bit CMOS Double Data
Rate(DDR) Synchronous DRAM, ideally su ited for the main memory applications which requires large memory density
and high bandwidth.
This Hynix 512Mb DDR SDRAMs offer fully synchronous operations referenced to both rising and falling edges of the
clock. While all addresses and control inputs are latched on the rising edges of the CK (falling edges of the /CK), Data,
Data strobes and W rite data masks inputs ar e sampled on both rising and falling edges of it. The data paths are inter-
nally pipelined and 2 -bit pr efetched to achieve very high bandwidth. All input and output voltage lev els ar e compatible
with SSTL_2.
FEATURES
•VDD, VDDQ = 2.5V ±0.2V for DDR200, 266, 333
VDD, VDDQ = 2.6V ±0.1V for DDR400
All inputs and outputs are compatible with SSTL_2
interface
Fully differential clock inputs (CK, /CK) operation
Double data rate interface
Source synchronous - data transaction aligned to
bidirectional data strobe (DQS)
x16 device has two bytewide data strobes (UDQS,
LDQS) per each x8 I/O
Data outputs on DQS edges when read (edged DQ)
Data inputs on DQS centers when write (centered
DQ)
On chip DLL align DQ and DQS transition with CK
transition
DM mask write data-in at the both rising and falling
edges of the data strobe
All addresses and control inputs except data, data
strobes and data ma sks latched on the rising edges
of the clock
Programmable CAS latency 2/2.5 (DDR200, 266,
333) and 3 (DDR400) supported
Programmable burst length 2 / 4 / 8 with both
sequential and interleave mode
Internal four bank operations with single pulsed
/RAS
Auto refresh and self refresh supported
tRAS lock out function supported
8192 refresh cycles / 64ms
JEDEC standard 400mil 66pin TSOP-II with 0.65mm
pin pitch
•Lead free (ROHS* Compliant)
Industrial temperature supported: -40 to 85oC
ORDERING INFORMATION
* x means speed grade
Part No. Configuration Package
HY5DU12422C(L)TP-x*I 128M x 4 400mil
66pin
TSOP-II
(Lead free)
HY5DU12822C(L)TP-x*I 64M x 8
HY5DU121622C(L)TP-x*I 32M x 16
OPERATING FREQUENCY
Grade Clock Rate Remark
(CL-tRCD-tRP)
-D43 200MHz@CL3 DDR400B (3-3-3)
- J 133MHz@CL2 166MHz@CL2.5 DDR333 (2.5-3-3)
- K 133MHz@CL2 133MHz@CL2.5 DDR266A (2-3-3)
- H 100MHz@CL2 133MHz@CL2.5 DDR266B (2.5-3-3)
- L 100MHz@CL2 DDR200 (2-2-2)
*ROHS (Restriction Of Hazardous Substance)
Rev. 1.2 / Feb. 2006 4
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
PIN CONFIGURATION
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
VDD
DQ0
VDDQ
DQ1
DQ2
VSSQ
DQ3
DQ4
VDDQ
DQ5
DQ6
VSSQ
DQ7
NC
VDDQ
LDQS
NC
VDD
NC
LDM
/WE
/CAS
/RAS
/CS
NC
BA0
BA1
A10/AP
A0
A1
A2
A3
VDD
VSS
DQ15
VSSQ
DQ14
DQ13
VDDQ
DQ12
DQ11
VSSQ
DQ10
DQ9
VDDQ
DQ8
NC
VSSQ
UDQS
NC
VREF
VSS
UDM
/CK
CK
CKE
NC
A12
A11
A9
A8
A7
A6
A5
A4
VSS
VDD
DQ0
VDDQ
NC
DQ1
VSSQ
NC
DQ2
VDDQ
NC
DQ3
VSSQ
NC
NC
VDDQ
NC
NC
VDD
NC
NC
/WE
/CAS
/RAS
/CS
NC
BA0
BA1
A10/AP
A0
A1
A2
A3
VDD
VSS
DQ7
VSSQ
NC
DQ6
VDDQ
NC
DQ5
VSSQ
NC
DQ4
VDDQ
NC
NC
VSSQ
DQS
NC
VREF
VSS
DM
/CK
CK
CKE
NC
A12
A11
A9
A8
A7
A6
A5
A4
VSS
VDD
NC
VDDQ
NC
DQ0
VSSQ
NC
NC
VDDQ
NC
DQ1
VSSQ
NC
NC
VDDQ
NC
NC
VDD
NC
NC
/WE
/CAS
/RAS
/CS
NC
BA0
BA1
A10/AP
A0
A1
A2
A3
VDD
VSS
NC
VSSQ
NC
DQ3
VDDQ
NC
NC
VSSQ
NC
DQ2
VDDQ
NC
NC
VSSQ
DQS
NC
VREF
VSS
DM
/CK
CK
CKE
NC
A12
A11
A9
A8
A7
A6
A5
A4
VSS
x16 x8 x4x4 x8 x16
400mil X 875mil
66pin TSOP -II
0.65mm pin pitch
(Lead free)
ROW AND COLUMN ADDRESS TABLE
ITEMS 128Mx4 64Mx8 32Mx16
Organization 32M x 4 x 4banks 16M x 8 x 4banks 8M x 16 x 4banks
Row Address A0 - A12 A0 - A12 A0 - A12
Column Address A0-A9, A11, A12 A0-A9, A11 A0-A9
Bank Address BA0, BA1 BA0, BA1 BA0, BA1
Auto Precharge Flag A10 A10 A10
Refresh 8K 8K 8K
Rev. 1.2 / Feb. 2006 5
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
PIN DESCRIPTION
PIN TYPE DESCRIPTION
CK, /CK Input Clock: CK and /CK are differential clock inputs. All address and control input signals are
sampled on the crossing of the positive edge of CK and negative edge of /CK. Output
(read) data is referenced to the crossings of CK and /CK (both directions of crossi ng ).
CKE Input
Clock Enable: CKE HIGH activates, and CKE LOW deactivates internal cloc k signals, and
device input buffers and output drivers. Taking CKE LOW provides PRECHARGE POWER
DOWN and SELF REFRESH operation (all banks idle), or ACTIVE POWER DOWN (row
ACTIVE in any bank). CKE is synchronous for POWER DOWN entry and exit, and for SELF
REFRESH entry. CKE is asynchronous for SELF REFRESH exit, and for ou tput disab le. CKE
must be maintained high throughout READ and WRITE accesses. Input buff ers, excluding
CK, /CK and CKE are disabled during POWER DOWN. Input buffers, excluding CKE are
disabled during SELF REFRESH. CKE is an SSTL_2 input, but will detect an LVCMOS LOW
level after VDD is applied.
/CS Input Chip Select: Enables or disables all inputs except CK, /CK, CKE, DQS and DM. All com-
mands are masked when CS is registered high. CS provides for external bank selection on
systems with multiple banks. CS is considered part of the co mmand code.
BA0, BA1 Input Bank Addr es s I nputs : BA 0 and BA1 def ine to whic h bank an ACTIVE, R ead, W rit e or PR E-
CHARGE command is being applied.
A0 ~ A12 Input
Address Input s: Provid e the row ad dress f or ACTIVE co mmands, and the colu mn address
and AUT O PR ECHARGE bit f o r READ/WRITE comman ds, to select one lo ca tion ou t of the
memory array in the respective bank. A10 is sampled during a Precharge command to
determine whether the PRECHARGE applies to one bank (A10 LOW) or all banks (A10
HIGH). If only one bank is to be precharged, the bank is selected by BA0, BA1. The
address inputs also provide the op code during a MODE REGISTER SET command. BA0
and BA1 define which mod e register is loaded durin g the MODE REGISTER SET command
(MRS or EMRS).
