NXP Semiconductors
Data Sheet: Technical Data
Document Number: IMX6DQIEC
Rev. 6, 11/2018
Package Information
FCPBGA Package
21 x 21 mm, 0.8 mm pitch
NXP Reserves the right to change the production detail specifications as may be
required to permit improvements in the design of its products.
Ordering Information
See Table 1
MCIMX6QxCxxxxC
MCIMX6QxCxxxxD
MCIMX6QxCxxxxE
MCIMX6DxCxxxxC
MCIMX6DxCxxxxD
MCIMX6DxCxxxxE
1 Introduction
The i.MX 6Dual/6Quad processors represent the latest
achievement in integrated multimedia applications
processors. These processors are part of a growing
family of multimedia-focused products that offer high
performance processing and are optimized for lowest
power consumption.
The i.MX 6Dual/6Quad processors feature advanced
implementation of the quad Arm®Cortex®-A9 core,
which operates at speeds up to 800 MHz. They include
2D and 3D graphics processors, 1080p video processing,
and integrated power management. Each processor
provides a 64-bit DDR3/DDR3L/LPDDR2-800 memory
interface and a number of other interfaces for connecting
peripherals, such as WLAN, Bluetooth®, GPS, hard
drive, displays, and camera sensors.
i.MX 6Dual/6Quad
Applications Processors for
Industrial Products
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Signal Naming Convention . . . . . . . . . . . . . . . . . . . 7
2 Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Modules List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 Special Signal Considerations. . . . . . . . . . . . . . . . 17
3.2 Recommended Connections for Unused Analog
Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1 Chip-Level Conditions . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Power Supplies Requirements and Restrictions . . 31
4.3 Integrated LDO Voltage Regulator Parameters . . 32
4.4 PLL Electrical Characteristics . . . . . . . . . . . . . . . . 34
4.5 On-Chip Oscillators . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6 I/O DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 36
4.7 I/O AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 41
4.8 Output Buffer Impedance Parameters. . . . . . . . . . 45
4.9 System Modules Timing . . . . . . . . . . . . . . . . . . . . 48
4.10 Multi-Mode DDR Controller (MMDC). . . . . . . . . . . 60
4.11 General-Purpose Media Interface (GPMI) Timing. 60
4.12 External Peripheral Interface Parameters . . . . . . . 69
5 Boot Mode Configuration . . . . . . . . . . . . . . . . . . . . . . . 130
5.1 Boot Mode Configuration Pins. . . . . . . . . . . . . . . 130
5.2 Boot Devices Interfaces Allocation . . . . . . . . . . . 131
6 Package Information and Contact Assignments . . . . . . 133
6.1 Signal Naming Convention . . . . . . . . . . . . . . . . . 133
6.2 21 x 21 mm Package Information . . . . . . . . . . . . 133
7 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
2NXP Semiconductors
Introduction
The i.MX 6Dual/6Quad processors are specifically useful for applications such as the following:
The i.MX 6Dual/6Quad processors offers numerous advanced features, such as:
Multilevel memory system—The multilevel memory system of each processor is based on the L1
instruction and data caches, L2 cache, and internal and external memory. The processors support
many types of external memory devices, including DDR3, DDR3L, LPDDR2, NOR Flash,
PSRAM, cellular RAM, NAND Flash (MLC and SLC), OneNAND™, and managed NAND,
including eMMC up to rev 4.4/4.41.
Smart speed technology—The processors have power management throughout the device that
enables the rich suite of multimedia features and peripherals to consume minimum power in both
active and various low power modes. Smart speed technology enables the designer to deliver a
feature-rich product, requiring levels of power far lower than industry expectations.
Dynamic voltage and frequency scaling—The processors improve the power efficiency of devices
by scaling the voltage and frequency to optimize performance.
Multimedia powerhouse—The multimedia performance of each processor is enhanced by a
multilevel cache system, Neon® MPE (Media Processor Engine) co-processor, a multi-standard
hardware video codec, 2 autonomous and independent image processing units (IPU), and a
programmable smart DMA (SDMA) controller.
Powerful graphics acceleration—Each processor provides three independent, integrated graphics
processing units: an OpenGL® ES 2.0 3D graphics accelerator with four shaders (up to 200 MTri/s
and OpenCL support), 2D graphics accelerator, and dedicated OpenVG™ 1.1 accelerator.
Interface flexibility—Each processor supports connections to a variety of interfaces: LCD
controller for up to four displays (including parallel display, HDMI1.4, MIPI display, and LVDS
display), dual CMOS sensor interface (parallel or through MIPI), high-speed USB on-the-go with
PHY, high-speed USB host with PHY, multiple expansion card ports (high-speed MMC/SDIO host
and other), 10/100/1000 Mbps Gigabit Ethernet controller, and a variety of other popular interfaces
(such as UART, I2C, and I2S serial audio, SATA-II, and PCIe-II).
Advanced security—The processors deliver hardware-enabled security features that enable secure
e-commerce, digital rights management (DRM), information encryption, secure boot, and secure
software downloads. The security features are discussed in detail in the i.MX 6Dual/6Quad
security reference manual (IMX6DQ6SDLSRM).
Integrated power management—The processors integrate linear regulators and internally generate
voltage levels for different domains. This significantly simplifies system power management
structure.
1.1 Ordering Information
Table 1 shows examples of orderable part numbers covered by this data sheet. This table does not include
all possible orderable part numbers. The latest part numbers are available on nxp.com/imx6series. If your
desired part number is not listed in the table, or you have questions about available parts, see
nxp.com/imx6series or contact your NXP representative.
Introduction
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 3
Figure 1 describes the part number nomenclature to identify the characteristics of the specific part number
you have (for example, cores, frequency, temperature grade, fuse options, silicon revision). Figure 1
applies to the i.MX 6Dual/6Quad.
The two characteristics that identify which data sheet a specific part applies to are the part number series
field and the temperature grade (junction) field:
The i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors data sheet
(IMX6DQAEC) covers parts listed with “A (Automotive temp)”
•The
i.MX 6Dual/6Quad
Applications Processors for Consumer Products data sheet (IMX6DQCEC)
covers parts listed with “D (Commercial temp)” or “E (Extended Commercial temp)”
The i.MX 6Dual/6Quad Applications Processors for Industrial Products data sheet (IMX6DQIEC)
covers parts listed with “C (Industrial temp)”
The Ensure that you have the right data sheet for your specific part by checking the temperature grade
(junction) field and matching it to the right data sheet. If you have questions, see nxp.com/imx6series or
contact your NXP representative.
Table 1. Example Orderable Part Numbers
Part Number Quad/Dual CPU Options Speed1
Grade
1If a 24 MHz input clock is used (required for USB), the maximum SoC speed is limited to 792 MHz.
Temperature
Grade Package
MCIMX6Q7CVT08AC i.MX 6Quad Includes VPU, GPU 800 MHz Industrial 21 mm x 21 mm, 0.8 mm
pitch, FCPBGA (lidded)
MCIMX6Q7CVT08AD i.MX 6Quad Includes VPU, GPU 800 MHz Industrial 21 mm x 21 mm, 0.8 mm
pitch, FCPBGA (lidded)
MCIMX6Q7CVT08AE i.MX 6Quad Includes VPU, GPU 800 MHz Industrial 21 mm x 21 mm, 0.8 mm
pitch, FCPBGA (lidded)
MCIMX6D7CVT08AC i.MX 6Dual Includes VPU, GPU 800 MHz Industrial 21 mm x 21 mm, 0.8 mm
pitch, FCPBGA (lidded)
MCIMX6D7CVT08AD i.MX 6Dual Includes VPU, GPU 800 MHz Industrial 21 mm x 21 mm, 0.8 mm
pitch, FCPBGA (lidded)
MCIMX6D7CVT08AE i.MX 6Dual Includes VPU, GPU 800 MHz Industrial 21 mm x 21 mm, 0.8 mm
pitch, FCPBGA (lidded)
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
4NXP Semiconductors
Introduction
Figure 1. Part Number Nomenclature—i.MX 6Quad and i.MX 6Dual
1.2 Features
The i.MX 6Dual/6Quad processors are based on Arm Cortex-A9 MPCore platform, which has the
following features:
Arm Cortex-A9 MPCore 4xCPU processor (with TrustZone®)
The core configuration is symmetric, where each core includes:
32 KByte L1 Instruction Cache
32 KByte L1 Data Cache
Private Timer and Watchdog
Cortex-A9 NEON MPE (Media Processing Engine) Co-processor
The Arm Cortex-A9 MPCore complex includes:
General Interrupt Controller (GIC) with 128 interrupt support
Global Timer
Snoop Control Unit (SCU)
1 MB unified I/D L2 cache, shared by two/four cores
Two Master AXI (64-bit) bus interfaces output of L2 cache
Part differentiator @
Industrial with VPU, GPU, no MLB 7
Automotive with VPU, GPU 6
Consumer with VPU, GPU 5
Automotive with GPU, no VPU 4
Temperature Tj +
Extended commercial: -20 to +105°CE
Industrial: -40 to +105°CC
Automotive: -40 to +125°CA
Frequency $$
800 MHz2(Industrial grade) 08
852 MHz (Automotive grade) 08
1 GHz310
1.2 GHz 12
Package type RoHS
FCPBGA 21x21 0.8mm (lidded) VT
FCPBGA 21x21 0.8mm (non lidded) YM
Qualification level MC
Prototype Samples PC
Mass Production MC
Special SC
Part # series X
i.MX 6Quad Q
i.MX 6Dual D
Silicon revision1A
Rev 1.2 C
Rev 1.3 D
Rev 1.6 E
Fusing %
Default setting A
HDCP enabled C
MC IMX6 X@+VV $$ %A
1. See the nxp.com\imx6series Web page for latest information on the available silicon revision.
2. If a 24 MHz input clock is used (required for USB), the maximum SoC speed is limited to 792 MHz.
3. If a 24 MHz input clock is used (required for USB), the maximum SoC speed is limited to 996 MHz.
Introduction
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 5
Frequency of the core (including Neon and L1 cache) as per Table 6.
NEON MPE coprocessor
SIMD Media Processing Architecture
NEON register file with 32x64-bit general-purpose registers
NEON Integer execute pipeline (ALU, Shift, MAC)
NEON dual, single-precision floating point execute pipeline (FADD, FMUL)
NEON load/store and permute pipeline
The SoC-level memory system consists of the following additional components:
Boot ROM, including HAB (96 KB)
Internal multimedia / shared, fast access RAM (OCRAM, 256 KB)
Secure/non-secure RAM (16 KB)
External memory interfaces:
16-bit, 32-bit, and 64-bit DDR3-1066, DDR3L-1066, and 1/2 LPDDR2-800 channels,
supporting DDR interleaving mode, for dual x32 LPDDR2
8-bit NAND-Flash, including support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size,
BA-NAND, PBA-NAND, LBA-NAND, OneNAND™ and others. BCH ECC up to 40 bit.
16/32-bit NOR Flash. All EIMv2 pins are muxed on other interfaces.
16/32-bit PSRAM, Cellular RAM
Each i.MX 6Dual/6Quad processor enables the following interfaces to external devices (some of them are
muxed and not available simultaneously):
Hard Disk Drives—SATA II, 3.0 Gbps
Displays—Total five interfaces available. Total raw pixel rate of all interfaces is up to 450
Mpixels/sec, 24 bpp. Up to four interfaces may be active in parallel.
One Parallel 24-bit display port, up to 225 Mpixels/sec (for example, WUXGA at 60 Hz or dual
HD1080 and WXGA at 60 Hz)
LVDS serial ports—One port up to 170 Mpixels/sec (for example, WUXGA at 60 Hz) or two
ports up to 85 MP/sec each
HDMI 1.4 port
MIPI/DSI, two lanes at 1 Gbps
Camera sensors:
Parallel Camera port (up to 20 bit and up to 240 MHz peak)
MIPI CSI-2 serial camera port, supporting up to 1000 Mbps/lane in 1/2/3-lane mode and up to
800 Mbps/lane in 4-lane mode. The CSI-2 Receiver core can manage one clock lane and up to
four data lanes. Each i.MX 6Dual/6Quad processor has four lanes.
Expansion cards:
Four MMC/SD/SDIO card ports all supporting:
1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR-104
mode (104 MB/s max)
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
6NXP Semiconductors
Introduction
1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR
and DDR modes (104 MB/s max)
•USB:
One High Speed (HS) USB 2.0 OTG (Up to 480 Mbps), with integrated HS USB PHY
Three USB 2.0 (480 Mbps) hosts:
One HS host with integrated High Speed PHY
Two HS hosts with integrated High Speed Inter-Chip (HS-IC) USB PHY
Expansion PCI Express port (PCIe) v2.0 one lane
PCI Express (Gen 2.0) dual mode complex, supporting Root complex operations and Endpoint
operations. Uses x1 PHY configuration.
Miscellaneous IPs and interfaces:
SSI block capable of supporting audio sample frequencies up to 192 kHz stereo inputs and
outputs with I2S mode
ESAI is capable of supporting audio sample frequencies up to 260 kHz in I2S mode with
7.1 multi channel outputs
Five UARTs, up to 5.0 Mbps each:
Providing RS232 interface
Supporting 9-bit RS485 multidrop mode
One of the five UARTs (UART1) supports 8-wire while the other four support 4-wire. This
is due to the SoC IOMUX limitation, because all UART IPs are identical.
Five eCSPI (Enhanced CSPI)
Three I2C, supporting 400 kbps
Gigabit Ethernet Controller (IEEE1588 compliant), 10/100/10001 Mbps
Four Pulse Width Modulators (PWM)
System JTAG Controller (SJC)
GPIO with interrupt capabilities
8x8 Key Pad Port (KPP)
Sony Philips Digital Interconnect Format (SPDIF), Rx and Tx
Two Controller Area Network (FlexCAN), 1 Mbps each
Two Watchdog timers (WDOG)
Audio MUX (AUDMUX)
The i.MX 6Dual/6Quad processors integrate advanced power management unit and controllers:
Provide PMU, including LDO supplies, for on-chip resources
Use Temperature Sensor for monitoring the die temperature
Support DVFS techniques for low power modes
Use Software State Retention and Power Gating for Arm and MPE
1. The theoretical maximum performance of 1 Gbps ENET is limited to 470 Mbps (total for Tx and Rx) due to internal bus
throughput limitations. The actual measured performance in optimized environment is up to 400 Mbps. For details, see the
ERR004512 erratum in the i.MX 6Dual/6Quad errata document (IMX6DQCE).
Introduction
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 7
Support various levels of system power modes
Use flexible clock gating control scheme
The i.MX 6Dual/6Quad processors use dedicated hardware accelerators to meet the targeted multimedia
performance. The use of hardware accelerators is a key factor in obtaining high performance at low power
consumption numbers, while having the CPU core relatively free for performing other tasks.
The i.MX 6Dual/6Quad processors incorporate the following hardware accelerators:
VPU—Video Processing Unit
IPUv3H—Image Processing Unit version 3H (2 IPUs)
GPU3Dv4—3D Graphics Processing Unit (OpenGL ES 2.0) version 4
GPU2Dv2—2D Graphics Processing Unit (BitBlt) version 2
GPUVG—OpenVG 1.1 Graphics Processing Unit
ASRC—Asynchronous Sample Rate Converter
Security functions are enabled and accelerated by the following hardware:
Arm TrustZone including the TZ architecture (separation of interrupts, memory mapping, etc.)
SJC—System JTAG Controller. Protecting JTAG from debug port attacks by regulating or blocking
the access to the system debug features.
CAAM—Cryptographic Acceleration and Assurance Module, containing 16 KB secure RAM and
True and Pseudo Random Number Generator (NIST certified)
SNVS—Secure Non-Volatile Storage, including Secure Real Time Clock
CSU—Central Security Unit. Enhancement for the IC Identification Module (IIM). Will be
configured during boot and by eFUSEs and will determine the security level operation mode as
well as the TZ policy.
A-HAB—Advanced High Assurance Boot—HABv4 with the new embedded enhancements:
SHA-256, 2048-bit RSA key, version control mechanism, warm boot, CSU, and TZ initialization.
1.3 Signal Naming Convention
Throughout this document, the updated signal names are used except where referenced as a ball name
(such as the Functional Contact Assignments table, Ball Map table, and so on). A master list of the signal
name changes is in the document, IMX 6 Series Standardized Signal Name Map (EB792). This list can be
used to map the signal names used in older documentation to the new standardized naming conventions.
The signal names of the i.MX6 series of products are standardized to align the signal names within the
family and across the documentation. Benefits of this standardization are as follows:
Signal names are unique within the scope of an SoC and within the series of products
Searches will return all occurrences of the named signal
Signal names are consistent between i.MX 6 series products implementing the same modules
The module instance is incorporated into the signal name
This standardization applies only to signal names. The ball names are preserved to prevent the need to
change schematics, BSDL models, IBIS models, and so on.
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
8NXP Semiconductors
Architectural Overview
2 Architectural Overview
The following subsections provide an architectural overview of the i.MX 6Dual/6Quad processor system.
2.1 Block Diagram
Figure 2 shows the functional modules in the i.MX 6Dual/6Quad processor system.
Figure 2. i.MX 6Dual/6Quad Industrial Grade System Block Diagram
NOTE
The numbers in brackets indicate number of module instances. For example,
PWM (4) indicates four separate PWM peripherals.
Industrial
Standard
Block Diagram
Application Processor
Smart DMA
(SDMA)
Shared Peripherals
AP Peripherals
ARM Cortex A9
SSI (3) eCSPI (5)
MPCore Platform
Timers/Control
GPT
PWM (4)
EPIT (2)
GPIO
WDOG (2)
I
2
C(3)
IOMUXC
OCOTP
AUDMUX
KPP
Boot
ROM
CSU
Fuse Box
Debug
DAP
TPIU
CAAM
(16KB Ram)
Security
USB OTG +
3 HS Ports
CTIs
Internal
Host PHY2
OTG PHY1
ESAI
External
Memory
RAM
(272KB)
LDB
1 / 2 LCD
Displays
Domain (AP)
SJC 1MB L2 cache
SCU, Timer
WLAN USB OTG
JTAG
(IEEE1149.6)
Bluetooth
MMC/SD
eMMC/eSD
SATA II
3.0Gbps
GPS
Audio,
Power
Mngmnt
.
SPBA
CAN(2)
Digital
Audio
5xFast-UART
SPDIF Rx/Tx
Video
Proc. Unit
(VPU + Cache)
3D Graphics
Proc. Unit
(GPU3D)
AXI and AHB Switch Fabric
1 / 2 LVDS
(WUXGA+)
Battery Ctrl
Device
NOR Flash
PSRAM
LPDDR2 (400MHz)
DDR3 (532MHz)
1-Gbps ENET
4x Camera
Parallel/MIPI
(96KB)
Clock and Reset
PLL (8)
CCM
GPC
SRC
XTALOSC
OSC32K
PTM’s CTI’s
HDMI 1.4
Display
GPMI
HSI/MIPI
MIPI
Display
DSI/MIPICSI2/MIPI HDMI
2xHSIC
PHY
PCIe Bus
ASRC SNVS
(SRTC)
uSDHC (4)
Modem IC
2D Graphics
Proc. Unit
(GPU2D)
MMC/SD
SDXC
Raw/ONFI 2.2
Nand-Flash
MMDC
EIM
Keypad
A9-Core
L1 I/D Cache
Timer, Wdog
4x
Crystals
& Clock sources
Image Processing
Subsystem
2x IPUv3H
Temp Monitor
OpenVG 1.1
Proc.
Unit
(GPU
VG)
Mbps
10/100/1000
Ethernet
(dev/host)
Interface
2xCAN
Interface
Modules List
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 9
3 Modules List
The i.MX 6Dual/6Quad processors contain a variety of digital and analog modules. Table 2 describes these
modules in alphabetical order.
Table 2. i.MX 6Dual/6Quad Modules List
Block
Mnemonic Block Name Subsystem Brief Description
512 x 8 Fuse
Box
Electrical Fuse Array Security Electrical Fuse Array. Enables to setup Boot Modes, Security Levels,
Security Keys, and many other system parameters.
The i.MX 6Dual/6Quad processors consist of 512x8-bit fuse box
accessible through OCOTP_CTRL interface.
APBH-DMA NAND Flash and
BCH ECC DMA
Controller
System
Control
Peripherals
DMA controller used for GPMI2 operation.
Arm Arm Platform Arm The Arm Cortex-A9 platform consists of 4x (four) Cortex-A9 cores version
r2p10 and associated sub-blocks, including Level 2 Cache Controller,
SCU (Snoop Control Unit), GIC (General Interrupt Controller), private
timers, Watchdog, and CoreSight debug modules.
