Features
All Functions and Channel Selections are Controlled by Serial Bus
RF Part
All Oscillators and PLL Integrated
IF Converter
FM Demodulator
RSSI
Low Frequency Part
Asymmetrical Input of Microphone Amplifier
Asymmetrical Output of Earpiece Amplifier
Compander
Power Supply Management
Serial Bus
Application
CT0 Standard
Narrowband Voice and Data Transmitting/Receiving Systems
1. Description
The programmable single-chip multichannel cordless phone IC includes all necessary
low frequency parts such as microphone- and earphone amplifier, compander, power-
supply management as well as all RF parts such as IF converter, FM demodulator,
RSSI, oscillators and PLL. Several gains and mutes in transmit and receive direction
are controlled by the serial bus. The compander can be bypassed.
Single-chip
Cordless
Telephone IC
U3600BM
Rev. 4516D–CT0–10/05
2
4516D–CT0–10/05
U3600BM
Figure 1-1. Block Diagram
Mixer1
VCO3 :2
sin cos
fLO
MixerT
+45
-45
Crystal Mixer2 IF
RSSI
:N :K
Phase
fLO fRef3
fLO
VCO2 Loop
:D2
:M12
:D1
:2
VCO1
:D3
fRef1
:2
:10
:M
Serial
Bus
Bias
Bat low
Detector
-+
DA
MUXDA
1.5V
-
+
Expander
Demo-
Ear
-
+
Mic
VRMIC
Compressor
Limiter
Spl 1.5V
DATRX
:M12
MIX1IN2 MIX1IN1 MIX1O
OSCGND
XCK VAF
MIX2O
MIX2GND
MIX2IN
IFIN1 IF IN2 E TC EXIN
RECO
RECO
2
RXO
DAIN
MIC
MICO
COIN
CTC
COUT
LIMIN
TXO
OPIN
OPOUT
DACO
DC
VSS
VDD
MODIN
LFGND
MLF
VRF
VBIAS
AGND
RFOVB
RFO
RFOGND
PCLO
LO1
LO2
GNDLO Oscillator
Comparator
(3)
(2)
(1)
Filter
Phase
Comparator
Phase
Comparator
fRef2
-
+
11
5678910 11 12 13 14 15 16 17 18
2
3
4
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
fMod
dulator
Amp Amp
Amp
(1): PLL1: Modulator PLL (2): PLL2: Mixer PLL (3): PLL3: Local oscillator (LO) PLL
3
4516D–CT0–10/05
U3600BM
2. Pin Configuration
Figure 2-1. Pinning SSO44
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
LO1
LO2
GNDLO
MIX1IN1
MIX1O
OSCGND
XCK
VAF
MIX2O
MIX2IN
IFIN1
IFIN2
ETC
EXIN
RECO1
RECO2
RXO
DAIN
MIC
MICO
RFOGND
RFO
RFOVB
AGND
VBIAS
VRF
LFGND
MODIN
VSS
DACO
OPOUT
OPIN
TXO
LIMIN
COUT
CTC
COIN
C
PCLO
MIX1IN2
D
VDD
MLF
MIX2GND
4
4516D–CT0–10/05
U3600BM
Table 2-1. Pin Description
Pin Symbol Function
1 PCLO Phase comparator local oscillator
2 RFOGND RF transmit output ground
3 RFO RF transmit output
4 RFOVB Power supply input of RF transmit output buffer
5 AGND Analog ground for RF part
6 VBIAS Decoupling capacitor of current reference
7 VRF Supply voltage for RF part
8 MLF Modulator loop filter
9 LFGND Modulator loop filter ground
10 MODIN Modulator input
11 VDD Supply voltage output for peripherals and internal supply of digital part
12 VSS Ground for LF analog and digital
13 D Data input of serial bus
14 C Clock input of serial bus
15 DACO D/A and data comparator output
16 OPOUT Operational amplifier output
17 OPIN Operational amplifier input (inverting)
18 TXO Output of limiter amplifier
19 LIMIN Limiter input
20 COUT Compressor output
21 CTC Compressor time constant control analog output
22 COIN Compressor input
23 MICO Microphone amplifier output
24 MIC Inverting input of microphone amplifier
25 DAIN Data comparator input
26 RXO Output of demodulator
27 RECO2 Symmetrical output of receive amplifier
28 RECO1
29 EXIN Expander input
30 ETC Expander time constant control analog output
31 IFIN2 Symmetrical input of IF amplifier
32 IFIN1
33 MIX2IN Input of Mixer2
34 MIX2GND IF amplifier and Mixer2 ground
35 MIX2O Mixer2 output
36 VAF Supply voltage for AF/IF parts
37 XCK Crystal oscillator input 11.15 MHz
38 OSCGND Oscillator ground
39 MIX1O Output of Mixer1
40 MIX1IN1 Symmetrical input of MIxer1
41 MIX1IN2
42 GNDLO Ground of LO
43 LO2 Tank elements for LO are connected to these pins
44 LO1
5
4516D–CT0–10/05
U3600BM
3. System Description
Radio frequency IC for analog cordless telephone application in 26/50 MHz band (CTO stan-
dard). The IC performs full duplex communication. The transmitting and receiving frequency are
depending on whether the IC is used in the handset or in the base station.
Frequency converter comprise an FM transmitter with switchable output power and first receiver
mixer in the same unit. A two-wire bus interface can be used for the frequency control as well as
for switching the transmitter power amplifier and the receiver. Fine frequency adjust of reference
quartz oscillator is programmable.
The receive part is designed for a double conversion architecture. The incoming radio frequency
signal will be filtered and amplified before reaching the first mixer. At this stage the RF signal will
be converted down to the first intermediate frequency (10.7 MHz) by using a crystal oscillator
(LO1).
The transmit part contains two PLL controlled VCOs. The frequency modulation is accomplished
by super-posing the incoming audio signal on the PLL control voltage. Final frequency is a prod-
uct of mixing VCO1 with first local oscillator of receiver part (VCO3). The FM modulated carrier
is amplified by externals power amplifier before entering the output filter and the antenna
connector.
3.1 Adjustments for VCO1 and VCO2
To be able to use a wide frequency range for the VCOs (i.e., VCO2 26.3 MHz to 49.9 MHz) the
two internal VCOs (VCO1 and VCO2, i.e., the VCOs of the transmit part) have a rough adjust
and a fine adjust to increase the frequency range given by the phase comparator.
The rough adjusts for these VCOs are correlated with the country setting. For every country
there are two sets of VCO rough adjust settings, one for the base and one for the handset. See
tables at channels frequencies and dividers.
To compensate the variation in production there is a fine adjust for each of the VCOs. The fine
adjusts of the internal VCOs could be set manually (for test purposes) or set by the automatic
mode. Theoretically the sign of the changing (increase/ decrease when the voltage of the phase
comparator is to high) is selectable, but we need value 1 () in all cases.
Setting VCO1 (VCO2) under normal conditions:
EAFA1 (EAFA2) = 1, automatic fine adjust VCO1(VCO2) enabled
SAFA1 (SAFA2) = 1, sign of auto fine adjustment of VCO1 (VCO2) = 1.
3.2 Adjustment for VCO3
In order to increase the adjustment range of VCO3 with fixed external tank elements and/or for
“band switching”, especially for US frequencies, VCO3 has programmable capacitors inside.
These capacitors can be added by serial bus (FA3 [4:0]) between LO1 and LO2. There are 31
steps available, every step adding a capacitor of 0.5 pF.
6
4516D–CT0–10/05
U3600BM
3.3 Speed-up of the Loop Filter of PLL1 (“Modulator PLL”)
To have a fast locking time for the modulator loop there is a precharge and a speed-up mode for
the external loop filter.
During receive mode (VCO3 enabled, VCO1 disabled) the modulator loop filter is precharged to
about half of the internally regulated 2.5V charge-pump voltage.
During the first 30 ms after enabling VCO1 the modulator phase comparator is in speed-up
mode. In this mode the current of the pase comparator which charges the loop filter is much
larger than in normal mode. Additionally to the automatically switched 30 ms speed-up mode,
the speed-up can be activated for any time by setting the bit SU1.
3.4 Speed-up of the Loop Filter of PLL3 (“1st. LO.”)
Similiar to PLL1, there is also a possibility to increase the locking speed of PLL3. This can be
done by setting the bit SU3. Having done this, the charge pump at the output of the phase com-
parator has a bigger current capability and therefore charges the external capacitors faster.
3.5 Adjustment of the Modulator Gain
To fulfil the different requirements of the different countries three conversion gains of the modu-
lator are selectable by the bits GMOD [1:0] (R6: D2, D3).
Country settings see tables at channel frequencies and dividers. Ranges see electrical charac-
teristics at RF transmitter.
3.6 Modulator PLL
The fractional divider has been chosen to increase the reference frequency of the modulator
PLL.
