Hardware Design Guide, Revision 5
July 13, 2004
TFRA84J13 Ultraframer
DS3/E3/DS2/E2/DS1/E1/DS0
1 Introduction
The last issue of this data sheet was December 17, 2003 - Revision 4. A change history is included in Section 13, Change
History, on page 54. Red change bars have been installed on all text, figures, and tables that were added or changed. All
changes to the text are highlighted in red. Changes within figures, and the figure title itself, are highlighted in red, if feasible.
Formatting or grammatical changes have not been highlighted. Deleted sections, paragraphs, figures, or tables will be
specifi ca ll y men tio ned.
The documentation package for the TFRA84J13 Ultraframer DS3/E3/DS2/E2/DS1/E1/DS0 system chip consists of the fol-
lowing documents:
The Register Description and the System Design Guide. These documens are available on a password-protected web-
site.
The Ultraframer Product Description and the Ultraframer Hardware Design Guide (this document). These documents are
available on the public website shown below (select Mappers/MUXes).
If the reader displays this document using Acrobat Reader ®, clicking on any blue text will bring the reader to that reference
point. Clicking on the back arrow (Go to previous View) in the toolbar of the Acrobat Reader will bring the reader back to the
starting point.
To access related documents, including the documents mentioned above, please go to the following public website, or con-
tact your Agere representative (see the last page of this document).
http://www.agere.com/enterprise_metro_access/index.html
This document describes the hardware interfaces to the Agere Systems Inc. TFRA84J13 Ultraframer device. Information
relevant to the use of the device in a board design is covered. Pin descriptions, dc electrical characteristics, timing
diagrams, ac timing parameters, packaging, and operating conditions are included.
Figure 1-1. Ultraframer Block Diagram and High-Level Interface Definition
System
Interfaces
Switching modes :
8PSB (x16)- x84/X63 DS1/J1/E1
x2016 DS0/E0
4CHI (x18) - x2016 DS0/E0
Transport modes:
4DS1/J1/E1 (x86) -x84/x63 + prot.
4DS2/E2 (X86) – x63/x36 + prot.
(x3) DS3/E3
(x3) NSMI
(framer)
Shared Low Speed I/O
(x3)
M13/E13
Mux
FRM
x84/x63
DS1/J1/E1
MRXC
DS1/J1/E1
DS2/E2
DS3/E3
TPG/TPM
x84/x63
DS1/E1
DJA
24
MPU IF 5CHI/PSB
Rx/Tx Clocks and Sync
5
5
JTAG
JTAG IF
FRM PLL IF
21
380
DS1XCLK,
E1XCLK
CG
MPU
48
Miscellaneous
13
2
Power and GND pins not shown 10/10/02 Ultraframer
E2AISCLK/
DS2AISCLK
1
1
THSC
Framer CLK
2
Table of Contents
Contents Page
2Agere Systems Inc.
Hardware Design Guide, Revision 5
July 13, 2004
DS3/E3/DS2/E2/DS1/E1/DS0
TFRA84J13 Ultraframer
1 Introduction ........................................................................................................................................................................1
2 Pin Informati on .. ....... ...... ...... ....... ................... ....... ...... ....... ...... ....... ...... ...... ....... ................................................................5
2.1 Ball Diagram ................................................................................................................................................................5
2.2 Package Pin Assignments ...........................................................................................................................................6
2.3 Pin Assignment Matrix ...............................................................................................................................................16
2.4 Pin Types ...................................................................................................................................................................19
2.5 Pin Definitions ............................................................................................................................................................20
3 Absolute Maximum Ratings .............................................................................................................................................30
3.1 Handling Precautions ................................................................................................................................................30
3.2 Thermal Parameters (Definitions and Values) ...........................................................................................................30
3.3 Reliability ...................................................................................................................................................................31
4 Electrical Characteristics .................................................................................................................................................32
4.1 Recommended Operating Voltages ..........................................................................................................................32
4.2 Recommended Powerup Sequence ..........................................................................................................................32
4.3 Power Consumption ..................................................................................................................................................32
4.4 ac and dc Characteristics ..........................................................................................................................................33
4.4.1 LVCMOS Interface Characteristics ..................................................................................................................33
4.4.2 LVDS Interface Characteristics ........................................................................................................................33
5 Timing ..............................................................................................................................................................................34
5.1 DS3/E3 Timing ..........................................................................................................................................................34
5.2 NSMI Timing ..............................................................................................................................................................35
5.3 Shared Low-Speed Line Timing ................................................................................................................................37
5.4 CHI Timing .................................................................................................................................................................37
5.5 Parallel System Bus (PSB) Timing ............................................................................................................................41
6 Reference Clocks ............................................................................................................................................................42
7 Microprocessor Interface Timing .....................................................................................................................................45
7.1 Synchronous Write Mode ..........................................................................................................................................45
7.2 Synchronous Read Mode ..........................................................................................................................................46
7.3 Asynchronous Write Mode ........................................................................................................................................47
7.4 Asynchronous Read Mode ........................................................................................................................................48
8 Other Timing ............................... ...... ....... ...... ....... ...... ....... ...... ....... ................... ...... ........................................................50
9 Hardware Design File References ...................................................................................................................................50
10 909-Pin PBGA Diagram .................................................................................................................................................51
11 Ordering Information ......................................................................................................................................................52
12 Glossary .........................................................................................................................................................................53
13 Change History ....... ...... ...... ....... ...... ....... ...... .................... ...... ....... ...... ...... ....... ...... ........................................................54
13.1 Navigating Through an Adobe Acrobat Document .................................................................................................54
Table of Contents (continued)
Tables Page
Agere Systems Inc. 3
Hardware Design Guide, Revision 5
July 13, 20 04 DS3/E3/DS2/E2/DS1/E1/DS0
TFRA84J13 Ultraframer
Table 2-1. Package Pin Assignments.....................................................................................................................................6
Table 2-2. Pin Matrix.............................................................................................................................................................16
Table 2-3. Pin Types.............................................................................................................................................................19
Table 2-4. LVDS Framer Reference Clock...........................................................................................................................20
Table 2-5. DS3/E3 Out .........................................................................................................................................................20
Table 2-6. DS3/E3 In ............................................................................................................................................................20
Table 2-7. NSMI In................................................................................................................................................................21
Table 2-8. NSMI Out.............................................................................................................................................................21
Table 2-9. Shared Low-Speed Line In..................................................................................................................................22
Table 2-10. Shared Low-Speed Line Out .............................................................................................................................23
Table 2-11. TDM Concentration Highway (CHI) In...............................................................................................................24
Table 2-12. TDM Concentration Highway (CHI) Out ............................................................................................................24
Table 2-13. Framer (FRM) Block, CHI/Parallel System Bus (PSB) Clock and Sync............................................................25
Table 2-14. Reference Clocks..............................................................................................................................................25
Table 2-15. Clock Generator ................................................................................................................................................26
Table 2-16. Microprocessor Interface...................................................................................................................................27
Table 2-17. Boundary Scan (IEEE® 1149.1)........................................................................................................................28
Table 2-18. General-Purpose Interface ................................................................................................................................28
Table 2-19. Analog Power and Ground Signals ...................................................................................................................28
Table 2-20. Digital Power and Ground Signals.....................................................................................................................29
Table 2-21. No Connects......................................................................................................................................................29
Table 3-1. Absolute Maximum Ratings.................................................................................................................................30
Table 3-2. ESD Tolerance ....................................................................................................................................................30
Table 3-3. Thermal Parameter Values..................................................................................................................................31
Table 3-4. Reliability Data.....................................................................................................................................................31
Table 4-1. Recommended Operating Conditions .................................................................................................................32
Table 4-2. Typical Power Consumption Per Block ...............................................................................................................32
Table 4-3. LVCMOS Inputs Specifications ...........................................................................................................................33
Table 4-4. LVCMOS Outputs Specifications.........................................................................................................................33
Table 4-5. LVCMOS Bidirectionals Specifications................................................................................................................33
Table 4-6. LVDS Interface dc Characteristics.......................................................................................................................33
Table 5-1. DS3/E3 Input Specifications................................................................................................................................34
Table 5-2. DS3/E3 Output Specifications .............................................................................................................................34
Table 5-3. NSMI Input Specifications ...................................................................................................................................36
Table 5-4. NSMI Output Specifications.................................................................................................................................36
Table 5-5. Shared Low-Speed Line Timing Input Specifications..........................................................................................37
Table 5-6. Shared Low-Speed Line Timing Output Specifications .......................................................................................37
Table 5-7. CHIRXGCLK and CHITXGCLK Timing Specifications........................................................................................37
Table 5-8. CHI Interface Timing Specifications ....................................................................................................................38
Table 5-9. PSB Input Specifications .....................................................................................................................................41
Table 5-10. PSB Output Specifications ................................................................................................................................41
Table 6-1. Framer Input Clocks Specifications.....................................................................................................................42
Table 6-2. DS3/E3 Input Clocks Specifications....................................................................................................................42
Table 6-3. DS1/E1 DJA Input Clocks Specifications ............................................................................................................42
Table 6-4. M13/E13 Input Clocks Specifications ..................................................................................................................42
Table 6-5. Microprocessor Interface Input Clocks Specifications.........................................................................................42
Table 6-6. Framer PLL Input Clocks Specifications.............................................................................................................43
Table 6-7. CHI Input Clocks Specifications ..........................................................................................................................43
Table 6-8. PSB Input Clocks Specifications .........................................................................................................................43
Table 6-9. DS3/E3 Output Clocks Specifications .................................................................................................................43
Table 6-10. Framer PLL Output Clocks Specifications........................................................................................................43
Table 6-11. Shared Low-Speed Receive Line Input/Output Clocks Specifications ..............................................................43
Table 6-12. Shared Low-Speed Transmit Line Input/Output Clocks Specifications .............................................................44
Table 6-13. NSMI Input Clock Specifications .......................................................................................................................44
Table 6-14. NSMI Output Clocks Specifications...................................................................................................................44
Table 7-1. Microprocessor Interface Synchronous Write Cycle Specifications.....................................................................45
Table 7-2. Microprocessor Interface Synchronous Read Cycle Specifications ....................................................................46
Table 7-3. Microprocessor Interface Asynchronous Write Cycle Specifications...................................................................48
Table 7-4. Microprocessor Interface Asynchronous Read Cycle Specifications...................................................................49
Table 8-1. General-Purpose Inputs Specifications ...............................................................................................................50
Table 8-2. General-Purpose Output Specifications ..............................................................................................................50
Table 11-1. Ordering Information..........................................................................................................................................52
Table 13-1. Changes ............................................................................................................................................................54
Table of Contents (continued)
Figures Page
4Agere Systems Inc.
DS3/E3/DS2/E2/DS1/E1/DS0
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
July 13, 2004
Figure 1-1. Ultraframer Block Diagram and High-Level Interface Definition...........................................................................1
Figure 2-1. Ultraframer Package Diagram (Top View)...........................................................................................................5
Figure 5-1. DS3/E3 Interface Diagram in M13/E13 Block....................................................................................................34
Figure 5-2. NSMI Clock and Data Diagram for M13 NSMI Mode (NSMI <---> M13 <---> DS3 External I/O).......................35
Figure 5-3. NSMI Clock and Data Diagram for E13 NSMI Mode 1 (NSMI <---> E13 <---> E3 External I/O)........................35
Figure 5-4. NSMI Clock and Data Diagram for Framer (FRM) NSMI Mode.........................................................................36
Figure 5-5. Shared Low-Speed Line Clock and Data Timing ...............................................................................................37
Figure 5-6. CHI Clock Timing ...............................................................................................................................................37
Figure 5-7. CHI Bus Timing..................................................................................................................................................38
Figure 5-8. Typical Receive CHI Timing (Non-CMS Mode—FRM_CMS = 0)......................................................................38
Figure 5-9. Transmit CHI Timing (Non-CMS Mode—FRM_CMS = 0)..................................................................................39
Figure 5-10. Typical Receive CHI Timing (CMS Mode—FRM_CMS = 1)............................................................................39
Figure 5-11. Transmit CHI Timing (CMS Mode—FRM_CMS = 1) .......................................................................................40
Figure 5-12. PSB Clock and Data Timing.............................................................................................................................41
Figure 7-1. Microprocessor Interface Synchronous Write Cycle—MPMODE Pin = 1..........................................................45
Figure 7-2. Microprocessor Interface Synchronous Read Cycle—MPMODE Pin = 1..........................................................46
Figure 7-3. Microprocessor Interface Asynchronous Write Cycle—MPMODE Pin = 0 ........................................................47
Figure 7-4. Microprocessor Interface Asynchronous Read Cycle—MPMODE Pin = 0........................................................48
Figure 10-1. Ultraframer 909-Pin PBGA Balls and Dimensions ...........................................................................................51
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 5
2 Pin In fo rm a tion
2.1 Ball Diagram
The TFRA84J13 Ultraframer is housed in a 909-pin plastic ball grid array. Figure 2-1 shows the ball assignment viewed
from the top of the package. The pins are spaced on a 1.0 mm pitch.
Figure 2-1. Ultraframer Package Diagram (Top View)