ASRC Asynchronous
Sample Rate
Converter
Multimedia
Peripherals
The Asynchronous Sample Rate Converter (ASRC) converts the
sampling rate of a signal associated to an input clock into a signal
associated to a different output clock. The ASRC supports concurrent
sample rate conversion of up to 10 channels of about -120dB THD+N. The
sample rate conversion of each channel is associated to a pair of
incoming and outgoing sampling rates. The ASRC supports up to three
sampling rate pairs.
AUDMUX Digital Audio Mux Multimedia
Peripherals
The AUDMUX is a programmable interconnect for voice, audio, and
synchronous data routing between host serial interfaces (for example,
SSI1, SSI2, and SSI3) and peripheral serial interfaces (audio and voice
codecs). The AUDMUX has seven ports with identical functionality and
programming models. A desired connectivity is achieved by configuring
two or more AUDMUX ports.
BCH40 Binary-BCH ECC
Processor
System
Control
Peripherals
The BCH40 module provides up to 40-bit ECC error correction for NAND
Flash controller (GPMI).
CAAM Cryptographic
Accelerator and
Assurance Module
Security CAAM is a cryptographic accelerator and assurance module. CAAM
implements several encryption and hashing functions, a run-time integrity
checker, and a Pseudo Random Number Generator (PRNG). The pseudo
random number generator is certified by Cryptographic Algorithm
Validation Program (CAVP) of National Institute of Standards and
Technology (NIST). Its DRBG validation number is 94 and its SHS
validation number is 1455.
CAAM also implements a Secure Memory mechanism. In i.MX
6Dual/6Quad processors, the security memory provided is 16 KB.
CCM
GPC
SRC
Clock Control
Module, General
Power Controller,
System Reset
Controller
Clocks,
Resets, and
Power Control
These modules are responsible for clock and reset distribution in the
system, and also for the system power management.
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
10 NXP Semiconductors
Modules List
CSI MIPI CSI-2 Interface Multimedia
Peripherals
The CSI IP provides MIPI CSI-2 standard camera interface port. The
CSI-2 interface supports up to 1 Gbps for up to 3 data lanes and up to 800
Mbps for 4 data lanes.
CSU Central Security Unit Security The Central Security Unit (CSU) is responsible for setting comprehensive
security policy within the i.MX 6Dual/6Quad platform. The Security
Control Registers (SCR) of the CSU are set during boot time by the HAB
and are locked to prevent further writing.
CTI-0
CTI-1
CTI-2
CTI-3
CTI-4
Cross Trigger
Interfaces
Debug / Trace Cross Trigger Interfaces allows cross-triggering based on inputs from
masters attached to CTIs. The CTI module is internal to the Cortex-A9
Core Platform.
CTM Cross Trigger Matrix Debug / Trace Cross Trigger Matrix IP is used to route triggering events between CTIs.
The CTM module is internal to the Cortex-A9 Core Platform.
DAP Debug Access Port System
Control
Peripherals
The DAP provides real-time access for the debugger without halting the
core to:
System memory and peripheral registers
All debug configuration registers
The DAP also provides debugger access to JTAG scan chains. The DAP
module is internal to the Cortex-A9 Core Platform.
DCIC-0
DCIC-1
Display Content
Integrity Checker
Automotive IP The DCIC provides integrity check on portion(s) of the display. Each i.MX
6Dual/6Quad processor has two such modules, one for each IPU.
DSI MIPI DSI interface Multimedia
Peripherals
The MIPI DSI IP provides DSI standard display port interface. The DSI
interface support 80 Mbps to 1 Gbps speed per data lane.
eCSPI1-5 Configurable SPI Connectivity
Peripherals
Full-duplex enhanced Synchronous Serial Interface. It is configurable to
support Master/Slave modes, four chip selects to support multiple
peripherals.
ENET Ethernet Controller Connectivity
Peripherals
The Ethernet Media Access Controller (MAC) is designed to support
10/100/1000 Mbps Ethernet/IEEE 802.3 networks. An external
transceiver interface and transceiver function are required to complete the
interface to the media. The i.MX 6Dual/6Quad processors also consist of
hardware assist for IEEE 1588 standard. For details, see the ENET
chapter of the i.MX 6Dual/6Quad reference manual (IMX6DQRM).
Note: The theoretical maximum performance of 1 Gbps ENET is limited
to 470 Mbps (total for Tx and Rx) due to internal bus throughput
limitations. The actual measured performance in optimized environment
is up to 400 Mbps. For details, see the ERR004512 erratum in the i.MX
6Dual/6Quad errata document (IMX6DQCE).
EPIT-1
EPIT-2
Enhanced Periodic
Interrupt Timer
Timer
Peripherals
Each EPIT is a 32-bit “set and forget” timer that starts counting after the
EPIT is enabled by software. It is capable of providing precise interrupts
at regular intervals with minimal processor intervention. It has a 12-bit
prescaler for division of input clock frequency to get the required time
setting for the interrupts to occur, and counter value can be programmed
on the fly.
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic Block Name Subsystem Brief Description
Modules List
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 11
ESAI Enhanced Serial
Audio Interface
Connectivity
Peripherals
The Enhanced Serial Audio Interface (ESAI) provides a full-duplex serial
port for serial communication with a variety of serial devices, including
industry-standard codecs, SPDIF transceivers, and other processors.
The ESAI consists of independent transmitter and receiver sections, each
section with its own clock generator. All serial transfers are synchronized
to a clock. Additional synchronization signals are used to delineate the
word frames. The normal mode of operation is used to transfer data at a
periodic rate, one word per period. The network mode is also intended for
periodic transfers; however, it supports up to 32 words (time slots) per
period. This mode can be used to build time division multiplexed (TDM)
networks. In contrast, the on-demand mode is intended for non-periodic
transfers of data and to transfer data serially at high speed when the data
becomes available.
The ESAI has 12 pins for data and clocking connection to external
devices.
FlexCAN-1
FlexCAN-2
Flexible Controller
Area Network
Connectivity
Peripherals
The CAN protocol was primarily, but not only, designed to be used as a
vehicle serial data bus, meeting the specific requirements of this field:
real-time processing, reliable operation in the Electromagnetic
interference (EMI) environment of a vehicle, cost-effectiveness and
required bandwidth. The FlexCAN module is a full implementation of the
CAN protocol specification, Version 2.0 B, which supports both standard
and extended message frames.
GPIO-1
GPIO-2
GPIO-3
GPIO-4
GPIO-5
GPIO-6
GPIO-7
General Purpose I/O
Modules
System
Control
Peripherals
Used for general purpose input/output to external devices. Each GPIO
module supports 32 bits of I/O.
GPMI General Purpose
Media Interface
Connectivity
Peripherals
The GPMI module supports up to 8x NAND devices. 40-bit ECC error
correction for NAND Flash controller (GPMI2). The GPMI supports
separate DMA channels per NAND device.
GPT General Purpose
Timer
Timer
Peripherals
Each GPT is a 32-bit “free-running” or “set and forget” mode timer with
programmable prescaler and compare and capture register. A timer
counter value can be captured using an external event and can be
configured to trigger a capture event on either the leading or trailing edges
of an input pulse. When the timer is configured to operate in “set and
forget” mode, it is capable of providing precise interrupts at regular
intervals with minimal processor intervention. The counter has output
compare logic to provide the status and interrupt at comparison. This
timer can be configured to run either on an external clock or on an internal
clock.
GPU2Dv2 Graphics Processing
Unit-2D, ver. 2
Multimedia
Peripherals
The GPU2Dv2 provides hardware acceleration for 2D graphics
algorithms, such as Bit BLT, stretch BLT, and many other 2D functions.
GPU3Dv4 Graphics Processing
Unit-3D, ver. 4
Multimedia
Peripherals
The GPU2Dv4 provides hardware acceleration for 3D graphics algorithms
with sufficient processor power to run desktop quality interactive graphics
applications on displays up to HD1080 resolution. The GPU3D provides
OpenGL ES 2.0, including extensions, OpenGL ES 1.1, and OpenVG 1.1
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic Block Name Subsystem Brief Description
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
12 NXP Semiconductors
Modules List
GPUVGv2 Vector Graphics
Processing Unit,
ver. 2
Multimedia
Peripherals
OpenVG graphics accelerator provides OpenVG 1.1 support as well as
other accelerations, including Real-time hardware curve tesselation of
lines, quadratic and cubic Bezier curves, 16x Line Anti-aliasing, and
various Vector Drawing functions.
HDMI Tx HDMI Tx interface Multimedia
Peripherals
The HDMI module provides HDMI standard interface port to an HDMI 1.4
compliant display.
HSI MIPI HSI interface Connectivity
Peripherals
The MIPI HSI provides a standard MIPI interface to the applications
processor.
I2C-1
I2C-2
I2C-3
I2C Interface Connectivity
Peripherals
I2C provide serial interface for external devices. Data rates of up to 400
kbps are supported.
IOMUXC IOMUX Control System
Control
Peripherals
This module enables flexible IO multiplexing. Each IO pad has default and
several alternate functions. The alternate functions are software
configurable.
IPUv3H-1
IPUv3H-2
Image Processing
Unit, ver. 3H
Multimedia
Peripherals
IPUv3H enables connectivity to displays and video sources, relevant
processing and synchronization and control capabilities, allowing
autonomous operation.
The IPUv3H supports concurrent output to two display ports and
concurrent input from two camera ports, through the following interfaces:
Parallel Interfaces for both display and camera
Single/dual channel LVDS display interface
HDMI transmitter
MIPI/DSI transmitter
MIPI/CSI-2 receiver
The processing includes:
Image conversions: resizing, rotation, inversion, and color space
conversion
A high-quality de-interlacing filter
Video/graphics combining
Image enhancement: color adjustment and gamut mapping, gamma
correction, and contrast enhancement
Support for display backlight reduction
KPP Key Pad Port Connectivity
Peripherals
KPP Supports 8 x 8 external key pad matrix. KPP features are:
Open drain design
Glitch suppression circuit design
Multiple keys detection
Standby key press detection
LDB LVDS Display Bridge Connectivity
Peripherals
LVDS Display Bridge is used to connect the IPU (Image Processing Unit)
to External LVDS Display Interface. LDB supports two channels; each
channel has following signals:
One clock pair
Four data pairs
Each signal pair contains LVDS special differential pad (PadP, PadM).
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic Block Name Subsystem Brief Description
Modules List
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 13
MMDC Multi-Mode DDR
Controller
Connectivity
Peripherals
DDR Controller has the following features:
Supports 16/32/64-bit DDR3 / DDR3L or LPDDR2
Supports both dual x32 for LPDDR2 and x64 DDR3 / LPDDR2
configurations (including 2x32 interleaved mode)
Supports up to 4 GByte DDR memory space
OCOTP_CTRL OTP Controller Security The On-Chip OTP controller (OCOTP_CTRL) provides an interface for
reading, programming, and/or overriding identification and control
information stored in on-chip fuse elements. The module supports
electrically-programmable poly fuses (eFUSEs). The OCOTP_CTRL also
provides a set of volatile software-accessible signals that can be used for
software control of hardware elements, not requiring non-volatility. The
OCOTP_CTRL provides the primary user-visible mechanism for
interfacing with on-chip fuse elements. Among the uses for the fuses are
unique chip identifiers, mask revision numbers, cryptographic keys, JTAG
secure mode, boot characteristics, and various control signals, requiring
permanent non-volatility.
OCRAM On-Chip Memory
Controller
Data Path The On-Chip Memory controller (OCRAM) module is designed as an
interface between system’s AXI bus and internal (on-chip) SRAM memory
module.
In i.MX 6Dual/6Quad processors, the OCRAM is used for controlling the
256 KB multimedia RAM through a 64-bit AXI bus.
OSC 32 kHz OSC 32 kHz Clocking Generates 32.768 kHz clock from an external crystal.
PCIe PCI Express 2.0 Connectivity
Peripherals
The PCIe IP provides PCI Express Gen 2.0 functionality.
PMU Power-Management
Functions
Data Path Integrated power management unit. Used to provide power to various
SoC domains.
PWM-1
PWM-2
PWM-3
PWM-4
Pulse Width
Modulation
Connectivity
Peripherals
The pulse-width modulator (PWM) has a 16-bit counter and is optimized
to generate sound from stored sample audio images and it can also
generate tones. It uses 16-bit resolution and a 4x16 data FIFO to generate
sound.
RAM
16 KB
Secure/non-secure
RAM
Secured
Internal
Memory
Secure/non-secure Internal RAM, interfaced through the CAAM.
RAM
256 KB
Internal RAM Internal
Memory
Internal RAM, which is accessed through OCRAM memory controllers.
ROM
96 KB
Boot ROM Internal
Memory
Supports secure and regular Boot Modes. Includes read protection on 4K
region for content protection
ROMCP ROM Controller with
Patch
Data Path ROM Controller with ROM Patch support
SATA Serial ATA Connectivity
Peripherals
The SATA controller and PHY is a complete mixed-signal IP solution
designed to implement SATA II, 3.0 Gbps HDD connectivity.
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic Block Name Subsystem Brief Description
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
14 NXP Semiconductors
Modules List
SDMA Smart Direct Memory
Access
System
Control
Peripherals
The SDMA is multi-channel flexible DMA engine. It helps in maximizing
system performance by off-loading the various cores in dynamic data
routing. It has the following features:
Powered by a 16-bit Instruction-Set micro-RISC engine
Multi-channel DMA supporting up to 32 time-division multiplexed DMA
channels
48 events with total flexibility to trigger any combination of channels
Memory accesses including linear, FIFO, and 2D addressing
Shared peripherals between Arm and SDMA
Very fast context-switching with 2-level priority based preemptive
multi-tasking
DMA units with auto-flush and prefetch capability
Flexible address management for DMA transfers (increment,
decrement, and no address changes on source and destination
address)
DMA ports can handle unit-directional and bi-directional flows (copy
mode)
Up to 8-word buffer for configurable burst transfers
Support of byte-swapping and CRC calculations
Library of Scripts and API is available
SJC System JTAG
Controller
System
Control
Peripherals
The SJC provides JTAG interface, which complies with JTAG TAP
standards, to internal logic. The i.MX 6Dual/6Quad processors use JTAG
port for production, testing, and system debugging. In addition, the SJC
provides BSR (Boundary Scan Register) standard support, which
complies with IEEE1149.1 and IEEE1149.6 standards.
The JTAG port must be accessible during platform initial laboratory
bring-up, for manufacturing tests and troubleshooting, as well as for
software debugging by authorized entities. The i.MX 6Dual/6Quad SJC
incorporates three security modes for protecting against unauthorized
accesses. Modes are selected through eFUSE configuration.
SNVS Secure Non-Volatile
Storage
Security Secure Non-Volatile Storage, including Secure Real Time Clock, Security
State Machine, Master Key Control, and Violation/Tamper Detection and
reporting.
SPDIF Sony Philips Digital
Interconnect Format
Multimedia
Peripherals
A standard audio file transfer format, developed jointly by the Sony and
Phillips corporations. It supports Transmitter and Receiver functionality.
SSI-1
SSI-2
SSI-3
I2S/SSI/AC97
Interface
Connectivity
Peripherals
The SSI is a full-duplex synchronous interface, which is used on the
processor to provide connectivity with off-chip audio peripherals. The SSI
supports a wide variety of protocols (SSI normal, SSI network, I2S, and
AC-97), bit depths (up to 24 bits per word), and clock / frame sync options.
The SSI has two pairs of 8x24 FIFOs and hardware support for an
external DMA controller to minimize its impact on system performance.
The second pair of FIFOs provides hardware interleaving of a second
audio stream that reduces CPU overhead in use cases where two time
slots are being used simultaneously.
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic Block Name Subsystem Brief Description
Modules List
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 15
TEMPMON Temperature Monitor System
Control
Peripherals
The temperature monitor/sensor IP module for detecting high temperature
conditions. The temperature read out does not reflect case or ambient
temperature. It reflects the temperature in proximity of the sensor location
on the die. Temperature distribution may not be uniformly distributed;
therefore, the read out value may not be the reflection of the temperature
value for the entire die.
TZASC Trust-Zone Address
Space Controller
Security The TZASC (TZC-380 by Arm) provides security address region control
functions required for intended application. It is used on the path to the
DRAM controller.
UART-1
UART-2
UART-3
UART-4
UART-5
UART Interface Connectivity
Peripherals
Each of the UARTv2 modules support the following serial data
transmit/receive protocols and configurations:
7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd
or none)
Programmable baud rates up to 5 MHz
32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting auto-baud
IrDA 1.0 support (up to SIR speed of 115200 bps)
Option to operate as 8-pins full UART, DCE, or DTE
USBOH3A USB 2.0 High Speed
OTG and 3x HS
Hosts
Connectivity
Peripherals
USBOH3 contains:
One high-speed OTG module with integrated HS USB PHY
One high-speed Host module with integrated HS USB PHY
Two identical high-speed Host modules connected to HSIC USB ports.
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic Block Name Subsystem Brief Description
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
16 NXP Semiconductors
Modules List
uSDHC-1
uSDHC-2
uSDHC-2
uSDHC-4
SD/MMC and SDXC
Enhanced
Multi-Media Card /
Secure Digital Host
Controller
Connectivity
Peripherals
i.MX 6Dual/6Quad specific SoC characteristics:
All four MMC/SD/SDIO controller IPs are identical and are based on the
uSDHC IP. They are:
Conforms to the SD Host Controller Standard Specification version 3.0
Fully compliant with MMC command/response sets and Physical Layer
as defined in the Multimedia Card System Specification,
v4.2/4.3/4.4/4.41 including high-capacity (size > 2 GB) cards HC MMC.
Hardware reset as specified for eMMC cards is supported at ports #3
and #4 only.
Fully compliant with SD command/response sets and Physical Layer
as defined in the SD Memory Card Specifications, v3.0 including
high-capacity SDHC cards up to 32 GB and SDXC cards up to 2TB.
Fully compliant with SDIO command/response sets and
interrupt/read-wait mode as defined in the SDIO Card Specification,
Part E1, v1.10
Fully compliant with SD Card Specification, Part A2, SD Host
Controller Standard Specification, v2.00
All four ports support:
1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to
UHS-I SDR104 mode (104 MB/s max)
1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52
MHz in both SDR and DDR modes (104 MB/s max)
However, the SoC-level integration and I/O muxing logic restrict the
functionality to the following:
Instances #1 and #2 are primarily intended to serve as external slots or
interfaces to on-board SDIO devices. These ports are equipped with
“Card Detection” and “Write Protection” pads and do not support
hardware reset.
Instances #3 and #4 are primarily intended to serve interfaces to
embedded MMC memory or interfaces to on-board SDIO devices.
These ports do not have “Card detection” and “Write Protection” pads
and do support hardware reset.
All ports can work with 1.8 V and 3.3 V cards. There are two completely
independent I/O power domains for Ports #1 and #2 in four bit
configuration (SD interface). Port #3 is placed in his own independent
power domain and port #4 shares power domain with some other
interfaces.
VDOA VDOA Multimedia
Peripherals
The Video Data Order Adapter (VDOA) is used to re-order video data from
the “tiled” order used by the VPU to the conventional raster-scan order
needed by the IPU.
VPU Video Processing
Unit
Multimedia
Peripherals
A high-performing video processing unit (VPU), which covers many
SD-level and HD-level video decoders and SD-level encoders as a
multi-standard video codec engine as well as several important video
processing, such as rotation and mirroring.
See the i.MX 6Dual/6Quad reference manual (IMX6DQRM) for complete
list of VPU’s decoding/encoding capabilities.
WDOG-1 Watchdog Timer
Peripherals
The Watchdog Timer supports two comparison points during each
counting period. Each of the comparison points is configurable to evoke
an interrupt to the Arm core, and a second point evokes an external event
on the WDOG line.
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic Block Name Subsystem Brief Description
Modules List
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 17
3.1 Special Signal Considerations
The package contact assignments can be found in Section 6, “Package Information and Contact
Assignments.” Signal descriptions are defined in the i.MX 6Dual/6Quad reference manual (IMX6DQRM).
Special signal consideration information is contained in the Hardware Development Guide for i.MX
6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).
3.2 Recommended Connections for Unused Analog Interfaces
The recommended connections for unused analog interfaces can be found in the section, “Unused analog
interfaces,” of the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of
Applications Processors (IMX6DQ6SDLHDG).