P1: integer part of the fractional divider (M = 1)
Q1: fractional part of the fractional divider (M = 1)
The frequency step 2.5 kHz is a fraction of the reference frequency 557.5 kHz.
In fact, the fractional divider divides Q1 times by (P1 + 1) and (223 – Q1) times by P1
during 223 cycles.
For each comparison cycle (fRef1 = 557.5 kHz), the accumulator content is incremented by the
Q1 value and the divider divides by the P1 value. When the accumulator value reaches or
exceeds 223, the divider divides by the value (P1 + 1). Then, the accumulator holds the excess
value (accumulator value - 223). After 223 cycles, the correct division is executed.
557.5 kHz f
Mod
/ P
1
Q
1
223
----------+
⎝⎠
⎛⎞
=
Q
1
223 f
Mod
557.5 kHz
---------------------------P
1
⎝⎠
⎛⎞
×=
223 557.5 kHz
2.5 kHz
---------------------------=
Q
1
P
1
1+()223 Q
1
()P
1
+×
223
------------------------------------------------------------------------------
P
1
Q
1
223
----------+=
7
4516D–CT0–10/05
U3600BM
3.7 Serial Bus Interface
The circuit is remoted by an external microcontroller through the serial bus.
The data is a 12-bit word:
A0 - A3: address of the destination register (0 to 15)
D7 - D0: contents of register
The data line must be stable when the clock is high and data must be serially shifted.
After 12 clock periods, the transfer to the destination register is (internally) generated by a low to
high transition of the data line when the clock is high.
Figure 3-1. Serial Bus
Figure 3-2.
Serial Bus Transmission
Figure 3-3. Serial Bus Structure
Micro-
processor
D
Clock C
Data
Word transmission Transfer condition
2nd word
1st word
Data
(D)
Clock
(C)
D0 D1 D2 A1 A2 A3
A0
Data
Clock
Address
Decoder Latches
Commands
48
128
0
15
8
4516D–CT0–10/05
U3600BM
Figure 3-4. Serial Bus Timing Diagram
3.8 Content of Internal Registers
The registers have the following structure
R0: Reference for D/A converter
MUXDA: D/A multiplexing VBAT/RSSI
DA(0:6): Reference voltage D/A
R1: Gain of earpeace amplifier and demodulator
GEA[0:4]: Gain of earpeace amplifier; “0” is LSB, “4” is MSB
GDEM: Demodulator gain (1 = low gain)
R2: Switches and mutes for receive and data reception
DATRX: Switch data comparator output to “DACO”-pin
BEXP: Bypass expander
EEA: Enable earpiece amplifier
ERXO: Enable RXO output driver
ERX1: Enable RX low frequency part 1
ERXHF: Enable Mixer2 and IF-amplifier
MRX: Mute RX low frequency path (expander) keeping circuit enabled
ERX2: Enable RX low frequency part 2 (expander)
A1 A2 A3
Data
(D)
Clock
(C)
D0
tsud thd tch tcl teon teh teoff
D7 D6 D5 D4 D3 D2 D1 D0
MUXDA DA6 DA5 DA4 DA3 DA2 DA1 DA0
GEA4 GEA3 GEA2 GEA1 GEA0 GDEM free free
DATRX BEXP EEA ERXO ERX1 ERXHF MRX ERX2
9
4516D–CT0–10/05
U3600BM
R3: Switches and mutes for transmit and power managemant
PDVDD: Enable pull-down transistor in power-down mode
RBAT: Battery detection high/low range
MTX: Mute TX low frequency path (compressor) keeping circuit enabled
ETX: Enable TX low frequency part
R4: free (not used, for future extensions )
R5: Gain VCO2
KV2[1:3]: Gain of VCO2
M12: Double phase comparator frequency of PLL2
R6: Miscellaneus settings in synthesizer part
ETXO: Enable HF-transmit output
M1CP: Changes 1 dB compression point and current consumption of Mixer1
(“0” –> high, “1” –> low)
FRMT: Output frequency range of MixerT
IMIXI: Invert inputs of phase comparator in PLL2
GMOD[0:1]: Modulation gain of VCO1
SU1: Speed-up phase comparator for PLL1
(TM): Enable the internal test mode. It is mandatory that TM is kept to “0”!
(if not 0, the circuit will not work as expected or described here in this paper)
R7: PLL1 setting
DR1I[0:1]: Additional divider reference frequency PLL1
RA1[0:1]: Rough adjustment VCO1
DV1I[0:3]: Divider setting PLL1 integer part; “0” is LSB, “3” is MSB
R8: Divider PLL1 fractional part
DV1F[0:7]: Divider setting PLL1 fractional part; “0” is LSB, “7” is MSB
PDVDD RBAT free free free free MTX ETX
free free free free free free free free
free free KV23 KV22 KV21 M12 free free
ETXO M1CP FRMT IMIXI GMOD1 GMOD0 SU1 (TM)
DR1I1 DR1I0 RA11 RA10 DV1I3 DV1I2 DV1I1 DV1I0
DV1F7 DV1F6 DV1F5 DV1F4 DV1F3 DV1F2 DV1F1 DV1F0
10
4516D–CT0–10/05
U3600BM
R9: Divider PLL3 LSBs
R10: Divider PLL3 MSBs and MSB of VCO3 fine adjustment
FA34: Fine adjustment VCO3 (frequency reduction) MSB
DV1I[0:14]: Divider setting PLL3 integer part; “0” is LSB, “14” is MSB
R11: Setting PLL2 and VCO3
FA3[0:4]: Fine adjustment of VCO3 (frequency reduction); “0” is LSB, “4” is MSB
AMIX[1:2]: Lengthening antibacklash signal PLL2
RA2[1:0]: Rough adjustment VCO2
R12: Divider for country setting, fine adjustment oscillator
FAOS[0:2]: Fine adjustment of crystal oscillator (frequency reduction);
“0” is LSB, “2” is MSB
D3[0:1]: Setting divider D3
D20: Setting divider D2
D1[0:1]: Setting divider D1
R13: VCO1 enable and fine adjustment
EVCO1: Enable VCO1
SAFA1: Sign for automatic fine adjustment of VCO1
EAFA1: Enable automatic fine adjustment of VCO1
FA1(0:4): Manual fine adjustment of VCO1 (frequency reduction);
“0” is LSB, “4” is MSB
R14: VCO2 enable and fine adjustment
EVCO2: Enable VCO2 and MixerT
SAFA2: Sign for automatic fine adjustment of VCO2
EAFA2: Enable automatic fine adjustment of VCO2
FA2(0:4): Manual fine adjustment of VCO2 (frtequency reduction);
“0” is LSB, “4” is MSB
DV3I7DV3I6DV3I5DV3I4DV3I3DV3I2DV3I1DV3I0
FA34 DV3I14 DV3I13 DV3I12 DV3I11 DV3I10 DV3I9 DV3I8
FA33 FA32 FA31 FA30 AMIX2 AMIX1 RA21 RA20
FAOS2 FAOS1 FAOS0 D31 D30 D20 D11 D10
EVCO1 SAFA1 EAFA1 FA14 FA13 FA12 FA11 FA10
EVCO2 SAFA2 EAFA2 FA24 FA23 FA22 FA21 FA20
11
4516D–CT0–10/05
U3600BM
R15: VCO3 enable, speed-up and referencq frequency, crystal oscillator enable
EVCO3: Enable VCO3 and Mixer1
EOSC: Enable crystal oscillator (11.15 MHz)
SU3: Speed-up phase comparator for PLL3
E25K: Selection phase comparator frequency for PLL3: fRef3 = 25 kHz
E12K5: Selection phase comparator frequency for PLL3: fRef3 = 12.5 kHz
E10K: Selection phase comparator frequency for PLL3: fRef3 = 10 kHz
E6K25: Selection phase comparator frequency for PLL3: fRef3 = 6.25 kHz
E5K: Selection phase comparator frequency for PLL3: fRef3 = 5 kHz
E5K, E6K25, E10K, E15K5, E25K = 0:
Selection phase comparator frequency for PLL3: fRef3 = 2.5 kHz
EVCO3 EOSC SU3 E25K E12K5 E10K E6K25 E5K
4. Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Parameters Symbol Value Unit
Supply voltage VBatt, VDD 5.5 V
Junction temperature Tj+125 °C
Ambient temperature Tamb –25 to +75 °C
Storage temperature Tstg –50 to +125 °C
Power dissipation Tamb = 60°C Ptot 0.9 W
5. Thermal Resistance
Parameters Symbol Value Unit
Junction ambient SSO44 RthJA 70 K/W
12
4516D–CT0–10/05
U3600BM
6. Electrical Characteristics
Tamb = +25°C, VRF = VAF = RFOVB = 3.6V, all bits set to “0”, unless otherwise specified.
Test circuit, see Figure 8-1 on page 18. Crystal specifications, see table “Crystal Specifications”.