/RAS, /CAS, /WE Input Command Inpu ts : /RAS, /CAS and /WE (along with /CS) define the command being
entered.
DM
(LDM,UDM) Input
Input Data Mask: DM is an input mask signal for wri te data. Input data is masked when
DM is sampled HIGH along with that inpu t data during a WRITE access. DM is sampled
on both ed ges of D QS . Al thou gh D M pi ns are input only, the DM loading matches the DQ
and DQS loading. For the x16, LDM corresponds to the data on DQ0-Q7; UDM corre-
sponds to the data on DQ8-Q15.
DQS
(LDQS,UDQS) I/O Data Strobe: Output with read data, input with write data. Edge aligned with read data,
centered in write data. Used to capture write data. For the x16, LDQS corresponds to the
data on DQ0-Q7; UDQS corresponds to the data on DQ8-Q15.
DQ I/O Data input / output pin: Data bus
VDD/VSS Supply Power supply for internal circuits and input buffers.
VDDQ/VSSQ Supply Power supply for output buffers for noise immunity.
VREF Supply Reference voltage for inputs for SSTL interface.
NC NC No connection.
Rev. 1.2 / Feb. 2006 6
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
Command
Decoder
CLK
/CLK
CKE
/CS
/RAS
/CAS
/WE
DM
Address
Buffer
A0~A12
Bank
Control 32Mx4/Bank0
Colum n Decoder
Colum n Address
Counter
Sense AM P
2-bit Prefetch Unit
32Mx4/Bank1
32Mx4/Bank2
32Mx4/Bank3
Mode
Register Row
Decoder
Input Buffer Output Buffer
DLL
Block
Mode
Register
Data Strobe
Transmitter
Data Strobe
Receiver
DQS
CLK
/CLK
DS
W rite Data Register
2-bit Prefetch Unit DS
DQ [0:3]
84
4
8
CLK_DLL
BA0, BA1
FUNCTIONAL BLOCK DIAGRAM (128Mx4)
4Banks x 32Mbit x 4 I/O Double Data Rate Synchronous DRAM
Rev. 1.2 / Feb. 2006 7
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
Command
Decoder
CLK
/CLK
CKE
/CS
/RAS
/CAS
/WE
DM
Address
Buffer
A0~A12
Bank
Control 16Mx8/Bank0
Colum n Decoder
Colum n Address
Counter
Sense AM P
2-bit Prefetch Unit
16Mx8/Bank1
16Mx8/Bank2
16Mx8/Bank3
Mode
Register Row
Decoder
Input Buffer Output Buffer
DLL
Block
Mode
Register
Data Strobe
Transmitter
Data Strobe
Receiver
DQS
CLK
/CLK
DS
W rite Data Register
2-bit Prefetch Unit DS
DQ [0:7]
16 8
8
16
CLK_DLL
BA0,BA1
FUNCTIONAL BLOCK DIAGRAM (64Mx8)
4Banks x 16Mbit x 8 I/O Double Data Rate Synchronous DRAM
Rev. 1.2 / Feb. 2006 8
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
Command
Decoder
CLK
/CLK
CKE
/CS
/RAS
/CAS
/WE
LDM
Address
Buffer
A0~A12
Bank
Control 8Mx16/Bank0
Colum n Decoder
Colum n Address
Counter
Sense AM P
2-bit Prefetch Unit
8Mx16/Bank1
8Mx16/Bank2
8Mx16/Bank3
Mode
Register Row
Decoder
Input Buffer Output Buffer
DLL
Block
Mode
Register
Data Strobe
Transmitter
Data Strobe
Receiver
LDQS, UDQS
CLK
/CLK
LDQS
UDQS
W rite Data Register
2-bit Prefetch Unit DS
DQ[0:15]
32 16
16
32
CLK_DLL
BA0, BA1
UDM
FUNCTIONAL BLOCK DIAGRAM (32Mx16)
4Banks x 8Mbit x 16 I/O Double Data Rate Synchronous DRAM
Rev. 1.2 / Feb. 2006 9
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
SIMPLIFIED COMMAND TRUTH TABLE
Command CKEn-1 CKEn CS RAS CAS WE ADDR A10/AP BA
Extended Mode Register Set1,2 HXLLLL OP code
Mode Register Set1,2 HXLLLL OP code
Device Deselect1HXHXXX X
No Operation1LHHH
Bank Active1HXLLHH RA V
Read1HXLHLHCALV
Read with Autoprecharge1,3 H
Write1HXLHLLCA
LV
Write with Autoprecharge1,4 H
Precharge All Banks1,5 HXLLHLXHX
Precharge selected Bank1LV
Read Burst St op1HXLHHL X
Auto Refre s h1HHLLLH X
Self Refresh1
Entry HLLLLH
X
Exit LHHXXX
LHHH
Precharge Power
Down Mode 1
Entry HLHXXX
X
LHHH
Exit LHHXXX
LHHH
Active Power
Down Mode 1Entry HLHXXX
XLVVV
Exit L H X
Note:
1. LDM/UDM stat es are Don’t Care. Refer to below Write Mask Truth Table.
2. OP Code(Operand Code) consists of A0~A12 and BA0~BA1 used for Mode Register setting during E x tended MRS or MRS.
Before entering Mode Register Set mode, a ll banks mu st be in a precharge state and MRS command can be issued after tRP
period from Precharge command.
3. If a Read with Autoprecharge command is detected by memory component in CK(n), then there will be no command presented
to activated bank until CK(n +BL /2+tRP).
4. If a Write with Autoprecharge command is detected by memory co mponent in CK(n), then there will be no command presented
to activated bank until CK(n+BL/2+1+tWR+tRP). Write Recovery Time(tWR) is needed to guarantee that the last data has been
completely written.
5. If A10/AP is High when Precharge command being issued, BA0/BA1 are ignored and all banks are selected to be
precharged.
*For more information about Truth Table, refer to “Device Operation” section in Hynix website.
( H=Logic High Level, L=Logic Low Level, X=Do n’t Care, V=Valid Data Input, OP Code=Operand Code, NOP=No Operation )
Rev. 1.2 / Feb. 2006 10
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
WRITE MASK TRUTH TABLE
Function CKEn-1 CKEn /CS, /RAS,
/CAS, /WE DM ADDR A10/
AP BA
Data Write1HX X L X
Data-In Mask1HX X H X
Note:
1. Write Mask command ma sks burst write data w ith reference to LDQS/UDQS(Data Strobes) and it is not related with read data.
In case of x16 data I/O, LDM and UDM control lower byte(DQ0~7) and Upper byte(DQ8~15) respectively.