T
D
H
AL
F
K
B
P
M
L
J
AH
R
C
E
Y
N
U
AN
G
AD
V
AM
AJ
AG
AE
AC
AA
W
AP
AK
AF
AB
A
19 30
26 2824 3222
20
18
4681012
14 16234
523
25731
2915 21
327
11 17
913133
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
66 Agere Systems Inc.
2.2 Package Pin Assignments
Table 2-1. Package Pin Assignments
Signal Name Pin
ADDR[0] K6
ADDR[1] H4
ADDR[2] G3
ADDR[3] J8
ADDR[4] J4
ADDR[5] K5
ADDR[6] F1
ADDR[7] G2
ADDR[8] L6
ADDR[9] L5
ADDR[10] H2
ADDR[11] M6
ADDR[12] K4
ADDR[13] L8
ADDR[14] M5
ADDR[15] N6
ADDR[16] J1
ADDR[17] L3
ADDR[18] M4
ADDR[19] P8
ADDR[20] N5
ADSN F3
NC Y1
NC AM13
CG_PLLCLKOUT AF26
CLKIN_PLL AF27
CSN G7
NC AF8
NC AG10
CTAPTH AG9
NC AG14
DATA[0] K1
DATA[1] L2
DATA[2] U2
DATA[3] N4
DATA[4] R8
DATA[5] M2
DATA[6] T5
DATA[7] M1
DATA[8] R5
DATA[9] U5
DATA[10] P4
DATA[11] N2
DATA[12] R4
DATA[13] T4
DATA[14] U9
DATA[15] P1
DS1XCLK AP21
DS2AISCLK V8
DS3DATAINCLK[1] AB1
DS3DATAINCLK[2] V4
DS3DATAINCLK[3] V3
NC AE1
NC AF1
NC AB4
DS3DATAOUTCLK[1] AB5
DS3DATAOUTCLK[2] AB8
DS3DATAOUTCLK[3] AC5
NC AD5
NC AE5
NC AG4
DS3NEGDATAIN[1] V1
DS3NEGDATAIN[2] AC1
DS3NEGDATAIN[3] Y4
NC AC2
NC Y5
NC AA5
DS3NEGDATAOUT[1] AC3
DS3NEGDATAOUT[2] AC4
DS3NEGDATAOUT[3] AJ1
NC AL1
NC AG3
NC AJ2
DS3POSDATAIN[1] W3
DS3POSDATAIN[2] AB2
DS3POSDATAIN[3] AD1
NC V5
NC W8
NC W5
DS3POSDATAOUT[1] V2
DS3POSDATAOUT[2] AA6
DS3POSDATAOUT[3] AH1
NC AK1
NC AG2
NC AF4
DS3RXCLKOUT[1] AD2
DS3RXCLKOUT[2] AD3
DS3RXCLKOUT[3] AB6
NC AC8
NC AD6
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 7
NC AE8
DSN J5
DTN T3
E1XCLK AM18
E2AISCLK AA1
NC H18
NC AL14
NC AP15
NC AP16
HP_INTN U8
IC3STATEN AL20
IDDQ AL21
LINERXCLK[1] A18
LINERXCLK[2] C17
LINERXCLK[3] E16
LINERXCLK[4] C16
LINERXCLK[5] B16
LINERXCLK[6] A15
LINERXCLK[7] A14
LINERXCLK[8] C13
LINERXCLK[9] B13
LINERXCLK[10] D12
LINERXCLK[11] B12
LINERXCLK[12] D11
LINERXCLK[13] B11
LINERXCLK[14] E12
LINERXCLK[15] D10
LINERXCLK[16] H12
LINERXCLK[17] D9
LINERXCLK[18] C8
LINERXCLK[19] H11
LINERXCLK[20] B7
LINERXCLK[21] E9
LINERXCLK[22] E10
LINERXCLK[23] D7
LINERXCLK[24] E8
LINERXCLK[25] F9
LINERXCLK[26] E7
LINERXCLK[27] D6
LINERXCLK[28] G8
LINERXCLK[29] B4
LINERXCLK[30] F7
LINERXCLK[31] J9
LINERXCLK[32] F4
LINERXCLK[33] C1
LINERXCLK[34] H9
LINERXCLK[35] E5
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin LINERXCLK[36] F6
LINERXCLK[37] A10
LINERXCLK[38] A12
LINERXCLK[39] H14
LINERXCLK[40] D14
LINERXCLK[41] A16
LINERXCLK[42] E17
LINERXCLK[43] B18
LINERXCLK[44] D19
LINERXCLK[45] H20
LINERXCLK[46] D21
LINERXCLK[47] B24
LINERXCLK[48] F22
LINERXCLK[49] B28
LINERXCLK[50] A29
LINERXCLK[51] H24
LINERXCLK[52] A32
LINERXCLK[53] D29
LINERXCLK[54] D30
LINERXCLK[55] H26
LINERXCLK[56] E30
LINERXCLK[57] F29
LINERXCLK[58] L30
LINERXCLK[59] M27
LINERXCLK[60] M30
LINERXCLK[61] N29
LINERXCLK[62] M31
LINERXCLK[63] N30
LINERXCLK[64] L33
LINERXCLK[65] N31
LINERXCLK[66] P29
LINERXCLK[67] M34
LINERXCLK[68] N34
LINERXCLK[69] T27
LINERXCLK[70] T33
LINERXCLK[71] U33
LINERXCLK[72] V30
LINERXCLK[73] W34
LINERXCLK[74] W31
LINERXCLK[75] AA34
LINERXCLK[76] Y30
LINERXCLK[77] AC33
LINERXCLK[78] AH3
LINERXCLK[79] AH2
LINERXCLK[80] AE4
LINERXCLK[81] AD4
LINERXCLK[82] Y8
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
88 Agere Systems Inc.
LINERXCLK[83] AA4
LINERXCLK[84] W4
LINERXCLK[85] U1
LINERXCLK[86] T2
LINERXDATA[1] E18
LINERXDATA[2] D17
LINERXDATA[3] B17
LINERXDATA[4] D16
LINERXDATA[5] H16
LINERXDATA[6] E15
LINERXDATA[7] E14
LINERXDATA[8] D13
LINERXDATA[9] F14
LINERXDATA[10] A13
LINERXDATA[11] E13
LINERXDATA[12] F13
LINERXDATA[13] H13
LINERXDATA[14] A11
LINERXDATA[15] A9
LINERXDATA[16] A8
LINERXDATA[17] B8
LINERXDATA[18] E11
LINERXDATA[19] A7
LINERXDATA[20] D8
LINERXDATA[21] F11
LINERXDATA[22] C7
LINERXDATA[23] A6
LINERXDATA[24] F10
LINERXDATA[25] B6
LINERXDATA[26] C6
LINERXDATA[27] F8
LINERXDATA[28] A5
LINERXDATA[29] A4
LINERXDATA[30] E6
LINERXDATA[31] H6
LINERXDATA[32] G5
LINERXDATA[33] H8
LINERXDATA[34] G6
LINERXDATA[35] F5
LINERXDATA[36] H10
LINERXDATA[37] F12
LINERXDATA[38] C11
LINERXDATA[39] C12
LINERXDATA[40] H15
LINERXDATA[41] D15
LINERXDATA[42] A17
LINERXDATA[43] H17
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin LINERXDATA[44] C18
LINERXDATA[45] A22
LINERXDATA[46] E21
LINERXDATA[47] D22
LINERXDATA[48] A26
LINERXDATA[49] H23
LINERXDATA[50] D25
LINERXDATA[51] A30
LINERXDATA[52] F25
LINERXDATA[53] A33
LINERXDATA[54] G27
LINERXDATA[55] E29
LINERXDATA[56] F28
LINERXDATA[57] G28
LINERXDATA[58] L29
LINERXDATA[59] L31
LINERXDATA[60] M29
LINERXDATA[61] N27
LINERXDATA[62] L32
LINERXDATA[63] K34
LINERXDATA[64] P30
LINERXDATA[65] M32
LINERXDATA[66] L34
LINERXDATA[67] M33
LINERXDATA[68] R27
LINERXDATA[69] P34
LINERXDATA[70] T32
LINERXDATA[71] U30
LINERXDATA[72] U34
LINERXDATA[73] V32
LINERXDATA[74] V31
LINERXDATA[75] W30
LINERXDATA[76] AB34
LINERXDATA[77] AC34
LINERXDATA[78] AD8
LINERXDATA[79] AE6
LINERXDATA[80] AC6
LINERXDATA[81] AA8
LINERXDATA[82] AG1
LINERXDATA[83] AB3
LINERXDATA[84] V9
LINERXDATa[85] W2
LINERXDATA[86] T1
LINETXCLK[1] K31
LINETXCLK[2] J34
LINETXCLK[3] H34
LINETXCLK[4] J30
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 9
LINETXCLK[5] H32
LINETXCLK[6] H31
LINETXCLK[7] J29
LINETXCLK[8] G31
LINETXCLK[9] G30
LINETXCLK[10] H27
LINETXCLK[11] C31
LINETXCLK[12] J26
LINETXCLK[13] F27
LINETXCLK[14] F26
LINETXCLK[15] D28
LINETXCLK[16] C29
LINETXCLK[17] A31
LINETXCLK[18] E25
LINETXCLK[19] C28
LINETXCLK[20] B29
LINETXCLK[21] C27
LINETXCLK[22] D24
LINETXCLK[23] A28
LINETXCLK[24] A27
LINETXCLK[25] C24
LINETXCLK[26] A25
LINETXCLK[27] C23
LINETXCLK[28] A24
LINETXCLK[29] H21
LINETXCLK[30] A23
LINETXCLK[31] AA31
LINETXCLK[32] AA27
LINETXCLK[33] AD33
LINETXCLK[34] AB31
LINETXCLK[35] AB29
LINETXCLK[36] AD32
LINETXCLK[37] AC31
LINETXCLK[38] AB27
LINETXCLK[39] AG34
LINETXCLK[40] AD31
LINETXCLK[41] AD29
LINETXCLK[42] AD30
LINETXCLK[43] AG32
LINETXCLK[44] AE29
LINETXCLK[45] AE27
LINETXCLK[46] AJ28
LINETXCLK[47] AK29
LINETXCLK[48] AH28
LINETXCLK[49] AH27
LINETXCLK[50] AM31
LINETXCLK[51] AL28
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin LINETXCLK[52] AL26
LINETXCLK[53] AM27
LINETXCLK[54] AG22
LINETXCLK[55] AL30
LINETXCLK[56] AG20
LINETXCLK[57] AG24
LINETXCLK[58] AG25
LINETXCLK[59] AK19
LINETXCLK[60] AL19
LINETXCLK[61] AF17
LINETXCLK[62] AJ25
LINETXCLK[63] AH7
LINETXCLK[64] AN18
LINETXCLK[65] AJ12
LINETXCLK[66] AK12
LINETXCLK[67] AN16
LINETXCLK[68] AK14
LINETXCLK[69] AL4
LINETXCLK[70] AH6
LINETXCLK[71] AL3
LINETXCLK[72] AF9
LINETXCLK[73] AJ4
LINETXCLK[74] AH4
LINETXCLK[75] AG5
LINETXCLK[76] AF5
LINETXCLK[77] U3
LINETXCLK[78] N3
LINETXCLK[79] P5
LINETXCLK[80] P6
LINETXCLK[81] H1
LINETXCLK[82] G1
LINETXCLK[83] K8
LINETXCLK[84] F2
LINETXCLK[85] D1
LINETXCLK[86] H7
LINETXDATA[1] L27
LINETXDATA[2] K30
LINETXDATA[3] K29
LINETXDATA[4] J31
LINETXDATA[5] H33
LINETXDATA[6] K27
LINETXDATA[7] H30
LINETXDATA[8] H29
LINETXDATA[9] J27
LINETXDATA[10] G29
LINETXDATA[11] H28
LINETXDATA[12] B32
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
1010 Agere Systems Inc.
LINETXDATA[13] E28
LINETXDATA[14] B31
LINETXDATA[15] E27
LINETXDATA[16] H25
LINETXDATA[17] E26
LINETXDATA[18] D27
LINETXDATA[19] D26
LINETXDATA[20] F24
LINETXDATA[21] E24
LINETXDATA[22] F23
LINETXDATA[23] B27
LINETXDATA[24] E23
LINETXDATA[25] D23
LINETXDATA[26] H22
LINETXDATA[27] E22
LINETXDATA[28] F21
LINETXDATA[29] B23
LINETXDATA[30] C22
LINETXDATA[31] AA29
LINETXDATA[32] AB32
LINETXDATA[33] AD34
LINETXDATA[34] AA30
LINETXDATA[35] AC32
LINETXDATA[36] AE34
LINETXDATA[37] AB30
LINETXDATA[38] AF34
LINETXDATA[39] AC30
LINETXDATA[40] AC29
LINETXDATA[41] AG33
LINETXDATA[42] AE31
LINETXDATA[43] AC27
LINETXDATA[44] AE30
LINETXDATA[45] AJ33
LINETXDATA[46] AL31
LINETXDATA[47] AM33
LINETXDATA[48] AK30
LINETXDATA[49] AJ29
LINETXDATA[50] AM32
LINETXDATA[51] AN33
LINETXDATA[52] AK25
LINETXDATA[53] AK24
LINETXDATA[54] AK23
LINETXDATA[55] AP28
LINETXDATA[56] AP26
LINETXDATA[57] AP25
LINETXDATA[58] AN24
LINETXDATA[59] AM22
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin LINETXDATA[60] AG18
LINETXDATA[61] AM19
LINETXDATA[62] AL18
LINETXDATA[63] AN19
LINETXDATA[64] AK11
LINETXDATA[65] AK16
LINETXDATA[66] AP17
LINETXDATA[67] AL15
LINETXDATA[68] AG8
LINETXDATA[69] AK5
LINETXDATA[70] AJ5
LINETXDATA[71] AK4
LINETXDATA[72] AH5
LINETXDATA[73] AG6
LINETXDATA[74] AL2
LINETXDATA[75] AF6
LINETXDATA[76] AJ3
LINETXDATA[77] N1
LINETXDATA[78] T8
LINETXDATA[79] L1
LINETXDATA[80] M3
LINETXDATA[81] M8
LINETXDATA[82] L4
LINETXDATA[83] H3
LINETXDATA[84] N8
LINETXDATA[85] E1
LINETXDATA[86] H5
NC B22
NC A21
NC D20
NC H19
NC E20
NC A20
NC AG27
LP_INTN W1
MODE0_PLL AJ31
MODE1_PLL AG30
MODE2_PLL AK31
MPCLK G4
MPMODE D2
CHIRXDATA[17] N32
CHIRXDATA[14] N33
CHIRXDATA[18] P27
CHIRXDATA[16] P31
CHIRXDATA[15] R30
CHIRXDATA[13] R31
CHIRXDATA[10] R34
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 11
CHIRXDATA[12] T30
CHIRXDATA[11] T31
CHIRXDATA[7] T34
CHIRXDATA[6] U27
CHIRXDATA[9] U31
CHIRXDATA[8] U32
CHIRXDATA[3] V27
CHIRXDATA[4] V33
CHIRXDATA[5] V34
CHIRXGCLK W27
CHIRXDATA[1] W32
CHIRXDATA[2] W33
CHITXGCLK Y27
CHIRXGTCLK Y31
CHIRXGFS Y34
CHITXGFS AB33
CHITXDATA[16] AD27
CHITXDATA[11] AF29
CHITXDATA[13] AF30
CHITXDATA[15] AF31
CHITXDATA[5] AG28
CHITXDATA[8] AG29
CHITXDATA[12] AG31
CHITXDATA[6] AH29
CHITXDATA[10] AH32
CHITXDATA[17] AH33
CHITXDATA[18] AH34
CHITXDATA[7] AJ30
CHITXDATA[9] AJ32
CHITXDATA[14] AJ34
CHITXDATA[1] AK26
CHITXDATA[3] AK27
CHITXDATA[4] AL29
CHITXDATA[2] AN32
NSMIRXCLK[1] AJ22
NSMIRXCLK[2] AK28
NSMIRXCLK[3] AG21
NSMIRXDATA[1] AM24
NSMIRXDATA[2] AP27
NSMIRXDATA[3] AN27
NSMIRXSYNC[1] AL22
NSMIRXSYNC[2] AL23
NSMIRXSYNC[3] AP29
NSMITXCLK[1] AG23
NSMITXCLK[2] AP31
NSMITXCLK[3] AN31
NSMITXDATA[1] AN28
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin NSMITXDATA[2] AL25