Parameters Test Conditions Symbol Min. Typ. Max. Unit
Power Supply
Operating voltage range 3.1 3.6 5.2 V
Current Consumption
Operating current in inactive
mode (low voltage)
VRF = VAF = RFOVB = 2.9V
VDD = 0V 30 65 85 µA
Operating current in standby
mode VRF = VAF = RFOVB = 3.6V 30 100 350 µA
Operating current in RX mode
“waiting for RSSI” ERXHF = EVCO3 = EOSC = 1 7.5 10.4 mA
Operating current in RX mode
“receiving data”
ERXHF = EVCO3 = EOSC = ERX1
= ERXO = 1 8.5 11.5 mA
Operating current in
conversation mode: all blocks
enabled
ERXHF = EVCO3 = EOSC = ERX1 = ERXO
= ERX2 = EEA = EVCO2 = ETXO = 1
no load at RFO pin 3
20 29 mA
Charge Pump of LL1
Charge pump output voltage Output high 2.38 2.5 2.63 V
Precharge voltage at the loop
filter SB127 = 1, SB119 = 0 1.15 1.4 1.65 V
Charge pump output current
in speed-up mode
VMLF = 1.25V, output low 190 400 µA
VMLF = 1.25V, output high –400 –190 µA
Charge pump output current VMLF = 1.25V, output low 4.3 6.2 8 µA
VMLF = 1.25V, output high –8 –6.2 –4.3 µA
Charge pump leakage current VMLF = 1.25V, output tristate –150 +150 nA
Charge Pump of PLL3
Charge pump output voltage Output high 2.38 2.5 2.63 V
Charge pump output current
in speed-up mode
VPCLO = 1.25V, output low 220 420 µA
VPCLO = 1.25V, output high –420 –220 µA
Charge pump output current VPCLO = 1.25V, output low 80 160 µA
VPCLO = 1.25V, output high –160 –80 µA
Charge pump leakage current VPCLO = 1.25V, output tristate –50 +50 nA
Receiver Input Mixer (Mixer1), EVCO3 = EOSC = 1
Input frequency range 20 50 MHz
Output frequency 10.7 MHz
Input resistance MIX1IN1/MIX1IN2 to GND 3.0 k
Input capacitance MIX1IN1/MIX1IN2 to GND 3.5 pF
Output impedance MIX1O 210 330 390
Voltage gain
MIX1IN1/2 -> MIX1O
“Loaded” (330 with serial capacitance)
“Unloaded”
11.5
17.5
dB
dB
Input noise voltage 9nV Hz
–1/2
13
4516D–CT0–10/05
U3600BM
Input 1-dB compression point
“Loaded” (330 with serial capacitance)
M1CP=0
M1CP=1
“unloaded”
M1CP=1
140
40
100
mV
mV
mV
Third order input intercept
point
“Loaded” (330 with seial capacitance)
M1CP=0 430 mV
IF Mixer (Mixer2), EOSC = ERXHF = 1; Input Frequency: 10.7 MHz
Input resistance MIX2IN to GND 2.0 3.0 4.0 k
Input capacitance MIX2IN to GND 2.5 3 3.5 pF
Output impedance MIX2O 1200 1500 1800
Voltage gain MIX2IN -> MIX2O
“Loaded” (1500 with serial capacitance) 13 15 17 dB
Input 1-dB compression point “Loaded” (1500 with serial capacitance) 32 mV
Third order input intercept
point “Loaded” (1500 with serial capcitance) 80 mV
IF Amplifier and Demodulator, ERXHF=1, ERX1=1, ERXO=1; Input Signal: 450 kHz, 500 µV, FM-modulation Frequency = 1 kHz
Recovered audio at RXO,
demodulator gain
GDEM=0
GDEM=1
180
90
mV/kHz
mV/kHz
AM rejection ratio 30% AM, 2.5 kHz FM 35 dB
Expander, ERX2 = 1; 470 nF from ETC to GND (VSS)
Gain reference level = G.R.L.
(gain = 0 dB) 70 80 90 mVrms
Gain versus input signal level
(“gain tracking”)
VEXIN = 10 dB less than G.R.L.
VEXIN = 20 dB less than G.R.L.
VEXIN = 30 dB less than G.R.L.
–11
–21
–35
–10
–20
–30
–9
–19
–25
dB
dB
dB
Attack time
VEXIN = step 25 mV –> 50 mV
measure time after step, when output
voltage has 0.75 times of final value
16 ms
Release time
VEXIN = step 50 mV –> 25 mV
measure time after step, when output
voltage has 1.5 times of final value
16 ms
Input resistance 9.5 15 k
Earpiece Amplifier, EEA = 1, ERX2 = 1, BEXP = 1; Apply Input Voltage to EXIN; Measure Differentially at RECO1/2
Minimum gain GEA[4:0]=0 0 1 2 dB
Medium gain GEA[4:0]=16 16 17 18 dB
Maximum gain GEA[4:0]=31 31 32 33 dB
Gain adjust step 0.8 1 1.2 dB
Output voltage swing Maximum gain; 1 k load; increase input
voltage until distortion 5% 4.8 5 Vpp
Input resistance 7.3 12.5 k
6. Electrical Characteristics (Continued)
Tamb = +25°C, VRF = VAF = RFOVB = 3.6V, all bits set to “0”, unless otherwise specified.
Test circuit, see Figure 8-1 on page 18. Crystal specifications, see table “Crystal Specifications”.
Parameters Test Conditions Symbol Min. Typ. Max. Unit
14
4516D–CT0–10/05
U3600BM
IF Amplifier: RSSI
Input frequency ERXHF=1 450 kHz
Input resistance 1.6 2.0 2.5 k
RSSI sensitivity
VIF = 0 µV
starting from 0 increase RSSI-level until
mean of sampled signal at DACO is 0.5.
RSSI-level = ION0
VIF = 25.4 µV, f = 450 kHz
increase RSSI level again until mean of
sampled signal at DACO is 0.5.
RSSI-level = ION1
RSSI-sensitivity = ION1-ION0
1
RSSI input voltage dynamic
range 65 dB
RSSI level number of
programmable steps (see
folowing table “RSSI Level
Programming (Typical Values)
127 dB
RSSI level step size in the
logarithmic region 0.35 0.46 0.6 dB
Table 6-1. RSSI Level Programming (Typical Values)
Input Voltage VIF (µV) RSSI Level (Decimal)
05
25.4 8
42.4 14
424 54
4240 97
42400 111
6. Electrical Characteristics (Continued)
Tamb = +25°C, VRF = VAF = RFOVB = 3.6V, all bits set to “0”, unless otherwise specified.
Test circuit, see Figure 8-1 on page 18. Crystal specifications, see table “Crystal Specifications”.
Parameters Test Conditions Symbol Min. Typ. Max. Unit
15
4516D–CT0–10/05
U3600BM
7. Electrical Characteristics
Tamb = +25°C, VRF = VAF = RFOVB = 3.6V, all bits set to “0”, unless otherwise specified. Test circuit, see Figure 8-1 on page 18.
Parameters Test Conditions Symbol Min. Typ. Max. Unit
Data Comparator, ERX1 = DATRX = 1
Hysteresis 50 mV
Threshold voltage 1.5 V
Input impedance DAIN 100 k
Output high voltage DACO, without load
(CMOS-output –> full swing) 3.5 V
Output low voltage DACO, without load
(CMOS-output –> full swing) 0.1 V
Output impedance DACO 6 k
Battery Switch
“Off” threshold
Decrease VBAT until internal switch
between VBAT and VDD becomes high
ohmic (“off”)
2.85 2.95 3.1 V
“On” threshold
Increase VBAT until internal switch
between VBAT and VDD becomes low
ohmic (“on”)
3.1 3.2 3.35 V
Hysteresis Difference between on and off threshold 250 mV
“Off”-leakage current 10 µA
Switch “On”-resistance 50
Battery Management, MUXDA = 1
Maximum bat low DA[6:0] = 127, RBAT = 1 3.7 3.95 4.1 V
Minimum bat low over switch DA[6:0] = 27, RBAT = 1 3.05 3.2 3.35 V
Maximum bat high DA[6:0] = 127, RBAT = 0 4.75 5.05 5.25 V
Minimum bat high DA[6:0] = 0, RBAT = 0 3.83 4.1 4.27 V
Adjust step 3.5 7.5 11.5 mV
Maximum - Minimum 852.5 952.5 1052.5 mV
Microphone Amplifier, ETX=1
Open loop gain 80 dB
Gain bandwidth product 3MHz
Input noise voltage,
BW = 300 Hz to 3.4 kHz,
psophometrically weighted
0.8 2 µVrmsp
Compressor, ETX = 1; 470 nF from CTC to GND (VSS)
Gain reference level = G.R.L.
(gain = 0 dB) 298 316 340 mVrms
Gain versus input signal level
(“gain tracking”)
VCOIN = 20 dB less than G.R.L.
VCOIN = 40 dB less than G.R.L.