Rev. 1.2 / Feb. 2006 11
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
SIMPLIFIED STATE DIAGRAM
MRS SREF
SREX
PDEN
PDEX
ACT
AREF
PDEX
PDEN
BST
READWRITE
WRITE
WRITEAP
WRITEAP
READ
READAP READAP
PRE(PALL)
PRE(PALL)
PRE(PALL)
Command Input
Automatic Sequence
IDLE
AUTO
REFRESH
PRE-
CHARGE
POWER-UP
POWER APPLIED
MODE
REGISTER
SET
POWER
DOWN
WRITE
WITH
AUTOPRE-
CHARGE
POWER
DOWN
WRITE
READ
WITH
AUTOPRE-
CHARGE
BANK
ACTIVE
READ
SELF
REFRESH
Rev. 1.2 / Feb. 2006 12
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
POWER-UP SEQUENCE AND DEVICE INITIALIZATION
DDR SDRAMs must be powered up and initialized in a predefined manner. Operational procedures other than those
specified may result in undefined operation. Power must first be applied to VDD, then to VDDQ, and finally to VREF
(and to the system VTT). VTT must be applied a fter VDDQ to a void devi ce latch-up , which m ay caus e permanent d am-
age to the device. VREF can be applied anytime after VDDQ, but is expected to be nominally coincident with VTT.
Except for CKE, inputs are not recognized as v alid until after VREF is applied. CKE is an SSTL_2 input, but will detect an
LVCMOS LOW level after VDD is applied. Maintaining an LVCMOS LOW level on CKE during power-up is required to
guarantee that the DQ and DQS outputs will be in the High-Z state, where they will remain until driven in normal oper-
ation (by a read access). After all power supply and reference voltages are stable, and the clock is stable, the DDR
SDRAM requires a 200us delay prior to applying an executable command.
Once the 200us delay has been satisfied, a DESELECT or NOP command should be applied, and CKE should be
brought HIGH. Following the NOP command, a PRECHARGE ALL command should be applied. Next a EXTENDED
MODE REGISTER SET command should be issued for the Extended Mode Register, to enable the DLL, then a MODE
REGISTER SET command should be issued for the Mode Register, to reset the DLL, and to program the operating
parameters. After the DLL reset, tXSRD(DLL locking time) should be satisfied for read command. After the Mode Reg-
ister set command, a PRECHARGE ALL command should be applied, placing the device in the all banks idle state.
Once in the idle state, two AUTO REFRESH cycles must be performed. Additionally, a MODE REGISTER SET command
for the Mode Register, with the reset DLL bit deactivated low (i .e. to program operating parameters without resetti ng
the DLL) must be performed. Following these cycles, the DDR SDRAM is ready for normal operation.
1. Apply power - VDD, VDDQ, VTT, VREF in the following power up sequencing and attempt to maintain CKE at L VC-
MOS low state. (All the other input pins may be undefined.)
VDD and VDDQ are driven from a single power converter output.
VTT is limited to 1.44V (reflecting VDDQ(max)/2 + 50mV VREF variation + 40mV VTT variation.
VREF tracks VDDQ/2.
A minimum resistance of 42 Ohms (22 ohm se ries r esistor + 22 ohm parallel resistor - 5% toler ance) limits the
input current from the VTT supply into any pin.
If the above criteria cannot be met by the system design, then the following sequencing and voltage relation-
ship must be adhered to during power up.
2. Start clock and maintain stable clock for a minimum of 200usec.
3. After stable power and clock, apply NOP condition and take CKE high.
4. Issue Extended Mode Register Set (EMRS) to enable DLL.
5. Issue Mode Register Set (MRS) to reset DLL and set device to idle state with bit A8=high. (An additional 200
cycles(tXSRD) of clock are required for locking DLL)
6. Issue Precharge commands for all banks of the device.
7. Issue 2 or more Auto Refresh commands.
8. Issue a Mode Register Set command to initialize the mode register with bit A8 = Low
Voltage description Sequencing Voltage relationship to avoid latch-up
VDDQ After or with VDD < VDD + 0.3V
VTT After or with VDDQ < VDDQ + 0.3V
VREF After or with VDDQ < VDDQ + 0.3V
Rev. 1.2 / Feb. 2006 13
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
Power-Up Sequence
CODE
CODE CODE CODE
CODE
CODE
CODE CODE CODE
CODE
CODE CODE
CODE
CODE
CODE
NOP PRE MRS
EMRS PRE
NOP MRS
AREF ACT RD
VDD
VDDQ
VTT
VREF
/CLK
CLK
CKE
CMD
DM
ADDR
A10
BA0, BA1
DQS
DQ'S
LVCMOS Low Lev el
tIS tIH
tVTD
T=200usec tRP tMRD tRP tRFC tMRD
tXSRD*
READ
Non-Read
Command
Power UP
VDD and CK stable Precharge All EMRS Set MRS Set
Reset DLL
(with A8=H)
Precharge All 2 or more
Auto Refresh
MRS Set
(wit h A 8=L)
* 200 cycle(tXSRD) of CK are required (for DLL locking) before Read Command
tMRD
Rev. 1.2 / Feb. 2006 14
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
MODE REGISTER SET (MRS)
The mode regist er is us ed to store th e various op erating mo des such as /CAS latency, addressing mode, burst length,
burst type, test mode, DLL reset. The mode register is programed via MRS command. This command is iss ued by the
low signals of /RAS, /CAS, /CS, /WE an d BA0. This command can be issued only when all banks are in idle state and
CKE must be high at least one cy cle be fore the Mode Regi ster Set Command can be is sued. Two cycles are requir ed to
write the data in mode register. During the MRS cycle, any command cannot be issued. Once mode register field is
determined, the information will be held until reset by another MRS command.
BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
0 0 Operating Mode CAS Latency BT Burst Lengt h
A2 A1 A0 Burst Length
Sequential Interleave
0 0 0 Reserved Reserved
001 2 2
010 4 4
011 8 8
1 0 0 Reserved Reserved
1 0 1 Reserved Reserved
1 1 0 Reserved Reserved
1 1 1 Reserved Reserved
A3 Burst Type
0Sequential
1 Interleave
A6 A5 A4 CAS Latency
000 Reserved
001 Reserved
010 2
011 3
100 Reserved
101 1.5
110 2.5
111 Reserved
BA0 MRS Type
0MRS
1EMRS
A12~A9 A8 A7 A6~A0 Operating Mode
0 0 0 Valid Normal Operation
0 1 0 Valid Normal Operation/ Reset DLL
001VS Vendor specific Test Mode
---- All other states reserved
Rev. 1.2 / Feb. 2006 15
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
BURST DEFINITION
BURST LENGTH & TYPE
Read and write accesses to th e DDR SD RAM are bu rst orien ted, wi th the burst length being programmable. The burst
length determines the maximum number of column locations that can be accessed for a given Read or Write com-
mand. Burst lengths of 2, 4 or 8 locations are available for both the sequential and the interleaved burst types.
Reserved states should not be used, as unknown operation or incompatibility with future versions may result.
When a Read or Write command is issued, a block of columns equal to the burst length is effectively selected. All
accesses for that burst take place within this block, meaning that the burst wraps within the block if a boundary is
reached. The block is uniquely selected by A1-Ai when the burst length is set to two, by A2 -Ai when the burst length
is set to four and by A3 -Ai when the burst length is set to eight (where Ai is the most significant column address bit
for a given configuration). The remaining (least significant) address bit(s) is (are) used to select the starting location
within the block. The programmed burst length applies to both Read and Write bursts.
Accesses within a given burst may be programmed to be either sequential or interleaved; this is referred to as the
burst type and is selected via bit A3. The ordering of accesses within a burst is determined by the burst length, the
burst type and the starting column address, as shown in Burst Definition Table
CAS LATENCY
The Read latency or CAS latency is the delay in clock cycles between the registration of a Read command and the
availability of the first burst of output data. The latency can be programmed 2 or 2.5 clocks for DDR200/266/333 and
3 clocks for DDR400. If a Read command is registered at clock edge n, and the latency is m clocks, the data is avail-
able nominally coincident with clock edge n + m.