NSMITXDATA[3] AP33
NSMITXSYNC[1] AP30
NSMITXSYNC[2] AP32
NSMITXSYNC[3] AL27
PAR[0] R1
PAR[1] U4
PMRST AJ24
REF10 AK6
REF14 AJ6
RESHI AL5
RESLO AL6
NC AN1
NC AM1
NC AM3
NC AM2
NC AP22
NC AJ14
NC AN10
NC AM10
NC AP12
NC AP10
NC AM9
NC AP11
NC AM17
NC AG17
NC AP19
NC AM8
NC AM7
NC AP6
NC AN6
RSTN AK18
NC AM16
NC AK15
NC AN17
RWN J6
RXDATAEN[1] AK21
RXDATAEN[2] AK22
RXDATAEN[3] AL24
SCAN_EN AJ23
SCANMODE AK20
SCK1 AP24
SCK2 AM23
TCK AN22
TDI AP23
TDO AJ21
THSCN AP4
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
1212 Agere Systems Inc.
NC AP2
NC AN2
THSCP AN4
NC AM6
NC AM5
NC AL13
NC AK13
NC AM11
NC AN13
NC AP14
NC AN11
NC AN12
NC AP13
TMS AN23
NC AL17
NC AK17
NC AP20
NC AP8
NC AN8
NC AN9
NC AP9
TRST AG26
NC AJ13
NC AG15
NC AG7
NC AH8
NC AL16
NC AP18
TXDATAEN[1] AN29
TXDATAEN[2] AM28
TXDATAEN[3] AM29
VDD15 J10
VDD15 J13
VDD15 J17
VDD15 J18
VDD15 J22
VDD15 J25
VDD15 K9
VDD15 K17
VDD15 K18
VDD15 K26
VDD15 N9
VDD15 N13
VDD15 N14
VDD15 N15
VDD15 N16
VDD15 N17
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin VDD15 N18
VDD15 N19
VDD15 N20
VDD15 N21
VDD15 N22
VDD15 N26
VDD15 P13
VDD15 P22
VDD15 R13
VDD15 R22
VDD15 T13
VDD15 T22
VDD15 U10
VDD15 U13
VDD15 U22
VDD15 U25
VDD15 U26
VDD15 V10
VDD15 V13
VDD15 V22
VDD15 V25
VDD15 V26
VDD15 W13
VDD15 W22
VDD15 Y13
VDD15 Y22
VDD15 AA9
VDD15 AA13
VDD15 AA22
VDD15 AA26
VDD15 AB9
VDD15 AB13
VDD15 AB14
VDD15 AB15
VDD15 AB16
VDD15 AB17
VDD15 AB18
VDD15 AB19
VDD15 AB20
VDD15 AB21
VDD15 AB22
VDD15 AB26
VDD15 AE9
VDD15 AE17
VDD15 AE18
VDD15 AE26
VDD15 AF10
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 13
VDD15 AF13
VDD15 AF14
VDD15 AF18
VDD15 AF21
VDD15 AF22
VDD15 AF25
VDD15 AH26
VDD15 AJ26
VDD15 AJ27
VDD15 J14
VDD15 J21
VDD15 P9
VDD15 P26
NC AG12
NC AL11
NC C19
NC B19
NC AM12
VDD33 A2
VDD33 A3
VDD33 B1
VDD33 B3
VDD33 B5
VDD33 B9
VDD33 B10
VDD33 B14
VDD33 B15
VDD33 B20
VDD33 B21
VDD33 B25
VDD33 B26
VDD33 B30
VDD33 B33
VDD33 B34
VDD33 C2
VDD33 C4
VDD33 C32
VDD33 C33
VDD33 C34
VDD33 D3
VDD33 D5
VDD33 D32
VDD33 D33
VDD33 D34
VDD33 E2
VDD33 E4
VDD33 E33
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin VDD33 E34
VDD33 J2
VDD33 J11
VDD33 J12
VDD33 J15
VDD33 J16
VDD33 J19
VDD33 J20
VDD33 J23
VDD33 J24
VDD33 J33
VDD33 K2
VDD33 K33
VDD33 L9
VDD33 L26
VDD33 M9
VDD33 M26
VDD33 P2
VDD33 P33
VDD33 R2
VDD33 R9
VDD33 R26
VDD33 R33
VDD33 T9
VDD33 T26
VDD33 W9
VDD33 W26
VDD33 Y2
VDD33 Y9
VDD33 Y26
VDD33 Y33
VDD33 AA2
VDD33 AA33
VDD33 AC9
VDD33 AC26
VDD33 AD9
VDD33 AD26
VDD33 AE2
VDD33 AE33
VDD33 AF2
VDD33 AF11
VDD33 AF12
VDD33 AF15
VDD33 AF16
VDD33 AF19
VDD33 AF20
VDD33 AF23
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
1414 Agere Systems Inc.
VDD33 AF24
VDD33 AF33
VDD33 AK2
VDD33 AK33
VDD33 AK34
VDD33 AL33
VDD33 AL34
VDD33 AM34
VDD33 AN14
VDD33 AN15
VDD33 AN20
VDD33 AN21
VDD33 AN25
VDD33 AN26
VDD33 AN30
VDD33 AN34
VDD33A_SFPLL AH30
VSS B2
VSS C3
VSS C5
VSS C9
VSS C10
VSS C14
VSS C15
VSS C20
VSS C21
VSS C25
VSS C26
VSS C30
VSS D4
VSS D31
VSS E3
VSS E31
VSS E32
VSS F30
VSS F31
VSS F32
VSS F33
VSS F34
VSS G32
VSS G33
VSS G34
VSS J3
VSS J32
VSS K3
VSS K32
VSS P3
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin VSS P14
VSS P15
VSS P16
VSS P17
VSS P18
VSS P19
VSS P20
VSS P21
VSS P32
VSS R3
VSS R14
VSS R15
VSS R16
VSS R17
VSS R18
VSS R19
VSS R20
VSS R21
VSS R32
VSS T14
VSS T15
VSS T16
VSS T17
VSS T18
VSS T19
VSS T20
VSS T21
VSS U14
VSS U15
VSS U16
VSS U17
VSS U18
VSS U19
VSS U20
VSS U21
VSS V14
VSS V15
VSS V16
VSS V17
VSS V18
VSS V19
VSS V20
VSS V21
VSS W14
VSS W15
VSS W16
VSS W17
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 15
VSS W18
VSS W19
VSS W20
VSS W21
VSS Y3
VSS Y14
VSS Y15
VSS Y16
VSS Y17
VSS Y18
VSS Y19
VSS Y20
VSS Y21
VSS Y32
VSS AA3
VSS AA14
VSS AA15
VSS AA16
VSS AA17
VSS AA18
VSS AA19
VSS AA20
VSS AA21
VSS AA32
VSS AE3
VSS AE32
VSS AF3
VSS AF32
VSS AG16
VSS AG19
VSS AJ7
VSS AJ8
VSS AJ9
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin VSS AJ10
VSS AJ11
VSS AK3
VSS AK7
VSS AK8
VSS AK9
VSS AK10
VSS AK32
VSS AL7
VSS AL8
VSS AL9
VSS AL10
VSS AL32
VSS AM4
VSS AM14
VSS AM15
VSS AM20
VSS AM21
VSS AM25
VSS AM26
VSS AM30
VSS AN3
VSS AN5
VSS AN7
VSS AP3
VSS AP5
VSS AP7
NC AG11
NC AG13
NC D18
NC A19
VSSA_SFPLL AH31
NC AL12
NC E19
Table 2-1. Package Pin Assignments (continued)
Signal Name Pin
16 Agere Systems Inc.
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
2.3 Pin Assignment Matrix
Table 2-2. Pin Matrix
12 3 456789101112
A VDD33 VDD33 LINERXDATA[29] LINERXDATA[28] LINERXDATA[23] LINERXDATA[19] LINERXDATA[16] LINERXDATA[15] LINERXCLK [37] LINERXDATA [14] LINERXCLK [38]
BVDD33 VSS VDD33 LINERXCLK[29] VDD33 LINERXDATA[25] LINERXCLK[20] LINERXDATA[17] VDD33 VDD33 LINERXCLK[13] LINERXCLK[11]
CLINERXCLK[33] VDD33 VSS VDD33 VSS LINERXDATA[26] LINERXDATA[22] LINERXCLK[18] VSS VSS LINERXDATA[38] LINERXDATA[39]
DLINETXCLK[85] MPMODE VDD33 VSS VDD33 LINERXCLK[27] LINERXCLK[23] LINERXDATA[20] LINERXCLK[17] LINERXCLK[15] LINERXCLK[12] LINERXCLK[10]
ELINETXDATA[85] VDD33 VSS VDD33 LINERXCLK[35] LINERXDATA[30] LINERXCLK[26] LINERXCLK[24] LINERXCLK[21] LINERXCLK[22] LINERXDATA[18] LINERXCLK[14]
FADDR[6] LINETXCLK[84] ADSN LINERXCLK[32] LINERXDATA[35] LINERXCLK[36] LINERXCLK[30] LINERXDATA[27] LINERXCLK[25] LINERXDATA[24] LINERXDATA[21] LINERXDATA[37]
GLINETXCLK[82] ADDR[7] ADDR[2] MPCLK LINERXDATA[32] LINERXDATA[34] CSN LINERXCLK[28]
HLINETXCLK[81] ADDR[10] LINETXDATA[83] ADDR[1] LINETXDATA[86] LINERXDATA[31] LINETXCLK[86] LINERXDATA[33] LINERXCLK[34] LINERXDATA[36] LINERXCLK[19] LINERXCLK[16]
JADDR[16] VDD33 VSS ADDR[4] DSN RWN ADDR[3] LINERXCLK[31] VDD15 VDD33 VDD33
KDATA[0] VDD33 VSS ADDR[12] ADDR[5] ADDR[0] LINETXCLK[83] VDD15
LLINETXDATA[79] DATA[1] ADDR[17] LINETXDATA[82] ADDR[9] ADDR[8] ADDR[13] VDD33
MDATA[7] DATA[5] LINETXDATA[80] ADDR[18] ADDR[14] ADDR[11] LINETXDATA[81] VDD33
NLINETXDATA[77] DATA[11] LINETXCLK[78] DATA[3] ADDR[20] ADDR[15] LINETXDATA[84] VDD15
PDATA[15] VDD33 VSS DATA[10] LINETXCLK[79] LINETXCLK[80] ADDR[19] VDD15
RPAR[0] VDD33 VSS DATA[12] DATA[8] DATA[4] VDD33
TLINERXDATA[86] LINERXCLK[86] DTN DATA[13] DATA[6] LINETXDATA[78] VDD33
ULINERXCLK[85] DATA[2] LINETXCLK[77] PAR[1] DATA[9] HP_INTN DATA[14] VDD15
VDS3NEGDATAIN[1] DS3POSDATAOUT[1] DS3DATAINCLK[3] DS3DATAINCLK[2] NC DS2AISCLK LINERXDATA[84] VDD15
WLP_INTN LINERXDATA[85] DS3POSDATAIN[1] LINERXCLK[84] NC NC VDD33
YNC VDD33 VSS DS3NEGDATAIN[3] NC LINERXCLK[82] VDD33
AA E2AISCLK VDD33 VSS LINERXCLK[83] NC DS3POSDATAOUT[2] LINERXDATA[81] VDD15
AB DS3DATAINCLK[1] DS3POSDATAIN[2] LINERXDATA[83] NC DS3DATAOUTCLK[1] DS3RXCLKOUT[3] DS3DATAOUTCLK[2] VDD15
AC DS3NEGDATAIN[2] NC DS3NEGDATAOUT[1] DS3NEGDATAOUT[2] DS3DATAOUTCLK[3] LINERXDATA[80] NC VDD33
AD DS3POSDATAIN[3] DS3RXCLKOUT[1] DS3RXCLKOUT[2] LINERXCLK[81] NC NC LINERXDATA[78] VDD33
AE NC VDD33 VSS LINERXCLK[80] NC LINERXDATA[79] NC VDD15
AF NC VDD33 VSS NC LINETXCLK[76] LINETXDATA[75] NC LINETXCLK[72] VDD15 VDD33 VDD33
AG LINERXDATA[82] NC NC NC LINETXCLK[75] LINETXDATA[73] NC LINETXDATA[68] CTAPTH NC NC NC
AH DS3POSDATAOUT[3] LINERXCLK[79] LINERXCLK[78] LINETXCLK[74] LINETXDATA[72] LINETXCLK[70] LINETXCLK[63] NC
AJ DS3NEGDATAOUT[3] NC LINETXDATA[76] LINETXCLK[73] LINETXDATA[70] REF14 VSS VSS VSS VSS VSS LINETXCLK[65]
AK NC VDD33 VSS LINETXDATA[71] LINETXDATA[69] REF10 VSS VSS VSS VSS LINETXDATA[64] LINETXCLK[66]
AL NC LINETXDATA[74] LINETXCLK[71] LINETXCLK[69] RESHI RESLO VSS VSS VSS VSS NC NC
AM NC NC NC VSS NC NC NC NC NC NC NC NC
AN NC NC VSS THSCP VSS NC VSS NC NC NC NC NC
AP NC VSS THSCN VSS RPSDN VSS NC NC NC NC NC
Agere Systems Inc. 17
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 20 04 DS3/E3/DS2/E2/DS1/E1/DS0
Table 2-2. Pin Matrix (continued)
13 14 15 16 17 18 19 20 21 22 23
ALINERXDATA [10] LINERXCLK [7] LINERXCLK [6] LINERXCLK [41] LINERXDATA [42] LINERXCLK [1] NC NC NC LINERXDATA[45] LINETXCLK[30]
BLINERXCLK[9] VDD33 VDD33 LINERXCLK[5] LINERXDATA[3] LINERXCLK[43] NC VDD33 VDD33 NC LINETXDATA[29]
CLINERXCLK[8] VSS VSS LINERXCLK[4] LINERXCLK[2] LINERXDATA[44] NC VSS VSS LINETXDATA[30] LINETXCLK[27]
DLINERXDATA[8] LINERXCLK[40] LINERXDATA[41] LINERXDATA[4] LINERXDATA[2] NC LINERXCLK[44] NC LINERXCLK[46] LINERXDATA[47] LINETXDATA[25]
ELINERXDATA[11] LINERXDATA[7] LINERXDATA[6] LINERXCLK[3] LINERXCLK[42] LINERXDATA[1] NC NC LINERXDATA[46] LINETXDATA[27] LINETXDATA[24]
FLINERXDATA[12] LINERXDATA[9] LINETXDATA[28] LINERXCLK[48] LINETXDATA[22]
G———————————
HLINERXDATA[13] LINERXCLK[39] LINERXDATA[40] LINERXDATA[5] LINERXDATA[43] NC NC LINERXCLK[45] LINETXCLK[29] LINETXDATA[26] LINERXDATA[49]
JVDD15 VDD15 VDD33 VDD33 VDD15 VDD15 VDD33 VDD33 VDD15 VDD15 VDD33
K————VDD15VDD15————
L———————————
M———————————
NVDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15
PVDD15 VSS VSS VSS VSS VSS VSS VSS VSS VDD15
RVDD15 VSS VSS VSS VSS VSS VSS VSS VSS VDD15
TVDD15 VSS VSS VSS VSS VSS VSS VSS VSS VDD15
UVDD15 VSS VSS VSS VSS VSS VSS VSS VSS VDD15
VVDD15 VSS VSS VSS VSS VSS VSS VSS VSS VDD15
WVDD15 VSS VSS VSS VSS VSS VSS VSS VSS VDD15
YVDD15 VSS VSS VSS VSS VSS VSS VSS VSS VDD15
AA VDD15 VSS VSS VSS VSS VSS VSS VSS VSS VDD15
AB VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15 VDD15
AC ———————————
AD ———————————
AE ————VDD15VDD15————
AF VDD15 VDD15 VDD33 VDD33 LINETXCLK[61] VDD15 VDD33 VDD33 VDD15 VDD15 VDD33
AG NC NC NC VSS NC LINETXDATA[60] VSS LINETXCLK[56] NSMIRXCLK[3] LINETXCLK[54] NSMITXCLK[1]
AH ———————————
AJ NC NC TDO NSMIRXCLK[1] SCAN_EN
AK NC LINETXCLK[68] NC LINETXDATA[65] NC RSTN LINETXCLK[59] SCANMODE RXDATAEN[1] RXDATAEN[2] LINETXDATA[54]
AL NC NC LINETXDATA[67] NC NC LINETXDATA[62] LINETXCLK[60] IC3STATEN IDDQ NSMIRXSYNC[1] NSMIRXSYNC[2]