VCOIN = 50 dB less than G.R.L.
VCOIN = 60 dB less than G.R.L
9
19
22
10
20
25
30
11
21
28 dB
Attack time
VCOIN = step 31.6 mV –> 126 mV,
(-30 dBV –> –18 dBV)
measure time after step, when output
voltage has 1.5 times of final value
3.5 ms
16
4516D–CT0–10/05
U3600BM
Release time
VCOIN = step 126 mV –> 31.6 mV
(–18 dBV –> –30 dBV)
measure time after step, when output
voltage has 0.75 times of final value
14.4 ms
Input resistance 14 19.5 26 k
Splatter Amplifier, ETX = 1
Open loop gain 90 dB
Gain bandwidth product 150 kHz
Maximum output voltage
swing 2.4 Vpp
Limiter Amplifier, ETX = 1, Tj = 25°C
Gain for signals below
limitation
LIMIN –> TXO,
20 mVRMS applied to LIMIN (AC coupled) 26 dB
Distortion for signals below
limitation
LIMIN –> TXO,
20 mVRMS applied to LIMIN (AC coupled) 2%
Maximum output voltage
swing (above limitation,
clipping)
1.8 2.1 2.35 Vpp
Input resistance at LIMIN 15 20 25 k
Note: The gain and maximum output voltage swing of the limiter amplifier changes with temperature to compensate the tempera-
ture dependancy of MODIN (“tx conversion gain” of RF transmit part), fundamentally determined by the structure of the
circuitry.
RF Transmitter, ETXO = EVCO1 = EVCO2 = EVCO3 = EOSC = 1; Tj = 25°C
MODIN input impedance 70 100 130 k
RFO output impedance Load = 200 ø230 300 390
RFO output voltage level ETXO = 0; no load 0.3 V
Highest operating frequency USA Base Channel 9 (US1b9) 49.99
00 MHz
TX conversion gain
MODIN - RFO
For the complete programming see
“Channel Frequencies, Dividers and
Country Settings” on page 20
USA1:
GMOD[1:0] = 00; fMod = ~7.6 MHz
USA2:
GMOD[1:0] = 01; fMod = ~5.7 MHz
France:
GMOD[1:0] = 01; fMod = 4.3 MHz
GMOD[1:0] = 00; fMod = 4.3 MHz
Spain/Netherlands:
GMOD[1:0] = 10; fMod = 1.8 MHz
5.2
5.2
3.8
2.7
7.9
kHz/V
kHz/V
kHz/V
kHz/V
kHz/V
Demodulated distortion THD
MODIN - RFO
Modulation frequency: 1 kHz
US: F = 4.0 kHz
France: F = 2.5 kHz
1.5 5 %
7. Electrical Characteristics (Continued)
Tamb = +25°C, VRF = VAF = RFOVB = 3.6V, all bits set to “0”, unless otherwise specified. Test circuit, see Figure 8-1 on page 18.
Parameters Test Conditions Symbol Min. Typ. Max. Unit
17
4516D–CT0–10/05
U3600BM
Note: The tx conversion gain of the RF transmitter is somehow dependent on temperature. This is determined by the fundamental
principle of this circuitry. Means have been taken inside the limiter amplifier, being in the signal path before MODIN, which are
able to completely compensate this temperature behavior.
Logical Part
Inputs: C, D
Low voltage input
High voltage input
Input leakage current
(0 < VI < VDD)
Vil
Vih
Ii
0.8 × VD
D
–1
0.2 × VDD
+5 µA
Input leakage current
Pin XCK (0 < VI < VDD) –5 +5 µA
Serial bus (Figure 8-2)
Data set-up time
Data hold time
Clock low time
Clock high time
Hold time before transfer
condition
Data low pulse on transfer
condition
Data high pulse on transfer
condition
tsud
thd
tcl
tch
teon
teh
teoff
0.1
0
2
2
0.1
0.2
0.2
µs
µs
µs
µs
µs
µs
µs
7. Electrical Characteristics (Continued)
Tamb = +25°C, VRF = VAF = RFOVB = 3.6V, all bits set to “0”, unless otherwise specified. Test circuit, see Figure 8-1 on page 18.
Parameters Test Conditions Symbol Min. Typ. Max. Unit
8. Fine Adjustment of the Oscillator Frequency
To set the frequency of the oscillator exact to 11.15 MHz, the frequency is adjustable in 8 steps, by adding 3 different internal capacities
the frequency could be reduced.
Parameters Test Conditions/Pins Min. Typ. Max. Unit
Oscillator frequency without
reduction FAOS (0:2) = 0 11.15
+MHz
Changing of oscillator frequency
with FOSC reduction
FAOS2 FAOS1 FAOS0
0 0 1
0 1 0
1 0 0
1 0 1
140
280
560
700
Hz
18
4516D–CT0–10/05
U3600BM
Figure 8-1. Test Circuit
VAF
CIN
U3600BM
XCK
VDD
VBIAS
VRF
VAF
TXO
RXO
RFOVB
RFOGND
RFO
RECO2
RECO1
PCLO
OSCGND
OPOUT
OPIN
MODIN
MLF
MIX2O
MIX2IN
MIX2GND
MIX1O
MIX1IN2
MIX1IN1
MICO
MIC
LO2
LO1
LIMIN
LFGND
IFIN2
IFIN1
GNDLO
EIN
ETC
DAIN
DACO
DATA
CTC
COUT
CIN
CLOCK
AGND
VSS
1
22
23
44
VDD
470N
COUT
MODIN
470N
RFOVB
470N
DACO
4.7N470N
RECO1
RECO2
RXO
DAIN
220N
220N
MICIN
MICO
22UF
IFIN2
10N
470N
10N
MIX2O
10N
MIX1O
MIX2IN
10N
10N
0
1
MIX1IN1
10N
11.15M
12
TX-/Modulator-
Loop Filter
RFO
interface
MPU serial
BZT55C51
MIX1IN2
10N
5P
10N68N
1U 100N
10N
IFIN1
470N
47N
SPLAIN
LIMIN
COUT
OPOUT
47N
44K
85
850
1000
1500
330
5.6K
56K
24K
10K
10K
DATA
CLOCK
EIN
VRF
This schematics is only a basic(simplified) representation of the current production test circuit
NOTE:
19
4516D–CT0–10/05
U3600BM
Figure 8-2. Application Circuit
Mixer1
VCO3:2
sincos
f
LO
MixerT
+45
-45
CrystalMixer2IF - Amp
RSSI
:N:K
Phase
f
LO
f
Ref3
f
LO
VCO2
Loop
:D2
:M12
:D1
:2
VCO1
:D3
: (P
M
+ )
Q
M
223
f
Ref1
:2
:10
:M
Serial
Bus
Bias
Bat low
Detector
-+
DA
MUXDA
1.5V
-
+
Expander
Demodulator
Ear Amp
-
+
Mic
VRMIC
Compressor
Limiter
Spl Amp
1.5V
DATRX
:M12
Oscillator
Comparator
(3)
(2)
(1)
Filter
Phase
Comparator
Phase
Comparator
f
Ref2
-
+
47p
47p
RX
RXGND
11.15 MHz
390
100n
SFE
10.7 MS 2
CFW
450 E
5.6k470n
220n
1K7.5K
20K8.2K
22n
0.75n
100n
15n
22n
2.2K
22K
470n
220n
Electret
Micro-
470n
4.7K
2.2n12K
56n
100K
15n
TX DATA
µ
10K
15K
1n
12n
12K
C
D
VDD
DACO
10K
4.7n
5.6K
100n
1u
+VB
10
2.2K1n
20
330
100n
1uH
5.6p
68n10n
24K
56K
Hand : 100nH
Base : 230nH
2x BZT55C51
Duplex Filter
Antenna
TXGND
TX
+VB
100n
100n
100n
11
56789101112131415161718
2
3
4
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
+VB
100n
f
Mod
(1): PLL1: Modulator PLL
(2): PLL2: Mixer PLL
(3): PLL3: Local oscillator (LO) PLL
C
phone
20
4516D–CT0–10/05
U3600BM
9. Channel Frequencies, Dividers and Country Settings
To meet all requirements of various countries France (F), Spain (E), Netherlands (NL), USA,
Portugal (P), Taiwan, New Zealand and Korea and modes base (b), handset (h) several
bits have to be set which do not change for the different channels. These settings are called
country settings.
The country-setting bits contain:
Rough adjustments for 2 VCOs
Setting three integer divider in the mixer PLL and modulator PLL
Conversion gain adjustment of mixer PLL
Modulator gain
Setting of the pulling direction of PLL2 (value dependent, if TX frequency is higher or lower
than LO frequency)
Demodulator gain
Note: Setting the fractional dividers:
For N, QM, send the binary equivalent of the numbers given below.