Reserved states should not be used as unknown operation or incompatibility with future versions may result.
Burst Length Starting Address (A2,A1,A0) Sequential Interleave
2XX0 0, 1 0, 1
XX1 1, 0 1, 0
4
X00 0, 1, 2, 3 0, 1, 2, 3
X01 1, 2, 3, 0 1, 0, 3, 2
X10 2, 3, 0, 1 2, 3, 0, 1
X11 3, 0, 1, 2 3, 2, 1, 0
8
000 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, 3, 4, 5, 6, 7
001 1, 2, 3, 4, 5, 6, 7, 0 1, 0, 3, 2, 5, 4, 7, 6
010 2, 3, 4, 5, 6, 7, 0, 1 2, 3, 0, 1, 6, 7, 4, 5
011 3, 4, 5, 6, 7, 0, 1, 2 3, 2, 1, 0, 7, 6, 5, 4
100 4, 5, 6, 7, 0, 1, 2, 3 4, 5, 6, 7, 0, 1, 2, 3
101 5, 6, 7, 0, 1, 2, 3, 4 5, 4, 7, 6, 1, 0, 3, 2
110 6, 7, 0, 1, 2, 3, 4, 5 6, 7, 4, 5, 2, 3, 0, 1
111 7, 0, 1, 2, 3, 4, 5, 6 7, 6, 5, 4, 3, 2, 1, 0
Rev. 1.2 / Feb. 2006 16
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
DLL RESET
The DLL must be enabled f or normal oper ation. DLL enable is requ ired during pow er up init ializat ion, an d upon ret urn-
ing to normal operation after having disabled the DLL fo r the purpose of debug or evaluation. The DLL is automatically
disabled when entering self refresh operation and is automatically re-enabled upon exit of self refresh operation. Any
time the DLL is enabled, 200 clock cycles must occur to allow time for the internal clock to lock to the externally
applied clock before an any command can be issued.
OUTPUT DRIVER IMPEDANCE CONTROL
The normal drive strength for all outputs is specified to be SSTL_2, Class II. Hynix also supports a half strength driver
option, intended for lighter load and/or point-to-point environments. Selection of the half strength driver option will
reduce the output drive strength by 50% of that of the full strength driver. I-V curves for both the full strength driver
and the half strength driver are included in this document.
Rev. 1.2 / Feb. 2006 17
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
EXTENDED MODE REGISTER SET (EMRS)
The Extended Mode Register controls functions beyond those controlled by the Mode Register; these additional func-
tions include DLL e nable/disable , output driv er strength selection(optional). These functions are controlled via the bits
shown below. The Extended Mode Register is programmed via the Mode Register Set command (BA0=1 and BA1=0)
and will retain the stored information until it is programmed again or the device loses power.
The Extended Mode Registe r must be loaded when all banks ar e idle and no burs ts are in progress , and the contr oller
must wait the specified time before initiating any subsequent operation. Violating either of these requirements will
result in unspecified operation.
BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
0 1 Operating Mode 0* DS DLL
A0 DLL enable
0Enable
1Disable
BA0 MRS Ty pe
0MRS
1EMRS
A1 Output Driver
Impedance Control
0 Full Strength Dri ver
1 Half Strength Driver
* This part do not support/QFC function, A2 must be programmed to Zero.
An~A3 A2~A0 Operating Mode
0Valid Normal Operation
__
All other states reserved
Rev. 1.2 / Feb. 2006 18
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
ABSOLUTE MAXIMUM RATINGS
Note: Operation at above absolute maximum rating can adversely affect device reliability
DC OPERATING CONDITIONS ( TA=-40 to 85 oC, Voltage referenced to VSS = 0V)
Note:
1. VDDQ must not exceed the level of VDD.
2. VIL (min) is acceptab le -1.5V AC pulse width with < 5ns of duration.
3. VREF is expected to be equal to 0.5*VDDQ of the transmitting device, and to track variations in the dc level of the same.
Peak to peak noise on VREF may not exceed ±2% of the DC value.
4. VID is the magnitude of the difference between the input level on CK and the input level on /CK.
5. The ratio of the pullup current to the pulldown current is specifie d for the same tempe rature and voltage, over the entire temper-
ature and voltage r ange, f or d evice dr ai n to sour ce v oltages fr om 0.25 V to 1.0V. For a gi ven output, it repres ents the maximum dif-
ference between pullup and pulldown drivers due to process variation. The full variation in the ratio of the maximum to minimum
pullup and pulldown current will not exceed 1/7 for device drain to source voltages from 0.1 to 1.0.
6. VIN=0 to VDD, All other pins are not tested under VIN =0V.
7. DQs are disabled, VOUT=0 to VDDQ
Parameter Symbol Rating Unit
Operating Temperature (Ambient) TA-40 ~ 85 oC
Storage Temperature TSTG -55 ~ 150 oC
Volt age on VDD relative to VSS VDD -1.0 ~ 3.6 V
Volt age on VDDQ rela tive to VSS VDDQ -1.0 ~ 3.6 V
Voltage on inputs relative to VSS VINPUT -1.0 ~ 3.6 V
Voltage on I/O pins relative to VSS VIO -0.5 ~3.6 V
Output Short Circuit Current IOS 50 mA
Soldering Temperature Time TSOLDER 260 10 oC Sec
Parameter Symbol Min Typ. Max Unit
Power Supply Voltage (DDR200, 266, 333) VDD 2.3 2.5 2.7 V
Power Supply Voltage (DDR200, 266, 333)1VDDQ 2.3 2.5 2.7 V
Power Supply Voltage (DDR400) VDD 2.5 2.6 2.7 V
Power Supply Voltage (DDR400)1VDDQ 2.5 2.6 2.7 V
Input High Voltage VIH VREF + 0.15 - VDDQ + 0.3 V
Input Low Voltage2VIL -0.3 - VREF - 0.15 V
Termination Voltage VTT VREF - 0.04 VREF VREF + 0.04 V
Reference Voltage3VREF 0.49*VDDQ 0.5*VDDQ 0.51*VDDQ V
Input Voltage Level, CK and CK inputs VIN(DC) -0.3 - VDDQ+0.3 V
Input Differential Voltage, CK and CK inputs4VID(DC) 0.36 - VDDQ+0.6 V
V-I Mat ch ing: Pullup to Pulldow n Current Ratio5VI(RATIO) 0.71 - 1.4 -
Input Leakage Current6ILI -2 - 2 uA
Output Leakage Current7ILO -5 - 5 uA
Normal Strength
Output Driver
(VOUT=VTT ±
0.84)
Output High Current
(min VDDQ, min VREF, min VTT) IOH -16.8 - - mA
Output Low Current
(min VDDQ, max VREF, max
VTT) IOL 16.8 - - mA
Half Strength
Output Driver
(VOUT=VTT ±
0.68)
Output High Current
(min VDDQ, min VREF, min VTT) IOH -13.6 - - mA
Output Low Current
(min VDDQ, max VREF, max
VTT) IOL 13.6 - - mA
Rev. 1.2 / Feb. 2006 19
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
IDD SPECIFICATION AND CONDITIONS (TA=- 40 to 85 oC, Voltage referenced to VSS = 0V)
Test Conditions
Test Condition Symbol
Operating Current:
One bank; Active - Precharge; tRC=tRC(min); tCK = tCK(min); DQ,DM and DQS inp uts changing twi ce per clock
cycle; address and control inputs changing once per clock cycle IDD0
Operating Current:
One bank; Active - Read - Precharge;
Burst Length=2; tRC=tRC(min); tCK=tCK(min); address and control inputs changing once per clock cycle IDD1
Precharge Power Down Standby Current:
All banks idle; Power down mode; CKE=Low, tCK=tCK(min) IDD2P
Idle Standby Current:
Vin>=Vih(min) or Vin=<Vil(max) for DQ, DQS and DM IDD2N
Idle Standby Current:
/CS=High, All banks idle; tCK=tCK(min);
CKE=High; address and control inputs changing on ce per clock cycle.