AM NC VSS VSS NC NC E1XCLK LINETXDATA[61] VSS VSS LINETXDATA[59] SCK2
AN NC VDD33 VDD33 LINETXCLK[67] NC LINETXCLK[64] LINETXDATA[63] VDD33 VDD33 TCK TMS
AP NC NC NC NC LINETXDATA[66] NC NC NC DS1XCLK NC TDI
18 Agere Systems Inc.
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
Table 2-2. Pin Matrix (continued)
24 25 26 27 28 29 30 31 32 33 34
ALINETXCLK[28] LINETXCLK[26] LINERXDATA[48] LINETXCLK[24] LINETXCLK[23] LINERXCLK[50] LINERXDATA[51] LINETXCLK[17] LINERXCLK[52] LINERXDATA[53]
BLINERXCLK[47] VDD33 VDD33 LINETXDATA[23] LINERXCLK[49] LINETXCLK[20] VDD33 LINETXDATA[14] LINETXDATA[12] VDD33 VDD33
CLINETXCLK[25] VSS VSS LINETXCLK[21] LINETXCLK[19] LINETXCLK[16] VSS LINETXCLK[11] VDD33 VDD33 VDD33
DLINETXCLK[22] LINERXDATA[50] LINETXDATA[19] LINETXDATA[18] LINETXCLK[15] LINERXCLK[53] LINERXCLK[54] VSS VDD33 VDD33 VDD33
ELINETXDATA[21] LINETXCLK[18] LINETXDATA[17] LINETXDATA[15] LINETXDATA[13] LINERXDATA[55] LINERXCLK[56] VSS VSS VDD33 VDD33
FLINETXDATA[20] LINERXDATA[52] LINETXCLK[14] LINETXCLK[13] LINERXDATA[56] LINERXCLK[57] VSS VSS VSS VSS VSS
G LINERXDATA[54] LINERXDATA[57] LINETXDATA[10] LINETXCLK[9] LINETXCLK[8] VSS VSS VSS
HLINERXCLK[51] LINETXDATA[16] LINERXCLK[55] LINETXCLK[10] LINETXDATA[11] LINETXDATA[8] LINETXDATA[7] LINETXCLK[6] LINETXCLK[5] LINETXDATA[5] LINETXCLK[3]
JVDD33 VDD15 LINETXCLK[12] LINETXDATA[9] LINETXCLK[7] LINETXCLK[4] LINETXDATA[4] VSS VDD33 LINETXCLK[2]
K VDD15 LINETXDATA[6] LINETXDATA[3] LINETXDATA[2] LINETXCLK[1] VSS VDD33 LINERXDATA[63]
L VDD33 LINETXDATA[1] LINERXDATA[58] LINERXCLK[58] LINERXDATA[59] LINERXDATA[62] LINERXCLK[64] LINERXDATA[66]
M VDD33 LINERXCLK[59] LINERXDATA[60] LINERXCLK[60] LINERCLK[62] LINERXDATA[65] LINERXDATA[67] LINERXCLK[67]
N VDD15 LINERXDATA[61] LINERXCLK[61] LINERXCLK[63] LINERXCLK[65] CHIRXDATA[17] CHIRXDATA[14] LINERXCLK[68]
P VDD15 CHIRXDATA[18] LINERXCLK[66] LINERXDATA[64] CHIRXDATA[16] VSS VDD33 LINERXDATA[69]
R VDD33 LINERXDATA[68] CHIRXDATA[15] CHIRXDATA[13] VSS VDD33 CHIRXDATA[10]
T VDD33 LINERXCLK[69] CHIRXDATA[12] CHIRXDATA[11] LINERXDATA[70] LINERXCLK[70] CHIRXDATA[7]
U VDD15 VDD15 CHIRXDATA[6] LINERXDATA[71] CHIRXDATA[9] CHIRXDATA[8] LINERXCLK[71] LINERXDATA[72]
V VDD15 VDD15 CHIRXDATA[3] LINERXCLK[72] LINERXDATA[74] LINERXDATA[73] CHIRXDATA[4] CHIRXDATA[5]
W VDD33 CHIRXGCLK LINERXDATA[75] LINERXCLK[74] CHIRXDATA[1] CHIRXDATA[2] LINERXCLK[73]
Y VDD33 CHIRXGCLK LINERXCLK[76] CHIRXGTCLK VSS VDD33 CHIRXGFS
AA VDD15 LINETXCLK[32] LINETXDATA[31] LINETXDATA[34] LINETXCLK[31] VSS VDD33 LINERXCLK[75]
AB VDD15 LINETXCLK[38] LINETXCLK[35] LINETXDATA[37] LINETXCLK[34] LINETXDATA[32] CHITXGFS LINERXDATA[76]
AC VDD33 LINETXDATA[43] LINETXDATA[40] LINETXDATA[39] LINETXCLK[37] LINETXDATA[35] LINERXCLK[77] LINERXDATA[77]
AD VDD33 CHITXDATA[16] LINETXCLK[41] LINETXCLK[42] LINETXCLK[40] LINETXCLK[36] LINETXCLK[33] LINETXDATA[33]
AE VDD15 LINETXCLK[45] LINETXCLK[44] LINETXDATA[44] LINETXDATA[42] VSS VDD33 LINETXDATA[36]
AF VDD33 VDD15 CG_PLLCLKOUT CLKIN_PLL CHITXDATA[11] CHITXDATA[13] CHITXDATA[15] VSS VDD33 LINETXDATA[38]
AG LINETXCLK[57] LINETXCLK[58] TRST NC CHITXDATA[5] CHITXDATA[8] MODE1_PLL CHITXDATA[12] LINETXCLK[43] LINETXDATA[41] LINETXCLK[39]
AH VDD15 LINETXCLK[49] LINETXCLK[48] CHITXDATA[6] VDD33A_SFPLL VSSA_SFPLL CHITXDATA[10] CHITXDATA[17] CHITXDATA[18]
AJ PMRST LINETXCLK[62] VDD15 VDD15 LINETXCLK[46] LINETXDATA[49] CHITXDATA[7] MODE0_PLL CHITXDATA[9] LINETXDATA[45] CHITXDATA[14]
AK LINETXDATA[53] LINETXDATA[52] CHITXDATA[1] CHITXDATA[3] NSMIRXCLK[2] LINETXCLK[47] LINETXDATA[48] MODE2_PLL VSS VDD33 VDD33
AL RXDATAEN[3] NSMITXDATA[2] LINETXCLK[52] NSMITXSYNC[3] LINETXCLK[51] CHITXDATA[4] LINETXCLK[55] LINETXDATA[46] VSS VDD33 VDD33
AM NSMIRXDATA[1] VSS VSS LINETXCLK[53] TXDATAEN[2] TXDATAEN[3] VSS LINETXCLK[50] LINETXDATA[50] LINETXDATA[47] VDD33
AN LINETXDATA[58] VDD33 VDD33 NSMIRXDATA[3] NSMITXDATA[1] TXDATAEN[1] VDD33 NSMITXCLK[3] CHITXDATA[2] LINETXDATA[51] VDD33
AP SCK1 LINETXDATA[57] LINETXDATA[56] NSMIRXDATA[2] LINETXDATA[55] NSMIRXSYNC[3] NSMITXSYNC[1] NSMITXCLK[2] NSMITXSYNC[2] NSMITXDATA[3]
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 19
2.4 Pin Types
Table 2-3 describes each type of input, output, and I/O pin used in the Ultraframer device.
Table 2-3. Pin Types
Type Label Description
ILVCMOS Input, LVTTL Switching Thresholds.
I pd LVCMOS Input, LVTTL Switching Thresholds with Internal 50 k Pull-Down Resistor.
I pu LVCMOS Input, LVTTL Switching Thresholds with Internal 50 kPull-Up Resistor.
OLVCMOS Output.
O od Open-Drain Output.
LIN LVDS Inputs.
I/O Bidirectional Pin. LVCMOS input with LVTTL switching thresholds and LVCMOS output.
I/O pd Bidirectional Pin. LVCMOS input with LVTTL switching thresholds with internal 50 kpull-down resistor
and LVCMOS output.
Power, Ground, Analog Inputs for External Resistors, Capacitors, Voltage References, etc.
NC No Connect.
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
2020 Agere Systems Inc.
2.5 Pin Definitions
This section describes the function of each of the device pins. Pin functionality is descriptive information. The actual
functionality is dependent upon the device configuration via the registers.
Table 2-4. LVDS Framer Reference Clock
Pin Symbol Type Name/Description
AN4 THSCP LIN Framer High-Spe ed Clock. The clock on this pin is internally routed
to the DS1/E1 framers and is used as an internal master clock. This
input clock can be at 155 MHz or 622 MHz. Note there are no advan-
tages in using a 622 MHz clock vs. a 155 MHz clock.
AP4 THSCN
AG9 CTAPTH Center Tap TH. LVDS buffer terminator center tap for THSCP/N. An
optional 0.1 µF capacitor, connected between CTAP pin and ground,
will improve the common-mode rejection of the LVDS input buffers.
AL5 RESHI Resistor. A 100 , 1% resistor is required between the RESHI and
RESLO pins as a r eference for the LVDS input buffer termination.
AL6 RESLO
AK6 REF10*IReference 1.0 V. External 1 V reference voltage pin (optional).
AJ6 REF14*IReference 1.4 V. External 1.4 V reference voltage pin (optional).
* Optional: selected by MPU/top-level register UMPR_LVDS_REF_SEL. External reference voltage can be sourced from a low-impedance resistor
(<1 k ) divider circuit decoupled with a 0.1 µF capaci to r.
Table 2-5. DS3/E3 Out
Pin Symbol Type Name/Description
AH1, AA6, V2 DS3POSDATAOUT[3:1] O DS3/E3 Positive Dat a Output. Either contains the positive-rail of the
B3ZS/HDB3 encoded output data, or single-rail NRZ data.
AJ1, AC4, AC3 DS3NEGDATAOUT[3:1] O DS3/E3 Negative Data Output. Negative-rail B3ZS/HDB3 encoded
output data. Not used in single-rail mode (held low in this case).
AC5, AB8, AB5 DS3DATAOUTCLK[3:1] I pd DS3/E3 Dat a Output Clock. 44.736 MHz or 34.368 MHz clock input
and is typically connected to a crystal oscillator or clocking chip.
This clock is required for M13 and E13 applications.
AB6, AD3, AD2 DS3RXCLKOUT[3:1] O DS3/E3 Receive Clock Output. 44.736 MHz DS3/34.368 MHz E3
clock out to external circuit.
Table 2-6. DS3/E3 In
Pin Symbol Type Name/Description
AD1, AB2, W3 DS3POSDATAIN[3:1] I pd DS3/E3 Positive Data Input. Either contains the positive-rail of the
B3ZS/HDB3 encoded input data, or single-rail NRZ data.
Y4, AC1, V1 DS3NEGDATAIN[3:1] I pd DS3/E3 Negative Data Input. Either contains the negative-rail of the
B3ZS/HDB3 encoded input data, or in single-rail mode, this input may
be used to count bipolar violations.
V3, V4, AB1 DS3DATAINCLK[3:1] I pd DS3/E3 Data Input Clock. 44.736 MHz or 34.368 MHz clock for the
DS3/E3 positive and negative data inputs.
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 21
Table 2-7. NSMI In
Pin Symbol Type Name/Description
AN27, AP27,
AM24 NSMIRXDATA[3:1] I pd Network Serial Multiplex Interface (NSMI) Receive* Data. This is used in
the following applications:
51.84 Mbits/s serial data input that is used to bring in multiplexed DS1 or
E1 channels to the framer.
DS3/E3 rate clear channel receive data to M13/E13.
* The transmit path is toward the high-speed fiber output and the receive path is from the high-speed input. Low-speed inputs, e.g., NSMIRXDAT A , on the
transmit path, are labeled receive. Low-speed outputs, e.g., NSMITXDATA , on the receive path, are labeled transmit.
AG21, AK28,
AJ22 NSMIRXCLK[3:1] I/O pd NSMI Receive Clock. Used in the following applications:
Input (51.84 MHz) for the DS1/E1 application.
Output (44.736/34.368 MHz) for the DS3/E3 application.
AP29, AL23,
AL22 NSMIRXSYNC[3:1] I/O pd NSMI Receive Frame Sync. Used in the following applications:
Input receive NSMI control for the framer.
Output receive control frame sync signal for M13/E13.
AL24, AK22,
AK21 RXDATAEN[3:1] O NSMI Receive Data Enable. In FRM NSMI mode, this pin is not used.
In M13 NSMI mode, the signal output on this pin goes low during the M1 byte
of the first M1 frame of the DS3 frame.
In E13 NSMI mode, the signal output on this pin goes low during the overhead
bytes and control bits of the E3 frame.
Table 2-8. NSMI Out
Pin Symbol Type Name/Description
AP33, AL25,
AN28 NSMITXDATA[3:1] O NSMI Transmit Data. NSMI output data from the framer or the M13/E13
blocks.
AN31, AP31,
AG23 NSMITXCLK[3:1] O NSMI Transmit Clock Output. Output clock at 51.84 MHz for the DS1/E1
application or a 44.736/34.368 MHz output clock for the DS3/E3 application.
AL27, AP32,
AP30 NSMITXSYNC[3:1] O Transmit System Frame Sync Output. Output transmit control frame sync
signal from the framer or M13/E13 blocks.
AM29,
AM28, AN2 9 TXDATAEN[3:1] O Transmit Data Enable for NSMI Mode. This output is used to request data
for a particular link when the FRM NSMI is operating in nonloop timing mode.
This output acts as a sync signal when the FRM NSMI operates in loop-timing
mode.
In M13 NSMI mode, the signal output on this pin goes low during the M1 byte
of the first M1 frame of the DS3 frame.
In E13 NSMI mode, the signal output on this pin goes low during the overhead
bytes and control bits of the E3 frame.
* The transmit path is t oward the high-speed fiber output and the receive p ath is from t he high-speed input. Low-speed inputs, e .g., NSMIRXDAT A, on the
transmit path, are labeled receive. Low-speed outputs, e.g., NSMITXDATA, on the receive path, are labeled transmit.
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
2222 Agere Systems Inc.
The transmit path is toward the high-speed fiber output, and the receive path is from the high-speed input. Low-speed
inputs, e.g., LINERXDATA, on the transmit path, are labeled receive. Low-speed outputs, e.g., LINETXDATA, on the
receive path, are labeled transmit.
Table 2-9. Shared Low-Speed Line In
Pin Symbol Type Name/Description
T1, W2, V9, AB3, AG1, AA8, AC6, AE6, AD8,
AC34, AB34, W30, V31, V32, U34, U30, T32,
P34, R27, M33, L34, M32, P30, K34, L32,
N27, M29, L31, L29, G28, F28, E29, G27,
A33, F25, A30, D25, H23, A26, D22, E21, A22,
C18, H17, A17, D15, H15, C12, C11, F12,
H10, F5, G6, H8, G5, H6, E6, A4, A5, F8, C6,
B6, F10, A6, C7, F1 1, D8, A7, E1 1, B8, A8, A9,
A1 1, H13, F13, E13, A13, F14, D13, E14, E15,
H16, D16, B17, D17, E18
LINERXDATA[86:1] I pd Line R eceive Data [86:1]. Inputs to the inter-
nal multirate crossconnect.
These signals are used for received single-rail
DS1/E1 line data input, sourced from an exter-
nal LIU. In this mode, these signals will be
routed via the crossconnect to the M13 multi-
plexer, E13 multiplexer, or the receive line in-
puts of the DS1/E1 framers. These signals
may al so be us ed as inpu t data f or DS2/E 2 ap-
plications (see the System Design Guide).
T2, U1, W4, AA4, Y8, AD4, AE4, AH2, AH3,
AC33, Y30, AA34, W31, W34, V30, U33, T33,
T27, N34, M34, P29, N31, L33, N30, M31,
N29, M30, M27, L30, F29, E30, H26, D30,
D29, A32, H24, A29, B28, F22, B24, D21,
H20, D19, B18, E17, A16, D14, H14, A12,
A10, F6, E5, H9, C1, F4, J9, F7, B4, G8, D6,
E7, F9, E8, D7, E10, E9, B7, H11, C8, D9,
H12, D10, E12, B1 1, D11, B12, D12, B13, C13,
A14, A15, B16, C16, E16, C17, A18
LINERXCLK[86:1] I/O pd Line Receive Clock [86:1]. Configurable
inputs to the internal multirate crossconnect.
These inputs are used for asynchronous
clocks associated with the line receive data
inputs from external line interface units, or
payload termination functions.
In certain cases, this input can be used as an
output. These pins may be used for DS2/E2
clocks in DS2/E2 applications. More
information will be published in the System
Design Guide.
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 23
The transmit path is toward the high-speed fiber output and the receive path is from the high-speed input. Low-speed
inputs, e.g., LINERXDATA, on the transmit path, are labeled receive. Low-speed outputs, e.g., LINETXDATA, on the
receive path, are labeled transmit.
Table 2-10. Shared Low-Speed Line Out
Pin Symbol Type Name/Description
H5, E1, N8, H3, L4, M8, M3, L1, T8, N1,
AJ3, AF6, AL2, AG6, AH5, AK4, AJ5,
AK5, AG8, AL15, AP17, AK16, AK11,
AN19, AL18, AM19, AG18, AM22,
AN24, AP25, AP26, AP28, AK23, AK24,
AK25, AN33, AM32, AJ29, AK30, AM33,
AL31, AJ33, AE30, AC27, AE31, AG33,
AC29, AC30, AF34, AB30, AE34, AC32,
AA30, AD34, AB32, AA29, C22, B23,
F21, E22, H22, D23, E23, B27, F23,
E24, F24, D26, D27, E26 , H25, E27,
B31, E28, B32, H28, G29, J27, H29,
H30, K27, H33, J31, K29, K30, L27
LINETXDATA[86:1] O Line Transmit Data [86:1]. Outputs from the internal
multirate crossconnect.
These signals are used for transmit of single-rail
DS1/E1 line data output, sourced to an external LIU.
In this mode, these signals will be routed via the
crossconnect from the M13 multiplexer, the E13
multiplexer, or the transmit line outputs of the DS1/E1
framers.
Each of these outputs comes from the internal
MRXC and can be individually set to high imped-
ance.
These pins may be used for output data in DS2/E2
applications (see the System Design Guide).
H7, D1, F2, K8, G1, H1, P6, P5, N3, U3,
AF5, AG5, AH4, AJ4, AF9, AL3, AH6,
AL4, AK14, AN16, AK12, AJ12, AN18,
AH7, AJ25, AF17, AL19, AK19, AG25,
AG24, AG20, AL30, AG22, AM27,
AL26, AL28, AM31, AH27, AH28, AK29,
AJ28, AE27, AE29, AG32, AD30, AD29,
AD31, AG34, AB27, AC31, AD32,
AB29, AB31, AD33, AA27, AA31, A23,
H21, A24, C23, A25, C24, A27, A28,
D24, C27, B29, C28, E25, A31, C29,
D28, F26, F27, J26, C31, H27, G30,
G31, J29, H31, H32, J30, H34, J34, K31
LINETXC LK[ 86:1 ] I/O pd Line Transmit Clock [86:1]. Configura ble outputs
from the internal multirate crossconnect. These
outputs are used for asynchronous clocks,
associated with the line transmit data outputs to
external line interface units or payload termination
functions.
Each of these outputs comes from the internal
MRXC and can be individually set to high
impedance.
In certain cases, these pins can be used as inputs
(input DS2/E2 clocks). More information will be
published in the System Design Guide .