For PM (integer part of modulator PLL), send the D2 complement (16 – PM)
i.e., Fb1 (PM = 7, QM = 159 => integer: send 16 – PM = 9, fractional: send 159)
Name Register Function Notes
Number of
Positions
RA1[1:0] Rough adjust VCO1 00: is the highest frequency 3
RA2[1:0] Rough adjust VCO2 00: is the highest frequency 4
D1[1:0] Integer divider D1 Division by 2, 4, 6, 8 4
D20 Integer divider D2 Division by 6, 8 2
M12 Integer divider M12 Doubles reference frequency
of PLL2 when set to “1” 2
D3[1:0] Integer divider D3 Division by 1, 2, 4 3
KV[3:1] Conversion gain VCO2 6
GMOD[1:0] Modulator gain 00: gain minimal 3
IMIXI Reverse inputs of PC of
PLL 0: if fVCO2 lower than fVCO3 2
DR1[1:0] Additional divider M for
reference frequency fRef1
“0” means no reduction, >0
only necessary in E, NL,
Portugal
4
FRMT Frequency range
Mixer T 0: output frequency < 5 MHz 2
GDEM Demodulator gain 0: high gain
1: low gain 2
21
4516D–CT0–10/05
U3600BM
10. Tables for Programming of the Dividers (Refer to Block Diagram)
10.1 Divider M for Reference Frequency of PLL1
There are several countries like Spain, the Netherlands and Portugal with relatively low modula-
tor frequencies fMod. In case of modulation there will be a big maximum time shift between
pulses coming from fractional divider and pulses coming from reference frequency divider. As a
consequence the phase comparator enters an undesired operation mode. To avoid entering this
operation mode the reference frequency fRef1 has to be reduced by a factor M. Simultaneously,
keeping fMod constant, the factors of fractional dividers have to be changed as well.
The connection between the additional reference frequency divider M and the factors PM and QM
of fractional divider is given below. The subscript M denotes which value of M refers to the fac-
tors PM and QM of fractional divider. The formulas take into account that the numerator of the
fraction QM/223 must not exceed 223.
PM = P1 × M + integer (Q × M/223)
QM = Q1 × M - 223 × integer (Q1 × M/223)
Table 10-1. Divider D1 for PLL2
D11 (bit) D10 (bit) Decimally D1 (Block Diagram),if M12 = 0 D1 (Block Diagram),if M12 = 1
000 2 1
011 8 4
102 6 3
113 4 2
Table 10-2. Divider D2 between PLL1 and PLL2
D20 (bit) Decimally D2 (Block Diagram),if M12 = 0 D2 (Block Diagram),if M12 = 1
006 3
018 4
Table 10-3. Divider D3 for PLL1
D31 (bit) D30 (bit) Decimally D3 (Block Diagram)
000 1
011 2
102 6
113 4
22
4516D–CT0–10/05
U3600BM
10.2 France Base
Note: Alternatively, GMOD[1:0] could be set to “00”. This reduces the TX conversion gain (MODIN –> RFO) from
about 3.8 kHz/V to about 2.7 kHz/V, a value, which should be still sufficient for a maximum f of 2.5 kHz
that is useful in the French case.
10.2.1 France Modulation Loop Frequency and Divider
fMod = 4.3 MHz, PM = 7, QM = 159, M = 1
Table 10-4. Country Setting
Name RA1[1:0] RA2[1:0] D1[1:0] D20 D3[1:0] KV2[3:1] GMOD[1:0] IMIXI DR1I[1:0] FRMT GDEM
Setting 00 11 11 1 01 100 01 (1) 00000
Value max min D1 = 4 D2 = 8 D3 = 2 supra M = 1 low high
gain
Table 10-5. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz
Channel
Number
TX Channel
(MHz)
Rx Channel Frequency
(MHz)
fLO = 1/2 fVCO3
(MHz) DV3I[14:0] = N
1 26.3125 41.3125 30.6125 4898
2 26.3250 41.3250 30.6250 4900
3 26.3375 41.3375 30.6375 4902
4 26.3500 41.3500 30.6500 4904
5 26.3625 41.3625 30.6625 4906
6 26.3750 41.3750 30.6750 4908
7 26.3875 41.3875 30.6875 4910
8 26.400 41.4000 30.7000 4912
9 26.4125 41.4125 30.7125 4914
10 26.4250 41.4250 30.7250 4916
11 26.4375 41.4375 30.7375 4918
12 26.4500 41.4500 30.7500 4920
13 26.4625 41.4625 30.7625 4922
14 26.4750 41.4750 30.7750 4924
15 26.4875 41.4875 30.7875 4926
23
4516D–CT0–10/05
U3600BM
10.3 France Hand
Note: Alternatively, GMOD[1:0] could be set to “00”. This reduces the TX conversion gain (MODIN –> RFO) from
about 3.8 kHz/V to about 2.7 kHz/V, a value, which should be still sufficient for a maximum f of 2.5 kHz
that is useful in the French case.
10.3.1 France Modulation Loop Frequency and Divider
fMod = 4.3 MHz, PM = 7, QM = 159, M = 1
Table 10-6. Country Setting
Name RA1[1:0] RA2[1:0] D1[1:0] D20 D3[1:0] KV2[3:1] GMOD[1:0] IMIXI DR1I[1:0] FRMT GDEM
Setting 00 01 11 1 01 101 01 (1) 10000
Value max D1 = 4 D2 = 8 D3 = 2 infra M = 1 low high
gain
Table 10-7. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz
Channel
Number
TX Channel Frequency
(MHz)
RX Channel Frequency
(MHz)
fLO = 1/2 fVCO3
(MHz) DV3I[14:0] = N
1 41.3125 26.3125 37.0125 5922
2 41.3250 26.3250 37.0250 5924
3 41.3375 26.3375 37.0375 5926
4 41.3500 26.3500 37.0500 5928
5 41.3625 26.3625 37.0625 5930
6 41.3750 26.3750 37.0750 5932
7 41.3875 26.3875 37.0875 5934
8 41.4000 26.4000 37.1000 5936
9 41.4125 26.4125 37.1125 5938
10 41.4250 26.4250 37.1250 5940
11 41.4375 26.4375 37.1375 5942
12 41.4500 26.4500 37.1500 5944
13 41.4625 26.4625 37.1625 5946
14 41.4750 26.4750 37.1750 5948
15 41.4875 26.4875 37.1875 5950
24
4516D–CT0–10/05
U3600BM
10.4 Spain Base
10.4.1 Spain Modulation Loop Frequency and Divider
fRef1 = 557.5 kHz/4, fMod = 1.8 MHz/4,PM = 12,QM = 204, M = 4
Table 10-8. Country Setting
Name RA1[1:0] RA2[1:0] D1[1:0] D20 D3[1:0] KV2[3:1] GMOD[1:0] IMIXI DR1I[1:0] FRMT GDEM
Setting 10 10 00 1 11 001 10 1 11 1 1
Value D1 = 2 D2 = 8 D3 = 4 infra M = 4 high low gain
Table 10-9. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz
Channel
Number
TX Channel Frequency
(MHz)
RX Channel Frequency
(MHz)
fLO = 1/2 fVCO3
(MHz) DV3I[14:0] = N
1 31.025 39.925 29.225 4676
2 31.050 39.950 29.250 4680
3 31.075 39.975 29.275 4684
4 31.100 40.000 29.300 4688
5 31.125 40.025 29.325 4692
6 31.150 40.050 29.350 4696
7 31.175 40.075 29.375 4700
8 31.200 40.100 29.400 4704
9 31.250 40.150 29.450 4712
10 31.275 40.175 29.475 4716
11 31.300 40.200 29.500 4720
12 31.325 40.225 29.525 4724
25
4516D–CT0–10/05
U3600BM
10.5 Spain Hand
10.5.1 Spain Modulation Loop Frequency and Divider
fRef1 = 557.5 kHz/4, fMod = 1.8 MHz/4,PM = 12,QM = 204, M = 4
Table 10-10. Country Setting
Name RA1[1:0] RA2[1:0] D1[1:0] D20 D3[1:0] KV2[3:1] GMOD[1:0] IMIXI DR1I[1:0] FRMT GDEM