VIN=VREF for DQ, DQS and DM
IDD2F
Idle Quiet Standby Current:
/CS>=Vih(min); All b an ks id le; CKE>=Vih(min); Add resses and other contro l inputs stable, Vi n=Vref for DQ, DQS
and DM IDD2Q
Active Power Down Standby Current:
One bank active; Power down mode; CKE=Low, tCK=tCK(min) IDD3P
Active Standby Current:
/CS=HIGH; CKE=HIGH; One bank; Active-Precharge; tRC=tRAS(max); tCK=tCK(min);
DQ, DM and DQS inputs changing twice per clock cycle; Address and other control inputs changing once per clock
cycle
IDD3N
Operating Current:
Burst=2; Reads; Continuous burst; On e bank active; Address and control inputs changing once pe r clock cycle;
tCK=tCK(min); IOUT=0mA IDD4R
Operating Current:
Burst=2; Writes; Continuous burst; One bank active; Address and control inputs changing once per clock cycle;
tCK=tCK(min); DQ, DM and DQS inputs changing twice per clock cycle IDD4W
Auto Refresh Current:
tRC=tRFC(min) - 8*tCK for DDR200 at 100Mhz, 10*tCK for DDR266A & DDR266B at 133Mhz; distributed refresh
tRC=tRFC(min) - 14*tCK for DDR400 at 200Mhz IDD5
Self Refresh Current:
CKE =< 0.2V; External clock on; tCK=tCK(min) IDD6
Operating Current - Four Bank Operation:
Four bank interleaving with BL=4, Refer to the following page for detailed test condition IDD7
Rev. 1.2 / Feb. 2006 20
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
IDD Specification
128Mx4
64Mx8
Parameter Symbol Speed Unit
DDR400B DDR333 DDR266A DDR266B DDR200
Operating Current IDD0 130 120 100 mA
Operating Current IDD1 170 150 120 mA
Precharge Power Down Standby Current IDD2P 10 mA
Idle Standby Current IDD2F 35 mA
Idle Quiet Standby Current IDD2Q 30 mA
Active Power Down Standby Current IDD3P 45 mA
Active Standby Current IDD3N 60 mA
Operating Current IDD4R 210 190 170 mAOperating Current IDD4W 230 210 180
Auto Refresh Current IDD5 260 240 220
Self Refresh Current Normal IDD6 5mA
Low Power 3mA
Operating Current - Four Bank Operation IDD7 360 350 340 mA
Parameter Symbol Speed Unit
DDR400B DDR333 DDR266A DDR266B DDR200
Operating Current IDD0 130 120 100 mA
Operating Current IDD1 170 150 120 mA
Precharge Power Down Standby Current IDD2P 10 mA
Idle Standby Current IDD2F 35 mA
Idle Quiet Standby Current IDD2Q 30 mA
Active Power Down Standby Current IDD3P 45 mA
Active Standby Current IDD3N 60 mA
Operating Current IDD4R 210 190 170 mAOperating Current IDD4W 230 210 180
Auto Refresh Current IDD5 260 240 220
Self Refresh Current Normal IDD6 5mA
Low Power 3mA
Operating Current - Four Bank Operation IDD7 360 350 340 mA
Rev. 1.2 / Feb. 2006 21
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
32Mx16
Parameter Symbol Speed Unit
DDR400B DDR333 DDR266A DDR266B DDR200
Operating Current IDD0 130 120 100 mA
Operating Current IDD1 170 150 120 mA
Precharge Power Down Standby Current IDD2P 10 mA
Idle Standby Current IDD2F 35 mA
Idle Quiet Standby Current IDD2Q 30 mA
Active Power Down Standby Current IDD3P 45 mA
Active Standby Current IDD3N 60 mA
Operating Current IDD4R 210 190 170 mAOperating Current IDD4W 230 210 180
Auto Refresh Current IDD5 260 240 220
Self Refresh Current Normal IDD6 5mA
Low Power 3mA
Operating Current - Four Bank Operation IDD7 360 350 340 mA
Rev. 1.2 / Feb. 2006 22
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
DETAILED TEST CONDITIONS FOR DDR SDRAM IDD1 & IDD7
IDD1: Operat ing current: One bank operation
1. Typical Case: VDD = 2.5V, T=25 oC for DDR200, 266, 333; VDD = 2.6V, T=25 oC for DDR400
2. Worst Case: VDD = 2.7V, T= 0 oC
3. Only one bank is accessed with tRC(min), Burst Mode, Address and Control inputs on NOP edge are
changing once per clock cycle. lout = 0mA
4. Timing patterns
- DDR200(100Mhz, CL=2): tCK = 10ns, CL2, BL=2, tRCD = 2*tCK, tRC = 10*tCK, tRAS = 5*tCK
Read: A0 N R0 N N P0 N A0 N - repeat the same timing with random address changing
50% of data changing at every burst
- DDR266B(133Mhz, CL=2.5): tCK = 7.5ns, CL=2.5, BL=4, tRCD = 3*tCK, tRC = 9*tCK, tRAS = 5*tCK
Read: A0 N N R0 N P0 N N N A0 N - repeat the same timing with random address changing
50% of data changing at every burst
- DDR266A (133Mhz, CL=2): tCK = 7.5ns, CL=2, BL=4, tRCD = 3*tCK, tRC = 9*tCK, tRAS = 5*tCK
Read: A0 N N R0 N P0 N N N A0 N - repeat the same timing with random address changing
50% of data changing at every burst
- DDR333(166Mhz, CL=2.5): tCK = 6ns, CL=2, BL=4, tRCD = 3*tCK, tRC = 10*tCK, tRAS = 7*tCK
Read: A0 N N R0 N N N P0 N N A0 N - repeat the same timing with random address changing
50% of data changing at every burst
- DDR400(200Mhz, CL=3): tCK = 5ns, CL=3, BL=4, tRCD = 3*tCK, tRC = 11*tCK, tRAS = 8*tCK
Read: A0 N N R0 N N N N P0 N N - repeat the same timing with random address changing
50% of data changing at every burst
Legend: A=Activate, R=Read, W=Write, P=Precharge, N=NOP
IDD7: Operat ing current: Four ba nk operation
1. Typical Case: VDD = 2.5V, T=25 oC for DDR200, 266, 333; VDD = 2.6V, T=25 oC for DDR400
2. Worst Case: VDD = 2.7V, T= 0 oC
3. Four banks are being interleaved with tRC(min), Burst Mode, Address and Control inputs on NOP edge are not
changing. lout = 0mA
4. Timing patterns
- DDR200(100Mhz, CL=2): tCK = 10ns, CL2, BL=4, tRRD = 2*tCK, tRCD= 3*tCK, Read with Autoprecharge
Read: A0 N A1 R0 A2 R1 A3 R2 A0 R3 A1 R0 - repeat the same timing with random address changing
50% of data changing at every burst
- DDR266B(133Mhz, CL=2.5): tCK = 7.5ns, CL=2.5, BL=4, tRRD = 2*tCK, tRCD = 3*tCK Read with autoprecharge
Read: A0 N A1 R0 A2 R1 A3 R2 N R3 A0 N A1 R0 - repeat the same timing with random address changing
50% of data changing at every burst
- DDR266A (133Mhz, CL=2): tCK = 7.5ns, CL2=2, BL=4, tRRD = 2*tCK, tRCD = 3*tCK
Read: A0 N A1 R0 A2 R1 A3 R2 N R3 A0 N A1 R0 - repeat the same timing with random address changing
50% of data changing at every burst
- DDR333(166Mhz, CL=2.5): tCK = 6ns, CL=2.5, BL=4, tRRD = 2*tCK, tRCD = 3*tCK, Read with autoprecharge
Read: A0 N A1 R0 A2 R1 A3 R2 N R3 A0 N A1 R0 - repeat the same timing with random address changing
50% of data changing at every burst
- DDR400(200Mhz, CL=3): tCK = 5ns, CL = 2, BL = 4, tRRD = 2*tCK, tRCD = 3*tCK, Read with autoprecharge
Read: A0 N A1 R0 A2 R1 A3 R2 N R3 A0 N A1 R0 - repeat the same timing with random address changing
50% of data changing at every burst
Legend: A=Activate, R=Read, W=Write, P=Precharge, N=NOP
Rev. 1.2 / Feb. 2006 23
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
AC OPERATING CONDITIONS (TA=-40 to 85 oC, Voltage referenced to VSS = 0V)
Note:
1. VID is the magnitude of the difference between the input level on CK and the input on /CK.
2. The value of VIX is expected to equal 0.5*V DDQ of the transmitting device and must track variations in the DC level of the same.
*For more information abou t AC Overshoot/Undershoot Specifications, refer to “Device Operation” section in hynix website.
AC OPERATING TEST CONDITIONS (TA=- 40 to 85 oC, Voltage referenced to VSS = 0V)
Parameter Symbol Min Max Unit
Input High (Logic 1) Voltage, DQ, DQS and DM signals VIH(AC) VREF + 0.31 - V
Input Low (Logic 0) Voltage, DQ, DQS and DM signals VIL(AC) -VREF - 0.31 V
Input Differential Voltage, CK and /CK inputs1VID(AC) 0.7 VDDQ + 0.6 V
Input Crossing Point Voltage, CK and /CK inputs2VIX(AC) 0.5*VDDQ-0.2 0.5*VDDQ+0.2 V
Parameter Value Unit
Reference Voltage VDDQ x 0.5 V
Termination Voltage VDDQ x 0.5 V
AC Input High Level Voltage (VIH, min) VREF + 0.31 V
AC Input Low Level Voltage (VIL, max) VREF - 0.31 V
Input Timing Measurement Reference Level Voltage VREF V
Output Timing Measurement Reference Level Voltage VTT V
Input Signal maximum peak swing 1.5 V
Input minimum Signal Slew Rate 1 V/ns
Termination Resistor (RT)50
Ω
Series Resistor (RS)25 W
Output Load Capacitance for Access Time Measurement (CL)30pF
Rev. 1.2 / Feb. 2006 24
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
AC CHARACTERISTICS (note: 1 - 9 / AC operating conditions unle ss otherwise noted)
Parameter Symbol DDR400B DDR333 DDR266A DDR266B DDR200 UNIT
Min Max Min Max Min Max Min Max Min Max
Row Cycle Time tRC 55 - 60 - 65 - 65 - 70 - ns
Auto Refresh Row
Cycle Time tRFC 70 - 72 - 75 - 75 - 80 - ns
Row Active Time tRAS 40 70K 42 70K 45 120K 45 120K 50 120K ns
Active to Read with
Auto Precharge Delay tRAP tRCD or
tRASmin -tRCD or
tRASmin -tRCD or
tRASmin -tRCD or
tRASmin -tRCD or
tRASmin -ns
Row Add ress to
Column Address Delay tRCD 15 - 18 - 20 - 20 - 20 - ns
Row Active to Row
Active Delay tRRD 10 - 12 - 15 - 15 - 15 - ns
Column Address to
Column Address Delay tCCD1-1-1-1-1-tCK
Row Precharge Time tRP 15 - 18 - 20 - 20 - 20 - ns
Write Recovery Time tWR 15 - 15 - 15 - 15 - 15 - ns
Internal Write to Read
Command Delay tWTR2-1-1-1-1-tCK
Auto Precharge Write
Recovery + Precharge
Time22 tDAL
(tWR/
tCK)
+
(tRP/tCK)
-
(tWR/
tCK)
+
(tRP/tCK)
-
(tWR/
tCK)
+
(tRP/tCK)
-
(tWR/
tCK)
+
(tRP/tCK)
-
(tWR/
tCK)
+
(tRP/tCK)
-tCK
System
Clock Cycle
Time24
CL = 3
tCK
510--------
CL = 2.5 - - 6 12 7.5 12 7.5 12 8.0 12 ns
CL = 2 - - 7.5127.51210121012ns
Clock High Level Width tCH 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 tCK
Clock Low Level Width tCL 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 tCK
Data-Out edge to Clock
edge Skew tAC -0.7 0.7 -0.7 0.7 -0.75 0.75 -0.75 0.75 -0.75 0.75 ns
DQS-Out edge to Clock
edge Skew tDQSCK -0.55 0.55 -0.6 0.6 -0.75 0.75 -0.75 0.75 -0.75 0.75 ns
DQS-Out edge to Data-
Out edge Skew21 tDQSQ - 0.4 - 0.45 - 0.5 - 0.5 - 0.6 ns
Data-Out hold time
from DQS20 tQH tHP
-tQHS -tHP
-tQHS -tHP
-tQHS -tHP
-tQHS -tHP
-tQHS -ns
Clock Half Period19,20 tHP min
(tCL,tCH) -min
(tCL,tCH) -min
(tCL,tCH) -min
(tCL,tCH) -min
(tCL,tCH) -ns
Data Hold Skew
Factor20 tQHS - 0.5 - 0.55 - 0.75 - 0.75 - 0.75 ns
Valid Data Output
Window tDV tQH-tDQSQ tQH-tDQSQ tQH-tDQSQ tQH-tDQSQ tQH-tDQSQ ns
Rev. 1.2 / Feb. 2006 25
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
- Continue
Parameter Symbol DDR400B DDR333 DDR266A DDR266B DDR200 UNIT
Min Max Min Max Min Max Min Max Min Max
Data-out high-impedance window
from CK,/CK10 tHZ -0.7 0.7 -0.7 0.7 -0.75 0.75 -0.75 0.75 -0.8 0.8 ns
Data-out low-impedance window
from CK, /CK10 tLZ -0.7 0.7 -0.7 0.7 -0.75 0.75 -0.75 0.75 -0.8 0.8 ns
Input Setup Time (fast slew
rate)14,16-18 tIS 0.6 - 0.75 - 0.9 - 0.9 - 1.1 - ns
Input Hold Time (fast slew
rate)14,16-18 tIH 0.6 - 0.75 - 0.9 - 0.9 - 1.1 - ns
Input Setup Time (slow slew
rate)15-18 tIS 0.7 - 0.8 - 1.0 - 1.0 - 1.1 - ns
Input Hold Time (slow slew
rate)15-18 tIH 0.7 - 0.8 - 1.0 - 1.0 - 1.1 - ns
Input Pulse Width17 tIPW 2.2 - 2.2 - 2.2 - 2.2 - 2.5 - ns
Write DQS High Level Width tDQSH 0.35 - 0.35 - 0.35 - 0.35 - 0.35 - tCK
Writ e DQS Low Level Width tDQSL 0.35 - 0.35 - 0.35 - 0.35 - 0.35 - tCK
Clock to First Ris ing edge of DQS-
In tDQSS 0.72 1.25 0.75 1.25 0.75 1.25 0.75 1.25 0.75 1.25 tCK
DQS falling edge to CK setup time tDSS 0.2 -0.2-0.2-0.2-0.2-tCK
DQS falling edge hold time from
CK tDSH 0.2 -0.2-0.2-0.2-0.2-tCK
DQ & DM input setup time25 tDS 0.4 - 0.45 - 0.5 - 0.5 - 0.6 - ns
DQ & DM input hold time25 tDH 0.4 - 0.45 - 0.5 - 0.5 - 0.6 - ns
DQ & DM Input Pulse Width17 tDIPW 1.75 - 1.75 - 1.75 - 1.75 - 2 - ns
Read DQS Preamble Time tRPRE 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 0.9 1.1 tCK
Read DQS P ostamble Time tRPST 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 tCK
Write DQS Preamble Setup Time12 tWPRES 0-0-0-0-0-ns
Write DQS Preamble Hold Time tWPREH 0.25 - 0.25 - 0.25 - 0.25 - 0.25 - tCK
Wri te DQS Postamble Time11 tWPST 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 tCK
Mode Regis ter Set Del ay tMRD 2-2-2-2-2-tCK
Exit Self Refresh to non-Read
command23 tXSNR 75 - 75 - 75 - 75 - 80 - ns
Exit Self Refresh to Read
command tXSRD 200 - 200 - 200 - 200 - 200 - tCK
Average Periodic Refresh
Interval13,25 tREFI -7.8 - 7.8 - 7.8 - 7.8 - 7.8 us
Rev. 1.2 / Feb. 2006 26
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
Note:
1. All voltages refe renced to Vss.
2. Tests for ac timing, IDD, and electrical, ac and dc characteristics, may be conducted at nominal reference/supply voltage levels,