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
2424 Agere Systems Inc.
The transmit path is toward the high-speed fiber output and the receive path is from the high-speed input. Low-speed
inputs, e.g., CHIRXDATA, on the transmit path are labeled receive. Low-speed outputs, e.g., CHITXDATA, on the receive
path are labeled transmit.
Table 2-11. TDM Concentration Highway (CHI) In
Pin Symbol Type Name/Description
P27, N32, P31,
R30, N33, R31,
T30, T31, R34,
U31, U32, T34,
U27, V34, V33,
V27, W33,
W32
CHIRXDATA[18:1] I pd CHI Rece ive Data [42:1]. Configurable synchronous TDM inputs to the
internal multirate cross connect. Can be used in one of the following
modes:
CHI mode: Receive TDM input highways. Can be configured to operate at
8.192 Mbits/s or 16.384 Mbits/s.
Parallel system bus mode: The parallel system bus is a 16-bit wide
19.44 Mbits/s synchronous TDM highway. Bits [16:9] are used for time-slot
data. Bits [8:1] are used for robbed-bit signaling data in a ASM like fashion
and are optional. CHIRXGFS is the frame synchronization input for the
parallel system bus and CHIRXGCLK is the 19.44 MHz clock input.
Asynchronous mode: In this mode, these inputs are used for DS1/E1
received negative-rail data.
These pins may be used as input data for DS2/E2 applications. More infor-
mation will be published in the System Design Guide.
Table 2-12. TDM Concentration Highway (CHI) Out
Pin Symbol Type Name/Description
AH34,
AH33,
AD27,
AF31,
AJ34,
AF30,
AG31,
AF29,
AH32,
AJ32,
AG29,
AJ30,
AH29,
AG28,
AL29,
AK27,
AN32,
AK26
CHITXDATA[18:1] I/O pd CHI Transmit Data [42:1]. Configurable synchronous TDM outputs from the
internal multirate cross connect. Can be used in one of the following modes:
CHI mode: Transmit TDM output highways. Can be configured to operate at
8.192 Mbits/s or 16.384 Mbits/s.
Parallel system bus mode: The parallel system bus is a 16-bit wide 19.44 Mbits/s
synchronous TDM highway. Bits [16:9] are used for time-slot data. Bits [8:1] are
used for robbed-bit signaling data in a ASM like fashion and are optional.
CHITXGFS is the frame synchronization input for the parallel system bus and
CHITXGCLK is the 19.44 MHz clock input.
Asynchronous mode: In this mode, these outputs are used for DS1/E1 transmit
negative-rail data.
Each of these outputs comes from the internal MRXC and can be individually set
to high impedan ce.
In rare cases, this output can be used as an input. These pins have various func-
tionalities in DS2/E2 applications. More information will be published in the Sys-
tem Design Guide.
When running in CHI compression mode, CHITXDATA[17] becomes a frame
sync output from the device, which signifies the beginning of the CHI output
frame. This feature is only available in V3.0 devices and later.
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 25
Table 2-13. Framer (FRM) Block, CHI/Parallel System Bus (PSB) Clock and Sync
Pin Symbol Type Name/Description
Y31 CHIRXGTCLK I pd Global Transmit Line Clock. This is the transmit line clock for the DS1 or E1
framer. Normally this input is not used and the transmit clock is generated by an
internal phase-lock loop which uses CLKIN_PLL as a reference. Note that if this
input is used all the transmit framers must run at the same rate, either 1.544 MHz
or 2.048 MHz. This signal could be used for both CHI and parallel system bus.
W27 CHIRXGCLK I pd Receive Global System Clock. This signal is used for both CHI and parallel sys-
tem bus. In CHI mode, it is a 8.192 MHz or 16.384 MHz TDM clock. In parallel
system bus mode, it is a 19.44 MHz clock.
Y34 CHIRXGFS I pd Receive System Frame Sync. This signal is used for both CHI and parallel sys-
tem bus. In CHI mode, it is an 8 kHz pulse that references the location of time
slots in the receive CHI inputs. Its polarity, sampling edge, and offset from time
slots in the concentration highways may all be programmed.
In parallel system bus mode, it is an 8 kHz reference for time slots within the par-
allel system bus input highways. In this mode, the frame strobe is a positive pulse
with active edge provisioned by a register.
AB33 CHITXGFS I pd Transmit System Frame Sync. This signal is used for both CHI and parallel sys-
tem bus. In CHI mode, it is an 8 kHz pulse that references the location of time
slots in the transmit CHI outputs. Its polarity, sampling edge, and offset from time
slots in the concentration highways may all be programmed.
In parallel system bus mode, it is an 8 kHz reference for time slots within the par-
allel system bus output highways. In this mode, the frame strobe is a positive
pulse with active edge provisioned by a register.
For version 3.0 devices and later, CHITXGFS also serves as a required 8 kHz
frame sync when operating in NSMI slip mode.
Y27 CHITXGCLK I pd Transmit Global System Clock. This signal is used for both CHI and parallel
system bus. In CHI mode, it is a 8.192 MHz or 16.384 MHz TDM clock. In parallel
system bus mode, it is a 19.44 MHz clock.
Table 2-14. Reference Clocks
Pin Symbol Type Name/Description
V8 DS2AISCLK I pd DS2 AIS Clock. See separate DS2/E2 application note for use in DS2 mode. If
used, this input can be provided by a free-running crystal or clocking chip.
AA1 E2AISCLK I pd E2 AIS Clock. See separate DS2/E2 application note for use in E2 mode. If
used, this input can be provided by a free-running crystal or clocking chip.
AM18 E1XCLK I pd E1 X Clock. This clock signal is used for three purposes: to generate E1 AIS (all
1s), as a reference to the E1 DJA, and as a clock source for the test pattern gen-
erator and test pattern monitor. This input may be provided by a 2.048 MHz, a
32.768 MHz, or a 65.536 MHz ± 50 ppm free-running crystal oscillator or clocking
chip.
Note: For the E1 DJA, an input of 32.768 MHz or 65.536 MHz must be used.
AP21 DS1XCLK I pd DS1 X Clock. This clock signal is used for three purposes: to generate DS1 AIS
(all 1s), as a reference to the DS1 DJA, and as a clock source for the test pattern
generator and test pattern monitor . This input may be provided by a 1.544 MHz, a
24.704 MHz, or a 49.408 MHz ± 32 ppm free-running crystal oscillator or clocking
chip.
Note: For the DS1 DJA, an input of 24.704 MHz or 49.408 MHz must be used.
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
2626 Agere Systems Inc.
Table 2-15. Clock Generator
Pin Symbol Type Name/Description
AF27 CLKIN_PLL I pd Transmit Line Clock Generator Reference Input. The clock generator is used
to derive a transmit line clock of the appropriate frequency (DS1/E1) synchro-
nized to CLKIN_PLL. The derived clock is used in the DS1/E1 transmit framer
sections.
AF26 CG_PLLCLKOUT O Framer PLL Test Mode Output. Framer PLL clock (1.544 MHz, 2.048 MHz)
selected by the device registe r.
AK31,
AG30,
AJ31
MODE[2:0]_PLL I pd Framer PLL Input Clock Mode Select Bits. The settings of these mode select
pins must correspond to the frequency of CLKIN_PLL as shown below.
MODE[2:0]_PLL CLKIN_PLL MODE[2:0]_PLL CLKIN_PLL
000 Reserved 100 16.384 MHz
001 51.840 MHz 101 8.192 MHz
010 26.624 MHz 110 4.096 MHz
011 19.440 MHz 111 2.048 MHz
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 27
Table 2-16. Microprocessor Interface
Pin Symbol Type Name/Description
G4 MPCLK I Microprocessor Clock. This clock is required to properly sample address, data,
and control signals from the microprocessor in both asynchronous and synchro-
nous modes of operation.
D2 MPMODE I Microprocessor Mode. If the microprocessor interface is synchronous, MPMODE
should be set to 1. If the microprocessor interface is asynchronous, MPMODE
should be set to 0.
G7 CSN I pu Chip Select. Active-low high-order address signal. Chip select must be set low at
the beginning of any read or write access and returned high at the end of the
cycle.
F3 ADSN I Address Strobe. Active-low address strobe that indicates the beginning of a read
or write access. It is a one MPCLK cycle-wide pulse for synchronous mode. In
asynchronous mode, it is active for the entire read/write cycle. Address bus sig-
nals, ADDR[20:0], are available to the Ultraframer when ADSN is low. The
address bus should remain valid for the duration of ADSN.
J6 RWN I Read/Write. RWN is set high during a read cycle, or set low during a write cycle.
J5 DSN I Data Strobe. For a read cycle, the contents of the internal register will be output
on DATA [15:0]. For a write cycle, the DATA [15:0] will be clocked into the internal
register. To initiate the start of the read/write operation, DSN must be low during
the entire read/write cycle. This signal should only be used for asynchronous
mode.
N5, P8, M4, L3,
J1, N6, M5, L8,
K4, M6 , H2, L5,
L6, G2, F1, K5,
J4, J8, G3, H4,
K6
ADDR[20:0] I Address [20:0]. ADDR[20] is the MSB and ADDR[0] is the LSB for addressing all
the internal registers during microprocessor access cycles. All addresses are
21-bit word addresses; therefore, in a typical application, ADDR[0] of the
TFRA84J13 device would be connected to address bit 1 of a byte-addressable
system address bus.
Note: The Ultraframer is little endian, i.e., the least significant byte is stored in the
lowest address and the most significant byte is stored in the highest address.
Care must be exercised in connection with microprocessors that use big en-
dian byte order ing.
P1, U9, T4, R4,
N2, P4, U5, R5,
M1, T5, M2, R8,
N4, U2, L2, K1
DATA[15:0] I/O Data [15:0]. 16-bit data bus input for write operations and output for read opera-
tions. DATA[15] is the MSB, and DATA[0] is the LSB.
U4, R1 PAR[1:0] I/O Data Parity. Byte-wide parity bit s for data. PAR[1] is the parity for DATA[15:8], and
PAR[0] is the parity for DATA[7:0]
T3 DTN O Data Transfer Acknowledge. The delay associated with DTN going low depends
on the Ultraframer block being accessed. In asynchronous mode, when ADSN or
DSN is deasserted it will drive the DTN signal high. When inactive, CSN will drive
DTN to be 3-stated. The microprocessor should wait after DTN is deasserted, be-
fore starting the next operation.
U8 HP_INTN O od High-Priority and Low-Pr iority Interrupt. Active-low. Each functional block con-
tains its individual low-priority interrupt. High-priority interrupts are generated by
E13 blocks. Each interrupt is individually maskable. Requires an external 5 k pull-
up resistor.
W1 LP_INTN
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
2828 Agere Systems Inc.
Table 2-17. Boundary Scan (IEEE® 1149.1)
Pin Symbol Type Name/Description
AN22 TCK I Test Clock. This signal provides timing for boundary-scan test operations.
AP23 TDI I pu Test Da ta In. Boundary-scan test data input signal, sampled on the rising
edge of TCK.
AN23 TMS I pu Test Mode Select. Controls boundary-scan test operations. TMS is sampled
on the rising edge of TCK.
AG26 TRST I pu Test Reset (Active-Low). This signal provides an asynchronous reset for
the boundary-scan TAP controller.
AJ21 TDO O Test Data Out. Boundary-scan test data output signal is updated on the fall-
ing edge of TCK. The TDO output will be high-impedance, except when
transmitting test data.
Table 2-18. General-Purpose Interface
Pin Symbol Type Name/Description
AK18 RSTN I pu Global Hardware Reset. Active-low. Initializes all internal registers to their
default state. This is an asynchronous reset on the falling edge, but RSTN
should be held low for at least 1 µs. RSTN should be held low until both
power supplies (1.5 V and 3.3 V) are stabilized upon power up.
AJ24 PMRST I/O pd Performance Monitor Reset. Resets error counters. When enabled as an
input, it is a 1s square wave that forces an update of PM counters upon the
rising edge. When the PMRST is generated internally from the MPU clock,
this pin is an output.
AL20 IC3STATEN I pu Output Enable. When high, output buffers will operate normally. When low,
all outputs will be forced to a high-impedance state. IC3STATEN should be
held low until both power supplies (1.5 V and 3.3 V) are stabilized upon
power up.
AP24 SCK1 I pd Scan Clock 1. Reserved. Do not connect.
AM23 SCK2 I pd Scan Clock 2. Reserved. Do not connect.
AJ23 SCAN_EN I pd Scan Enable. Rese rved . Do not connec t.
AK20 SCANMODE I pd Serial Scan Input for Testing. Reserved. Do not connect.
AL21 IDDQ I IDDQ Input. This pin must be externally pulled down with a 1 k resist or.
Table 2-19. Analog Power and Ground Signals
Pin Symbol Type Name/Description
AH31 VSSA_SFPLL SFPLL Ground. Isolated ground for the internal SFPLL.
AH30 VDD33A_SFPLL SFPLL Power. This is a 3.3 V power supply for the internal SFPLL. Good
engineering practice needs to be applied. Please refer to the System Design
Guide.
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 29
Table 2-20. Digital Power and Ground Signals
Pin Symbol Type Name/Description
J10, J13, J14, J17, J18, J21, J22, J25, K9, K17, K18, K26,
N9, N13, N14, N15, N16, N17, N18, N19, N20, N21, N22,
N26, P9, P13, P22, P26, R13, R22, T13, T22, U10, U13,
U22, U25, U26, V10, V13, V22, V25, V26, W13, W22, Y13,
Y22, AA9, AA 13, AA 22, AA 26, AB 9, AB13, AB 14, AB 15,
AB16, AB17, AB18, AB19, AB20, AB21, AB22, AB26, AE9,
AE17, AE18, AE26, AF10, AF13, AF14, AF18, AF21, AF22,
AF25, AH26, AJ26, AJ27
VDD15 Common power signals for 1.5 V VDD.
A2, A3, B1, B3, B5, B9, B10, B14, B15, B20, B21, B25, B26,
B30, B33, B34, C2, C4, C32, C33, C34, D3, D5, D32, D33,
D34, E2, E4, E33, E34, J2, J1 1, J12, J15, J16, J19, J20, J23,
J24, J33, K2, K33, L9, L26, M9, M26, P2, P33, R2, R9, R26,
R33, T9, T26, W9, W26, Y2, Y9, Y26, Y33, AA2, AA33, AC9,
AC26, AD9, AD26, AE2, AE33, AF2, AF11, AF12, AF15,
AF16, AF19, AF20, AF23, AF24, AF33, AK2, AK33, AK34,
AL33, AL34, AM34, AN14, AN15, AN20, AN21, AN25, AN26,
AN30, AN34
VDD33 Common power signals for 3.3 V VDD.
B2, C3, C5, C9, C10, C14, C15, C20, C21, C25, C26, C30,
D4, D31, E3, E31, E32, F30, F31, F32, F33, F34, G32, G33,
G34, J3, J32, K3, K32, P3, P14, P15, P16, P17, P18, P19,
P20, P21, P32, R3, R14, R15, R16, R17, R18, R19, R20,
R21, R32, T14, T15, T16, T17, T18, T19, T20, T21, U14,
U15, U16, U1 7, U18, U19, U20, U21, V14, V15, V16, V17,
V18, V19, V20, V21, W14, W15, W16, W17, W18, W19,
W20, W21, Y3, Y14, Y15, Y16, Y17, Y18, Y19, Y20, Y21,
Y32, AA3, AA14, AA15, AA16, AA17, AA18, AA19, AA20,
AA21, AA32, AE3, AE32, AF3, AF32, AG16, AG19, AJ7,
AJ8, AJ9, AJ10, AJ11, AK3, AK7, AK8, AK9, AK10, AK32,
AL7, AL8, AL9, AL10, AL32, AM4, AM14, AM15, AM20,
AM21, AM25, AM26, AM30, AN3, AN5, AN7, AP3, AP5, AP7
VSS Common ground signals.
Table 2-21. No Connects
Pin Symbol Type Name/Description
Y1, AM13, AF8, AG10, AG14, AE1, AF1, AB4, AD5, AE5,
AG4, AC2, Y5, AA5, AL1, AG3, AJ2, V5, W8, W5, AK1, AG2,
AF4, AC8, AD6, AE8, H18, AL14, AP15, AP16, B22, A21,
D20, H19, E20, A20, AG27, AN1, AM1, AM3, AM2, AP22,
AJ14, AN10, AM10, AP12, AP10, AM9, AP11, AM17, AG17,
AP19, AM8, AM7, AP6, AN6, AM16, AK15, AN17, AP2, AN2,
AM6, AM5, AL13, AK13, AM11, AN13, AP14, AN11, AN12,
AP13, AL17, AK17, AP20, AP8, AN8, AN9, AP9, AJ13,
AG15, AG7, AH8, AL16, AP18, AG12, AL11, C19, B19,
AM12, AG11, AG13, D18, A19, AL12, E19
No Connect NC No Connect s. These pins are not used
in the Ultraframer device.