Setting 10 01 00 1 11 100 10 0 11 1 1
Value high D1 = 2 D2 = 8 D3 = 4 high supra M = 4 high low gain
Table 10-11. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz
Channel
Number
TX Channel Frequency
(MHz)
RX Channel Frequency
(MHz)
fLO = 1/2 fVCO3
(MHz) DV3I[14:0] = N
1 39.925 31.025 41.725 6676
2 39.950 31.050 41.750 6680
3 39.975 31.075 41.775 6684
4 40.000 31.100 41.800 6688
5 40.025 31.125 41.825 6692
6 40.050 31.150 41.850 6696
7 40.075 31.175 41.875 6700
8 40.100 31.200 41.900 6704
9 40.150 31.250 41.950 6712
10 40.175 31.275 41.975 6716
11 40.200 31.300 42.000 6720
12 40.225 31.325 42.025 6724
26
4516D–CT0–10/05
U3600BM
10.6 Netherlands Base
10.6.1 Netherlands Modulation Loop Frequency and Divider
fRef1 = 557.5 kHz/4, fMod = 1.8 MHz/4,PM = 12,QM = 204, M = 4
Table 10-12. Country Setting
Name RA1[1:0] RA2[1:0] D1[1:0] D20 D3[1:0] KV2[3:1] GMOD[1:0] IMIXI DR1I[1:0] FRMT GDEM
Setting 10 10 00 1 11 001 10 1 11 1 1
Value low D1 = 2 D2 = 8 D3 = 4 high infra M = 4 high low gain
Table 10-13. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz
Channel
Number
TX Channel Frequency
(MHz)
RX Channel Frequency
(MHz)
fLO = 1/2 fVCO3
(MHz) DV3I[14:0] = N
1 31.0375 39.9375 29.2375 4678
2 31.0625 39.9625 29.2625 4682
3 31.0875 39.9875 29.2875 4686
4 31.1125 40.0125 29.3125 4690
5 31.1375 40.0375 29.3375 4694
6 31.1625 40.0625 29.3625 4698
7 31.1875 40.0875 29.3875 4702
8 31.2125 40.1125 29.4125 4706
9 31.2375 40.1375 29.4375 4710
10 31.2625 40.1625 29.4625 4714
11 31.2875 40.1875 29.4875 4718
12 31.3125 40.2125 29.5125 4722
27
4516D–CT0–10/05
U3600BM
10.7 Netherlands Hand
10.7.1 Netherlands Modulation Loop Frequency and Divider
fRef1 = 557.5 kHz/4, fMod = 1.8 MHz/4,PM = 12,QM = 204, M = 4
Table 10-14. Country Setting
Name RA1[1:0] RA2[1:0] D1[1:0] D20 D3[1:0] KV2[3:1] GMOD[1:0] IMIXI DR1I[1:0] FRMT GDEM
Setting 10 01 00 1 11 001 10 0 11 1 1
Value high D1 = 2 D2 = 8 D3 = 4 high supra M = 4 high low gain
Table 10-15. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz
Channel
Number
TX Channel Frequency
(MHz)
RX Channel Frequency
(MHz)
fLO = 1/2 fVCO3
(MHz) DV3I[14:0] = N
1 39.9375 31.0375 41.7375 6678
2 39.9625 31.0625 41.7625 6682
3 39.9875 31.0875 41.7875 6686
4 40.0125 31.1125 41.8125 6690
5 40.0375 31.1375 41.8375 6694
6 40.0625 31.1625 41.8625 6698
7 40.0875 31.1875 41.8875 6702
8 40.1125 31.2125 41.9125 6706
9 40.1375 31.2375 41.9375 6710
10 40.1625 31.2625 41.9625 6714
11 40.1875 31.2875 41.9875 6718
12 40.2125 31.3125 42.0125 6722
28
4516D–CT0–10/05
U3600BM
10.8 U.K. Base
10.8.1 U.K. Modulation Loop Frequency and Divider
fRef1 = 557.5 kHz/4, fMod = 1.8 MHz/4,PM = 12,QM = 204, M = 4
10.9 U.K. Handset
10.9.1 U.K. Modulation Loop Frequency and Divider
fRef1 = 557.5 kHz/4, fMod = 1.8 MHz/4,PM = 12,QM = 204, M = 4
Table 10-16. Country Setting
Name RA1[1:0] RA2[1:0] D1[1:0] D20 D3[1:0] KV2[3:1] GMOD[1:0] IMIXI DR1I[1:0] FRMT GDEM
Setting 10 10 00 1 11 001 10 1 11 1 1
Value low D1 = 2 D2 = 8 D3 = 4 high infra M = 4 high low gain
Table 10-17. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz
Channel
Number
TX Channel Frequency
(MHz)
RX Channel Frequency
(MHz)
fLO = 1/2 fVCO3
(MHz)
DV3I[14:0] = N
1 31.0375 39.9375 29.2375 4678
2 31.0625 39.9625 29.2625 4682
3 31.0875 39.9875 29.2875 4686
4 31.1125 40.0125 29.3125 4690
Table 10-18. Country Setting
Name RA1[1:0] RA2[1:0] D1[1:0] D20 D3[1:0] KV2[3:1] GMOD[1:0] IMIXI DR1I[1:0] FRMT GDEM
Setting 10 01 00 1 11 001 10 0 11 1 1
Value high D1 = 2 D2 = 8 D3 = 4 high supra M = 4 high low gain
Table 10-19. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz
Channel
Number
TX Channel Frequency
(MHz)
RX Channel Frequency
(MHz)
fLO = 1/2 fVCO3
(MHz)
DV3I[14:0] = N
1 39.9375 31.0375 41.7375 6678
2 39.9625 31.0625 41.7625 6682
3 39.9875 31.0875 41.7875 6686
4 40.0125 31.1125 41.8125 6690
29
4516D–CT0–10/05
U3600BM
10.10 USA Base
Table 10-20. Country Setting Channels (Channel 1 – 10, USA1)
Name RA1[1:0] RA2[1:0] D1[1:0] D20 D3[1:0] KV2[3:1] GMOD[1:0] IMIXI DR1I[1:0] FRMT GDEM
Setting 10 00 01 1 00 100 00 1 00 1 1
Value max D1 = 8 D2 = 8 D3 = 1 low infra M = 1 high low gain
Table 10-21. Country Setting New Channels (Channel 11 – 25, USA2)
Name RA1[1:0] RA2[1:0] D1[1:0] D20 D3[1:0] KV2[3:1] GMOD[1:0] IMIXI DR1I[1:0] FRMT GDEM
Setting 01 01 10 0 00 110 01 1 00 0 1
Value high D1 = 6 D2 = & D3 = 1 infra M = 1 low low gain
Table 10-22. Channel Frequencies and 1st LO Divider, fRef3 = 5 kHz
Channel
Number
TX Channel Frequency
(MHz)
RX Channel Frequency
(MHz)
fLO = 1/2 fVCO3
(MHz)
DV3I[14:0] = N
1 46.610 49.670 38.970 7794
2 46.630 49.845 39.145 7829
3 46.670 49.860 39.160 7832
4 46.710 49.770 39.070 7814
5 46.730 49.875 39.175 7835
6 46.770 49.830 39.130 7826
7 46.830 49.890 39.190 7838
8 46.870 49.930 39.230 7846
9 46.930 49.990 39.290 7858
10 46.970 49.970 39.270 7854
Table 10-23. New Channel
Channel
Number
TX Channel Frequency
(MHz)
RX Channel Frequency
(MHz)
fLO = 1/2 fVCO3
(MHz) DV3I[14:0] = N
11 43.720 48.760 38.06 7612
12 43.740 48.840 38.14 7628
13 43.820 48.860 38.16 7632
14 43.840 48.920 38.22 7644
15 43.920 49.020 38.32 7664
16 43.960 49.080 38.38 7676
17 44.120 49.100 38.40 7680
18 44.160 49.160 38.46 7692
19 44.180 49.200 38.50 7700
20 44.200 49.240 38.54 7708
21 44.320 49.280 38.58 7716
22 44.360 49.360 38.66 7732
23 44.400 49.400 38.70 7740
24 44.460 49.460 38.76 7752
25 44.480 49.500 38.80 7760
30
4516D–CT0–10/05
U3600BM
10.11 USA Hand
Table 10-24. Country Setting Channels (Channel 1 – 10, USA1):
Name RA1[1:0] RA2[1:0] D1[1:0] D20 D3[1:0] KV2[3:1] GMOD[1:0] IMIXI DR1I[1:0] FRMT GDEM
Setting 10 00 01 1 00 100 00 0 00 1 1
Value max D1 = 8 D2 = 8 D3 = 1 supra M = 1 high low gain
Table 10-25. Country Setting New Channels (Channel 11 – 25, USA2):
Name RA1[1:0] RA2[1:0] D1[1:0] D20 D3[1:0] KV2[3:1] GMOD[1:0] IMIXI DR1I[1:0] FRMT GDEM
Setting 01 00 10 0 00 110 01 0 00 0 1
Value high D1 = 6 D2 = & D3 = 1 supra M = 1 low low gain
Table 10-26. Channel Frequencies and 1st LO Divider, fRef3 = 5 kHz
Channel
Number
TX Channel Frequency
(MHz)
RX Channel Frequency
(MHz)
fLO = 1/2 fVCO3