WDOG-2
(TZ)
Watchdog
(TrustZone)
Timer
Peripherals
The TrustZone Watchdog (TZ WDOG) timer module protects against
TrustZone starvation by providing a method of escaping normal mode and
forcing a switch to the TZ mode. TZ starvation is a situation where the
normal OS prevents switching to the TZ mode. Such a situation is
undesirable as it can compromise the system’s security. Once the TZ
WDOG module is activated, it must be serviced by TZ software on a
periodic basis. If servicing does not take place, the timer times out. Upon
a time-out, the TZ WDOG asserts a TZ mapped interrupt that forces
switching to the TZ mode. If it is still not served, the TZ WDOG asserts a
security violation signal to the CSU. The TZ WDOG module cannot be
programmed or deactivated by a normal mode Software.
EIM NOR-Flash /PSRAM
interface
Connectivity
Peripherals
The EIM NOR-FLASH / PSRAM provides:
Support 16-bit (in muxed IO mode only) PSRAM memories (sync and
async operating modes), at slow frequency
Support 16-bit (in muxed IO mode only) NOR-Flash memories, at slow
frequency
Multiple chip selects
XTALOSC Crystal Oscillator
interface
The XTALOSC module enables connectivity to external crystal oscillator
device. In a typical application use-case, it is used for 24 MHz oscillator.
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic Block Name Subsystem Brief Description
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
18 NXP Semiconductors
Electrical Characteristics
4 Electrical Characteristics
This section provides the device and module-level electrical characteristics for the i.MX 6Dual/6Quad
processors.
4.1 Chip-Level Conditions
This section provides the device-level electrical characteristics for the SoC. See Table 3 for a quick
reference to the individual tables and sections.
4.1.1 Absolute Maximum Ratings
CAUTION
Stresses beyond those listed under Table 4 may affect reliability or cause
permanent damage to the device. These are stress ratings only. Functional
operation of the device at these or any other conditions beyond those
indicated in the Operating Ranges or Parameters tables is not implied.
Table 3. i.MX 6Dual/6Quad Chip-Level Conditions
For these characteristics, Topic appears …
Absolute Maximum Ratings on page 19
FCPBGA Package Thermal Resistance on page 20
Operating Ranges on page 21
External Clock Sources on page 23
Maximum Measured Supply Currents on page 25
Low Power Mode Supply Currents on page 26
USB PHY Current Consumption on page 28
SATA Typical Power Consumption on page 28
PCIe 2.0 Maximum Power Consumption on page 29
HDMI Maximum Power Consumption on page 30
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 19
Table 4. Absolute Maximum Ratings
Parameter Description Symbol Min Max Unit
Core supply input voltage (LDO enabled) VDD_ARM_IN
VDD_ARM23_IN
VDD_SOC_IN
-0.3 1.6 V
Core supply input voltage (LDO bypass) VDD_ARM_IN
VDD_ARM23_IN
VDD_SOC_IN
-0.3 1.4 V
Core supply output voltage (LDO enabled) VDD_ARM_CAP
VDD_SOC_CAP
VDD_PU_CAP
NVCC_PLL_OUT
-0.3 1.4 V
VDD_HIGH_IN supply voltage VDD_HIGH_IN -0.3 3.7 V
DDR I/O supply voltage NVCC_DRAM -0.4 1.975 (See note 1)
1The absolute maximum voltage includes an allowance for 400 mV of overshoot on the IO pins. Per JEDEC standards, the
allowed signal overshoot must be derated if NVCC_DRAM exceeds 1.575V.
V
GPIO I/O supply voltage NVCC_CSI
NVCC_EIM
NVCC_ENET
NVCC_GPIO
NVCC_LCD
NVCC_NAND
NVCC_SD
NVCC_JTAG
-0.5 3.7 V
HDMI, PCIe, and SATA PHY high (VPH) supply voltage HDMI_VPH
PCIE_VPH
SATA_VPH
-0.3 2.85 V
HDMI, PCIe, and SATA PHY low (VP) supply voltage HDMI_VP
PCIE_VP
SATA_VP
-0.3 1.4 V
LVDS and MIPI I/O supply voltage (2.5V supply) NVCC_LVDS_2P5
NVCC_MIPI -0.3 2.85 V
PCIe PHY supply voltage PCIE_VPTX -0.3 1.4 V
RGMII I/O supply voltage NVCC_RGMII -0.5 2.725 V
SNVS IN supply voltage
(Secure Non-Volatile Storage and Real Time Clock)
VDD_SNVS_IN -0.3 3.4 V
USB I/O supply voltage USB_H1_DN
USB_H1_DP
USB_OTG_DN
USB_OTG_DP
USB_OTG_CHD_B
-0.3 3.73 V
USB VBUS supply voltage USB_H1_VBUS
USB_OTG_VBUS —5.35 V
Vin/Vout input/output voltage range (non-DDR pins) Vin/Vout -0.5 OVDD+0.3 (See note 2)
2OVDD is the I/O supply voltage.
V
Vin/Vout input/output voltage range (DDR pins) Vin/Vout -0.5 OVDD+0.4 (See notes1&2) V
ESD immunity (HBM) Vesd_HBM —2000 V
ESD immunity (CDM) Vesd_CDM 500 V
Storage temperature range Tstorage -40 150 °C
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
20 NXP Semiconductors
Electrical Characteristics
4.1.2 Thermal Resistance
NOTE
Per JEDEC JESD51-2, the intent of thermal resistance measurements is
solely for a thermal performance comparison of one package to another in a
standardized environment. This methodology is not meant to and will not
predict the performance of a package in an application-specific
environment.
4.1.2.1 FCPBGA Package Thermal Resistance
Table 5 provides the FCPBGA package thermal resistance data.
Table 5. FCPBGA Package Thermal Resistance Data
Thermal Parameter Test Conditions Symbol
Value
Unit
No Lid Lid
Junction to Ambient1
1Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.
Single-layer board (1s); natural convection2
2Per JEDEC JESD51-3 with the single layer board horizontal. Thermal test board meets JEDEC specification for the specified
package.
RθJA 31 24 °C/W
Four-layer board (2s2p); natural convection2RθJA 22 15 °C/W
Junction to Ambient1Single-layer board (1s); air flow 200 ft/min3
3Per JEDEC JESD51-6 with the board horizontal.
RθJMA 24 17 °C/W
Four-layer board (2s2p); air flow 200 ft/min3RθJMA 18 12 °C/W
Junction to Board1,4
4Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on
the top surface of the board near the package.
—R
θJB 12 5 °C/W
Junction to Case (top)1,5
5Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method
1012.1). The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the
interface layer.
—R
θJCtop <0.1 1 °C/W
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 21
4.1.3 Operating Ranges
Table 6 provides the operating ranges of the i.MX 6Dual/6Quad processors.
Table 6. Operating Ranges
Parameter
Description Symbol Min Typ Max1Unit Comment2
Run mode:
LDO enabled
VDD_ARM_IN
VDD_ARM23_IN3
1.2754 1.5 V LDO Output Set Point (VDD_ARM_CAP5) of
1.150 V minimum for operation up to 792 MHz.
1.054 1.5 V LDO Output Set Point (VDD_ARM_CAP5) of
0.925 V minimum for operation up to 396 MHz.
VDD_SOC_IN61.3504 1.5 V 264 MHz < VPU 352 MHz; VDDSOC and
VDDPU LDO outputs (VDD_SOC_CAP and
VDD_PU_CAP) require 1.225 V minimum.
1.2754,7 1.5 V VPU 264 MHz; VDDSOC and VDDPU LDO
outputs (VDD_SOC_CAP and VDD_PU_CAP)
require 1.15 V minimum.
Run mode:
LDO bypassed8
VDD_ARM_IN
VDD_ARM23_IN3
1.150 1.3 V LDO bypassed for operation up to 792 MHz.
0.925 1.3 V LDO bypassed for operation up to 396 MHz.
VDD_SOC_IN61.225 1.3 V 264 MHz < VPU 352 MHz
1.15 1.3 V VPU 264 MHz
Standby/DSM mode VDD_ARM_IN
VDD_ARM23_IN3
0.9 1.3 V See Table 9, “Stop Mode Current and Power
Consumption,” on page 26.
VDD_SOC_IN 0.9 1.3 V
VDD_HIGH internal
regulator
VDD_HIGH_IN92.7 3.3 V Must match the range of voltages that the
rechargeable backup battery supports.
Backup battery supply
range
VDD_SNVS_IN92.8 3.3 V Should be supplied from the same supply as
VDD_HIGH_IN, if the system does not require
keeping real time and other data on OFF state.
USB supply voltages USB_OTG_VBUS 4.4 5.25 V
USB_H1_VBUS 4.4 5.25 V
DDR I/O supply NVCC_DRAM 1.14 1.2 1.3 V LPDDR2
1.425 1.5 1.575 V DDR3
1.283 1.35 1.45 V DDR3L
Supply for RGMII I/O
power group10
NVCC_RGMII 1.15 2.625 V 1.15 V – 1.30 V in HSIC 1.2 V mode
1.43 V – 1.58 V in RGMII 1.5 V mode
1.70 V – 1.90 V in RGMII 1.8 V mode
2.25 V – 2.625 V in RGMII 2.5 V mode
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
22 NXP Semiconductors
Electrical Characteristics
GPIO supplies10 NVCC_CSI,
NVCC_EIM0,
NVCC_EIM1,
NVCC_EIM2,
NVCC_ENET,
NVCC_GPIO,
NVCC_LCD,
NVCC_NANDF,
NVCC_SD1,
NVCC_SD2,
NVCC_SD3,
NVCC_JTAG
1.65 1.8,
2.8,
3.3
3.6 V Isolation between the NVCC_EIMx and
NVCC_SDx different supplies allow them to
operate at different voltages within the specified
range.
Example: NVCC_EIM1 can operate at 1.8 V
while NVCC_EIM2 operates at 3.3 V.
NVCC_LVDS_2P511
NVCC_MIPI
2.25 2.5 2.75 V
HDMI supply voltages HDMI_VP 0.99 1.1 1.3 V
HDMI_VPH 2.25 2.5 2.75 V
PCIe supply voltages PCIE_VP 1.023 1.1 1.3 V
PCIE_VPH 2.325 2.5 2.75 V
PCIE_VPTX 1.023 1.1 1.3 V
SATA Supply voltages SATA_VP 0.99 1.1 1.3 V
SATA_VPH 2.25 2.5 2.75 V
Junction temperature TJ-40 90 105 °CSee i.MX 6Dual/6Quad Product Lifetime Usage
Estimates Application Note, AN4724, for
information on product lifetime (power-on
years) for this processor.
1Applying the maximum voltage results in maximum power consumption and heat generation. NXP recommends a voltage set
point = (Vmin + the supply tolerance). This results in an optimized power/speed ratio.
2See the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors
(IMX6DQ6SDLHDG) for bypass capacitors requirements for each of the *_CAP supply outputs.
3For Quad core system, connect to VDD_ARM_IN. For Dual core system, may be shorted to GND together with
VDD_ARM23_CAP to reduce leakage.
4VDD_ARM_IN and VDD_SOC_IN must be at least 125 mV higher than the LDO Output Set Point for correct voltage regulation.
5VDD_ARM_CAP must not exceed VDD_CACHE_CAP by more than +50 mV. VDD_CACHE_CAP must not exceed
VDD_ARM_CAP by more than 200 mV.
6VDDSOC and VDDPU output voltages must be set according to this rule: VDDARM-VDDSOC/PU<50mV.
7In LDO enabled mode, the internal LDO output set points must be configured such that the:
VDD_ARM LDO output set point does not exceed the VDD_SOC LDO output set point by more than 100 mV.
VDD_SOC LDO output set point is equal to the VDD_PU LDO output set point.
The VDD_ARM LDO output set point can be lower than the VDD_SOC LDO output set point, however, the minimum output set
points shown in this table must be maintained.
8In LDO bypassed mode, the external power supply must ensure that VDD_ARM_IN does not exceed VDD_SOC_IN by more
than 100 mV. The VDD_ARM_IN supply voltage can be lower than the VDD_SOC_IN supply voltage. The minimum voltages
shown in this table must be maintained.
9To set VDD_SNVS_IN voltage with respect to Charging Currents and RTC, see the Hardware Development Guide for i.MX
6Dual, 6Quad, 6Solo, 6DualLite Families of Applications Processors (IMX6DQ6SDLHDG).
Table 6. Operating Ranges (continued)
Parameter
Description Symbol Min Typ Max1Unit Comment2
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 23
4.1.4 External Clock Sources
Each i.MX 6Dual/6Quad processor has two external input system clocks: a low frequency (RTC_XTALI)
and a high frequency (XTALI).
The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit,
power-down real time clock operation, and slow system and watchdog counters. The clock input can be
connected to either an external oscillator or a crystal using the internal oscillator amplifier. Additionally,
there is an internal ring oscillator, that can be used instead of RTC_XTALI when accuracy is not important.
The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other
peripherals. The system clock input can be connected to either an external oscillator or a crystal using the
internal oscillator amplifier.
NOTE
The internal RTC oscillator does not provide an accurate frequency and is
affected by process, voltage and temperature variations. NXP strongly
recommends using an external crystal as the RTC_XTALI reference. If the
internal oscillator is used instead, careful consideration should be given to
the timing implications on all of the SoC modules dependent on this clock.
Table 7 shows the interface frequency requirements.
The typical values shown in Table 7 are required for use with NXP BSPs to ensure precise time keeping
and USB operation. For RTC_XTALI operation, two clock sources are available:
On-chip 40 kHz ring oscillator: This clock source has the following characteristics:
Approximately 25 μA more Idd than crystal oscillator
Approximately ±50% tolerance
No external component required
Starts up quicker than 32 kHz crystal oscillator
External crystal oscillator with on-chip support circuit
10 All digital I/O supplies (NVCC_xxxx) must be powered under normal conditions whether the associated I/O pins are in use or
not, and associated I/O pins need to have a pull-up or pull-down resistor applied to limit any floating gate current.
11 This supply also powers the pre-drivers of the DDR I/O pins; therefore, it must always be provided, even when LVDS is not used.
Table 7. External Input Clock Frequency
Parameter Description Symbol Min Typ Max Unit
RTC_XTALI Oscillator1,2
1External oscillator or a crystal with internal oscillator amplifier.
2The required frequency stability of this clock source is application dependent. For recommendations, see the Hardware
Development Guide for i.MX 6Dual, 6Quad, 6Solo, 6DualLite Families of Applications Processors (IMX6DQ6SDLHDG).
fckil 32.7683/32.0
3Recommended nominal frequency 32.768 kHz.
—kHz
XTALI Oscillator2,4
4External oscillator or a fundamental frequency crystal with internal oscillator amplifier.
fxtal —24MHz
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
24 NXP Semiconductors
Electrical Characteristics
At power up, an internal ring oscillator is used. After crystal oscillator is stable, the clock circuit
switches over to the crystal oscillator automatically.
Higher accuracy than ring oscillator.
If no external crystal is present, then the ring oscillator is used.
The decision to choose a clock source should be based on real-time clock use and precision timeout.
4.1.5 Maximum Measured Supply Currents
Power consumption is highly dependent on the application. Estimating the maximum supply currents
required for power supply design is difficult because the use case that requires maximum supply current is
not a realistic use case.
To help illustrate the effect of the application on power consumption, data was collected while running
industry standard benchmarks that are designed to be compute and graphic intensive. The results provided
are intended to be used as guidelines for power supply design.
Description of test conditions:
The Power Virus data shown in Table 8 represent a use case designed specifically to show the
maximum current consumption possible for the Arm core complex. All cores are running at the
defined maximum frequency and are limited to L1 cache accesses only to ensure no pipeline stalls.
Although a valid condition, it would have a very limited, if any, practical use case, and be limited
to an extremely low duty cycle unless the intention was to specifically cause the worst case power
consumption.
EEMBC CoreMark: Benchmark designed specifically for the purpose of measuring the
performance of a CPU core. More information available at www.eembc.org/coremark. Note that
this benchmark is designed as a core performance benchmark, not a power benchmark. This use
case is provided as an example of power consumption that would be typical in a
computationally-intensive application rather than the Power Virus.
3DMark Mobile 2011: Suite of benchmarks designed for the purpose of measuring graphics and
overall system performance. Note that this benchmark is designed as a graphics performance
benchmark, not a power benchmark. This use case is provided as an example of power
consumption that would be typical in a very graphics-intensive application.
Devices used for the tests were from the high current end of the expected process variation.
The NXP power management IC, MMPF0100xxxx, which is targeted for the i.MX 6 series processor
family, supports the power consumption shown in Table 8, however a robust thermal design is required for
the increased system power dissipation.
See the i.MX 6Dual/6Quad Power Consumption Measurement Application Note (AN4509) for more
details on typical power consumption under various use case definitions.
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 25
Table 8. Maximum Supply Currents
Power Supply Conditions
Maximum Current
Unit
Power Virus CoreMark
i.MX 6Quad:
VDD_ARM_IN + VDD_ARM23_IN
ARM frequency = 792 MHz
ARM LDOs set to 1.3V
•T
j = 105°C
3270 2090 mA
i.MX 6Dual: VDD_ARM_IN ARM frequency = 792 MHz
ARM LDOs set to 1.3V
•T
j = 105°C
1960 1250 mA
i.MX 6Dual or i.MX 6Quad:
VDD_SOC_IN
GPU frequency = 600 MHz
SOC LDO set to 1.3 V
•T
j = 105°C
2370 mA
VDD_HIGH_IN 1251 mA
VDD_SNVS_IN 2752 μA
USB_OTG_VBUS/
USB_H1_VBUS (LDO 3P0)
—25
3 mA
Primary Interface (IO) Supplies
NVCC_DRAM (see note4)
NVCC_ENET N=10 Use maximum IO equation5
NVCC_LCD N=29 Use maximum IO equation5
NVCC_GPIO N=24 Use maximum IO equation5
NVCC_CSI N=20 Use maximum IO equation5
NVCC_EIM0 N=19 Use maximum IO equation5
NVCC_EIM1 N=14 Use maximum IO equation5
NVCC_EIM2 N=20 Use maximum IO equation5
NVCC_JTAG N=6 Use maximum IO equation5
NVCC_RGMII N=6 Use maximum IO equation5
NVCC_SD1 N=6 Use maximum IO equation5
NVCC_SD2 N=6 Use maximum IO equation5
NVCC_SD3 N=11 Use maximum IO equation5
NVCC_NANDF N=26 Use maximum IO equation5
NVCC_MIPI 25.5 mA
NVCC_LVDS2P5 NVCC_LVDS2P5 is connected to
VDD_HIGH_CAP at the board
level. VDD_HIGH_CAP is capable
of handing the current required by
NVCC_LVDS2P5.
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
26 NXP Semiconductors
Electrical Characteristics
4.1.6 Low Power Mode Supply Currents
Table 9 shows the current core consumption (not including I/O) of the i.MX 6Dual/6Quad processors in
selected low power modes.
MISC
DRAM_VREF 1 mA
1The actual maximum current drawn from VDD_HIGH_IN will be as shown plus any additional current drawn from the
VDD_HIGH_CAP outputs, depending upon actual application configuration (for example, NVCC_LVDS_2P5, NVCC_MIPI, or
HDMI, PCIe, and SATA VPH supplies).
2Under normal operating conditions, the maximum current on VDD_SNVS_IN is shown Table 8. The maximum VDD_SNVS_IN
current may be higher depending on specific operating configurations, such as BOOT_MODE[1:0] not equal to 00, or use of
the Tamper feature. During initial power on, VDD_SNVS_IN can draw up to 1 mA if the supply is capable of sourcing that
current. If less than 1 mA is available, the VDD_SNVS_CAP charge time will increase.
3This is the maximum current per active USB physical interface.
4The DRAM power consumption is dependent on several factors such as external signal termination. DRAM power calculators
are typically available from memory vendors which take into account factors such as signal termination.
See the i.MX 6Dual/6Quad Power Consumption Measurement Application Note (AN4509) for examples of DRAM power
consumption during specific use case scenarios.
5General equation for estimated, maximum power consumption of an IO power supply:
Imax = N x C x V x (0.5 x F)
Where:
N—Number of IO pins supplied by the power line
C—Equivalent external capacitive load
V—IO voltage
(0.5 xF)—Data change rate. Up to 0.5 of the clock rate (F)
In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.