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
3030 Agere Systems Inc.
3 Absolute Maximum Ratings
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute
stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those
given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can
adversely affect device reliability.
3.1 Handling Precautions
Although electrostatic discharge (ESD) protection circuitry has been designed into this device, proper precautions must be
taken to avoid exposure to ESD and electrical overstress (EOS) during all handling, assembly, and test operations. Agere
employs both a human-body model (HBM) and a charged-device model (CDM) qualification requirement in order to
determine ESD-susceptibility limits and protection design evaluation. ESD voltage thresholds are dependent on the circuit
parameters used in each of the models, as defined by JEDEC’s JESD22-A114 (HBM) and JESD22-C101 (CDM)
standards.
3.2 Thermal Parameters (Definitions and Values)
System and circuit board level performance depends not only on device electrical characteristics, but also on device thermal
characteristics. The thermal characteristics frequently determine the limits of circuit board or system performance, and they
can be a major cost adder or cost avoidance factor. When the die temperature is kept below 125 °C, temperature-activated
failure mechanisms are minimized. The thermal parameters that Agere provides for its packages help the chip and system
designer choose the best package for their applications, including allowing the system designer to thermally design and in-
tegrate their systems.
It should be noted that all the parameters listed below are affected, to varying degrees, by package design (including paddle
size) and choice of materials, the amount of copper in the test board or system board, and system airflow.
ΘJA - Junction to Air Thermal Resistance
ΘJA is a number used to express the thermal performance of a part under JEDEC standard natural convection conditions.
ΘJA is calculated using the following formula:
ΘJA = (TJ – Tamb) / P; where P = power
Table 3-1. Absolute Maximum Ratings
Parameter Min Max Unit
Supply Voltage (VDD33) –0.5 4.2 V
Supply Voltage (VDD15) –0.3 2.0 V
Input Voltage:
LVCMOS
LVDS –0.3
–0.3 5.25
VDD33 + 0.3 V
V
Power Dissipation mW
Storage Temperature Range –65 125 °C
Table 3-2. ESD Tolerance
Device Minimum Threshold
HBM CDM
TFRA84J13 2000 V 500 V
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 31
ΘJMA - Junction to Moving Air Thermal Resistance
ΘJMA is effectively identical to ΘJA but represents performance of a part mounted on a JEDEC four layer board inside a wind
tunnel with forced air convection. ΘJMA is reported at airflows of 200 LFPM and 500 LFPM (linear feet per minute), which
roughly correspond to 1 m/s and 2.5 m/s (respectively). ΘJMA is calculated usin g the following formula:
ΘJMA = (TJ – Tamb) / P
ΘJC - Junction to Case Thermal Resistance
ΘJC is the thermal resistance from junction to the top of the case. This number is determined by forcing nearly 100% of the
heat generated in the die out the top of the package by lowering the top case temperature. This is done by placing the top
of the package in contact with a copper slug kept at room temperature using a liquid refrigeration unit. ΘJC is calculated using
the following formul a:
ΘJC = (TJ – TC) / P
ΘJB - Junction to Board Thermal Resistance
ΘJB is the thermal resistance from junction to board. This number is determined by forcing the heat generated in the die out
of the package through the leads or balls by lowering the board temperature and insulating the package top. This is done
using a special fixture, which keeps the board in contact with a water chilled copper slug around the perimeter of the package
while insulati ng the pac ka ge top. ΘJB is calculated using the following formula:
ΘJB = (TJ – TB) / P
ΨJT
ΨJT correlates the junction temperature to the case temperature. It is generally used by the customer to infer the junction
temperature while the part is operating in their system. It is not considered a true thermal resistance. ΨJT is calculated using
the following formul a:
ΨJT = (TJ – TC) / P
3.3 Reliability
Product reliability can be calculated as the probability that the product will perform under normal operating conditions for a
set period of time. Factors influencing the reliability of a product cover a range of variables, including design and manufac-
turing. The failure rate of a product is given as the number of units failing per unit time. This failure rate is known as FIT,
which is as follows:
1 FIT = 1 failure/1 x 109 hou rs.
Another unit used for failure rate is known as MTBF, which is 1/FIT. Many assumptions are made when calculating the failure
rate for a product, such as the average junction temperature and activation energy. The assumptions made for calculating
FIT and MTBF are shown in Table 3-4:
Table 3-3. Thermal Parameter Values
Parameter Temperature °C/Watt
ΘJA 12.8
ΘJMA (1 m/s) 9.5
ΘJMA (2.5 m/s) 8
ΘJC 2.5
ΘJB 7.6
ΨJT 1
Table 3-4. Reliability Data
Junction Temperature FIT (Per 1 x 109 Device Hours) MTBF Activation Energy
55 °C 36 2.78 x 107 hours 0.7eV
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
3232 Agere Systems Inc.
4 Elec trical Char ac te ri st ics
4.1 Recommended Operating Volt ages
The following table lists the voltages, along with the tolerances, required for proper operation of the TFRA84J13 device.
Table 4-1. Recommended Operating Conditions
*Internal reference voltage is used if UMPR_LVDS _REF_ SE L = 1, or else external voltage is used.
4.2 Recommended Powerup Sequence
The Ultraframer device requires dual power supplies, a 3.3 V supply for the I/O and a 1.5 V supply for the core.
During power up, RSTN should be held low (holding the device in reset) and IC3STATEN should be held low (3-stating all
output buffers). After the 3.3 V and 1.5 V supplies are stable, MPCLK (which affects the device reset) should be applied and
must be present for at least two clock cycles before RSTN and IC3STATEN are released. It is then recommended that
IC3STATEN be released concurrent with, or after, the release of RSTN. There are no constraints as to which supply (3.3 V
or 1.5 V) must come up first, nor does it matter how long it takes the second supply to come up after the first supply.
4.3 Power Consumption
The power consumption of the device is application dependent since it is not possible to use all the device features simul-
taneo usly. The nominal measured values for power per block are shown in Tabl e 4-2.
* Measured with a 50 MHz MPCLK. With a 25 MHz MPCLK, the typical per single instance value of MPU power is approximately 0.2 W.
Testing has shown that, on the average, approximately 0.35 W can be saved by utilizing the divide by 16 MPU clock power
down feature. Please refer to MPU register 0x0019 in the Ultramapper™ Register Description document for further informa-
tion. Additional MPU clock divisor options are available.
Parameter Symbol Min Typ Max Unit
3.3 V Power Supply VDD33 3.14 3.3 3.47 V
1.5 V Power Supply VDD15 1.4 1.5 1.6 V
Ground VSS —0.0 V
1.0 V—LVDS Reference* REF10 1.0 V
1.4 V—LVDS Reference* REF14 1.4 V
Ambient Temperature TA–40 85 °C
Table 4-2. Typical Power Consumption Per Block
Typical power by block refers to all instances being used.
Block Maximum Instance Typical, Per Single Instance Unit
E13 3 0.013 W
M13 3 0.013 W
TPG/TPM 1 TBD W
FRM 3 0.195 W
DS1DJA 3 0.026 W
MPU 1 0.420* W
LVDS I/O 2 0.020 W
NSMI I/O 3 0.032 W
DS3 I/O 3 0.050 W
MRXC 1 0.050 W
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 33
4.4 ac and dc Characteristics
4.4.1 LVCMOS Interface Characteristics
* The following bidirectional pins can sink/source 10 mA: NSMIRXCLK[3:1].
4.4.2 LVDS Interface Characteristics
3.3 V ± 5% VDD, –40 °C to +125 °C junction temperature.
.
Table 4-3. LVCMOS Inputs Specifications
Parameter Symbol Conditions Min Typ Max Unit
Input Leakage Current IIVSS < VIN < VDD33 1.0* µA
High-input Voltage VIH —2.0V
Low-input Voltage VIL —VSS —0.8V
Input Capacitance CI——1.5pF
* Excludes current due to pull-up or pull-down resistors.
Table 4-4. LVCMOS Outputs Specifications
Parameter Symbol Conditions Min Typ Max Unit
Output Voltage Low VOL IOL = max VSS —0.5 V
Output Voltage High VOH IOL = max VDD – 0.5 VDD V
Output Current Low IOL ——6
*
* DTN output current is 10 mA max.
mA
Output Current High IOH ——6
*mA
Output Capacitance CO——3pF
HIZ Output Leakage Current IOZ ——10µA
Table 4-5. LVCMOS Bidirectionals Specifications
Parameter Symbol Conditions Min Typ Max Unit
Leakage Current ILVSS < VIN < VDD33 ——11 µA
High-input Voltage VIH —2.0VDD33 + 0.3 V
Low- in put Voltage VIL —VSS —0.8 V
Biput Capacitance CIB 5.0 pF
Output Voltage Low VOL IOL = –6 mA* 0.5 V
Output Voltage High VOH IOH = 6 mA* 2.4 V
Table 4-6. LVDS Interface dc Characteristics
Parameter Symbol Test Conditions Min Typ Max Unit
Input Buffer Parameters
Input Voltage Range
High (VIA or VIB)
Low (VIA or VIB)
VI
VIH
VIL
|VGPD| < 925 mV, dc—1 MHz
0
2.4
V
V
Input Differential Threshold VIDTH dc— 450 MHz –100 100 mV
Input Differential Hysteresis VHYST (+VIDTH) – (–VIDTH)—*mV
Receiver Differential Input Impedance RIN With build-in termination, center-tapped 80 100 120
* The buffer will not produce output transitions when input is open-circuited. When the true and complement inputs are floating, the input buffer will not
oscillate.
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
3434 Agere Systems Inc.
5 Timing
5.1 DS3/E3 Timing
Figure 5-1 shows a simplified representation of the DS3/E3 I/O.
Figure 5-1. DS3/E3 Interface Diagram in M13/E13 Block
Table 5-1. DS3/E3 Input Specifications
Name Reference Edge
Rising/Falling Max Rise
Time (ns) M ax Fall
Time (ns) Min Setup
(ns) Min Hold
(ns)
DS3POSDATAIN[3:1]
DS3NEGDATAIN[3:1] DS3DATAINCLK R/F 5 5 3 3
Table 5-2. DS3/E3 Output Specifications
Name Reference Edge
Rising/Falling Propagation Delay
Min (ns) Max (ns)
DS3POSDATAOUT[3:1]
DS3NEGDATAOUT[3:1] DS3RXCLKOUT R/F 0 3
M13/E13 BLOCK
DEMUX MUX
Q
Q
CLK
CLK D
D
DS3DATAINCLK
DS3POSDATAIN
DS3NEGDATAIN DS3DATAOUTCLK
DS3POSDATAOUT
DS3NEGDATAOUT
DS3RXCLKOUT
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 35
5.2 NSMI Timing
Figure 5-2. NSMI Clock and Data Diagram for M13 NSM I Mode (NSMI <---> M13 <---> DS3 External I/O)
Figure 5-3. NSMI Clock and Data Diagram for E13 NSMI Mode 1 (NSMI <---> E13 <---> E3 External I/O)
NSMI_TXDATAEN
NSMI_TXCLK
44.736 MHz
X1 X2 M1 M3
DS3 frame
(for info only) X1
NSMI_TXDATA
NSMI_TXSYNC
4760 bits
Position of this pulse is provisionable 0-256 bits before M1
NSMI_RXCLK
44.736 MHz Output
X1 X2 M1 M3
DS3 Frame X1
NSMI_RXDATA
NSMI_RXSYNC
4760 bits
Position of this pulse is provisionable 0-256 bits before M1
NSMI_RXDATAEN
Notes:
Clock from M13 is at 44.736 MHz rate and is not gapped. TXDATAEN is provided to mark the DS3 frame overhead times.
M1 can occur asynchronously and its position is optionally marked by TXSYNC, which is provisioned to be 0 to 255 bits before the M1 bit. TXDATAEN
goes low during DS3 frame overhead bits.
NSMI_TXDATAEN
(output)
NSMI_TXCLK
(34.368 MHz output)
E3 frame
(for info only )
NSMI_TXDATA
(output)
NSMI_TXSYNC
(output)
NSMI_RXCLK
(34.368 MHz output)
E3 Frame
(For Info only)
NSMI_RXDATA
(input)
NSMI_RXSYNC
(output)
NSMI_RXDATAEN
(output)
1536 bits
Position of this puls e is pr ov is ionable 0-256 bits before C11
FRAME, RAI, RSVD C11 = 0 Cj3 = 0 Frame
Stuff = data
1536 bits
Position of this pulse is provisionable 0-256 bits before C11
FRAME, RAI, RSVD C11 = 0 Cj3 = 0 Frame
Stuff = data
Notes:
Clock from E13 is at 34.368 MHz rate and is not gapped. TXDATAEN is provided to mark the overhead time and control bits time of the E3 frame.
C11’s (the first C bit of the first tributary) position is optionally marked by TXSYNC, which is provisioned to be 0 to 255 bits before C11 (bit 385 of the
E3 frame).
During periods where the OH is present the TXDATAEN signal goes low . All C bits are zero and the stuff bit s are used for data.
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
3636 Agere Systems Inc.
Figure 5-4. NSMI Clock and Data Diagram for Framer (FRM) NSMI Mode
Table 5-3. NSMI Input Specifications
Name Reference Edge
Rising/Falling Max Rise
Time (ns) Max Fa ll
Time (ns) Min Setup
(ns) Min Hold
(ns)
NSMIRXDATA[3:1] NSMIRXCLK R 3.5 3.5 5 0
NSMIRXSYNC[3:1] NSMIRXCLK R 3.5 3.5 5 0
Table 5-4. NSMI Output Specifications
Name Reference Edge
Rising/Falling Propagation Delay
Min (ns) Max (ns)
NSMITXDATA[3:1] NSMITXCLK R 0.5 8.75
NSMITXSYNC[3:1] NSMITXCLK R 0.5 8.75
RXDATAEN[3:1] NSMIRXCLK R 0.5 8.75
TXDATAEN[3:1] NSMITXCLK R 0.5 8.75
NSMIRXSYNC[3:1] NSMIRXCLK R 0.5 8.75
MSB LSB
START FSYNC LSB RSVDMSB
Link number[0:4]
Data Byte (Timeslot) for a DS0/E0 Link
DATA 1, 1 DATA 2, 1 DATA 1, 2 DATA 2, 2
DATA Link#, Byte# DATA 5, 1 DATA 5, 2 DATA 5, 3
01100000 01010000 00100000 00010000 01101000
NSMI_TXCLK
51.84 MHz
NSMI_TXDATA
NSMI_TXSYNC
Binary Value
Links may appear in any order, bytes per link are sequentialStart goes low to signify data, high otherwise
FSYNC high signifies 1st byte of link N
}
Link number provisionable 1:28 or 0:27 for DS1
NSMI_TXCLK
NSMI_TXDATA
NSMI_TXSYNC
Note: The 193rd bit of a DS1 frame is not transmitted on the NSMI but is used to locate the FSYNC position. As a consequence of this, signaling bits
are not transported in Ultraframer.
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 37
5.3 Shared Low-Speed Line Timing
Note: Single-rail shown.
Figure 5-5. Shared Low-Speed Line Clock and Data Timing
5.4 CHI Timing
Figure 5-6. CHI Clock Timing
* VIH to VIH or VIL to VIL.
Table 5-5. Shared Low-S peed Line Timing Input Specifications
Name Reference Edge
Rising/Falling Max Rise
Time (ns) Max Fall
Time (ns) Min Setup
(ns) Min Hold
(ns)
LINERXDATA[86:1] LINERXCLK[86:1] R/F 10* 10* 15 10*
* Alternative spec: the maximum rise and fall times may be increased to 20 ns each if the minimum hold time is increased to 12 ns. The mi nimum set up
time will remain at 15 ns.