but the related specifications and device operation are guaranteed for the full voltage range specified.
3. Below figure represents the timing reference load used in defining the relevant timing parameters of the part. It is not intended to
be either a precise representation of the typical syst em envir onment nor a depiction of the actual load pr esented by a production
tester. System designers will use IBIS or other simulation tools to correlate the timing reference load to a system environment.
Manufact urers will co rrelate to their pr oductio n test cond itions (generally a coaxial tr ansmission line terminated at the tester elec-
tronics).
4. AC timing and IDD tests may use a VIL to VIHswing of up to 1.5 V in the test environment, but input timing is still referenced to
VREF (or to the crossing point for CK, /CK), and parameter specifications are guaranteed for the specified ac input levels under
normal use conditions. The minimum slew rate for t he i nput signals is 1 V/ns in the range between VIL(ac) and VIH(ac).
5. The ac and dc input level specifications are as defined in the SSTL_2 Standard (i.e., the receiver will effectively switch as a result
of the signal crossing the ac input level and will remain in that state as long as the signal does not ring back above (below) the
dc input LOW (HIGH) level.
6. Inputs are not recogniz ed as valid until VREF stabilizes. Except ion: during the period before VREF stabilizes, CKE < 0.2VDDQ is
recognize d as LOW.
7. The C K , /CK input refe rence level (for t i ming referenced to C K, /CK) is the point at which CK and /CK cross; the input reference
level for signals other than CK, /CK is VREF.
8. The output timing reference voltage level is VTT.
9. Operation or timing that is no t sp ecified is illegal and after such an event, in order to guar antee proper operation, the DRAM must
be powered down and then restarted through the specified initialization sequence before normal operation can continue.
10. tHZ and tLZ tr ans itio ns occ ur in the same acc ess time wind ows as valid data transi tion s. Thes e par a meters are n ot re f er enced to
a specific voltage level but specify when the devic e output is no longer driving (HZ), or begins driving (LZ).
11. The maximum limit for this parameter is not a device limit. The device will operate with a greater value for this parameter, but
system performance (bus turnaround) will degrade accordingly.
12. The specific requirement is that DQS be valid (HIGH, LOW, or at some point on a valid transition) on or before this CK edge. A
valid transition is defined as monotonic and meeting the input slew rate specifications of the device. When no writes were previ-
ously in progress on the bus, DQS will be transitioning from High-Z to logic L O W. If a previou s writ e was in progress, DQS coul d
be HIGH, LOW, or t ransitioning from HIGH to LOW at this time, depending on tDQSS.
13. A maximum of eight AUTO REFRESH commands can be posted to any given DDR SDRAM device.
14. For command/address input slew rate 1.0 V/ns.
15. For command/address input slew rate 0.5 V/ns and 1.0 V/ns
16. For CK & /CK slew rate 1.0 V/ns (single-ended)
17. These parameters guarantee device timing, but they are not nece ssarily tested on each device.
They may be guaranteed by device design or tester correlatio n.
18. Slew Rate is measured between VOH(ac) and VOL(ac).
19. Min (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock hig h tim e as pr o vided to the dev ice (i.e. this
value can be greater than the minim um specificati on l im its for tCL and tCH).
For example, tCL and tCH are = 50% of the period, less the half period jitter (tJIT(HP)) of the clock source, and less the half
period jitter due to crosstalk (tJIT(crosstalk)) into the clock traces.
Figure: Timing Referen ce Lo ad
VDDQ
50
Output
(VOUT)
30 pF
Ω
Rev. 1.2 / Feb. 2006 27
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
20.tQH = tHP - tQHS, where:
tHP = minimum half clock period for any given cycle and is defined by clock high or clock low (tCH, tCL). tQHS accounts for 1) The
pulse duration distortion of on-chip clock circuits; and 2) The worst case push--out of DQS on one transition followed by the
worst case pul l--in of DQ on the ne xt t ransition, both of whi ch are, separately, due to data pin skew and output pattern effect s,
and p-channel to n-channel variat ion of the output drivers.
21. tDQSQ:
Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers for any given
cycle.
22. tDAL = (tWR/tCK) + (tRP/tCK)
For each of the terms above, if not already an integer, round to th e ne xt highest integer.
Example: For DDR266B at CL=2.5 and tCK=7.5 ns
tDAL = ((15 ns / 7.5 ns) + (20 ns / 7.5 ns)) clocks
= ((2) + (3)) clocks
= 5 clocks
23. In all circumstances, tXSNR can be satisfied using
tXSNR = tRFCmin + 1*tCK
24. The only time that the clock frequ e ncy is allowed to change is during self-refresh mode.
25. If refresh timing or tDS/ tD H i s violated, data corruption may occur and the data must be re-written with valid data before a valid
READ can be executed.
Rev. 1.2 / Feb. 2006 28
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
SYSTEM CHARACTERISTICS CONDITIONS for DDR SDRAMS
The following tables are described specification parameters that required in systems using DDR devices to ensure
proper performannce. These characteristics are for system simulation purposes and are guaranteed by design.
Input Slew Rate for DQ/DM/DQS (Table a.)