Table 9. Stop Mode Current and Power Consumption
Mode Test Conditions Supply Typical1Unit
WAIT Arm, SoC, and PU LDOs are set to 1.225 V
HIGH LDO set to 2.5 V
Clocks are gated
DDR is in self refresh
PLLs are active in bypass (24 MHz)
Supply voltages remain ON
VDD_ARM_IN (1.4 V) 6 mA
VDD_SOC_IN (1.4 V) 23 mA
VDD_HIGH_IN (3.0 V) 3.7 mA
Total 52 mW
STOP_ON Arm LDO set to 0.9 V
SoC and PU LDOs set to 1.225 V
HIGH LDO set to 2.5 V
PLLs disabled
DDR is in self refresh
VDD_ARM_IN (1.4 V) 7.5 mA
VDD_SOC_IN (1.4 V) 22 mA
VDD_HIGH_IN (3.0 V) 3.7 mA
Total 52 mW
Table 8. Maximum Supply Currents (continued)
Power Supply Conditions
Maximum Current
Unit
Power Virus CoreMark
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 27
STOP_OFF Arm LDO set to 0.9 V
SoC LDO set to 1.225 V
PU LDO is power gated
HIGH LDO set to 2.5 V
PLLs disabled
DDR is in self refresh
VDD_ARM_IN (1.4 V) 7.5 mA
VDD_SOC_IN (1.4 V) 13.5 mA
VDD_HIGH_IN (3.0 V) 3.7 mA
Total 41 mW
STANDBY Arm and PU LDOs are power gated
SoC LDO is in bypass
HIGH LDO is set to 2.5 V
PLLs are disabled
Low voltage
Well Bias ON
Crystal oscillator is enabled
VDD_ARM_IN (0.9 V) 0.1 mA
VDD_SOC_IN (0.9 V) 13 mA
VDD_HIGH_IN (3.0 V) 3.7 mA
Total 22 mW
Deep Sleep Mode
(DSM)
Arm and PU LDOs are power gated
SoC LDO is in bypass
HIGH LDO is set to 2.5 V
PLLs are disabled
Low voltage
Well Bias ON
Crystal oscillator and bandgap are disabled
VDD_ARM_IN (0.9 V) 0.1 mA
VDD_SOC_IN (0.9 V) 2 mA
VDD_HIGH_IN (3.0 V) 0.5 mA
Total 3.4 mW
SNVS Only VDD_SNVS_IN powered
All other supplies off
SRTC running
VDD_SNVS_IN (2.8V) 41 μA
Total 115 μW
1The typical values shown here are for information only and are not guaranteed. These values are average values measured
on a worst-case wafer at 25°C.
Table 9. Stop Mode Current and Power Consumption (continued)
Mode Test Conditions Supply Typical1Unit
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
28 NXP Semiconductors
Electrical Characteristics
4.1.7 USB PHY Current Consumption
4.1.7.1 Power Down Mode
In power down mode, everything is powered down, including the VBUS valid detectors, typical condition.
Table 10 shows the USB interface current consumption in power down mode.
NOTE
The currents on the VDD_HIGH_CAP and VDD_USB_CAP were
identified to be the voltage divider circuits in the USB-specific level shifters.
4.1.8 SATA Typical Power Consumption
Table 11 provides SATA PHY currents for certain Tx operating modes.
NOTE
Tx power consumption values are provided for a single transceiver. If
T = single transceiver power and C = Clock module power, the total power
required for N lanes = N x T + C.
Table 10. USB PHY Current Consumption in Power Down Mode
VDD_USB_CAP (3.0 V) VDD_HIGH_CAP (2.5 V) NVCC_PLL_OUT (1.1 V)
Current 5.1 μA1.7 μA <0.5 μA
Table 11. SATA PHY Current Drain
Mode Test Conditions Supply Typical Current Unit
P0: Full-power state1Single Transceiver SATA_VP 11 mA
SATA_VPH 13
Clock Module SATA_VP 6.9
SATA_VPH 6.2
P0: Mobile2Single Transceiver SATA_VP 11 mA
SATA_VPH 11
Clock Module SATA_VP 6.9
SATA_VPH 6.2
P0s: Transmitter idle Single Transceiver SATA_VP 9.4 mA
SATA_VPH 2.9
Clock Module SATA_VP 6.9
SATA_VPH 6.2
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 29
4.1.9 PCIe 2.0 Maximum Power Consumption
Table 12 provides PCIe PHY currents for certain operating modes.
P1: Transmitter idle, Rx powered
down, LOS disabled
Single Transceiver SATA_VP 0.67 mA
SATA_VPH 0.23
Clock Module SATA_VP 6.9
SATA_VPH 6.2
P2: Powered-down state, only
LOS and POR enabled
Single Transceiver SATA_VP 0.53 mA
SATA_VPH 0.11
Clock Module SATA_VP 0.036
SATA_VPH 0.12
PDDQ mode3Single Transceiver SATA_VP 0.13 mA
SATA_VPH 0.012
Clock Module SATA_VP 0.008
SATA_VPH 0.004
1Programmed for 1.0 V peak-to-peak Tx level.
2Programmed for 0.9 V peak-to-peak Tx level with no boost or attenuation.
3LOW power non-functional.
Table 12. PCIe PHY Current Drain
Mode Test Conditions Supply Max Current Unit
P0: Normal Operation 5G Operations PCIE_VP (1.1 V) 40 mA
PCIE_VPTX (1.1 V) 20
PCIE_VPH (2.5 V) 21
2.5G Operations PCIE_VP (1.1 V) 27
PCIE_VPTX (1.1 V) 20
PCIE_VPH (2.5 V) 20
P0s: Low Recovery Time
Latency, Power Saving State
5G Operations PCIE_VP (1.1 V) 30 mA
PCIE_VPTX (1.1 V) 2.4
PCIE_VPH (2.5 V) 18
2.5G Operations PCIE_VP (1.1 V) 20
PCIE_VPTX (1.1 V) 2.4
PCIE_VPH (2.5 V) 18
Table 11. SATA PHY Current Drain (continued)
Mode Test Conditions Supply Typical Current Unit
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
30 NXP Semiconductors
Electrical Characteristics
4.1.10 HDMI Maximum Power Consumption
Table 13 provides HDMI PHY currents for both Active 3D Tx with LFSR15 data pattern and Power-down
modes.
P1: Longer Recovery Time
Latency, Lower Power State
PCIE_VP (1.1 V) 12 mA
PCIE_VPTX (1.1 V) 2.4
PCIE_VPH (2.5 V) 12
Power Down PCIE_VP (1.1 V) 1.3 mA
PCIE_VPTX (1.1 V) 0.18
PCIE_VPH (2.5 V) 0.36
Table 13. HDMI PHY Current Drain
Mode Test Conditions Supply Max Current Unit
Active Bit rate 251.75 Mbps HDMI_VPH 14 mA
HDMI_VP 4.1 mA
Bit rate 279.27 Mbps HDMI_VPH 14 mA
HDMI_VP 4.2 mA
Bit rate 742.5 Mbps HDMI_VPH 17 mA
HDMI_VP 7.5 mA
Bit rate 1.485 Gbps HDMI_VPH 17 mA
HDMI_VP 12 mA
Bit rate 2.275 Gbps HDMI_VPH 16 mA
HDMI_VP 17 mA
Bit rate 2.97 Gbps HDMI_VPH 19 mA
HDMI_VP 22 mA
Power-down HDMI_VPH 49 μA
HDMI_VP 1100 μA
Table 12. PCIe PHY Current Drain (continued)
Mode Test Conditions Supply Max Current Unit
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 31
4.2 Power Supplies Requirements and Restrictions
The system design must comply with power-up sequence, power-down sequence, and steady state
guidelines as described in this section to ensure the reliable operation of the device. Any deviation from
these sequences may result in the following situations:
Excessive current during power-up phase
Prevention of the device from booting
Irreversible damage to the processor
4.2.1 Power-Up Sequence
For power-up sequence, the restrictions are as follows:
VDD_SNVS_IN supply must be turned ON before any other power supply. It may be connected
(shorted) with VDD_HIGH_IN supply.
If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other
supply is switched on.
The SRC_POR_B signal controls the processor POR and must be immediately asserted at
power-up and remain asserted until the VDD_ARM_CAP, VDD_SOC_CAP, and VDD_PU_CAP
supplies are stable. VDD_ARM_IN and VDD_SOC_IN may be applied in either order with no
restrictions.
NOTE
Ensure that there is no back voltage (leakage) from any supply on the board
towards the 3.3 V supply (for example, from the external components that
use both the 1.8 V and 3.3 V supplies).
NOTE
USB_OTG_VBUS and USB_H1_VBUS are not part of the power supply
sequence and can be powered at any time.
4.2.2 Power-Down Sequence
There are no special restrictions for i.MX 6Dual/6Quad SoC.
4.2.3 Power Supplies Usage
All I/O pins must not be externally driven while the I/O power supply for the pin (NVCC_xxx) is
OFF. This can cause internal latch-up and malfunctions due to reverse current flows. For
information about I/O power supply of each pin, see the “Power Group” column of Table 87, “21
x 21 mm Functional Contact Assignments”.
When the SATA interface is not used, the SATA_VP and SATA_VPH supplies should be grounded.
The input and output supplies for rest of the ports (SATA_REXT, SATA_PHY_RX_N,
SATA_PHY_RX_P, and SATA_PHY_TX_N) can remain unconnected. It is recommended not to
turn OFF the SATA_VPH supply while the SATA_VP supply is ON, as it may lead to excessive
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
32 NXP Semiconductors
Electrical Characteristics
power consumption. If boundary scan test is used, SATA_VP and SATA_VPH must remain
powered.
When the PCIE interface is not used, the PCIE_VP, PCIE_VPH, and PCIE_VPTX supplies should
be grounded. The input and output supplies for rest of the ports (PCIE_REXT, PCIE_RX_N,
PCIE_RX_P, PCIE_TX_N, and PCIE_TX_P) can remain unconnected. It is recommended not to
turn the PCIE_VPH supply OFF while the PCIE_VP supply is ON, as it may lead to excessive
power consumption. If boundary scan test is used, PCIE_VP, PCIE_VPH, and PCIE_VPTX must
remain powered.
4.3 Integrated LDO Voltage Regulator Parameters
Various internal supplies can be powered ON from internal LDO voltage regulators. All the supply pins
named *_CAP must be connected to external capacitors. The onboard LDOs are intended for internal use
only and should not be used to power any external circuitry. See the i.MX 6Dual/6Quad reference manual
(IMX6DQRM) for details on the power tree scheme recommended operation.
NOTE
The *_CAP signals should not be powered externally. These signals are
intended for internal LDO or LDO bypass operation only.
4.3.1 Digital Regulators (LDO_ARM, LDO_PU, LDO_SOC)
There are three digital LDO regulators (“Digital”, because of the logic loads that they drive, not because
of their construction). The advantages of the regulators are to reduce the input supply variation because of
their input supply ripple rejection and their on die trimming. This translates into more voltage for the die
producing higher operating frequencies. These regulators have three basic modes.
Bypass. The regulation FET is switched fully on passing the external voltage, DCDC_LOW, to the
load unaltered. The analog part of the regulator is powered down in this state, removing any loss
other than the IR drop through the power grid and FET.
Power Gate. The regulation FET is switched fully off limiting the current draw from the supply.
The analog part of the regulator is powered down here limiting the power consumption.
Analog regulation mode. The regulation FET is controlled such that the output voltage of the
regulator equals the programmed target voltage. The target voltage is fully programmable in 25 mV
steps.
Optionally LDO_SOC/VDD_SOC_CAP can be used to power the HDMI, PCIe, and SATA PHY's through
external connections.
For additional information, see the i.MX 6Dual/6Quad reference manual (IMX6DQRM).
4.3.2 Regulators for Analog Modules
4.3.2.1 LDO_1P1 / NVCC_PLL_OUT
The LDO_1P1 regulator implements a programmable linear-regulator function from VDD_HIGH_IN (see
Table 6 for minimum and maximum input requirements). Typical Programming Operating Range is 1.0 V
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 33
to 1.2 V with the nominal default setting as 1.1 V. The LDO_1P1 supplies the 24 MHz oscillator, PLLs,
and USB PHY. A programmable brown-out detector is included in the regulator that can be used by the
system to determine when the load capability of the regulator is being exceeded to take the necessary steps.
Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed.
Active-pull-down can also be enabled for systems requiring this feature.
For information on external capacitor requirements for this regulator, see the Hardware Development
Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors
(IMX6DQ6SDLHDG).
For additional information, see the i.MX 6Dual/6Quad reference manual (IMX6DQRM).
4.3.2.2 LDO_2P5
The LDO_2P5 module implements a programmable linear-regulator function from VDD_HIGH_IN (see
Table 6 for min and max input requirements). Typical Programming Operating Range is 2.25 V to 2.75 V
with the nominal default setting as 2.5 V. The LDO_2P5 supplies the SATA PHY, USB PHY, LVDS PHY,
HDMI PHY, MIPI PHY, E-fuse module and PLLs. A programmable brown-out detector is included in the
regulator that can be used by the system to determine when the load capability of the regulator is being
exceeded, to take the necessary steps. Current-limiting can be enabled to allow for in-rush current
requirements during start-up, if needed. Active-pull-down can also be enabled for systems requiring this
feature. An alternate self-biased low-precision weak-regulator is included that can be enabled for
applications needing to keep the output voltage alive during low-power modes where the main regulator
driver and its associated global bandgap reference module are disabled. The output of the weak-regulator
is not programmable and is a function of the input supply as well as the load current. Typically, with a 3 V
input supply the weak-regulator output is 2.525 V and its output impedance is approximately 40 Ω.
For information on external capacitor requirements for this regulator, see the Hardware Development
Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors
(IMX6DQ6SDLHDG).
For additional information, see the i.MX 6Dual/6Quad reference manual (IMX6DQRM).
4.3.2.3 LDO_USB
The LDO_USB module implements a programmable linear-regulator function from the
USB_OTG_VBUS and USB_H1_VBUS voltages (4.4 V–5.25 V) to produce a nominal 3.0 V output
voltage. A programmable brown-out detector is included in the regulator that can be used by the system to
determine when the load capability of the regulator is being exceeded, to take the necessary steps. This
regulator has a built in power-mux that allows the user to select to run the regulator from either VBUS
supply, when both are present. If only one of the VBUS voltages is present, then the regulator
automatically selects this supply. Current limit is also included to help the system meet in-rush current
targets. If no VBUS voltage is present, then the VBUSVALID threshold setting will prevent the regulator
from being enabled.
For information on external capacitor requirements for this regulator, see the Hardware Development
Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors
(IMX6DQ6SDLHDG).
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
34 NXP Semiconductors
Electrical Characteristics
For additional information, see the i.MX 6Dual/6Quad reference manual (IMX6DQRM).
4.4 PLL Electrical Characteristics
4.4.1 Audio/Video PLL Electrical Parameters
4.4.2 528 MHz PLL
4.4.3 Ethernet PLL
4.4.4 480 MHz PLL
Table 14. Audio/Video PLL Electrical Parameters
Parameter Value
Clock output range 650 MHz ~1.3 GHz
Reference clock 24 MHz
Lock time <11250 reference cycles
Table 15. 528 MHz PLL Electrical Parameters
Parameter Value
Clock output range 528 MHz PLL output
Reference clock 24 MHz
Lock time <11250 reference cycles
Table 16. Ethernet PLL Electrical Parameters
Parameter Value
Clock output range 500 MHz
Reference clock 24 MHz
Lock time <11250 reference cycles
Table 17. 480 MHz PLL Electrical Parameters
Parameter Value
Clock output range 480 MHz PLL output
Reference clock 24 MHz
Lock time <383 reference cycles
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 35
4.4.5 Arm PLL
4.5 On-Chip Oscillators
4.5.1 OSC24M
This block implements an amplifier that when combined with a suitable quartz crystal and external load
capacitors implements an oscillator. The oscillator is powered from NVCC_PLL_OUT.
The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight
forward biased-inverter implementation is used.
4.5.2 OSC32K
This block implements an amplifier that when combined with a suitable quartz crystal and external load
capacitors implements a low power oscillator. It also implements a power mux such that it can be powered
from either a ~3 V backup battery (VDD_SNVS_IN) or VDD_HIGH_IN such as the oscillator consumes
power from VDD_HIGH_IN when that supply is available and transitions to the back up battery when
VDD_HIGH_IN is lost.
In addition, if the clock monitor determines that the OSC32K is not present, then the source of the 32 kHz
clock will automatically switch to the internal ring oscillator.
CAUTION
The internal RTC oscillator does not provide an accurate frequency and is
affected by process, voltage, and temperature variations. NXP strongly
recommends using an external crystal as the RTC_XTALI reference. If the
internal oscillator is used instead, careful consideration must be given to the
timing implications on all of the SoC modules dependent on this clock.
The OSC32k runs from VDD_SNVS_CAP, which comes from the VDD_HIGH_IN/VDD_SNVS_IN
power mux.
Table 18. Arm PLL Electrical Parameters
Parameter Value
Clock output range 650 MHz~1.3 GHz
Reference clock 24 MHz
Lock time <2250 reference cycles
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
36 NXP Semiconductors
Electrical Characteristics
4.6 I/O DC Parameters
This section includes the DC parameters of the following I/O types:
General Purpose I/O (GPIO)
Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes
•LVDS I/O
NOTE
The term ‘OVDD’ in this section refers to the associated supply rail of an
input or output.
Figure 3. Circuit for Parameters Voh and Vol for I/O Cells
Table 19. OSC32K Main Characteristics
Parameter Min Typ Max Comments
Fosc 32.768 kHz This frequency is nominal and determined mainly by the crystal selected. 32.0 K
would work as well.
Current
consumption
—4 μA The typical value shown is only for the oscillator, driven by an external crystal.
If the internal ring oscillator is used instead of an external crystal, then
approximately 25 μA must be added to this value.
Bias resistor 14 MΩ This the integrated bias resistor that sets the amplifier into a high gain state. Any
leakage through the ESD network, external board leakage, or even a scope probe
that is significant relative to this value will debias the amplifier. The debiasing will
result in low gain, and will impact the circuit's ability to start up and maintain
oscillations.
Target Crystal Properties
Cload 10 pF Usually crystals can be purchased tuned for different Cloads. This Cload value is
typically 1/2 of the capacitances realized on the PCB on either side of the quartz.
A higher Cload will decrease oscillation margin, but increases current oscillating
through the crystal.
ESR 50 kΩ100 kΩEquivalent series resistance of the crystal. Choosing a crystal with a higher value
will decrease the oscillating margin.
0
or
1
Predriver
pdat
ovdd
pad
nmos (Rpd)
ovss
Voh min
Vol max
pmos (Rpu)
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 37
4.6.1 XTALI and RTC_XTALI (Clock Inputs) DC Parameters
Table 20 shows the DC parameters for the clock inputs.
NOTE
The Vil and Vih specifications only apply when an external clock source is
used. If a crystal is used, Vil and Vih do not apply.
4.6.2 General Purpose I/O (GPIO) DC Parameters
Table 21 shows DC parameters for GPIO pads. The parameters in Table 21 are guaranteed per the
operating ranges in Table 6, unless otherwise noted.
Table 20. XTALI and RTC_XTALI DC Parameters
Parameter Symbol Test Conditions Min Typ Max Unit
XTALI high-level DC input voltage Vih 0.8 x NVCC_PLL_OUT NVCC_PLL_ OUT V
XTALI low-level DC input voltage Vil 0 0.2 V
RTC_XTALI high-level DC input
voltage
Vih 0.8 1.1(See note 1)
1This voltage specification must not be exceeded and, as such, is an absolute maximum specification.
V
RTC_XTALI low-level DC input
voltage
Vil 0 0.2 V
Input capacitance CIN Simulated data 5 pF
XTALI input leakage current at
startup
IXTALI_STARTUP Power-on startup for
0.15 msec with a driven
24 MHz clock
at 1.1 V. 2
2This current draw is present even if an external clock source directly drives XTALI.
600 μA
DC input current IXTALI_DC ——2.5μA
Table 21. GPIO I/O DC Parameters
Parameter Symbol Test Conditions Min Max Unit
High-level output voltage1Voh Ioh = -0.1 mA (DSE2 = 001, 010)
Ioh = -1 mA
(DSE = 011, 100, 101, 110, 111)
OVDD 0.15 V
Low-level output voltage1Vol Iol = 0.1 mA (DSE2 = 001, 010)
Iol = 1mA
(DSE = 011, 100, 101, 110, 111)
—0.15V
High-Level DC input voltage1, 3Vih 0.7 ×OVDD OVDD V
Low-Level DC input voltage1, 3Vil 0 0.3 ×OVDD V
Input Hysteresis Vhys OVDD = 1.8 V
OVDD = 3.3 V
0.25 V
Schmitt trigger VT+3, 4 VT+ 0.5 ×OVDD V
Schmitt trigger VT–3, 4 VT– 0.5 ×OVDD V
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
38 NXP Semiconductors
Electrical Characteristics
4.6.3 DDR I/O DC Parameters
The DDR I/O pads support LPDDR2 and DDR3/DDR3L operational modes.