Table 5-6. Shared Low-Speed Line Timing Output Specifications
Name Reference Edge
Rising/Falling Propagation Delay
Min (ns) Max (ns)
LINETXDATA[86:1] LINETXCLK[86:1] R/F –10 10
Table 5-7. CHIRXGCLK and CHITXGCLK Timing Specifications
Parameter Description Min Typ Max Unit
t1Rise Time 2 7 ns
t2Width (8.192 MHz)* 48.84 73.24 ns
t2Width (16.384 MHz)* 24.42 36.62 ns
t3Fall Time 2 7 ns
t4Period (8.192 MHz) 122.07 ns
t4Period (16.384 MHz) 61.03 ns
LINETXCLK
tPD
t
SU
t
H
LINERXCLK
LINERXDATA
LINETXDATA
t1VDD33
VIL
VIH VIH
VIL
t3
t4
50%
t2
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
3838 Agere Systems Inc.
Note: This figure assumes TFRA84J13 is programmed to sample the frame sync signal on rising edge of the bit clock.
Figure 5-7. CHI Bus Timing
Note: For this timing diagram, it is assumed that the frame sync signal has been programmed to be active-high, and to be sampled by the rising edge of
the bit clock.
Figure 5-8. Typical Receive CHI Timing (Non-CMS Mode—FRM_CMS = 0)
Table 5-8. CHI Interface Timing Specifications
Parameter Description Min Max Unit
t5Frame Sync Setup Time to Active CHI Clock Edge 15 ns
t6Frame Sync Hold Time from Active CHI Clock Edge 4 ns
t7CHIRXDATA Setup to Active CHI Clock Edge 15 ns
t8CHIRXDATA Hold Time from Active CHI Clock Edge 4 ns
t9CHITXDATA Propagation Delay from Active CHI Clock Edge 4 30 ns
t
9
CHITXDATA
CHI
RXG
CLK
t
5
t
6
CHIRXDATA
CHIRXGFS
t
7
t
8
CHITXGFS
CHI
TXG
CLK
CHIRXGFS
CHIRXGCLK
w/ 0 off set data sampled
w/ ½ bit of fset data sampled
w/ bit offset = 1 data sampled
w/ bit offset = 7 data sampled
data sampled
w/ TS offset = 1,
bit offset = 0
TS0 B1
TS0 B0
TS0 B0 TS0 B1 TS0 B2 TS0 B3 TS0 B4 TS0 B5
TS0 B 0
TS0 B1 TS0 B2 TS0 B3 TS0 B4TS0 B0
TS0 B0 TS0 B1 T S0 B2 TS0 B3 TS0 B4 TS0 B5
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 39
Note: For this timing diagram, it is assumed that the frame sync signal has been programmed to be active-high, and to be sampled by the rising edge of
the bit clock.
Figure 5-9. Transmit CHI Timing (Non-CMS Mode—FRM_CMS = 0)
Notes:
n = 127 at 16 MHz, n = 63 at 8 MHz.
For this timing diagram, it is assumed that the frame sync signal has been programmed to be active-high, and to be sampled by the rising edge of the bit
clock.
Figure 5-10. Typical Receive CHI Timing (CMS Mode—FRM_CMS = 1)
CHIRXGFS
CHIRXGCLK
w/ 0 offset
w/ ½ bit offset
w/ bit offset = 1
w/ TS offset = 255,
bit offset = 7½ TS0 B0
w/ TS of fset = 1,
bit offset = 0
TS0 B2 TS0 B3 TS0 B4
TS255 B0
TS0 B3 TS 0 B4
TS255 B1 TS255 B2 TS255 B3
TS0 B0 TS0 B1
TS255 B4 TS255 B5
TS0 B0
TS0 B3 TS0 B4 TS0 B5
TS0 B5
TS0 B1 TS0 B2
TS0 B1 TS0 B2
TS0 B0 TS0 B1 TS0 B2 TS0 B3 TS0 B4
CHIRXGFS
CHIRXGCLK
w/ 0 off set data sampled
w/ ¼ bit of fset data sampled
w/ ½ bit of fset data sampled
w/ ¾ bit of fset data sampled
w/ bit offset = 1 data sampled
w/ 2¾ bit offset data sampled
w/ bit offset = 7 data sampled
data sampled
data sampled
data sampled TS0 B2 TS0 B3 TS0 B4
w/ T S of fset = 127,
bit offset = 7¾ TSn B 7 TS0 B 0 TS0 B 1
TSn B2 TSn B 3 TSn B4
w/ TS offset = 13,
bit offset = 3¼ TSn – 13 B4 TSn – 13 B5 TSn – 13 B6 TSn – 13 B7 TSn – 12 B0 TSn – 12 B1
w/ TS offset = 1,
bit offset = 0 TSn – 1 B7 TSn B0 TSn B1
TSn B4 TSn B5
TSn B4 TSn B5
TSn B0 TSn B1 TSn B2 TSn B 3
TSn B6 TSn B7
TS0 B2 TS0 B 3
TS0 B2 TS0 B3
TS0 B0 TS0 B 1
TSn B6 TSn B7 TS0 B0 TS0 B 1
TSn B6 TSn B7 TS0 B 0 TS0 B 1
TS0 B3 TS0 B4
TSn B7 TS0 B0 TS0 B1 TS0 B2 TS0 B3
TSn B7 TS0 B0 TS0 B1 TS0 B2
TSn B7 TS0 B0 TS0 B1 TS0 B2 TS0 B3 TS0 B4
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
4040 Agere Systems Inc.
Note: For this timing diagram, it is assumed that the frame sync signal has been programmed to be active-high, and to be sampled by the rising edge of
the bit clock.
Figure 5-11. Transmit CHI Timing (CMS Mode—FRM_CMS = 1)
CHIRXGFS
CHIRXGCLK
w/ 0 off set
w/ ¼ bit of fset
w/ ½ bit of fset
w/ bit offset = 1
TSn B6 TSn B7 TS0 B 0 TS0 B 1 TS0 B 2 TS0 B3
TS0 B2 TS0 B3
TSn B6 TSn B7 TS0 B0 TS0 B1 TS0 B2
TSn B6 TSn B7 TS0 B0 TS0 B1
TSn B5 TSn B6 TSn B 7 TS0 B 0
w/ TS offset = 1,
bit offset = 0
TSn B7 TS0 B0 TS0 B1
w/ TS of fset = 127,
bit offset = 7¾
TSn – 1 B6 TSn – 1 B7 TSn B0 TSn B1
TS0 B2 TS0 B3
TS0 B1 TS0 B 2
TSn B2 TSn B 3
TS0 B3
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 41
5.5 Parallel System Bus (PSB) Timing
Figure 5-12. PSB Clock and Data Timing
Table 5-9. PSB Input Specifications
Name Reference Edge
Rising/Falling Max Rise
Time (ns) Max Fall
Time (ns) Min Setup
(ns) Min Hold
(ns)
CHIRXDATA[16:1] (PSB mode) CHIRXGCLK R/F 10 10 10 0
CHIRXGFS (PSB mode) CHIRXGCLK R/F 10 10 10 0
CHITXGFS (PSB mode) CHITXGCLK R/F 10 10 10 0
Table 5-10. PSB Output Specifications
Name Reference Edge Rising (R)
Falling (F) Propagation Delay
Min (ns) Max (ns)
CHIT XDATA[16:1] (PSB mode) CHITXGCLK R/F 4 22
CHITXGCLK
tPD
t
SU
t
H
CHIRXGCLK
CHIRXDATA
CHITXDATA
CHIRXGFS
10 ns 0 ns
CHITXGFS
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
4242 Agere Systems Inc.
6 Referen c e Cloc ks
Duty cycles indicated in the following tables should be interpreted as follows: 50% ±10% means 45%—55%; 50% ± 5%
means 47.5%—52.5%.
Table 6-1. Framer Input Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
THSCP/N 6.43 155.52 MHz 20 0.01 UIp-p or 64 psp-p or
0.001 UIrms (12 KHz—1.3 MHz) 0.4 0.4 Nom 50% ± 5%
THSCP/N 1.6 622.08 MHz 20 0.04 UIp-p or 64 psp-p
12 KHz5 MHz 0.4
nom 0.6
max —50% ± 5%
Table 6-2. DS3/E3 Input Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
DS3DATAOUTCLK[3:1] (DS3) 22.353 44.736 MHz 20 0.05 UIp-p or 1.12 nsp-p
(10 kHz—400 kHz) 5 5 Max 50% ± 10%
DS3DATAINCLK[3:1] (DS3) 22.353 44.736 MHz 20 3.5 2.5 Max 50% ± 5%
DS3DATAOUTCLK[3:1] (E3) 29.09 34.368 MHz 20 0.03 UIp-p or
0.87 nsp- p
(100 kHz—800 kHz)
5 5 Max 50% ± 10%
DS3DATAINCLK[3:1] (E3) 29.09 34.368 MHz 20 3.5 2.5 Max 50% ± 5%
Table 6-3. DS1/E1 DJA Input Clocks Specifications
Clock Name Perio d
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
E1XCLK 15.25 65.536 MHz 50 0.1 UIp-p or 1.5 ns p-p
(20 kHz—100 kHz) 3.5 3.5 Max 50% ± 10%
DS1XCLK 20.20 49.408 MHz 32 0.1 UIp-p or 2.0 nsp-p
(10 kHz—40 kHz) 3.5 3.5 Max 50% ± 10%
E1XCLK 30.52 32.768 MHz 50 0.1 UIp-p or 3.0 ns p-p
(20 kHz—100 kHz) 3.5 3.5 Max 50% ± 10%
DS1XCLK 40.40 24.704 MHz 32 0.1 UIp-p or 4. 0 nsp- p
(10 kHz—40 kHz) 3.5 3.5 Max 50% ± 10%
Table 6-4. M13/E13 Input Clocks Specifications
Clock Name Perio d
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
DS2AISCLK 158.42 6.312 MHz 30 5 5 Max 50% ± 5%
E2AISCLK 118.37 8.448 MHz 30 5 5 Max 50% ± 5%
Table 6-5. Microprocessor Interface Input Clocks Specifications
Clock Name Perio d
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
MPCLK (min)*62.5 16 MHz 4 4 Min 50% ± 10%
MPCLK (max) 15.15 66 MHz 4 4 Max 50% ± 10%
*The following applies to the synchronous microprocessor mode (MPMODE pin = 1): If DTN is used, then the maximum frequency for MPCLK is
determined by the processor’s setup specification for DTN. MPU maximum bus operating frequency = 1/(MPU DTN setup time + tDTNVPD). For
example, an 8 ns setup time would limit MPCLK to 50 MHz for reliable DTN detection.
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 43
Table 6-6. Framer PLL Input Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
CLKIN_PLL 19.2 51.84 MHz 20 GR-499 and
G.823 50% ± 10%
CHIRXGTCLK (DS1 mode) 647.66 1.544 MHz 32 GR-499 10 10 Max 50% ± 10%
CHIRXGTCLK (E1 mode) 488.28 2.048 MHz 50 G.823 10 10 Max 50% ± 10%
Table 6-7. CHI Input Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
CHIRXGCLK (CHI mode) 122.07 8.192 MHz 50 10 10 Max 50% ± 10%
CHIRXGCLK (CHI mode) 61.035 16.384 MHz 50 10 10 Max 50% ± 10%
CHITXGCLK (CHI mode) 122.07 8.192 MHz 50 10 10 Max 50% ± 10%
CHITXGCLK (CHI mode) 61.035 16.384 MHz 50 10 10 Max 50% ± 10%
Table 6-8. PSB Input Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
CHIRXGCLK (PSB mode) 51.44 19.44 MHz 20 10 10 Max 50% ± 10%
CHITXGCLK (PSB mode) 51.44 19.44 MHz 20 10 10 Max 50% ± 10%
Table 6-9. DS3/E3 Output Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
DS3RXCLKOUT [3:1](DS3) 22.353 44.736 MHz 20 GR-253 1.5 1.5 Nom 50% ± 5%
DS3RXCLKOUT [3:1](E3) 29.09 34.368 MHz 20 G.783 1.5 1.5 Nom 50% ± 5%
Table 6-10. Framer PLL Output Clocks Specifications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
CG_PLLCLKOUT 647.66 1.544 MHz 32 GR-499 50% ± 5%
CG_PLLCLKOUT 488.28 2.048 MHz 50 G.823 50% ± 5%
Table 6-11. Shared Low-Speed Receive Line Input/Output Clocks Specif ications
Clock Name Period
(ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/
Max Duty Cycle
LINERXCLK (framer; DS1) 647.66 1.544 MHz 32 10 10 Max 50% ± 5%
LINERXCLK (framer; E1) 488.28 2.048 MHz 50 10 10 Max 50% ± 5%
LINERXCLK (M12) 647.66 1.544 MHz 32 10 10 Max 50% ± 5%
LINERXCLK (E12) 488.28 2.048 MHz 50 10 10 Max 50% ± 5%
LINERXCLK (M23) 158.42 6.312 MHz 30 10 10 Max 50% ± 5%
LINERXCLK (E23) 118.37 8.448 MHz 30 10 10 Max 50% ± 5%
LINERXCLK (DJA; DS1) 647.66 1.544 MHz 32 10 10 Max 50% ± 5%
LINERXCLK (DJA; E1) 488.28 2.048 MHz 50 10 10 Max 50% ± 5%
LINERXCLK (TPG; DS1) 647.66 1.544 MHz 32 10 10 Max 50% ± 5%
LINERXCLK (TPG; E1) 488.28 2.048 MHz 50 10 10 Max 50% ± 5%
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
4444 Agere Systems Inc.
Table 6-12. Shared Low-Speed Transmit Line Input/Output Clocks Specifications
Clock Name Period (ns) Fr equency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/Max Duty Cycle
LINETXCLK (framer; DS1) 647.66 1.544 MHz 32 1.5 1.5 Nominal 50% ± 5%
LINETXCLK (framer; E1) 488.28 2.048 MHz 50 1.5 1.5 Nominal 50% ± 5%
LINETXCLK (M12) 647.66 1.544 MHz 32 10 10 Max 50% ± 5%
LINETXCLK (E12) 488.28 2.048 MHz 50 10 10 Max 50% ± 5%
LINETXCLK (M23) 158.42 6.312 MHz 30 10 10 Max 50% ± 5%
LINETXCLK (E23) 118.37 8.448 MHz 30 10 10 Max 50% ± 5%
LINETXCLK (DJA; DS1) 647.66 1.544 MHz 32 1.5 1.5 Nominal 50% ± 5%
LINETXCLK (DJA; E1) 488.28 2.048 MHz 50 1.5 1.5 Nominal 50% ± 5%
LINETXCLK (TPG; DS1) 647.66 1.544 MHz 32 1.5 1.5 Nominal 50% ± 5%
LINETXCLK (TPG; E1) 488.28 2.048 MHz 50 1.5 1.5 Nominal 50% ± 5%
Table 6-13. NSMI Input Clock Specifications
Clock Name Period (ns) Fr equency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/Max Duty Cycle
NSMIRXCL K (fram er ) 19 .29 51.84 MHz 20 3.5 3.5 Max 50% ± 5%
NSMIRXCLK (M13) 22.35 44.736 MHz 20 1.5 1.5 Nominal 50% ± 5%
NSMIRXCLK (E13) 29.09 34.368 MHz 20 1.5 1.5 Nominal 50% ± 5%
Table 6-14. NSMI Output Clocks Specifications
Clock Name Period (ns) Frequency Accuracy
(ppm) Jitter Rise
(ns) Fall
(ns) Min/Max Duty Cycle
RXDATAEN 19.29 51.84 MHz 20 1.5 1.5 Nominal 50% ± 5%
NSMITXCLK 19.29 51.84 MHz 20 1.5 1.5 Nominal 50% ± 5%
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 45
7 Microprocessor Interface Timing
7.1 Synchronous Write Mode
The synchronous microprocessor interface mode is selected when MPMODE (pin D2) = 1. In this mode, MPCLK used for
the Ultraframer is the same as the microprocessor clock. Interface timing for the synchronous mode write cycle is given in
Figure 7-1 and in Table 7-1, and for the read cycle in Figure 7-2 and in Table 7-2.
Notes:
MPCLK Input clock to Ultraframer MP U block.
ADDR [20:0] The address will be available throughout the entire cycle.
CSN (Input) Chip select is an active-low signal.
ADSN (Input) Address strobe is active-low. ADSN must be one MPCLK clock period wide.
RWN (Input) The read (H) write (L) signal is always high except during a write cycle.
DATA[15:0] Data will be available during cycle T1.
DTN (Output) Data transfer acknowledge is active-low for one clock and then dri ven high before entering a high-impedance state. (This is done with an I/
O pad using the input as feedback to qualify t he 3-state term.) DTN will become 3-stated when CSN is high. Typically, DTN is active four or
five MPCLK cycles after ADS N is low.