(MHz) DV3I[14:0] = N
149.670 46.610 57.31 11462
249.845 46.630 57.33 11466
349.860 46.670 57.37 11474
449.770 46.710 57.41 11482
549.875 46.730 57.43 11486
649.830 46.770 57.47 11494
749.890 46.830 57.53 11506
849.930 46.870 57.57 11514
949.990 46.930 57.63 11526
10 49.970 46.970 57.67 11534
Table 10-27. New channel
Channel
Number
TX Channel Frequency
(MHz)
RX Channel Frequency
(MHz)
fLO = 1/2 fVCO3
(MHz) DV3I[14:0] = N
11 48.760 43.720 54.42 10884
12 48.840 43.740 54.44 10888
13 48.860 43.820 54.52 10904
14 48.920 43.840 54.54 10908
15 49.020 43.920 54.62 10924
16 49.080 43.960 54.66 10932
17 49.100 44.120 54.82 10964
18 49.160 44.160 54.86 10972
19 49.200 44.180 54.88 10976
20 49.240 44.200 54.90 10980
21 49.260 44.320 55.02 11004
22 49.360 44.360 55.06 11012
23 49.400 44.400 55.10 11020
24 49.460 44.460 55.16 11032
25 49.500 44.480 55.18 11036
31
4516D–CT0–10/05
U3600BM
Table 10-28. USA Modulation Loop Frequencies and Dividers
N Channel PMQMfMod (MHz)
1 13 157 7.640
213957.485
3 13 105 7.510
4 13 157 7.640
5 13 123 7.555
6 13 157 7.640
7 13 157 7.640
8 13 157 7.640
9 13 157 7.640
10 13 181 7.700
Table 10-29. New Channel
N Channel PMQMfMod (MHz)
11 10 34 5.66
12 10 10 5.60
13 10 34 5.66
14 10 18 5.62
15 10 10 5.60
16 10 2 5.58
17 10 58 5.72
18 10 50 5.70
19 10 42 5.68
20 10 34 5.66
21 10 66 5.74
22 10 50 5.70
23 10 50 5.70
24 10 50 5.70
25 10 42 5.68
32
4516D–CT0–10/05
U3600BM
10.12 Portugal Base
10.12.1 Portugal Modulation Loop Frequency and Divider
fRef1 = 557.5 kHz/4, fMod = 1.25 MHz/4,PM = 8,QM = 216, M = 4
Table 10-30. Country Setting
Name RA1[1:0] RA2[1:0] D1[1:0] D20 D3[1:0] KV2[3:1] GMOD[1:0] IMIXI DR1I[1:0] FRMT GDEM
Setting 01 10 00 1 11 001 10 1 11 1 1
Value D1 = 2 D2 = 8 D3 = 4 infra M = 4 high low gain
Table 10-31. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz
Channel
Number
TX Channel Frequency
(MHz)
RX Channel Frequency
(MHz)
fLO = 1/2 fVCO3
(MHz) DV3I[14:0] = N
1 27.550 37.000 26.300 4208
2 27.575 37.025 26.325 4212
3 27.600 37.050 26.350 4216
4 27.625 37.075 26.375 4220
5 27.650 37.100 26.400 4224
6 27.675 37.125 26.425 4228
7 27.700 37.150 26.450 4232
8 27.725 37.175 26.475 4236
9 27.750 37.200 26.500 4240
10 27.775 37.225 26.525 4244
11 27.800 37.250 26.550 4248
12 27.825 37.275 26.575 4252
33
4516D–CT0–10/05
U3600BM
10.13 Portugal Hand
10.13.1 Portugal Modulation Loop Frequency and Divider
fRef1 = 557.5 kHz/4, fMod = 1.25 MHz/4,PM = 8,QM = 216, M = 4
Table 10-32. Country Setting
Name RA1[1:0] RA2[1:0] D1[1:0] D20 D3[1:0] KV2[3:1] GMOD[1:0] IMIXI DR1I[1:0] FRMT GDEM
Setting 01 01 00 1 11 001 10 0 11 1 1
Value D1 = 2 D2 = 8 D3 = 4 supra M = 4 high low gain
Table 10-33. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz
Channel
Number
TX Channel Frequency
(MHz)
RX Channel Frequency
(MHz)
fLO = 1/2 fVCO3
(MHz) DV3I[14:0] = N
1 37.000 27.550 38.250 6120
2 37.025 27.575 38.275 6124
3 37.050 27.600 38.300 6128
4 37.075 27.625 38.325 6132
5 37.100 27.650 38.350 6136
6 37.125 27.675 38.375 6140
7 37.150 27.700 38.400 6144
8 37.175 27.725 38.425 6148
9 37.200 27.750 38.450 6152
10 37.225 27.775 38.475 6156
11 37.250 27.800 38.500 6160
12 37.275 27.825 38.525 6164
34
4516D–CT0–10/05
U3600BM
10.14 Taiwan Base
10.14.1 Taiwan Modulation Loop Frequency and Divider
fMod = 7.7 MHz, PM = 13,QM = 181, M = 1
Table 10-34. Country Setting
Name RA1[1:0] RA2[1:0] D1[1:0] D20 D3[1:0] KV2[3:1] GMOD[1:0] IMIXI DR1I[1:0] FRMT GDEM
Setting 10 00 01 1 00 110 01 1 00 1 1
Value max D1 = 8 D2 = 8 D3 = 1 infra M = 1 high low gain
Table 10-35. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz
Channel
Number
TX Channel Frequency
(MHz)
RX Channel Frequency
(MHz)
fLO = 1/2 fVCO3
(MHz) DV3I[14:0] = N
1 45.2500 48.2500 37.5500 6008
2 45.2750 48.2750 37.5750 6012
3 45.3000 48.3000 37.6000 6016
4 45.3250 48.3250 37.6250 6020
5 45.3500 48.3500 37.6500 6024
6 45.3750 48.3750 37.6750 6028
7 45.4000 48.4000 37.7000 6032
8 45.4250 48.4250 37.7250 6036
9 45.4500 48.4500 37.7500 6040
10 45.4750 48.4750 37.7750 6044
35
4516D–CT0–10/05
U3600BM
10.15 Taiwan Hand
10.15.1 Taiwan Modulation Loop Frequency and Divider
fMod = 7.7 MHz, PM = 13,QM = 181, M = 1
Table 10-36. Country Setting
Name RA1[1:0] RA2[1:0] D1[1:0] D20 D3[1:0] KV2[3:1] GMOD[1:0] IMIXI DR1I[1:0] FRMT GDEM
Setting 10 00 01 1 00 110 00 0 00 1 1
Value max D1 = 8 D2 = 8 D3 = 1 supra M = 1 high low gain
Table 10-37. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz
Channel
Number
TX Channel Frequency
(MHz)
RX Channel Frequency
(MHz)
fLO = 1/2 fVCO3
(MHz) DV3I[14:0] = N
1 48.2500 45.2500 55.9500 8952
2 48.2750 45.2750 55.9750 8956
3 48.3000 45.3000 56.0000 8960
4 48.3250 45.3250 56.0250 8964
5 48.3500 45.3500 56.0500 8968
6 48.3750 45.3750 56.0750 8972
7 48.4000 45.4000 56.1000 8976
8 48.4250 45.4250 56.1250 8980
9 48.4500 45.4500 56.1500 8984
10 48.4750 45.4750 56.1750 8988
36
4516D–CT0–10/05
U3600BM
10.16 China Base
10.16.1 China Modulation Loop Frequency and Divider
fMod = 7.7 MHz, PM = 13,QM = 181, M = 1
Table 10-38. Country Setting
Name RA1[1:0] RA2[1:0] D1[1:0] D20 D3[1:0] KV2[3:1] GMOD[1:0] IMIXI DR1I[1:0] FRMT GDEM
Setting 10 00 01 1 00 110 01 1 00 1 1
Value max D1 = 8 D2 = 8 D3 = 1 infra M = 1 high low gain
Table 10-39. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz
Channel
Number
TX Channel Frequency
(MHz)
RX Channel Frequency
(MHz)
fLO = 1/2 fVCO3
(MHz) DV3I[14:0] = N
1 45.0000 48.0000 37.3000 5968
2 45.0250 48.0250 37.3250 5972
3 45.0500 48.0500 37.3500 5976
4 45.0750 48.0750 37.3750 5980
5 45.1000 48.1000 37.4000 5984
6 45.1250 48.1250 37.4250 5988
7 45.1500 48.1500 37.4500 5992
8 45.1750 48.1750 37.4750 5996
9 45.2000 48.2000 37.5000 6000
10 45.2250 48.2250 37.5250 6004
11 45.2500 48.2500 37.5500 6008
12 45.2750 48.2750 37.5750 6012
13 45.3000 48.3000 37.6000 6016
14 45.3250 48.3250 37.6250 6020
15 45.3500 48.3500 37.6500 6024
16 45.3750 48.3750 37.6750 6028
17 45.4000 48.4000 37.7000 6032
18 45.4250 48.4250 37.7250 6036
19 45.4500 48.4500 37.7500 6040
20 45.4750 48.4750 37.7750 6044
37
4516D–CT0–10/05
U3600BM
10.17 China Hand