4.6.4 RGMII I/O 2.5V I/O DC Electrical Parameters
The RGMII interface complies with the RGMII standard version 1.3. The parameters in Table 22 are
guaranteed per the operating ranges in Table 6, unless otherwise noted.
Input current (no pull-up/down) Iin Vin = OVDD or 0 -1 1 μA
Input current (22 kΩ pull-up) Iin Vin = 0 V
Vin = OVDD
—212
1μA
Input current (47 kΩ pull-up) Iin Vin = 0 V
Vin = OVDD
—100
1μA
Input current (100 kΩ pull-up) Iin Vin = 0 V
Vin= OVDD
—48
1μA
Input current (100 kΩ pull-down) Iin Vin = 0 V
Vin = OVDD
—1
48 μA
Keeper circuit resistance Rkeep Vin = 0.3 x OVDD
Vin = 0.7 x OVDD
105 175 kΩ
1Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.6 V,
and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must be
controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods.
Non-compliance to this specification may affect device reliability or cause permanent damage to the device.
2DSE is the Drive Strength Field setting in the associated IOMUX control register.
3To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC
level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 s.
4Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.
Table 22. RGMII I/O 2.5V I/O DC Electrical Parameters1
Parameter Symbol Test Conditions Min Max Units
High-level output voltage1VOH Ioh= -0.1 mA (DSE=001,010)
Ioh= -1.0 mA (DSE=011,100,101,110,111)
OVDD-0.15 —V
Low-level output voltage1VOL Iol= 0.1 mA (DSE=001,010)
Iol= 1.0 mA (DSE=011,100,101,110,111)
—0.15V
Input Reference Voltage Vref 0.49xOVDD 0.51xOVDD V
High-Level input voltage 2, 3VIH 0.7xOVDD OVDD V
Low-Level input voltage 2, 3 VIL —0
0.3xOVDD V
Input Hysteresis(OVDD=1.8V) VHYS_HighVDD OVDD=1.8V 250 mV
Input Hysteresis(OVDD=2.5V) VHYS_HighVDD OVDD=2.5V 250 mV
Table 21. GPIO I/O DC Parameters (continued)
Parameter Symbol Test Conditions Min Max Unit
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 39
4.6.4.1 LPDDR2 Mode I/O DC Parameters
For details on supported DDR memory configurations, see Section 4.10.2, “MMDC Supported
DDR3/DDR3L/LPDDR2 Configurations.”
The parameters in Table 23 are guaranteed per the operating ranges in Table 6, unless otherwise noted.
Schmitt trigger VT+ 3, 4 VTH+ —0.5xOVDDmV
Schmitt trigger VT- 3, 4VTH- 0.5xOVDD mV
Pull-up resistor (22 kΩ PU) RPU_22K Vin=0V 212 μA
Pull-up resistor (22 kΩ PU) RPU_22K Vin=OVDD 1 μA
Pull-up resistor (47 kΩ PU) RPU_47K Vin=0V 100 μA
Pull-up resistor (47 kΩ PU) RPU_47K Vin=OVDD 1 μA
Pull-up resistor (100 kΩ PU) RPU_100K Vin=0V 48 μA
Pull-up resistor (100 kΩ PU) RPU_100K Vin=OVDD 1 μA
Pull-down resistor (100 kΩ PD) RPD_100K Vin=OVDD 48 μA
Pull-down resistor (100 kΩ PD) RPD_100K Vin=0V 1 μA
Keeper Circuit Resistance Rkeep 105 165 kΩ
Input current (no pull-up/down) Iin VI = 0,VI = OVDD -2.9 2.9 μA
1 Input Mode Selection: SW_PAD_CTL_GRP_DDR_TYPE_RGMII = 10 (1.8V Mode)
SW_PAD_CTL_GRP_DDR_TYPE_RGMII = 11 (2.5V Mode).
2Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.6
V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must
be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other
methods. Non-compliance to this specification may affect device reliability or cause permanent damage to the device.
3To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC
level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 s.
4Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled
(register IOMUXC_SW_PAD_CTL_PAD_RGMII_TXC[HYS]= 0).
Table 23. LPDDR2 I/O DC Electrical Parameters1
Parameters Symbol Test Conditions Min Max Unit
High-level output voltage Voh Ioh = -0.1 mA 0.9 ×OVDD V
Low-level output voltage Vol Iol = 0.1 mA 0.1 ×OVDD V
Input reference voltage Vref 0.49 ×OVDD 0.51 ×OVDD
DC input High Voltage Vih(dc) Vref+0.13V OVDD V
DC input Low Voltage Vil(dc) OVSS Vref-0.13V V
Differential Input Logic High Vih(diff) 0.26 See Note 2
Differential Input Logic Low Vil(diff) See Note 2-0.26
Input current (no pull-up/down) Iin Vin = 0 or OVDD -2.5 2.5 μA
Table 22. RGMII I/O 2.5V I/O DC Electrical Parameters1 (continued)
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
40 NXP Semiconductors
Electrical Characteristics
4.6.4.2 DDR3/DDR3L Mode I/O DC Parameters
For details on supported DDR memory configurations, see Section 4.10.2, “MMDC Supported
DDR3/DDR3L/LPDDR2 Configurations.”
The parameters in Table 24 are guaranteed per the operating ranges in Table 6, unless otherwise noted.
Pull-up/pull-down impedance mismatch MMpupd -15 +15 %
240 Ω unit calibration resolution Rres 10 Ω
Keeper circuit resistance Rkeep 110 175 kΩ
1Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.
2The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as
the limitations for overshoot and undershoot (see Table 28).
Table 24. DDR3/DDR3L I/O DC Electrical Parameters
Parameters Symbol Test Conditions Min Max Unit
High-level output voltage
Voh
Ioh = -0.1 mA
Voh (DSE = 001)
0.8 ×OVDD1
1OVDD – I/O power supply (1.425 V–1.575 V for DDR3 and 1.283 V–1.45 V for DDR3L).
—V
Ioh = -1 mA
Voh (for all except DSE = 001)
Low-level output voltage
Vol
Iol = 0.1 mA
Vol (DSE = 001)
—0.2×OVDD V
Iol = 1 mA
Vol (for all except DSE = 001)
Input reference voltage Vref2
2Vref – DDR3/DDR3L external reference voltage.
—0.49×OVDD 0.51 ×OVDD
DC input Logic High Vih(dc) Vref+0.1 OVDD V
DC input Logic Low Vil(dc) OVSS Vref-0.1 V
Differential input Logic High Vih(diff) 0.2 See Note3
3The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as
the limitations for overshoot and undershoot (see Table 29).
V
Differential input Logic Low Vil(diff) See Note3-0.2 V
Termination Voltage Vtt Vtt tracking OVDD/2 0.49 ×OVDD 0.51 ×OVDD V
Input current (no pull-up/down) Iin Vin = 0 or OVDD -2.9 2.9 μA
Pull-up/pull-down impedance mismatch MMpupd —-1010%
240 Ω unit calibration resolution Rres 10 Ω
Keeper circuit resistance Rkeep 105 175 kΩ
Table 23. LPDDR2 I/O DC Electrical Parameters1 (continued)
Parameters Symbol Test Conditions Min Max Unit
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 41
4.6.5 LVDS I/O DC Parameters
The LVDS interface complies with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A,
Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits” for details.
Table 25 shows the Low Voltage Differential Signaling (LVDS) I/O DC parameters.
4.7 I/O AC Parameters
This section includes the AC parameters of the following I/O types:
General Purpose I/O (GPIO)
Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes
•LVDS I/O
The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 4 and
Figure 5.
Figure 4. Load Circuit for Output
Figure 5. Output Transition Time Waveform
Table 25. LVDS I/O DC Parameters
Parameter Symbol Test Conditions Min Max Unit
Output Differential Voltage VOD Rload=100 Ω between padP and padN 250 450 mV
Output High Voltage VOH IOH = 0 mA 1.25 1.6
VOutput Low Voltage VOL IOL = 0 mA 0.9 1.25
Offset Voltage VOS 1.125 1.375
Test Point
From Output
CL
CL includes package, probe and fixture capacitance
Under Test
0V
OVDD
20%
80% 80%
20%
tr tf
Output (at pad)
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
42 NXP Semiconductors
Electrical Characteristics
4.7.1 General Purpose I/O AC Parameters
The I/O AC parameters for GPIO in slow and fast modes are presented in the Table 26 and Table 27,
respectively. Note that the fast or slow I/O behavior is determined by the appropriate control bits in the
IOMUXC control registers.
Table 26. General Purpose I/O AC Parameters 1.8 V Mode
Parameter Symbol Test Condition Min Typ Max Unit
Output Pad Transition Times, rise/fall
(Max Drive, DSE=111)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 2.72/2.79
1.51/1.54
ns
Output Pad Transition Times, rise/fall
(High Drive, DSE=101)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 3.20/3.36
1.96/2.07
Output Pad Transition Times, rise/fall
(Medium Drive, DSE=100)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 3.64/3.88
2.27/2.53
Output Pad Transition Times, rise/fall
(Low Drive. DSE=011)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 4.32/4.50
3.16/3.17
Input Transition Times1
1Hysteresis mode is recommended for inputs with transition times greater than 25 ns.
trm 25 ns
Table 27. General Purpose I/O AC Parameters 3.3 V Mode
Parameter Symbol Test Condition Min Typ Max Unit
Output Pad Transition Times, rise/fall
(Max Drive, DSE=101)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 1.70/1.79
1.06/1.15
ns
Output Pad Transition Times, rise/fall
(High Drive, DSE=011)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 2.35/2.43
1.74/1.77
Output Pad Transition Times, rise/fall
(Medium Drive, DSE=010)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 3.13/3.29
2.46/2.60
Output Pad Transition Times, rise/fall
(Low Drive. DSE=001)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 5.14/5.57
4.77/5.15
Input Transition Times1
1Hysteresis mode is recommended for inputs with transition times greater than 25 ns.
trm 25 ns
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 43
4.7.2 DDR I/O AC Parameters
For details on supported DDR memory configurations, see Section 4.10.2, “MMDC Supported
DDR3/DDR3L/LPDDR2 Configurations.”
Table 28 shows the AC parameters for DDR I/O operating in LPDDR2 mode.
Table 29 shows the AC parameters for DDR I/O operating in DDR3/DDR3L mode.
Table 28. DDR I/O LPDDR2 Mode AC Parameters1
1Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.
Parameter Symbol Test Condition Min Typ Max Unit
AC input logic high Vih(ac) Vref + 0.22 OVDD V
AC input logic low Vil(ac) 0 Vref 0.22 V
AC differential input high voltage2
2Vid(ac) specifies the input differential voltage |Vtr Vcp| required for switching, where Vtr is the “true” input signal and Vcp is
the “complementary” input signal. The Minimum value is equal to Vih(ac) Vil(ac).
Vidh(ac) 0.44 V
AC differential input low voltage Vidl(ac) 0.44 V
Input AC differential cross point voltage3
3The typical value of Vix(ac) is expected to be about 0.5 ×OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac)
indicates the voltage at which differential input signal must cross.
Vix(ac) Relative to Vref -0.12 0.12 V
Over/undershoot peak Vpeak 0.35 V
Over/undershoot area (above OVDD
or below OVSS)
Varea 400 MHz 0.2 V-ns
Single output slew rate, measured
between Vol(ac) and Voh(ac)
tsr 50 Ω to Vref.
5 pF load.
Drive impedance = 4 0 Ω ±30%
1.5 3.5 V/ns
50 Ω to Vref.
5pF load.
Drive impedance = 60 Ω ±30%
1—2.5
Skew between pad rise/fall asymmetry +
skew caused by SSN
tSKD clk = 400 MHz ——
0.1 ns
Table 29. DDR I/O DDR3/DDR3L Mode AC Parameters1
Parameter Symbol Test Condition Min Typ Max Unit
AC input logic high Vih(ac) Vref + 0.175 OVDD V
AC input logic low Vil(ac) 0 Vref 0.175 V
AC differential input voltage2Vid(ac) 0.35 V
Input AC differential cross point voltage3Vix(ac) Relative to Vref Vref 0.15 Vref + 0.15 V
Over/undershoot peak Vpeak 0.4 V
Over/undershoot area (above OVDD
or below OVSS)
Varea 533 MHz 0.5 V-ns
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
44 NXP Semiconductors
Electrical Characteristics
4.7.3 LVDS I/O AC Parameters
The differential output transition time waveform is shown in Figure 6.
Figure 6. Differential LVDS Driver Transition Time Waveform
Table 30 shows the AC parameters for LVDS I/O.
Single output slew rate, measured between
Vol(ac) and Voh(ac)
tsr Driver impedance =
34 Ω
2.5 5 V/ns
Skew between pad rise/fall asymmetry +
skew caused by SSN
tSKD clk = 533 MHz ——
0.1 ns
1Note that the JEDEC JESD79_3C specification supersedes any specification in this document.
2Vid(ac) specifies the input differential voltage |Vtr-Vcp| required for switching, where Vtr is the “true” input signal and Vcp is
the “complementary” input signal. The Minimum value is equal to Vih(ac) Vil(ac).
3The typical value of Vix(ac) is expected to be about 0.5 ×OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac)
indicates the voltage at which differential input signal must cross.
Table 30. I/O AC Parameters of LVDS Pad
Parameter Symbol Test Condition Min Typ Max Unit
Differential pulse skew1
1tSKD = | tPHLD –t
PLHD |, is the magnitude difference in differential propagation delay time between the positive going edge and
the negative going edge of the same channel.
tSKD
Rload = 100 Ω,
Cload = 2 pF
0.25
nsTransition Low to High Time2
2Measurement levels are 20–80% from output voltage.
tTLH ——0.5
Transition High to Low Time2tTHL ——0.5
Operating Frequency f 600 800 MHz
Offset voltage imbalance Vos 150 mV
Table 29. DDR I/O DDR3/DDR3L Mode AC Parameters1 (continued)
Parameter Symbol Test Condition Min Typ Max Unit
padp
padn
VDIFF
0V (Differential)
VDIFF = {padp} - {padn}
tTLH
20%
80%
20%
80%
tTHL
VOH
VOL
0V
0V
0V
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 45
4.8 Output Buffer Impedance Parameters
This section defines the I/O impedance parameters of the i.MX 6Dual/6Quad processors for the following
I/O types:
General Purpose I/O (GPIO)
Double Data Rate I/O (DDR) for LPDDR2, and DDR3 modes
•LVDS I/O
NOTE
GPIO and DDR I/O output driver impedance is measured with “long”
transmission line of impedance Ztl attached to I/O pad and incident wave
launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that
defines specific voltage of incident wave relative to OVDD. Output driver
impedance is calculated from this voltage divider (see Figure 7).
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
46 NXP Semiconductors
Electrical Characteristics
Figure 7. Impedance Matching Load for Measurement
ipp_do
Cload = 1p
Ztl Ω, L = 20 inches
predriver
PMOS (Rpu)
NMOS (Rpd)
pad
OVDD
OVSS
t,(ns)
U,(V)
OVDD
t,(ns)
0
VDD
Vin (do)
Vout (pad)
U,(V)
Vref
Rpu =
Vovdd–Vref1
Vref1
× Ztl
Rpd = × Ztl
Vref2
Vovdd–Vref2
Vref1 Vref2
0
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 47
4.8.1 GPIO Output Buffer Impedance
Table 31 shows the GPIO output buffer impedance (OVDD 1.8 V).
Table 32 shows the GPIO output buffer impedance (OVDD 3.3 V).
Table 31. GPIO Output Buffer Average Impedance (OVDD 1.8 V)
Parameter Symbol Drive Strength (DSE) Typ Value Unit
Output Driver
Impedance Rdrv
001
010
011
100
101
110
111
260
130
90
60
50
40
33
Ω
Table 32. GPIO Output Buffer Average Impedance (OVDD 3.3 V)
Parameter Symbol Drive Strength (DSE) Typ Value Unit
Output Driver
Impedance Rdrv
001
010
011
100
101
110
111
150
75
50
37
30
25
20
Ω
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
48 NXP Semiconductors
Electrical Characteristics
4.8.2 DDR I/O Output Buffer Impedance
For details on supported DDR memory configurations, see Section 4.10.2, “MMDC Supported
DDR3/DDR3L/LPDDR2 Configurations.”
Table 33 shows DDR I/O output buffer impedance of i.MX 6Dual/6Quad processors.
Note:
1. Output driver impedance is controlled across PVTs using ZQ calibration procedure.
2. Calibration is done against 240 W external reference resistor.
3. Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs.
4.8.3 LVDS I/O Output Buffer Impedance
The LVDS interface complies with TIA/EIA 644-A standard. See, TIA/EIA STANDARD 644-A,
“Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits” for details.
4.9 System Modules Timing
This section contains the timing and electrical parameters for the modules in each i.MX 6Dual/6Quad
processor.
4.9.1 Reset Timing Parameters
Figure 8 shows the reset timing and Table 34 lists the timing parameters.
Figure 8. Reset Timing Diagram
Table 33. DDR I/O Output Buffer Impedance
Parameter Symbol Test Conditions
Typical
Unit
NVCC_DRAM=1.5 V
(DDR3)
DDR_SEL=11
NVCC_DRAM=1.2 V
(LPDDR2)
DDR_SEL=10
Output Driver
Impedance Rdrv
Drive Strength (DSE) =
000
001
010
011
100
101
110
111
Hi-Z
240
120
80
60
48
40
34
Hi-Z
240
120
80
60
48
40
34
Ω
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 49
4.9.2 WDOG Reset Timing Parameters
Figure 9 shows the WDOG reset timing and Table 35 lists the timing parameters.
Figure 9. WDOG1_B Timing Diagram
NOTE
XTALOSC_RTC_XTALI is approximately 32 kHz.
XTALOSC_RTC_XTALI cycle is one period or approximately 30 μs.
NOTE
WDOG1_B output signals (for each one of the Watchdog modules) do not
have dedicated pins, but are muxed out through the IOMUX. See the IOMUX
manual for detailed information.
4.9.3 External Interface Module (EIM)
The following subsections provide information on the EIM. Maximum operating frequency for EIM data
transfer is 104 MHz. Timing parameters in this section that are given as a function of register settings or
clock periods are valid for the entire range of allowed frequencies (0–104 MHz).
Table 34. Reset Timing Parameters
ID Parameter Min Max Unit
CC1 Duration of SRC_POR_B to be qualified as valid 1 XTALOSC_RTC_ XTALI cycle
Table 35. WDOG1_B Timing Parameters
ID Parameter Min Max Unit
CC3 Duration of WDOG1_B Assertion 1 XTALOSC_RTC_ XTALI cycle
WDOG1_B
CC3
(Output)
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
50 NXP Semiconductors
Electrical Characteristics
4.9.3.1 EIM Interface Pads Allocation
EIM supports 32-bit, 16-bit and 8-bit devices operating in address/data separate or multiplexed modes.
Table 36 provides EIM interface pads allocation in different modes.
Table 36. EIM Internal Module Multiplexing1
1For more information on configuration ports mentioned in this table, see the i.MX 6Dual/6Quad reference manual
(IMX6DQRM).