Figure 7-1. Microprocessor Interface Synchronous Write Cycle—MPMODE Pin = 1
* If DTN is used, then the maximum frequency for MPCLK is determined by the processor’s setup specification for DTN. MPU maximum bus operating
frequency = 1/(MPU DTN setup time + tDTNVPD). For example, an 8 ns setup time would limit MPCLK to 50 MHz for reliable DTN detection.
DTN fall is variable, depending on the block selected for access and in some cases the state of the SONET frame. This interval is typically in the 100 ns
to 200 ns range, but can be several hundred ns. It should never exceed 50 MPCLK cycles. .
Table 7-1. Microprocessor Interface Synchronous Write Cycle Specifications
Symbol Parameter Setup (min) Hold (min) Delay (min) Delay (max) Unit
MPCLK MPCLK 16 MHz Min—66* MHz Max Frequency ns
tWS ADSN, RWN, DATA (write) Valid to MPCLK 6.7 ns
tAPD MPCLK to ADDR, RWN, DA T A, CSN (write) Invalid 0 ns
tCSNVS CSN Valid to MPCLK 6 ns
tADDRVS ADDR Valid to MPCLK 3.5 ns
tAIPD MPCLK to ADSN Invalid 0 ns
tDTNVPD MPCLK to DTN Valid 2.5 12 ns
tDTNIPD MPCLK to DTN Invalid 2.5 12 ns
TADSNVDTF ADSN Valid to DTN Falling ns
MPCLK
ADDR[20:0]
CSN
ADSN
RWN
DATA[15:0]
DTN
(INPUT)
t
WS
t
WS
t
DTNVPD
t
ADDRVS
t
CSNVS
t
WS
T
0
T
1
T
2
T
3
T
n – 2
T
n – 1
T
n
t
AIPD
t
APD
t
APD
t
APD
t
APD
t
DTNIPD
HIGH ZHIGH Z t
ADSNVDTF
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
4646 Agere Systems Inc.
7.2 Synchronous Read Mode
Notes:
MPCLK Input clock to Ultraframer MP U block.
ADDR [20:0] The address will be available throughout the entire cycle, and must be stable before ADSN turns high.
CSN (Input) Chip select is an active-low signal.
ADSN (Input) Address strobe is active-low. ADSN must be one MPCLK clock period wide.
RWN (Input) The read (H) write (L) signal is always high during the read cycle.
DTN (Output) Data transfer acknowledge on the host bus interface is initiated on T6. This signal is active for one clock, and then driven high before
entering a high-impedance state. (This is done with an I/O pad using the input as feedback to qualify the 3-state term.) DTN will become 3-
stated when CSN is high. Typically, DTN is active four or five MPCLK cycles after ADSN is low.
DATA [15:0] Read data is stable in Tn – 1.
Figure 7-2. Microprocessor Interfac e Synchronous Read Cycle—MPMODE Pin = 1
* If DTN is used, then the maximum frequency for MPCLK is determined by the processor’s setup specification for DTN. MPU maximum bus operating
frequency = 1/(MPU DTN setup time + tDNVPD). For example, an 8 ns setup time would limit MPCLK to 50 MHz for reliable DTN detection.
DTN fall is variable, depending on the block selected for access and in some cases the state of the SONET frame. This interval is typically in the 100 ns
to 200 ns range, but can be several hundred ns. It should never exceed 50 MPCLK cycles.
Table 7-2. Microprocessor Interface Synchronous Read Cycle Specifications
Symbol Parameter Setup
(Min) Hold
(Min) Delay
(Min) Delay
(Max) Unit
MPCLK MPCLK 16 MHz Min—66* MHz Max Frequency————ns
tAVS ADDR Valid to MPCLK 3.5 ns
tAPD MPCLK to ADDR Invalid 0 ns
tCSNSU CSN Active to MPCLK 6 ns
tADSNSU ADSN Valid to MPCLK 6 ns
tSNIPD MPCLK to ADSN Inactive 0 ns
tDNVPD MPCLK to DTN Valid 2.5 12 ns
tDNIPD MPCLK to DTN Invalid 2.5 12 ns
tDAIPD MPCLK to DATA 3-state 3.5 15 ns
tADSNVDTF ADSN Valid to DTN Falling ns
MPCLK
ADDR[20:0]
CSN
ADSN
RWN
tADSNSU tSNIPD
tCSNSU
tAVS
T0T1T2Tn – 4 Tn – 3 Tn – 2 Tn – 1 Tn
DTN
DATA[15:0]
(OUTPUT)
tDAIPD
tDNVPD tDNIPD
tADSNVDTF HIGH ZHIGH Z
tAPD
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 47
7.3 Asynchronous Write Mode
The asynchronous microprocessor interface mode is selected when MPMODE (pin D2) = 0. Interface timing for the asyn-
chronous mode write cycle is given in Figure 7-3 and in Table 7-3, and for the read cycle in Figure 7-4 and in Table 7-4.
Although this is an asynchronous interface, an MPCLK is still required. This clock can be different (asynchronous) from the
MPU clock. Internal to the chip, RWN, ADSN, and DSN will be sampled by MPCLK.
Notes:
ADDR [20:0] Address is asynchronously passed from the host bus to the internal bus. The address will be available throughout the entire cycle. ADDR
must be held constant while ADSN and DSN are valid (low).
CSN (Input) Chip select is an active-low signal. CSN must be held low (active) until ADSN and DSN are deasserted.
ADSN (Input) Address strobe is active-low. ADSN must be stable for the entire period. ADSN and CSN may be connected and driven from the sam e
source.
DSN (Input) Data strobe is active-low.
DAT A [15:0] Wri te data is asynchronously passed from the host bus to the internal bus. Data will be available throughout the entire cycle. DA TA must be
held constant while DSN is valid (low).
RWN (Input) The read/write signal should be high for a read cycle and low for a write cycle. It should always be held high, except during a write cycle.
RWN must be held low (write) until DSN is deasserted (high).
DTN (Output) Data transfer acknowledge (active-low). DTN is driven out of 3-state to inactive-high on the assertion of CSN. When the i n te rn al tra n s a c-
tion is complete, DTN goes active-low . DTN is then driven high again when either ADSN or DSN is deasserted. DTN will become 3-stated
when CSN is high. DTN fall is variable, depending on the block selected for access and in some cases the state of the SONET frame. Thi s
interval is typically in the 100 ns to 200 ns range, but can be several hundred ns. In lab measurements, it has never exceeded 1000 ns.
Figure 7-3. Microprocessor Interface Asynchronous Write Cycle—MPMODE Pin = 0
ADDR[20:0]
CSN
ADSN
DSN
RWN
DATA[15:0]
DTN
(INPUT)
tAVADSF
tDVDSF
tCSFDTR tDSFDTF
tADSRDTR tCSRDT3
tDSRDI
tDSRRWR
tDSNRAI
tADSRAI
tAICSR
tRWFDSF
tAVDSF
HIGH Z HIGH Z
tCSFDSF
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
4848 Agere Systems Inc.
7.4 Asynchronous Read Mode
Notes:
ADDR [20:0] Address is asynchronously passed from the host bus to the internal bus. The address will be available throughout the entire cycle.
CSN (Input) Chip select is an active-low signal.
ADSN (Input) Address strobe is active-low.
DSN (Input) Data strobe is active-low.
RWN (Input) The read (H) write (L) signal is always high during a read cycle.
DTN (Output) Data transfer acknowledge (active-low). DTN is driven out of 3-state to inactive-high on the assertion of CSN. When the i n te rn al tra n s a c-
tion is complete, DTN goes active-low . DTN is then driven high again when either ADSN or DSN is deasserted. DTN will become 3-stated
when CSN is high.
DATA [15:0] 16-bit data bus.
Figure 7-4. Microprocessor Interface Asynchronous Read Cycle—MPMODE Pin = 0
Table 7-3. Microprocessor Interface Asynchronous Write Cycle Specifica tions
Symbol Parameter Setup
(Min) Hold
(Min) Delay
(Min) Delay
(Max) Unit
MPCLK MPCLK 16 MHz Min—66 MHz Max Frequency ns
tCSFDSF CSN Fall Setup and Hold to DSN Fall 0 ns
tAICSR CSN Rise to ADDR Invalid 0 ns
tAVADSF ADDR Valid Setup and Hold to ADSN Fall 1.0 ns
tADSRAI ADSN Rise to ADDR Invalid 1.42 ns
tAVDSF ADDR Valid Setup and Hold to DSN Fall 0 ns
tDSNRAI DSN Rise to ADDR Invalid 0 ns
tRWFDSF RWN Fall Setup and Hold to DSN Fall 0 ns
tDSRRWR DSN Rise to RWN Rise 0 ns
tDVDSF DATA Val id Setup and Hol d to DSN F all 0 ns
tDSRDI DSN Rise to DATA Invalid 0 ns
tCSFDTR CSN Fall to DTN Rise 5.2 16.0 ns
tDSFDTF DSN Fall to DTN Fall 0 ns
tADSRDTR ADSN or DSN Rise to DTN Rise 2.9 13.3 ns
tCSRDT3 CSN Rise to DTN 3-state 2.9 13 ns
ADDR[20:0]
CSN
ADSN
DSN
DTN
DATA[15:0]
t
ADSRD3
t
CSRDT3
t
ADSRDTR
t
CSFDSF
RWN
t
AVADSF
t
AVDSF
t
AICSR
t
ADSRAI
t
DSNRAI
t
DTVDV
t
DSFDTF
t
CSFDTR
HIGH Z
HIGH Z
HIGH Z
HIGH Z
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 49
Table 7-4. Microprocessor Interface Asynchronous Read Cycle Spec ifications
Symbol Parameter Setup
(Min) Hold
(Min) Delay
(Min) Delay
(Max) Unit
MPCLK MPCLK 16 MHz Min—66 MHz Max Frequency ns
tCSFDSF CSN Fall Setup and Hold to DSN Fall 0 *
* CSN must be held low (active) until ADSN and DSN are deasserted.
——ns
tAICSR CSN Rise to ADDR Invalid 0 ns
tAVADSF ADDR Valid Setup and Hold to ADSN Fall 1.0
† ADDR must be held constant while ADSN and DSN are valid (low).
——ns
tADSRAI ADSN Rise to ADDR Invalid 1.42 ns
tAVDSF ADDR Valid Setup and Hold to DSN Fall 0 ——ns
tDSNRAI DSN Rise to ADDR Invalid 0 ns
tCSFDTR CSN Fall to DTN Rise 5.2 16.0 ns
tDSFDTF DSN Fall to DTN Fall 0
‡ DTN fall is variable, depending on t he block selected f or access and in some cases, the state of the SONET frame. This interval is typically in the
100 ns to 200 ns range, but can be several hundred ns. It should never exceed 50 MPCLK cycles.
ns
tADSRDTR ADSN or DSN Rise to DTN Rise 2.9 13.3 ns
tCSRDT3 CSN Rise to DTN 3-state 2.9 13.0 ns
tDTVDV DTN Valid to DATA Valid 0 ns
tADSRD3 ADSN Rise to DATA 3-state 2.9 14 + MPCLK§
§ DATA[15:0] is enabled by a retimed version of the ADSN.
ns
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
5050 Agere Systems Inc.
8 Other Timing
This interface may be used as either synchronous or asynchronous mode.
9 Hardware Design File References
(IBIS, Spice, BSDL, etc.) Available upon request.
Table 8-1. General-Purpose Inputs Specifica tions
Name Reference Edge
Rising/Falling Rise Time
(ns) Fall Time
(ns) Setup
(ns) Hold
(ns)
RSTN Async
PMRST Async
TDI and TMS TCLK R 5 5 19.5 6.4
Table 8-2. General-Purpose Output Specifications
Name Reference Edge
Rising/Falling Propagation Delay
Min (ns) Max (ns)
TDO TCLK F 12.5 45
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 51
10 909-Pin PBGA D iagram
Figure 10-1. Ultraframer 909-Pin PBGA Balls and Dimensions
TFRA84J13 Ultraframer Hardware Design Guide, Revision 5
DS3/E3/DS2/E2/DS1/E1/DS0 July 13, 2004
5252 Agere Systems Inc.
11 Ordering I nformation
Table 11-1. Ordering Information
Device Package Comcode
TFRA 84J13 1B L- 21 909 -p in PB GA 700055303
TFRA84J1 31B L- 3 909-pin PB GA 700052826
Hardware Design Guide, Revision 5 TFRA84J13 Ultraframer
July 13, 2004 DS3/E3/DS2/E2/DS1/E1/DS0
Agere Systems Inc. 53
12 Glossary
AIS Alarm indication signal
AMI Alternate mark inversion
APS Automatic protect ion switch
ASM Associated signaling mode
BER Bit error rate
BOM Bit-oriented message
BPV Bipolar violation
B8ZS Binary 8 zero code suppression
CCI Common channel signaling
CDR Clock and data recovery
CHI Concentrated highway interface
CMI Coded mark inversion
CRC Cyclic redundancy check
CRV Coding rule violation
DACS Dig ita l acce s s cros s co nnects
DJA Digital jitter attenuation
ESF Extended superframe
EXZ Excessive zeros
FCS F rame check seq uenc e
FDL Facility data link
FEAC Far-end alarm and control
FEBE Far-end block error
HDB3 High-density bipolar of order three
HDLC High-level data link control
LIU Line interface unit
LOC Loss of clock
LOF Loss of frame
LOS Loss of signal
LOPOH Low-order path overhead
MCDR Mate clock and data recovery
MRXC Multirate cross connect
NSMI Network serial multiplexed interface
OOF Out of frame
PBGA Pin ball grid array
POAC Path overhead access channel
PRBS Pseudorandom bit sequence
PRM Performance report message
QRSS Quasirandom signal source
RAI Rem ote ala rm indi ca tor
RDI Rem ote defe ct indication
RPOAC Receive path overhead access channel
REI Remote error indic ation
SDH Synchronous digital hierarchy
SEF Severely errored frame
SONET Synchronous optical network
TCM Tandem connection monitoring
TOAC Transport overhead access channels
UPSR Unidirecti on al path switch ring
Copyright © 2004 Agere Systems Inc.
All Rights Reserved
July 13, 2004
DS02-402BBAC-5 (Replace s DS02-402BBA C-4)
Hardware De-
sign Guide, Revi-
Serial Interface for the MACROs
Serializer/Deserializer (SERDES) Serial TFRA84J13 Ultraframer
DS3/E3/DS2/E2/DS1/E1/DS0
July 13, 20 04
Hardware Design Guide, Revision 5
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.
Agere is a registered trademark of Agere Systems Inc. Agere Systems, Supermapper, Ultramapper, Hypermapper, and the Agere logo are trademarks of Agere Systems Inc.
For additional information, contact your Agere Systems Account Manager or the following:
INTERNET: http://www.agere.com
E-MAIL: docmaster@agere.com
N. AMERICA: Agere Systems Inc., Lehigh Valley Central Campus, Room 10A-301C, 1110 American Parkway NE, Allentown, PA 18109-9138
1-800-372-2447, FA X 610-7 12- 41 06 (In CANADA: 1-800-553-2448, FA X 610-7 12 -41 06)
ASIA: CHINA: (86) 21-54614688 (Shanghai), (86) 755-25881122 (Shenzhen)
JAPAN: (81) 3-5421-1600 (Tokyo), KOREA: (82) 2-767-1850 (Seoul), SINGAPORE: (6 5) 778 -88 33 , TAIWAN: (88 6) 2-2 725 -5858 (Taipei)
EUROPE: Tel. (44) 1344 296 400
13 Change History
On page 47, the second paragraph was deleted.
Other changes that were made to this document (since revision 4) are listed in Table 13-1.
13.1 Navigating Thro ugh an Adobe Acrobat Docume nt
If the reader displays this document in Acrobat Reader , clicking on any blue entry in the text will bring the reader to that ref-
erence point. Clicking on the back arrow in the toolbar of the Acrobat Read er (Go to previous View) will bring the reader
back to the starting point.
For example, clicking on page 21 in Table 13-1 will bring the reader to page 21 of this document, which is the first change.
Clicking on the back arrow in Acrobat Reader, will bring the reader back to this page.
IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.
Adobe Acrobat and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.
Table 13-1. Changes
Change Change Change Change Change Change Change Change Change Change
page 21 page 24 page 31 page 42 page 45 page 46 page 47 page 48 page 49 page 52