Address & Control Input Setup & Hold Time Derating (Table b.)
DQ & DM Input Setup & Hold Time Derating (Table c.)
DQ & DM Input Setup & Hold Time Derating for Rise/Fall Delta Slew Rate (Table d.)
Output Slew Rate Characteristics (for x4, x8 Devices) (Table e.)
Output Slew Rate Characteristics (for x16 Device) (Table f.)
Output Slew Rate Matching Ratio Characteristics (Table g.)
AC CHARACTERISTICS DDR400 DDR333 DDR266 DDR200 UNIT Note
PARAMETER Symbol min max min max min max min max
DQ/DM/DQS input slew rate
measured between VIH(DC),
VIL(DC) and VIL(DC), VIH(DC) DCSLEW 0.5 4.0 0.5 4.0 0.5 4.0 0.5 4.0 V/ns 1,12
Input Slew Rate Delta tIS Delta tIH UNIT Note
0.5 V/ns 0 0 ps 9
0.4 V/ns +50 0 ps 9
0.3 V/ns +100 0 ps 9
Input Slew Rate Delta tDS Delta tDH UNIT Note
0.5 V/ns 0 0 ps 11
0.4 V/ns +75 0 ps 11
0.3 V/ns +150 0 ps 11
Input Slew Rate Delta tDS Delta tDH UNIT Note
±0.0 ns/V 00ps10
±0.25 ns/V +50 +50 ps 10
±0.5 ns/V +100 +100 ps 10
Slew Rate
Characteristic Typical Range
(V/ns) Minimum
(V/ns) Maximum
(V/ns) Note
Pullup Slew Rate 1.2 - 2.5 1.0 4.5 1,3,4,6, 7,8
Pulldown Slew Rate 1.2 - 2.5 1.0 4.5 2,3,4,6,7,8
Slew Rate
Characteristic Typical Range
(V/ns) Minimum
(V/ns) Maximum
(V/ns) Note
Pullup Slew Rate 1.2 - 2.5 1.0 4.5 1,3,4,6, 7,8
Pulldown Slew Rate 1.2 - 2.5 1.0 4.5 2,3,4,6,7,8
Slew Rate Characteristic DDR266A DDR266B DDR200 Note
Parameter min max min max min max
Output Slew Rate Matching Ratio
(Pullup to Pulldown) - - - - 0.71 1.4 5,12
Rev. 1.2 / Feb. 2006 29
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
Note:
1. Pullup slew rate is characterized und er the test conditio ns as shown in below Figure.
2. Pulldown slew rate is measured under the test conditions shown in below Figure.
3. Pullup slew rate is measured between (VDDQ/2 - 320 mV ±250mV)
Pulldown slew rate is measured between (VDDQ/2 + 320mV ±250mV)
Pullup and Pulldown slew rate conditions are to be met for any pattern of data, including all outputs switching and only one output
switching.
Example: For typical slew, DQ0 is switching
For minimum slew rate, all DQ bits are switching worst case pattern
For maximum slew rate, only one DQ is switching from either high to low, or low to high.
The remaining DQ bits remain the same as for previous state.
4. Evaluation conditions
Typical: 25 oC (Ambient), VDDQ = nominal, ty pi cal pr o ces s
Minimum: 70 oC (Ambient), VDDQ = minimum, slow-slow process
Maximum: 0 oC (Ambient), VDDQ = Maximum, fast-fast process
5. The ratio of pullup slew rate to pulldown slew rate is specified for the same temperature and voltage, over the entire temperature
and voltage r ange. For a given output, it r epresents the maximum difference between pullup and pulldown drivers due to process
variation.
6. Verified under typical cond iti on s for qualification purposes.
7. TSOP-II package devices only.
8. Only intended for operation up to 256 Mbps per pin.
9. A derating factor will be used to increase tIS and tIH in the case where the input slew rate is below 0.5 V/ns as shown in Table b.
The Input slew rate is based on the lesser of the slew rates determined by either VIH(AC) to VIL(AC) or VIH(DC) to VIL(DC), sim-
ilarly for rising transitions.
10. A derating factor will be used to increase tDS and tDH in the case where DQ, DM, and DQS slew rates differ, as shown in Tables c
& d. Input slew rate is based on the larger of AC-AC delta rise, fall ra te and DC -D C delta rise, f all r ate. I nput slew r ate is bas ed on
the lesser of the slew rates determined by either VIH(AC) to VIL(AC) or VIH(DC) to VIL(DC), s imilarly for rising transitions. The
delta rise/f all rate is calculated as:
{1/(Slew Rate1)} - {1/(slew Rate2)}
For example:
If Slew Rate 1 is 0.5 V/ns and Slew Rate 2 is 0.4 V/ns, then the delta rise, fall rate is -0.5 ns/V. Using the table given, this would
result in the need for an increase in tDS and tDH of 100ps.
11. Table c is used to increase tDS and tDH in the case where the I/O slew rate is below 0.5 V/ns. The I/O slew rate is based on the
lesser of the AC- AC slew rate and the DC -DC slew r ate. The input slew rate is based on the lesser of the slew rates determined by
either VIH(ac) to VIL(AC) or VIH(DC) to VIL(DC), and similarly for rising transitions.
12. DQS, DM, and DQ input slew rate is specified to prevent double clocking of dat a and p reserve setup and hold times. Signal tran-
sitions through the DC region must be monotonic.
50
Output
(VOUT)
VSSQ
Test Point
Figure: Pullup S lew rate
Ω
VDDQ
50
Test Point
Output
(VOUT)
Figure: Pulldown Slew rate
Ω
Rev. 1.2 / Feb. 2006 30
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
CAPACITANCE (TA=25oC, f=100MHz)
Note:
1. VDD = min. to max., VDDQ = 2.3V to 2.7V, VODC = VDDQ/2, VOpeak-to-peak = 0.2V
2. Pins not under test are tied to GND.
3. These values are guaranteed by desig n and are tested on a sample basi s only.
OUTPUT LOAD CIRCUIT
Parameter Pin Symbol Min Max Unit
Input Clock Capacitance CK, /CK CI1 2.0 3.0 pF
Delta Input Clock Capacitance CK, /CK Delta CI1 -0.25pF
Input Capacita n ce All other input-only pins CI1 2.0 3.0 pF
Delta Input Capacit ance All other input-only pins D e lta CI2 -0.5pF
Input / Output Capacitance DQ, DQS, DM CIO 4.0 5.0 pF
Delta Input / Output Capa citance DQ, DQS, DM Delta CIO -0.5pF
VREF
VTT
RT=50
Zo=50
CL=30pF
Output
Rev. 1.2 / Feb. 2006 31
1HY5DU12422C(L)TP-xI
HY5DU12822C(L)TP-xI
HY5DU121622C(L)TP-xI
PACKAGE INFORMATION
400mil 66pin Thin Small Outline Package
10.26 (0.404)
10.05 (0.396)
11.94 (0.470)
11.79 (0.462)
22.33 (0.879)
22.12 (0.871)
1.194 (0.0470)
0.991 (0.0390)
0.65 (0.0256) BSC 0.35 (0.0138)
0.25 (0.0098)
0.15 (0.0059)
0.05 (0.0020)
BASE PLANE
SEATING PLANE
0.597 (0.0235)
0.406 (0.0160) 0.210 (0.0083)
0.120 (0.0047)
0 ~ 5 Deg.
Un it : mm(Inch ) max
min
,