Setup
Non Multiplexed Address/Data Mode Multiplexed
Address/Data mode
8 Bit 16 Bit 32 Bit 16 Bit 32 Bit
MUM = 0,
DSZ = 100
MUM = 0,
DSZ = 101
MUM = 0,
DSZ = 110
MUM = 0,
DSZ = 111
MUM = 0,
DSZ = 001
MUM = 0,
DSZ = 010
MUM = 0,
DSZ = 011
MUM = 1,
DSZ = 001
MUM = 1,
DSZ = 011
EIM_ADDR
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_ADDR
[25:16]
EIM_ADDR
[25:16]
EIM_ADDR
[25:16]
EIM_ADDR
[25:16]
EIM_ADDR
[25:16]
EIM_ADDR
[25:16]
EIM_ADDR
[25:16]
EIM_ADDR
[25:16]
EIM_ADDR
[25:16]
EIM_DATA
[09:00]
EIM_DATA
[07:00],
EIM_EB0_B
EIM_DATA
[07:00]
———EIM_DATA
[07:00]
—EIM_DATA
[07:00]
EIM_AD
[07:00]
EIM_AD
[07:00]
EIM_DATA
[15:08],
EIM_EB1_B
—EIM_DATA
[15:08]
——EIM_DATA
[15:08]
—EIM_DATA
[15:08]
EIM_AD
[15:08]
EIM_AD
[15:08]
EIM_DATA
[23:16],
EIM_EB2_B
——EIM_DATA
[23:16]
——EIM_DATA
[23:16]
EIM_DATA
[23:16]
—EIM_DATA
[07:00]
EIM_DATA
[31:24],
EIM_EB3_B
———EIM_DATA
[31:24]
EIM_DATA
[31:24]
EIM_DATA
[31:24]
—EIM_DATA
[15:08]
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 51
4.9.3.2 General EIM Timing-Synchronous Mode
Figure 10, Figure 11, and Table 37 specify the timings related to the EIM module. All EIM output control
signals may be asserted and deasserted by an internal clock synchronized to the EIM_BCLK rising edge
according to corresponding assertion/negation control fields.
Figure 10. EIM Output Timing Diagram
Figure 11. EIM Input Timing Diagram
4.9.3.3 Examples of EIM Synchronous Accesses
Table 37. EIM Bus Timing Parameters
ID Parameter Min1Max1Unit
WE1 EIM_BCLK cycle time2t×(k+1) ns
WE2 EIM_BCLK high level width 0.4 ×t×(k+1) ns
WE3 EIM_BCLK low level width 0.4 ×t×(k+1) ns
WE4
EIM_ADDRxx
EIM_CSx_B
EIM_WE_B
EIM_OE_B
EIM_BCLK
EIM_EBx_B
EIM_LBA_B
Output Data
...
WE5
WE6 WE7
WE8 WE9
WE10 WE11
WE12 WE13
WE14 WE15
WE16 WE17
WE3
WE2
WE1
Input Data
EIM_WAIT_B
EIM_BCLK
WE19
WE18
WE21
WE20
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
52 NXP Semiconductors
Electrical Characteristics
WE4 Clock rise to address valid -0.5 × t × (k+1) - 1.25 -0.5 × t × (k+1) + 2.25 ns
WE5 Clock rise to address invalid 0.5 × t × (k+1) - 1.25 0.5 × t × (k+1) + 2.25 ns
WE6 Clock rise to EIM_CSx_B valid -0.5 × t × (k+1) - 1.25 -0.5 × t × (k+1) + 2.25 ns
WE7 Clock rise to EIM_CSx_B invalid 0.5 × t × (k+1) - 1.25 0.5 × t × (k+1) + 2.25 ns
WE8 Clock rise to EIM_WE_B valid -0.5 × t × (k+1) - 1.25 -0.5 × t × (k+1) + 2.25 ns
WE9 Clock rise to EIM_WE_B invalid 0.5 × t × (k+1) - 1.25 0.5 × t × (k+1) + 2.25 ns
WE10 Clock rise to EIM_OE_B valid -0.5 × t × (k+1) - 1.25 -0.5 × t × (k+1) + 2.25 ns
WE11 Clock rise to EIM_OE_B invalid 0.5 × t × (k+1) - 1.25 0.5 × t × (k+1) + 2.25 ns
WE12 Clock rise to EIM_EBx_B valid -0.5 × t × (k+1) - 1.25 -0.5 × t × (k+1) + 2.25 ns
WE13 Clock rise to EIM_EBx_B invalid 0.5 × t × (k+1) - 1.25 0.5 × t × (k+1) + 2.25 ns
WE14 Clock rise to EIM_LBA_B valid -0.5 × t × (k+1) - 1.25 -0.5 × t × (k+1) + 2.25 ns
WE15 Clock rise to EIM_LBA_B invalid 0.5 × t × (k+1) - 1.25 0.5 × t × (k+1) + 2.25 ns
WE16 Clock rise to output data valid -0.5 × t × (k+1) - 1.25 -0.5 × t × (k+1) + 2.25 ns
WE17 Clock rise to output data invalid 0.5 × t × (k+1) - 1.25 0.5 × t × (k+1) + 2.25 ns
WE18 Input data setup time to clock rise 2.3 ns
WE19 Input data hold time from clock rise 2 ns
WE20 EIM_WAIT_B setup time to clock rise 2 ns
WE21 EIM_WAIT_B hold time from clock rise 2 ns
1k represents register setting BCD value.
2t is clock period (1/Freq). For 104 MHz, t = 9.165 ns.
Table 37. EIM Bus Timing Parameters (continued)
ID Parameter Min1Max1Unit
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 53
Figure 12 to Figure 15 provide few examples of basic EIM accesses to external memory devices with the
timing parameters mentioned previously for specific control parameters settings.
Figure 12. Synchronous Memory Read Access, WSC=1
Figure 13. Synchronous Memory, Write Access, WSC=1, WBEA=0 and WADVN=0
Last Valid Address Address v1
D(v1)
EIM_BCLK
EIM_ADDRxx
EIM_DATAxx
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
WE4 WE5
WE6
WE7
WE11
WE13
WE12
WE14
WE15
WE18 WE19
WE6
WE10
Last Valid Address Address V1
D(V1)
EIM_BCLK
EIM_ADDRxx
EIM_DATAxx
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
WE4 WE5
WE6 WE7
WE8 WE9
WE12 WE13
WE14 WE15
WE16 WE17
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
54 NXP Semiconductors
Electrical Characteristics
Figure 14. Muxed Address/Data (A/D) Mode, Synchronous Write Access,
WSC=6,ADVA=0, ADVN=1, and ADH=1
NOTE
In 32-bit muxed address/data (A/D) mode the 16 MSBs are driven on the
data bus.
Figure 15. 16-Bit Muxed A/D Mode, Synchronous Read Access,
WSC=7, RADVN=1, ADH=1, OEA=0
EIM_BCLK
EIM_ADDRxx/
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Address V1 Write Data
EIM_ADxx
WE4
WE16
WE6
WE7
WE9
WE8
WE10
WE11
WE14 WE15
WE17
WE5
Last Address
Valid
Last
EIM_BCLK
EIM_ADDRxx/
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Address V1 Data
Address
EIM_ADxx
WE5
WE6
WE7
WE14 WE15
WE10
WE11
WE12 WE13
WE18
WE19
WE4
Valid
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 55
4.9.3.4 General EIM Timing-Asynchronous Mode
Figure 16 through Figure 20 and Table 38 provide timing parameters relative to the chip select (CS) state
for asynchronous and DTACK EIM accesses with corresponding EIM bit fields and the timing
parameters mentioned above.
Asynchronous read and write access length in cycles may vary from what is shown in Figure 16 through
Figure 19 as RWSC, OEN & CSN is configured differently. See the i.MX 6Dual/6Quad reference manual
(IMX6DQRM) for the EIM programming model.
Figure 16. Asynchronous Memory Read Access (RWSC = 5)
Last Valid Address Address V1
D(V1)
EIM_ADDRxx/
EIM_DATA[07:00]
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Next Address
WE39
WE35
WE37
WE32
WE36
WE38
WE43
WE40
WE31
WE44
INT_CLK
start of
access
end of
access
MAXDI
MAXCSO
MAXCO
EIM_ADxx
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
56 NXP Semiconductors
Electrical Characteristics
Figure 17. Asynchronous A/D Muxed Read Access (RWSC = 5)
Figure 18. Asynchronous Memory Write Access
Addr. V1 D(V1)
EIM_ADDRxx/
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
WE39
WE35A
WE37
WE36
WE38
WE40A
WE31
WE44
INT_CLK
start of
access end of
access
MAXDI
MAXCSO
MAXCO
WE32A
EIM_ADxx
Last Valid Address Address V1
D(V1)
EIM_ADDRxx
EIM_DATAxx
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Next Address
WE31
WE39
WE33
WE45
WE32
WE40
WE34
WE46
WE42
WE41
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 57
Figure 19. Asynchronous A/D Muxed Write Access
Figure 20. DTACK Mode Read Access (DAP=0)
EIM_WE_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
WE33
WE45
WE34
WE46
Addr. V1 D(V1)
EIM_ADDRxx/
WE31
WE42
WE41A
WE32A
EIM_DATAxx
EIM_LBA_B
WE39
WE40A
Last Valid Address Address V1
D(V1)
EIM_ADDRxx
EIM_DATAxx[07:00]
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Next Address
WE39
WE35
WE37
WE32
WE36
WE38
WE43
WE40
WE31
WE44
WE47
WE48
EIM_DTACK_B
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
58 NXP Semiconductors
Electrical Characteristics
Figure 21. DTACK Mode Write Access (DAP=0)
Table 38. EIM Asynchronous Timing Parameters Relative to Chip Select1, 2
Ref No. Parameter Determination by Synchronous
measured parameters Min Max Unit
WE31 EIM_CSx_B valid to Address Valid WE4-WE6-CSA×t-3.5-CSA×t3.5-CSA×tns
WE32 Address Invalid to EIM_CSx_B
Invalid
WE7-WE5-CSN×t-3.5-CSN×t3.5-CSN×tns
WE32A
(muxed
A/D)
EIM_CSx_B valid to Address
Invalid
t+WE4-WE7+
(ADVN+ADVA+1-CSA)×t
t-3.5+(ADVN+A
DVA+1-CSA)×t
t+3.5+(ADVN+ADVA+
1-CSA)×t
ns
WE33 EIM_CSx_B Valid to EIM_WE_B
Valid
WE8-WE6+(WEA-WCSA)×t-3.5+(WEA-WCS
A)×t
3.5+(WEA-WCSA)×tns
WE34 EIM_WE_B Invalid to EIM_CSx_B
Invalid
WE7-WE9+(WEN-WCSN)×t -3.5+(WEN-WCS
N)×t
3.5+(WEN-WCSN)×tns
WE35 EIM_CSx_B Valid to EIM_OE_B
Valid
WE10- WE6+(OEA-RCSA)×t -3.5+(OEA-RCS
A)×t
3.5+(OEA-RCSA)×tns
WE35A
(muxed
A/D)
EIM_CSx_B Valid to EIM_OE_B
Valid
WE10-WE6+(OEA+RADVN+R
ADVA+ADH+1-RCSA)×t
-3.5+(OEA+RAD
VN+RADVA+ADH
+1-RCSA)×t
3.5+(OEA+RADVN+RA
DVA+ADH+1-RCSA)×t
ns
WE36 EIM_OE_B Invalid to EIM_CSx_B
Invalid
WE7-WE11+(OEN-RCSN)×t -3.5+(OEN-RCS
N)×t
3.5+(OEN-RCSN)×tns
WE37 EIM_CSx_B Valid to EIM_EBx_B
Valid (Read access)
WE12-WE6+(RBEA-RCSA)×t -3.5+(RBEA- RC
SA)×t
3.5+(RBEA - RCSA)×tns
WE38 EIM_EBx_B Invalid to
EIM_CSx_B Invalid (Read access)
WE7-WE13+(RBEN-RCSN)×t-3.5+
(RBEN-RCSN)×t
3.5+(RBEN-RCSN)×tns
WE39 EIM_CSx_B Valid to EIM_LBA_B
Valid
WE14-WE6+(ADVA-CSA)×t-3.5+
(ADVA-CSA)×t
3.5+(ADVA-CSA)×tns
Last Valid Address Address V1
D(V1)
EIM_ADDRxx
EIM_DATAxx
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Next Address
WE31
WE39
WE33
WE45
WE32
WE40
WE34
WE46
WE42
WE41
EIM_DTACK_B
WE47
WE48
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 59
WE40 EIM_LBA_B Invalid to
EIM_CSx_B Invalid (ADVL is
asserted)
WE7-WE15-CSN×t-3.5-CSN×t3.5-CSN×tns
WE40A
(muxed
A/D)
EIM_CSx_B Valid to EIM_LBA_B
Invalid
WE14-WE6+(ADVN+ADVA+1-
CSA)×t
-3.5+(ADVN+AD
VA+1-CSA)×t
3.5+(ADVN+ADVA
+1-CSA)×t
ns
WE41 EIM_CSx_B Valid to Output Data
Valid
WE16-WE6-WCSA×t-3.5-WCSA×t3.5-WCSA×tns
WE41A
(muxed
A/D)
EIM_CSx_B Valid to Output Data
Valid
WE16-WE6+(WADVN+WADVA
+ADH+1-WCSA)×t
-3.5+(WADVN+
WADVA
+ADH+1-WCSA)
×t
3.5+(WADVN+WADVA
+ADH+1-WCSA)×t
ns
WE42 Output Data Invalid to EIM_CSx_B
Invalid
WE17-WE7-CSN×t-3.5-CSN×t3.5-CSN×tns
MAXCO Output maximum delay from
internal driving
EIM_ADDRxx/control flip-flops to
chip outputs.
10 10 ns
MAXCSO Output maximum delay from
internal chip selects driving
flip-flops to EIM_CSx_B out.
10 10 ns
MAXDI EIM_DATAxx MAXIMUM delay
from chip input data to its internal
flip-flop
5—5ns
WE43 Input Data Valid to EIM_CSx_B
Invalid
MAXCO-MAXCSO+MAXDI MAXCO-MAXCS
O+MAXDI
—ns
WE44 EIM_CSx_B Invalid to Input Data
Invalid
00ns
WE45 EIM_CSx_B Valid to EIM_EBx_B
Valid (Write access)
WE12-WE6+(WBEA-WCSA)×t -3.5+(WBEA-WC
SA)×t
3.5+(WBEA-WCSA)×tns
WE46 EIM_EBx_B Invalid to
EIM_CSx_B Invalid (Write access)
WE7-WE13+(WBEN-WCSN)×t -3.5+(WBEN-WC
SN)×t
3.5+(WBEN-WCSN)×tns
MAXDTI Maximum delay from
EIM_DTACK_B input to its internal
flip-flop + 2 cycles for
synchronization
10 10 ns
WE47 EIM_DTACK_B Active to
EIM_CSx_B Invalid
MAXCO-MAXCSO+MAXDTI MAXCO-MAXCS
O+MAXDTI
—ns
WE48 EIM_CSx_B Invalid to
EIM_DTACK_B invalid
00ns
1For more information on configuration parameters mentioned in this table, see the i.MX 6Dual/6Quad reference manual
(IMX6DQRM).
Table 38. EIM Asynchronous Timing Parameters Relative to Chip Select1, 2 (continued)
Ref No. Parameter Determination by Synchronous
measured parameters Min Max Unit
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
60 NXP Semiconductors
Electrical Characteristics
4.10 Multi-Mode DDR Controller (MMDC)
The Multi-mode DDR Controller is a dedicated interface to DDR3/DDR3L/LPDDR2 SDRAM.
4.10.1 MMDC Compatibility with JEDEC-Compliant SDRAMs
The i.MX 6Dual/6Quad MMDC supports the following memory types:
LPDDR2 SDRAM compliant to JESD209-2B LPDDR2 JEDEC standard release June, 2009
DDR3/DDR3L SDRAM compliant to JESD79-3D DDR3 JEDEC standard release April, 2008
MMDC operation with the standards stated above is contingent upon the board DDR design adherence to
the DDR design and layout requirements stated in the Hardware Development Guide for i.MX 6Quad,
6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).
4.10.2 MMDC Supported DDR3/DDR3L/LPDDR2 Configurations
The table below shows the supported DDR3/DDR3L/LPDDR2 configurations:
4.11 General-Purpose Media Interface (GPMI) Timing
The i.MX 6Dual/6Quad GPMI controller is a flexible interface NAND Flash controller with 8-bit data
width, up to 200 MB/s I/O speed and individual chip select. It supports Asynchronous timing mode, Source
Synchronous timing mode, and Samsung Toggle timing mode separately described in the following
subsections.
2In this table:
t means clock period from axi_clk frequency.
CSA means register setting for WCSA when in write operations or RCSA when in read operations.
CSN means register setting for WCSN when in write operations or RCSN when in read operations.
ADVN means register setting for WADVN when in write operations or RADVN when in read operations.
ADVA means register setting for WADVA when in write operations or RADVA when in read operations.
Table 39. i.MX 6Dual/6Quad Supported DDR3/DDR3L/LPDDR2 Configurations
Parameter LPDDR2 DDR3 DDR3L
Clock frequency 400 MHz 532 MHz 532 MHz
Bus width 32-bit per channel 16/32/64-bit 16/32/64-bit
Channel Dual Single Single
Chip selects 2 per channel 2 2
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 61
4.11.1 Asynchronous Mode AC Timing (ONFI 1.0 Compatible)
Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The
Maximum I/O speed of GPMI in Asynchronous mode is about 50 MB/s. Figure 22 through Figure 25
depict the relative timing between GPMI signals at the module level for different operations under
Asynchronous mode. Table 40 describes the timing parameters (NF1–NF17) that are shown in the figures.
Figure 22. Command Latch Cycle Timing Diagram
Figure 23. Address Latch Cycle Timing Diagram
Figure 24. Write Data Latch Cycle Timing Diagram
Command
.!.$?#,%
.!.$?#%?"
.!.$?7%?"
.!.$?!,%
.!.$?$!4!XX
NF8 NF9
NF7
NF6
NF5
NF2
NF1
NF3 NF4
Address
NF10
NF11
NF9NF8
NF7
NF6
NF5
NF1
NF3
.!.$?#,%
.!.$?#%?"
.!.$?7%?"
.!.$?!,%
NAND_DATAxx
Data to NF
NF10
NF11
NF7
NF6
NF5
NF1
NF3
.!.$?#,%
.!.$?#%?"
.!.$?7%?"
.!.$?!,%
.!.$?$!4!XX
NF9
NF8
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
62 NXP Semiconductors
Electrical Characteristics
Figure 25. Read Data Latch Cycle Timing Diagram (Non-EDO Mode)
Figure 26. Read Data Latch Cycle Timing Diagram (EDO Mode)
Table 40. Asynchronous Mode Timing Parameters1
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min Max
NF1 NAND_CLE setup time tCLS (AS + DS) ×T - 0.12 [see 2,3]ns
NF2 NAND_CLE hold time tCLH DH ×T - 0.72 [see 2]ns
NF3 NAND_CEx_B setup time tCS (AS + DS + 1) ×T [see 3,2]ns
NF4 NAND_CEx_B hold time tCH (DH+1) ×T - 1 [see 2]ns
NF5 NAND_WE_B pulse width tWP DS ×T [see 2]ns
NF6 NAND_ALE setup time tALS (AS + DS) ×T - 0.49 [see 3,2]ns
NF7 NAND_ALE hold time tALH (DH ×T - 0.42 [see 2]ns
NF8 Data setup time tDS DS ×T - 0.26 [see 2]ns
NF9 Data hold time tDH DH ×T - 1.37 [see 2]ns
NF10 Write cycle time tWC (DS + DH) ×T [see 2]ns
NF11 NAND_WE_B hold time tWH DH ×T [see 2]ns
NF12 Ready to NAND_RE_B low tRR4(AS + 2) ×T [see 3,2]—ns
NF13 NAND_RE_B pulse width tRP DS ×T [see 2]ns
NF14 READ cycle time tRC (DS + DH) ×T [see 2]ns
NF15 NAND_RE_B high hold time tREH DH ×T [see 2]ns
Data from NF
NF14
NF15
NF17
NF16
NF12
NF13
.!.$?#,%
.!.$?#%?"
.!.$?2%?"
.!.$?2%!$9?"
.!.$?$!4!XX
Data from NF
NF14
NF15
NF17
NF16
NF12
NF13
.!.$?#,%
.!.$?#%?"
.!.$?2%?"
.!.$?2%!$9?"
NAND_DATAxx
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 63
In EDO mode (Figure 26), NF16/NF17 are different from the definition in non-EDO mode (Figure 25).
They are called tREA/tRHOH (NAND_RE_B access time/NAND_RE_B HIGH to output hold). The
typical value for them are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO
mode, GPMI will sample NAND_DATAxx at rising edge of delayed NAND_RE_B provided by an
internal DPLL. The delay value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter
of the i.MX 6Dual/6Quad reference manual (IMX6DQRM)). The typical value of this control register is
0x8 at 50 MT/s EDO mode. However, if the board delay is large enough and cannot be ignored, the delay
value should be made larger to compensate the board delay.
NF16 Data setup on read tDSR (DS ×T -0.67)/18.38 [see 5,6]ns
NF17 Data hold on read tDHR 0.82/11.83 [see 5,6]—ns
1The GPMI asynchronous mode output timing can be controlled by the module’s internal registers
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.
This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.