10.17.1 China Modulation Loop Frequency and Divider
fMod = 7.7 MHz, PM = 13,QM = 181, M = 1
Table 10-40. Country Setting
Name RA1[1:0] RA2[1:0] D1[1:0] D20 D3[1:0] KV2[3:1] GMOD[1:0] IMIXI DR1I[1:0] FRMT GDEM
Setting 10 00 01 1 00 110 00 0 00 1 1
Value max D1 = 8 D2 = 8 D3 = 1 supra M = 1 high low gain
Table 10-41. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz
Channel
Number
TX Channel Frequency
(MHz)
RX Channel Frequency
(MHz)
fLO = 1/2 fVCO3
(MHz) DV3I[14:0] = N
1 48.000 45.0000 55.7000 8912
2 48.0250 45.0250 55.7250 8916
3 48.0500 450500 55.7500 8920
4 48.0750 450750 55.7750 8924
5 48.1000 45.1000 55.8000 8928
6 48.1250 45.1250 55.8250 8932
7 48.1500 45.1500 55.8500 8936
8 48.1750 45.1750 55.8750 8940
9 48.2000 45.2000 55.9000 8944
10 48.2250 45.2250 55.9250 8948
11 48.2500 45.2500 55.9500 8952
12 48.2750 45.2750 55.9750 8956
13 48.3000 45.3000 56.0000 8960
14 48.3250 45.3250 56.0250 8964
15 48.3500 45.3500 56.0500 8968
16 48.3750 45.3750 56.0750 8972
17 48.4000 45.4000 56.1000 8976
18 48.4250 45.4250 56.1250 8980
19 48.4500 45.4500 56.1500 8984
20 48.4750 45.4750 56.1750 8988
38
4516D–CT0–10/05
U3600BM
10.18 New Zealand Base
10.18.1 New Zealand Modulation Loop Frequency and Divider
fMod = 4.7 MHz/4, PM = 8,QM = 96, M = 1
Table 10-42. Country Setting
Name RA1[1:0] RA2[1:0] D1[1:0] D20 D3[1:0] KV2[3:1] GMOD[1:0] IMIXI DR1I[1:0] FRMT GDEM
Setting 00 01 11 1 01 110 01 1 00 0 1
Value D1 = 4 D2 = 8 D3 = 2 infra M = 1 low low gain
Table 10-43. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz
Channel
Number
TX Channel Frequency
(MHz)
RX Channel Frequency
(MHz)
fLO = 1/2 fVCO3
(MHz) DV3I[14:0] = N
11 34.2500 40.2500 29.5500 4728
12 34.2750 40.2750 29.5750 4732
13 34.3000 40.3000 29.6000 4736
14 34.3250 40.3250 29.6250 4740
15 34.3500 40.3500 29.6500 4744
16 34.3750 40.3750 29.6750 4748
17 34.4000 40.4000 29.7000 4752
18 34.4250 40.4250 29.7250 4756
19 34.4500 40.4500 29.7500 4760
20 34.4750 40.4750 29.7750 4764
39
4516D–CT0–10/05
U3600BM
10.19 New Zealand Hand
10.19.1 New Zealand Modulation Loop Frequency and Divider
fMod = 4.7 MHz/4, PM = 8,QM = 96, M = 1
Table 10-44. Country Setting
Name RA1[1:0] RA2[1:0] D1[1:0] D20 D3[1:0] KV2[3:1] GMOD[1:0] IMIXI DR1I[1:0] FRMT GDEM
Setting 00 01 11 1 01 101 01 0 00 0 1
Value max min D1 = 4 D2 = 8 D3 = 2 supra M = 1 low low gain
Table 10-45. Channel Frequencies and 1st LO Divider, fRef3 = 6.25 kHz
Channel
Number
TX Channel Frequency
(MHz)
RX Channel Frequency
(MHz)
fLO = 1/2 fVCO3
(MHz) DV3I[14:0] = N
11 40.2500 34.2500 44.9500 7192
12 40.2750 34.2750 44.9750 7196
13 40.3000 34.3000 45.0000 7200
14 40.3250 34.3250 45.0250 7204
15 40.3500 34.3500 45.0500 7208
16 40.3750 34.3750 45.0750 7212
17 40.4000 34.4000 45.1000 7216
18 40.4250 34.4250 45.1250 7220
19 40.4500 34.4500 45.1500 7224
20 40.4750 34.4750 45.1750 7228
40
4516D–CT0–10/05
U3600BM
10.20 Korea Base
Table 10-46. Country Setting
Name RA1[1:0] RA2[1:0] D1[1:0] D20 D3[1:0] KV2[3:1] GMOD[1:0] IMIXI DR1I[1:0] FRMT GDEM
Setting 10 00 01 1 00 100 00 1 00 1 1
Value max D1 = 8 D2 = 8 D3 = 1 infra M = 1 high high
gain
Table 10-47. Channel Frequencies and 1st LO Divider, fRef3 = 5 kHz
Channel
Number
TX Channel Frequency
(MHz)
RX Channel Frequency
(MHz)
fLO = 1/2 fVCO3
(MHz) DV3I[14:0] = N
1 46.6100 49.6700 38.9700 7794
2 46.6300 49.8450 39.1450 7829
3 46.6700 49.8600 39.1600 7832
4 46.7100 49.7700 39.0700 7814
5 46.7300 49.8750 39.1750 7835
6 46.7700 49.8300 39.1300 7826
7 46.8300 49.8900 39.1900 7838
8 46.8700 49.9300 39.2300 7846
9 46.9300 49.9900 39.2900 7858
10 46.9700 49.9700 39.2700 7854
11 46.5100 49.6950 39.9950 7799
12 46.5300 49.7100 39.0100 7802
13 46.5500 49.7250 39.0250 7805
14 46.5700 49.7400 39.0400 7808
15 46.5900 49.7550 39.0550 7811
41
4516D–CT0–10/05
U3600BM
10.21 Korea Hand
Table 10-48. Country Setting
Name RA1[1:0] RA2[1:0] D1[1:0] D20 D3[1:0] KV2[3:1] GMOD[1:0] IMIXI DR1I[1:0] FRMT GDEM
Setting 10 00 01 1 00 100 00 0 00 1 1
Value max D1 = 8 D2 = 8 D3 = 1 supra M = 1 high high
gain
Table 10-49. Channel Frequencies and 1st LO Divider, fRef3 = 5 kHz
Channel
Number
TX Channel Frequency
(MHz)
RX Channel Frequency
(MHz)
fLO = 1/2 fVCO3
(MHz) DV3I[14:0] = N
1 49.6700 46.6100 57.3100 11462
2 49.8450 46.6300 57.3300 11466
3 49.8600 46.6700 57.3700 11474
4 49.7700 46.7100 57.4100 11482
5 49.8750 46.7300 57.4300 11486
6 49.8300 46.7700 57.4700 11494
7 49.8900 46.8300 57.5300 11506
8 49.9300 46.8700 57.5700 11514
9 49.9900 46.9300 57.6300 11526
10 49.9700 46.9700 57.6700 11534
11 49.6950 46.5100 57.2100 11442
12 49.7100 46.5300 57.2300 11446
13 49.7250 46.5500 57.2500 11450
14 49.7400 46.5700 57.2700 11454
15 49.7550 46.5900 57.2900 11458
42
4516D–CT0–10/05
U3600BM
Note: (1) Necessary to stay within adjustment range of oscillator FAOS (0:2) = 0 ... 5
Table 10-50. Korea Modulation Loop Frequencies and Dividers
N Channel PMQMfMod (MHz)
1 13 157 7.640
213957.485
3 13 105 7.510
4 13 157 7.640
5 13 123 7.555
6 13 157 7.640
7 13 157 7.640
8 13 157 7.640
9 13 157 7.640
10 13 181 7.700
11 13 107 7.515
12 13 109 7.520
13 13 111 7.525
14 13 113 7.530
15 13 115 7.535
Table 10-51. Crystal Specifications
Drive level < 0.01 µW
Parameters Symbol Min. Typ. Max. Unit
Load resonance frequency with 14 pF load capacitance 11.15 MHz
Load capacitance 14 pF
Frequency tolerance –30 +30 ppm
Shunt capacitance 3.1 pF
Motional capacitance 9.2 fF (1)
Series resistance 20
43
4516D–CT0–10/05
U3600BM
12. Package Information
11. Ordering Information
Extended Type Number Package Remarks
U3600BM-NFNY SSO44 Tube, Pb-free
U3600BM-NFNG3Y SSO44 Taped and reeled, Pb-free
technical drawings
according to DIN
specifications
Package SSO44
Dimensions in mm
0.25
0.10
0.3
0.8
18.05
17.80
16.8
2.35
9.15
8.65
7.50
7.30
10.50
10.20
0.25
44 23
122
Printed on recycled paper.
4516D–CT0–10/05
© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are® and others, are registered trade-
marks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.
Atmel Corporation Atmel Operations
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80
Literature Requests
www.atmel.com/literature