2 AS minimum value can be 0, while DS/DH minimum value is 1.
3T = GPMI clock period -0.075ns (half of maximum p-p jitter).
4NF12 is met automatically by the design.
5Non-EDO mode.
6EDO mode, GPMI clock 100 MHz
(AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0).
Table 40. Asynchronous Mode Timing Parameters1 (continued)
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min Max
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
64 NXP Semiconductors
Electrical Characteristics
4.11.2 Source Synchronous Mode AC Timing (ONFI 2.x Compatible)
Figure 27 shows the write and read timing of Source Synchronous mode.
Figure 27. Source Synchronous Mode Command and Address Timing Diagram
NF18
NF25 NF26
NF25 NF26
NF20
NF21
NF20
NF23
NF24
NF19
NF22
NF21
CMD ADD
.!.$?#%?"
NAND_CLE
NAND_ALE
NAND_WE/RE_B
NAND_CLK
NAND_DQS
NAND_DQS
Output enable
NAND_DATA[7:0]
NAND_DATA[7:0]
Output enable
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 65
Figure 28. Source Synchronous Mode Data Write Timing Diagram
Figure 29. Source Synchronous Mode Data Read Timing Diagram
NF23
NF18
NF25
NF26
NF27
NF25
NF26
NF28 NF28
NF29 NF29
NF23 NF24
NF24
NF19
NF27
NF22
.!.$?#%?"
.!.$?#,%
.!.$?!,%
NAND_WE/RE_B
.!.$?#,+
.!.$?$13
.!.$?$13
Output enable
.!.$?$1;=
.!.$?$1;=
Output enable
NF23
NF18
NF25
NF26
NF25
NF26
NF23 NF24
NF24
NF19
NF22
NF25
NF26
.!.$?#%?"
.!.$?#,%
NAND_ALE
.!.$?7%2%
.!.$?#,+
.!.$?$13
.!.$?$13
/UTPUTENABLE
.!.$?$!4!;=
.!.$?$!4!;=
/UTPUTENABLE
NF25
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
66 NXP Semiconductors
Electrical Characteristics
Figure 30. NAND_DQS/NAND_DQ Read Valid Window
Figure 30 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. For Source
Synchronous mode, the typical value of tDQSQ is 0.85 ns (max) and 1 ns (max) for tQHS at 200MB/s.
GPMI will sample NAND_DATA[7:0] at both rising and falling edge of a delayed NAND_DQS signal,
which can be provided by an internal DPLL. The delay value can be controlled by GPMI register
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX
6Dual/6Quad reference manual (IMX6DQRM)). Generally, the typical delay value of this register is equal
to 0x7 which means 1/4 clock cycle delay expected. However, if the board delay is large enough and cannot
be ignored, the delay value should be made larger to compensate the board delay.
Table 41. Source Synchronous Mode Timing Parameters1
1The GPMI source synchronous mode output timing can be controlled by the module’s internal registers
GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing depends
on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings.
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min Max
NF18 NAND_CEx_B access time tCE CE_DELAY ×T - 0.79 [see 2]
2T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter).
ns
NF19 NAND_CEx_B hold time tCH 0.5 ×tCK - 0.63 [see 2]ns
NF20 Command/address NAND_DATAxx setup time tCAS 0.5 ×tCK - 0.05 ns
NF21 Command/address NAND_DATAxx hold time tCAH 0.5 ×tCK - 1.23 ns
NF22 clock period tCK ns
NF23 preamble delay tPRE PRE_DELAY ×T - 0.29 [see 2]ns
NF24 postamble delay tPOST POST_DELAY ×T - 0.78 [see 2]ns
NF25 NAND_CLE and NAND_ALE setup time tCALS 0.5 ×tCK - 0.86 ns
NF26 NAND_CLE and NAND_ALE hold time tCALH 0.5 ×tCK - 0.37 ns
NF27 NAND_CLK to first NAND_DQS latching transition tDQSS T - 0.41 [see 2]ns
NF28 Data write setup tDS 0.25 ×tCK - 0.35
NF29 Data write hold tDH 0.25 ×tCK - 0.85
NF30 NAND_DQS/NAND_DQ read setup skew tDQSQ 2.06
NF31 NAND_DQS/NAND_DQ read hold skew tQHS 1.95
D0 D1 D2 D3
.!.$?$13
.!.$?$!4!;=
NF30
NF31
NF30
NF31
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 67
4.11.3 Samsung Toggle Mode AC Timing
4.11.3.1 Command and Address Timing
Samsung Toggle mode command and address timing is the same as ONFI 1.0 compatible Async mode AC
timing. See Section 4.11.1, “Asynchronous Mode AC Timing (ONFI 1.0 Compatible)” for details.
4.11.3.2 Read and Write Timing
Figure 31. Samsung Toggle Mode Data Write Timing
.!.$?$!4!;=
DEV?CLK
.!.$?#%X?"
.!.$?#,%
.!.$?!,%
.!.$?7%?"
.!.$?2%?"
.!.$?$13
T#+
.& .&
T#+
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
68 NXP Semiconductors
Electrical Characteristics
Figure 32. Samsung Toggle Mode Data Read Timing
Table 42. Samsung Toggle Mode Timing Parameters1
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min Max
NF1 NAND_CLE setup time tCLS (AS + DS) ×T - 0.12 [see 2,3]—
NF2 NAND_CLE hold time tCLH DH ×T - 0.72 [see 2]—
NF3 NAND_CEx_B setup time tCS (AS + DS) ×T - 0.58 [see 3,2]—
NF4 NAND_CEx_B hold time tCH DH ×T - 1 [see 2]—
NF5 NAND_WE_B pulse width tWP DS ×T [see 2]—
NF6 NAND_ALE setup time tALS (AS + DS) ×T - 0.49 [see 3,2]—
NF7 NAND_ALE hold time tALH DH ×T - 0.42 [see 2]—
NF8 Command/address NAND_DATAxx setup time tCAS DS ×T - 0.26 [see 2]—
NF9 Command/address NAND_DATAxx hold time tCAH DH ×T - 1.37 [see 2]—
NF18 NAND_CEx_B access time tCE CE_DELAY ×T [see 4,2]—ns
NF22 clock period tCK ns
NF23 preamble delay tPRE PRE_DELAY ×T [see 5,2]—ns
NF24 postamble delay tPOST POST_DELAY ×T +0.43 [see 2]— ns
DEV?CLK
.!.$?#%X?"
.!.$?#,%
.!.$?!,%
.!.$?7%?"
.!.$?2%?"
.!.$?$13
.!.$?$!4!;=
.&
T#+
T#+
.&
T#+
T#+
.& T#+
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 69
Figure 30 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. For DDR
Toggle mode, the typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI
will sample NAND_DATA[7:0] at both rising and falling edge of a delayed NAND_DQS signal, which is
provided by an internal DPLL. The delay value of this register can be controlled by GPMI register
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX
6Dual/6Quad reference manual (IMX6DQRM)). Generally, the typical delay value is equal to 0x7 which
means 1/4 clock cycle delay expected. However, if the board delay is large enough and cannot be ignored,
the delay value should be made larger to compensate the board delay.
4.12 External Peripheral Interface Parameters
The following subsections provide information on external peripheral interfaces.
4.12.1 AUDMUX Timing Parameters
The AUDMUX provides a programmable interconnect logic for voice, audio, and data routing between
internal serial interfaces (SSIs) and external serial interfaces (audio and voice codecs). The AC timing of
AUDMUX external pins is governed by the SSI module. For more information, see the respective SSI
electrical specifications found within this document.
4.12.2 ECSPI Timing Parameters
This section describes the timing parameters of the ECSPI block. The ECSPI has separate timing
parameters for master and slave modes.
NF28 Data write setup tDS60.25 ×tCK - 0.32 ns
NF29 Data write hold tDH60.25 ×tCK - 0.79 ns
NF30 NAND_DQS/NAND_DQ read setup skew tDQSQ7—3.18
NF31 NAND_DQS/NAND_DQ read hold skew tQHS7—3.27
1The GPMI toggle mode output timing can be controlled by the module’s internal registers
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.
This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.
2 AS minimum value can be 0, while DS/DH minimum value is 1.
3T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter).
4CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is met automatically by the design. Read/Write operation is
started with enough time of ALE/CLE assertion to low level.
5PRE_DELAY+1) (AS+DS).
6Shown in Figure 28.
7Shown in Figure 29.
Table 42. Samsung Toggle Mode Timing Parameters1 (continued)
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min Max
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
70 NXP Semiconductors
Electrical Characteristics
4.12.2.1 ECSPI Master Mode Timing
Figure 33 depicts the timing of ECSPI in master mode and Table 43 lists the ECSPI master mode timing
characteristics.
Figure 33. ECSPI Master Mode Timing Diagram
Table 43. ECSPI Master Mode Timing Parameters
ID Parameter Symbol Min Max Unit
CS1 ECSPIx_SCLK Cycle Time–Read
Slow group1
Fast group2
ECSPIx_SCLK Cycle Time–Write
1ECSPI slow includes:
ECSPI1/DISP0_DAT22, ECSPI1/KEY_COL1, ECSPI1/CSI0_DAT6,
ECSPI2/EIM_OE, ECSPI2/ ECSPI2/CSI0_DAT10, ECSPI3/DISP0_DAT2
2ECSPI fast includes:
ECSPI1/EIM_D17, ECSPI4/EIM_D22, ECSPI5/SD2_DAT0, ECSPI5/SD1_DAT0
tclk
55
40
15
—ns
CS2 ECSPIx_SCLK High or Low Time–Read
Slow group1
Fast group2
ECSPIx_SCLK High or Low Time–Write
tSW
26
20
7
—ns
CS3 ECSPIx_SCLK Rise or Fall3
3See specific I/O AC parameters Section 4.7, “I/O AC Parameters.”
tRISE/FALL ——ns
CS4 ECSPIx_SSx pulse width tCSLH Half ECSPIx_SCLK period ns
CS5 ECSPIx_SSx Lead Time (CS setup time) tSCS Half ECSPIx_SCLK period - 4 ns
CS6 ECSPIx_SSx Lag Time (CS hold time) tHCS Half ECSPIx_SCLK period - 2 ns
CS7 ECSPIx_MOSI Propagation Delay (CLOAD =20pF) t
PDmosi -1 1 ns
CS8 ECSPIx_MISO Setup Time
Slow group1
Fast group2
tSmiso
21.5
16
—ns
CS9 ECSPIx_MISO Hold Time tHmiso 0—ns
CS10 ECSPIx_RDY to ECSPIx_SSx Time4
4ECSPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals.
tSDRY 5—ns
CS1
CS7
CS2
CS2
CS4
CS6 CS5
CS8 CS9
ECSPIx_SCLK
ECSPIx_SS_B
ECSPIx_MOSI
ECSPIx_MISO
ECSPIx_RDY_B
CS10
CS3
CS3
Note: ECSPIx_MOSI is always driven (not tri-stated) between actual data transmissions. This limits the ECSPI to be
connected between a single master and a single slave.
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 71
4.12.2.2 ECSPI Slave Mode Timing
Figure 34 depicts the timing of ECSPI in slave mode and Table 44 lists the ECSPI slave mode timing
characteristics.
Figure 34. ECSPI Slave Mode Timing Diagram
Table 44. ECSPI Slave Mode Timing Parameters
ID Parameter Symbol Min Max Unit
CS1 ECSPIx_SCLK Cycle Time–Read
Slow group1
Fast group2
ECSPIx_SCLK Cycle Time–Write
1ECSPI slow includes:
ECSPI1/DISP0_DAT22, ECSPI1/KEY_COL1, ECSPI1/CSI0_DAT6,
ECSPI2/EIM_OE, ECSPI2/DISP0_DAT17, ECSPI2/CSI0_DAT10, ECSPI3/DISP0_DAT2
2ECSPI fast includes:
ECSPI1/EIM_D17, ECSPI4/EIM_D22, ECSPI5/SD2_DAT0, ECSPI5/SD1_DAT0
tclk
55
40
15
—ns
CS2 ECSPIx_SCLK High or Low Time–Read
Slow group1
Fast group2
ECSPIx_SCLK High or Low Time–Write
tSW
26
20
7
—ns
CS4 ECSPIx_SSx pulse width tCSLH Half ECSPIx_SCLK period ns
CS5 ECSPIx_SSx Lead Time (CS setup time) tSCS 5—ns
CS6 ECSPIx_SSx Lag Time (CS hold time) tHCS 5—ns
CS7 ECSPIx_MOSI Setup Time tSmosi 4—ns
CS8 ECSPIx_MOSI Hold Time tHmosi 4—ns
CS9 ECSPIx_MISO Propagation Delay (CLOAD =20pF)
Slow group1
Fast group2
tPDmiso 4
25
17
ns
CS1
CS7 CS8
CS2
CS2
CS4
CS6 CS5
CS9
ECSPIx_SCLK
ECSPIx_SS_B
ECSPIx_MISO
ECSPIx_MOSI
Note: ECSPIx_MISO is always driven (not tri-stated) between actual data transmissions. This limits the ECSPI to be con-
nected between a single master and a single slave.
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
72 NXP Semiconductors
Electrical Characteristics
4.12.3 Enhanced Serial Audio Interface (ESAI) Timing Parameters
The ESAI consists of independent transmitter and receiver sections, each section with its own clock
generator. Table 45 shows the interface timing values. The number field in the table refers to timing
signals found in Figure 35 and Figure 36.
Table 45. Enhanced Serial Audio Interface (ESAI) Timing
ID Parameter1,2 Symbol Expression2Min Max Condition3Unit
62 Clock cycle4tSSICC 4 × Tc
4 × Tc
30.0
30.0
i ck
i ck
ns
63 Clock high period:
For internal clock
For external clock
2 × Tc 9.0
2 × Tc
6
15
ns
64 Clock low period:
For internal clock
For external clock
2 × Tc 9.0
2 × Tc
6
15
ns
65 ESAI_RX_CLK rising edge to ESAI_RX_FS out (bl) high
19.0
7.0
x ck
i ck a
ns
66 ESAI_RX_CLK rising edge to ESAI_RX_FS out (bl) low
19.0
7.0
x ck
i ck a
ns
67 ESAI_RX_CLK rising edge to ESAI_RX_FS out (wr)
high5
19.0
9.0
x ck
i ck a
ns
68 ESAI_RX_CLK rising edge to ESAI_RX_FS out (wr) low5
19.0
9.0
x ck
i ck a
ns
69 ESAI_RX_CLK rising edge to ESAI_RX_FS out (wl) high
19.0
6.0
x ck
i ck a
ns
70 ESAI_RX_CLK rising edge to ESAI_RX_FSout (wl) low
17.0
7.0
x ck
i ck a
ns
71 Data in setup time before ESAI_RX_CLK (serial clock in
synchronous mode) falling edge
12.0
19.0
x ck
i ck
ns
72 Data in hold time after ESAI_RX_CLK falling edge
3.5
9.0
x ck
i ck
ns
73 ESAI_RX_FS input (bl, wr) high before ESAI_RX_CLK
falling edge5
2.0
19.0
x ck
i ck a
ns
74 ESAI_RX_FS input (wl) high before ESAI_RX_CLK
falling edge
2.0
19.0
x ck
i ck a
ns
75 ESAI_RX_FS input hold time after ESAI_RX_CLK falling
edge
2.5
8.5
x ck
i ck a
ns
78 ESAI_TX_CLK rising edge to ESAI_TX_FS out (bl) high
19.0
8.0
x ck
i ck
ns
79 ESAI_TX_CLK rising edge to ESAI_TX_FS out (bl) low
20.0
10.0
x ck
i ck
ns
80 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr)
high5
20.0
10.0
x ck
i ck
ns
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 73
81 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr) low5
22.0
12.0
x ck
i ck
ns
82 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) high
19.0
9.0
x ck
i ck
ns
83 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) low
20.0
10.0
x ck
i ck
ns
84 ESAI_TX_CLK rising edge to data out enable from high
impedance
22.0
17.0
x ck
i ck
ns
86 ESAI_TX_CLK rising edge to data out valid
19.0
13.0
x ck
i ck
ns
87 ESAI_TX_CLK rising edge to data out high impedance 67
21.0
16.0
x ck
i ck
ns
89 ESAI_TX_FS input (bl, wr) setup time before
ESAI_TX_CLK falling edge5
2.0
18.0
x ck
i ck
ns
90 ESAI_TX_FS input (wl) setup time before ESAI_TX_CLK
falling edge
2.0
18.0
x ck
i ck
ns
91 ESAI_TX_FS input hold time after ESAI_TX_CLK falling
edge
4.0
5.0
x ck
i ck
ns
95 ESAI_RX_HF_CLK/ESAI_TX_HF_CLK clock cycle 2 x TC15 ns
96 ESAI_TX_HF_CLK input rising edge to ESAI_TX_CLK
output
——18.0ns
97 ESAI_RX_HF_CLK input rising edge to ESAI_RX_CLK
output
——18.0ns
1i ck = internal clock
x ck = external clock
i ck a = internal clock, asynchronous mode
(asynchronous implies that ESAI_TX_CLK and ESAI_RX_CLK are two different clocks)
i ck s = internal clock, synchronous mode
(synchronous implies that ESAI_TX_CLK and ESAI_RX_CLK are the same clock)
2bl = bit length
wl = word length
wr = word length relative
3ESAI_TX_CLK(ESAI_TX_CLK pin) = transmit clock
ESAI_RX_CLK(ESAI_RX_CLK pin) = receive clock
ESAI_TX_FS(ESAI_TX_FS pin) = transmit frame sync
ESAI_RX_FS(ESAI_RX_FS pin) = receive frame sync
ESAI_TX_HF_CLK(ESAI_TX_HF_CLK pin) = transmit high frequency clock
ESAI_RX_HF_CLK(ESAI_RX_HF_CLK pin) = receive high frequency clock
4For the internal clock, the external clock cycle is defined by Icyc and the ESAI control register.
5The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync
signal waveform, but it spreads from one serial clock before the first bit clock (like the bit length frame sync signal), until the
second-to-last bit clock of the first word in the frame.
6Periodically sampled and not 100% tested.
Table 45. Enhanced Serial Audio Interface (ESAI) Timing (continued)
ID Parameter1,2 Symbol Expression2Min Max Condition3Unit
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
74 NXP Semiconductors
Electrical Characteristics
Figure 35. ESAI Transmitter Timing
ESAI_TX_CLK
(Input/Output)
ESAI_TX_FS
(Bit)
Out
ESAI_TX_FS
(Word)
Out
Data Out
ESAI_TX_FS
(Bit) In
ESAI_TX_FS
(Word) In
62
64
78 79
82 83
87
8686
84
91
89
90 91
63
Last BitFirst Bit
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 75
Figure 36. ESAI Receiver Timing
ESAI_RX_CLK
(Input/Output)
ESAI_RX_FS
(Bit) Out
ESAI_RX_FS
(Word) Out
Data In
ESAI_RX_FS
(Bit) In
ESAI_RX_FS
(Word) In
62
64
65
69 70
72
71
75
73
74 75
63
66
First Bit Last Bit
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
76 NXP Semiconductors
Electrical Characteristics
4.12.4 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC)
AC Timing
This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (Single
Data Rate) timing and eMMC4.4/4.1 (Dual Date Rate) timing.
4.12.4.1 SD/eMMC4.3 (Single Data Rate) AC Timing
Figure 37 depicts the timing of SD/eMMC4.3, and Table 46 lists the SD/eMMC4.3 timing characteristics.
Figure 37. SD/eMMC4.3 Timing
Table 46. SD/eMMC4.3 Interface Timing Specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency (Low Speed) fPP10400kHz
Clock Frequency (SD/SDIO Full Speed/High Speed) fPP20 25/50 MHz
Clock Frequency (MMC Full Speed/High Speed) fPP30 20/52 MHz
Clock Frequency (Identification Mode) fOD 100 400 kHz
SD2 Clock Low Time tWL 7—ns
SD3 Clock High Time tWH 7—ns
SD4 Clock Rise Time tTLH —3ns
SD5 Clock Fall Time tTHL —3ns
eSDHC Output/Card Inputs SD_CMD, SD_DATAx (Reference to SDx_CLK)
SD6 eSDHC Output Delay tOD –6.6 3.6 ns
SD1
SD3
SD5
SD4
SD7
SDx_CLK
SD2
SD8
SD6
Output from uSDHC to card
Input from card to uSDHC
SDx_DATA[7:0]
SDx_DATA[7:0]
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 77
4.12.4.2 eMMC4.4/4.41 (Dual Data Rate) eSDHCv3 AC Timing
Figure 38 depicts the timing of eMMC4.4/4.41. Table 47 lists the eMMC4.4/4.41 timing characteristics.
Be aware that only SDx_DATAx is sampled on both edges of the clock (not applicable to SD_CMD).
Figure 38. eMMC4.4/4.41 Timing
eSDHC Input/Card Outputs SD_CMD, SD_DATAx (Reference to SDx_CLK)
SD7 eSDHC Input Setup Time tISU 2.5 ns
SD8 eSDHC Input Hold Time4tIH 1.5 ns
1In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.
2In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 025 MHz. In high-speed mode,
clock frequency can be any value between 050 MHz.
3In normal (full) speed mode for MMC card, clock frequency can be any value between 020 MHz. In high-speed mode, clock
frequency can be any value between 052 MHz.
4To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.
Table 47. eMMC4.4/4.41 Interface Timing Specification
ID Parameter Symbols Min Max Unit
Card Input Clock1
1Clock duty cycle will be in the range of 47% to 53%.
SD1 Clock Frequency (EMMC4.4 DDR) fPP 052MHz
SD1 Clock Frequency (SD3.0 DDR) fPP 050MHz
uSDHC Output / Card Inputs SD_CMD, SD_DATAx (Reference to SD_CLK)
SD2 uSDHC Output Delay tOD 2.8 6.8 ns
uSDHC Input / Card Outputs SD_CMD, SD_DATAx (Reference to SD_CLK)
SD3 uSDHC Input Setup Time tISU 1.7 ns
SD4 uSDHC Input Hold Time tIH 1.5 ns
Table 46. SD/eMMC4.3 Interface Timing Specification (continued)
ID Parameter Symbols Min Max Unit
SD1
SD3
Output from eSDHCv3 to card
Input from card to eSDHCv3
SDx_DATA[7:0]
SDx_CLK
SD4
SD2
......
......
SDx_DATA[7:0]
SD2
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
78 NXP Semiconductors
Electrical Characteristics
4.12.4.3 SDR50/SDR104 AC Timing
Figure 39 depicts the timing of SDR50/SDR104, and Table 48 lists the SDR50/SDR104 timing
characteristics.
Figure 39. SDR50/SDR104 Timing
Table 48. SDR50/SDR104 Interface Timing Specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency Period tCLK 4.8 ns
SD2 Clock Low Time tCL 0.46 ×tCLK 0.54 ×tCLK ns
SD3 Clock High Time tCH 0.46 ×tCLK 0.54 ×tCLK ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to SDx_CLK)
SD4 uSDHC Output Delay tOD –3 1 ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to SDx_CLK)
SD5 uSDHC Output Delay tOD –1.6 0.74 ns
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to SDx_CLK)
SD6 uSDHC Input Setup Time tISU 2.5 ns
SD7 uSDHC Input Hold Time tIH 1.5 ns
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to SDx_CLK)1
1Data window in SDR100 mode is variable.
SD8 Card Output Data Window tODW 0.5 ×tCLK —ns
Output from uSDHC to card
Input from card to uSDHC
SCK
SD4
SD3
SD5
S
D
3
SD8
SD7
SD6
SD1
SD2
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 79
4.12.4.4 Bus Operation Condition for 3.3 V and 1.8 V Signaling
Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of SDR104/SDR50
mode is 1.8 V. The DC parameters for the NVCC_SD1, NVCC_SD2, and NVCC_SD3 supplies are
identical to those shown in Table 21, “GPIO I/O DC Parameters,” on page 37.
4.12.5 Ethernet Controller (ENET) AC Electrical Specifications
4.12.5.1 ENET MII Mode Timing
This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal
timings.
4.12.5.1.1 MII Receive Signal Timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN,
ENET_RX_ER, and ENET_RX_CLK)
The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There
is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the
ENET_RX_CLK frequency.
Figure 40 shows MII receive signal timings. Table 49 describes the timing parameters (M1–M4) shown in
the figure.
Figure 40. MII Receive Signal Timing Diagram
1 ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.
Table 49. MII Receive Signal Timing
ID Characteristic1Min Max Unit
M1 ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to
ENET_RX_CLK setup
5— ns
M2 ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN,
ENET_RX_ER hold
5— ns
M3 ENET_RX_CLK pulse width high 35% 65% ENET_RX_CLK period
M4 ENET_RX_CLK pulse width low 35% 65% ENET_RX_CLK period
ENET_RX_CLK (input)
ENET_RX_DATA3,2,1,0
M3
M4
M1 M2
ENET_RX_ER
ENET_RX_EN
(inputs)
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
80 NXP Semiconductors
Electrical Characteristics
4.12.5.1.2 MII Transmit Signal Timing
(ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER, and ENET_TX_CLK)
The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%.
There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed
twice the ENET_TX_CLK frequency.
Figure 41 shows MII transmit signal timings. Table 50 describes the timing parameters (M5–M8) shown
in the figure.
Figure 41. MII Transmit Signal Timing Diagram
1 ENET_TX_EN, ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode.
4.12.5.1.3 MII Asynchronous Inputs Signal Timing (ENET_CRS and ENET_COL)
Figure 42 shows MII asynchronous input timings. Table 51 describes the timing parameter (M9) shown in
the figure.
Figure 42. MII Async Inputs Timing Diagram
Table 50. MII Transmit Signal Timing
ID Characteristic1Min Max Unit
M5 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,
ENET_TX_ER invalid
5— ns
M6 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,
ENET_TX_ER valid
—20 ns
M7 ENET_TX_CLK pulse width high 35% 65% ENET_TX_CLK period
M8 ENET_TX_CLK pulse width low 35% 65% ENET_TX_CLK period
ENET_TX_CLK (input)
ENET_TX_DATA3,2,1,0
M7
M8
M5
M6
ENET_TX_ER
ENET_TX_EN
(outputs)
ENET_CRS, ENET_COL
M9
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 81
1 ENET_COL has the same timing in 10-Mbit 7-wire interface mode.
4.12.5.1.4 MII Serial Management Channel Timing (ENET_MDIO and ENET_MDC)
The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3
MII specification. However the ENET can function correctly with a maximum MDC frequency of
15 MHz.
Figure 43 shows MII asynchronous input timings. Table 52 describes the timing parameters (M10–M15)
shown in the figure.
Figure 43. MII Serial Management Channel Timing Diagram
Table 51. MII Asynchronous Inputs Signal Timing
ID Characteristic Min Max Unit
M91ENET_CRS to ENET_COL minimum pulse width 1.5 ENET_TX_CLK period
Table 52. MII Serial Management Channel Timing
ID Characteristic Min Max Unit
M10 ENET_MDC falling edge to ENET_MDIO output invalid
(minimum propagation delay)
0— ns
M11 ENET_MDC falling edge to ENET_MDIO output valid
(maximum propagation delay)
—5 ns
M12 ENET_MDIO (input) to ENET_MDC rising edge setup 18 ns
M13 ENET_MDIO (input) to ENET_MDC rising edge hold 0 ns
M14 ENET_MDC pulse width high 40% 60% ENET_MDC period
M15 ENET_MDC pulse width low 40% 60% ENET_MDC period
ENET_MDC (output)
ENET_MDIO (output)
M14
M15
M10
M11
M12 M13
ENET_MDIO (input)
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
82 NXP Semiconductors
Electrical Characteristics
4.12.5.2 RMII Mode Timing
In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference
clock. ENET_RX_EN is used as the ENET_RX_EN in RMII. Other signals under RMII mode include
ENET_TX_EN, ENET0_TXD[1:0], ENET_RXD[1:0] and ENET_RX_ER.
Figure 44 shows RMII mode timings. Table 53 describes the timing parameters (M16–M21) shown in the
figure.
Figure 44. RMII Mode Signal Timing Diagram
Table 53. RMII Signal Timing
ID Characteristic Min Max Unit
M16 ENET_CLK pulse width high 35% 65% ENET_CLK period
M17 ENET_CLK pulse width low 35% 65% ENET_CLK period
M18 ENET_CLK to ENET0_TXD[1:0], ENET_TX_EN invalid 4 ns
M19 ENET_CLK to ENET0_TXD[1:0], ENET_TX_EN valid 13.5 ns
M20 ENET_RXD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to
ENET_CLK setup
4— ns
M21 ENET_CLK to ENET_RXD[1:0], ENET_RX_EN, ENET_RX_ER hold 2 ns
ENET_CLK (input)
ENET_TX_EN
M16
M17
M18
M19
M20 M21
ENET_RXD[1:0]
ENET0_TXD[1:0] (output)
ENET_RX_ER
ENET_RX_EN (input)
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 83
4.12.5.3 RGMII Signal Switching Specifications
The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver
devices.
Figure 45. RGMII Transmit Signal Timing Diagram Original
Table 54. RGMII Signal Switching Specifications1
1The timings assume the following configuration:
DDR_SEL = (11)b
DSE (drive-strength) = (111)b
Symbol Description Min Max Unit
Tcyc2
2For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns ±40 ns and 40 ns ±4 ns respectively.
Clock cycle duration 7.2 8.8 ns
TskewT3
3For all versions of RGMII prior to 2.0; This implies that PC board design will require clocks to be routed such that an additional
delay of greater than 1.2 ns and less than 1.7 ns will be added to the associated clock signal. For 10/100, the max value is
unspecified.
Data to clock output skew at transmitter -100 900 ps
TskewR3Data to clock input skew at receiver 1 2.6 ns
Duty_G4
4Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long
as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned
between.
Duty cycle for Gigabit 45 55 %
Duty_T4Duty cycle for 10/100T 40 60 %
Tr/Tf Rise/fall time (20–80%) 0.75 ns
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
84 NXP Semiconductors
Electrical Characteristics
Figure 46. RGMII Receive Signal Timing Diagram Original
Figure 47. RGMII Receive Signal Timing Diagram with Internal Delay
4.12.6 Flexible Controller Area Network (FlexCAN) AC Electrical
Specifications
The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing
the CAN protocol according to the CAN 2.0B protocol specification.The processor has two CAN modules
available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See
the IOMUXC chapter of the i.MX 6Dual/6Quad reference manual (IMX6DQRM) to see which pins
expose Tx and Rx pins; these ports are named FLEXCAN_TX and FLEXCAN_RX, respectively.
4.12.7 HDMI Module Timing Parameters
4.12.7.1 Latencies and Timing Information
Power-up time (time between TX_PWRON assertion and TX_READY assertion) for the HDMI 3D Tx
PHY while operating with the slowest input reference clock supported (13.5 MHz) is 3.35 ms.
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 85
Power-up time for the HDMI 3D Tx PHY while operating with the fastest input reference clock supported
(340 MHz) is 133 μs.
4.12.7.2 Electrical Characteristics
The table below provides electrical characteristics for the HDMI 3D Tx PHY. The following three figures
illustrate various definitions and measurement conditions specified in the table below.
Figure 48. Driver Measuring Conditions
Figure 49. Driver Definitions
Figure 50. Source Termination
Table 55. Electrical Characteristics
Symbol Parameter Condition Min Typ Max Unit
Operating conditions for HDMI
avddtmds Termination supply voltage 3.15 3.3 3.45 V
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
86 NXP Semiconductors
Electrical Characteristics
4.12.8 Switching Characteristics
Table 56 describes switching characteristics for the HDMI 3D Tx PHY. Figure 51 to Figure 55 illustrate
various parameters specified in table.
NOTE
All dynamic parameters related to the TMDS line drivers’ performance
imply the use of assembly guidelines.
RTTermination resistance 45 50 55 Ω
TMDS drivers DC specifications
VOFF Single-ended standby voltage RT = 50 Ω
For measurement conditions and
definitions, see the first two figures
above.
Compliance point TP1 as defined in
the HDMI specification, version 1.3a,
section 4.2.4.
avddtmds ± 10 mV mV
VSWING Single-ended output swing voltage 400 600 mV
VHSingle-ended output high voltage
For definition, see the second
figure above.
If attached sink supports TMDSCLK <
or = 165 MHz
avddtmds ± 10 mV mV
If attached sink supports TMDSCLK >
165 MHz
avddtmds
– 200 mV
avddtmds
+ 10 mV
mV
VLSingle-ended output low voltage
For definition, see the second
figure above.
If attached sink supports TMDSCLK <
or = 165 MHz
avddtmds
– 600 mV
avddtmds
– 400mV
mV
If attached sink supports TMDSCLK >
165 MHz
avddtmds
– 700 mV
avddtmds
– 400 mV
mV
RTERM Differential source termination load
(inside HDMI 3D Tx PHY)
Although the HDMI 3D Tx PHY
includes differential source
termination, the user-defined value
is set for each single line (for
illustration, see the third figure
above).
Note: RTERM can also be
configured to be open and not
present on TMDS channels.
50 200 Ω
Hot plug detect specifications
HPDVH Hot plug detect high range 2.0 5.3 V
VHPDVL Hot plug detect low range 0 0.8 V
HPDZHot plug detect input impedance 10 kΩ
HPDtHot plug detect time delay 100 µs
Table 55. Electrical Characteristics (continued)
Symbol Parameter Condition Min Typ Max Unit
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 87
Figure 51. TMDS Clock Signal Definitions
Figure 52. Eye Diagram Mask Definition for HDMI Driver Signal Specification at TP1
Figure 53. Intra-Pair Skew Definition
PTMDSCLK
50%
tCPH
tCPL
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
88 NXP Semiconductors
Electrical Characteristics
Figure 54. Inter-Pair Skew Definition
Figure 55. TMDS Output Signals Rise and Fall Time Definition
Table 56. Switching Characteristics
Symbol Parameter Conditions Min Typ Max Unit
TMDS Drivers Specifications
Maximum serial data rate 3.4 Gbps
FTMDSCLK TMDSCLK frequency On TMDSCLKP/N outputs 25 340 MHz
PTMDSCLK TMDSCLK period RL = 50 Ω
See Figure 51.
2.94 40 ns
tCDC TMDSCLK duty cycle tCDC = tCPH / PTMDSCLK
RL = 50 Ω
See Figure 51.
40 50 60 %
tCPH TMDSCLK high time RL = 50 Ω
See Figure 51.
456UI
tCPL TMDSCLK low time RL = 50 Ω
See Figure 51.
456UI
TMDSCLK jitter1RL = 50 Ω 0.25 UI
tSK(p) Intra-pair (pulse) skew RL = 50 Ω
See Figure 53.
0.15 UI
tSK(pp) Inter-pair skew RL = 50 Ω
See Figure 54.
——1UI
tRDifferential output signal rise
time
20–80%
RL = 50 Ω
See Figure 55.
75 0.4 UI ps
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 89
4.12.9 I2C Module Timing Parameters
This section describes the timing parameters of the I2C module. Figure 56 depicts the timing of I2C
module, and Table 57 lists the I2C module timing characteristics.
Figure 56. I2C Bus Timing
tFDifferential output signal fall time 20–80%
RL = 50 Ω
See Figure 55.
75 0.4 UI ps
Differential signal overshoot Referred to 2x VSWING ——15%
Differential signal undershoot Referred to 2x VSWING ——25%
Data and Control Interface Specifications
tPower-up2HDMI 3D Tx PHY power-up time From power-down to
HSI_TX_READY assertion
3.35 ms
1Relative to ideal recovery clock, as specified in the HDMI specification, version 1.4a, section 4.2.3.
2For information about latencies and associated timings, see Section 4.12.7.1, “Latencies and Timing Information.”
Table 57. I2C Module Timing Parameters
ID Parameter
Standard Mode Fast Mode
Unit
Min Max Min Max
IC1 I2Cx_SCL cycle time 10 2.5 µs
IC2 Hold time (repeated) START condition 4.0 0.6 µs
IC3 Set-up time for STOP condition 4.0 0.6 µs
IC4 Data hold time 013.452010.92µs
IC5 HIGH Period of I2Cx_SCL Clock 4.0 0.6 µs
IC6 LOW Period of the I2Cx_SCL Clock 4.7 1.3 µs
IC7 Set-up time for a repeated START condition 4.7 0.6 µs
IC8 Data set-up time 250 1003—ns
Table 56. Switching Characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
IC10 IC11 IC9
IC2 IC8 IC4 IC7 IC3
IC6
IC10
IC5
IC11 START STOP START
START
I2Cx_SDA
I2Cx_SCL
IC1
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
90 NXP Semiconductors
Electrical Characteristics
4.12.10 Image Processing Unit (IPU) Module Parameters
The purpose of the IPU is to provide comprehensive support for the flow of data from an image sensor
and/or to a display device. This support covers all aspects of these activities:
Connectivity to relevant devicescameras, displays, graphics accelerators, and TV encoders.
Related image processing and manipulation: sensor image signal processing, display processing,
image conversions, and other related functions.
Synchronization and control capabilities, such as avoidance of tearing artifacts.
IC9 Bus free time between a STOP and START condition 4.7 1.3 µs
IC10 Rise time of both I2Cx_SDA and I2Cx_SCL signals 1000 20 + 0.1Cb4300 ns
IC11 Fall time of both I2Cx_SDA and I2Cx_SCL signals 300 20 + 0.1Cb4300 ns
IC12 Capacitive load for each bus line (Cb) 400 400 pF
1A device must internally provide a hold time of at least 300 ns for I2Cx_SDA signal to bridge the undefined region of the falling
edge of I2Cx_SCL.
2The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2Cx_SCL signal.
3A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (ID No IC7)
of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2Cx_SCL signal.
If such a device does stretch the LOW period of the I2Cx_SCL signal, it must output the next data bit to the I2Cx_SDA line
max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification)
before the I2Cx_SCL line is released.
4Cb = total capacitance of one bus line in pF.
Table 57. I2C Module Timing Parameters (continued)
ID Parameter
Standard Mode Fast Mode
Unit
Min Max Min Max
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 91
4.12.10.1 IPU Sensor Interface Signal Mapping
The IPU supports a number of sensor input formats. Table 58 defines the mapping of the Sensor Interface
Pins used for various supported interface formats.
Table 58. Camera Input Signal Cross Reference, Format, and Bits Per Cycle
Signal
Name1
1IPU2_CSIx stands for IPU2_CSI1 or IPU2_CSI2.
RGB565
8 bits
2 cycles
RGB5652
8 bits
3 cycles
RGB6663
8 bits
3 cycles
RGB888
8 bits
3 cycles
YCbCr4
8 bits
2 cycles
RGB5655
16 bits
1 cycle
YCbCr6
16 bits
1 cycle
YCbCr7
16 bits
1 cycle
YCbCr8
20 bits
1 cycle
IPUx_CSIx_
DATA00
———0C[0]
IPUx_CSIx_
DATA01
———0C[1]
IPUx_CSIx_
DATA02
C[0] C[2]
IPUx_CSIx_
DATA03
C[1] C[3]
IPUx_CSIx_
DATA04
B[0] C[0] C[2] C[4]
IPU2_CSIx_
DATA_05
B[1] C[1] C[3] C[5]
IPUx_CSIx_
DATA06
B[2] C[2] C[4] C[6]
IPUx_CSIx_
DATA07
B[3] C[3] C[5] C[7]
IPUx_CSIx_
DATA08
B[4] C[4] C[6] C[8]
IPUx_CSIx_
DATA09
G[0] C[5] C[7] C[9]
IPUx_CSIx_
DATA10
G[1] C[6] 0 Y[0]
IPUx_CSIx_
DATA11
G[2] C[7] 0 Y[1]
IPUx_CSIx_
DATA12
B[0], G[3] R[2],G[4],B[2] R/G/B[4] R/G/B[0] Y/C[0] G[3] Y[0] Y[0] Y[2]
IPUx_CSIx_
DATA13
B[1], G[4] R[3],G[5],B[3] R/G/B[5] R/G/B[1] Y/C[1] G[4] Y[1] Y[1] Y[3]
IPUx_CSIx_
DATA14
B[2], G[5] R[4],G[0],B[4] R/G/B[0] R/G/B[2] Y/C[2] G[5] Y[2] Y[2] Y[4]
IPUx_CSIx_
DATA15
B[3], R[0] R[0],G[1],B[0] R/G/B[1] R/G/B[3] Y/C[3] R[0] Y[3] Y[3] Y[5]
IPUx_CSIx_
DATA16
B[4], R[1] R[1],G[2],B[1] R/G/B[2] R/G/B[4] Y/C[4] R[1] Y[4] Y[4] Y[6]
IPUx_CSIx_
DATA17
G[0], R[2] R[2],G[3],B[2] R/G/B[3] R/G/B[5] Y/C[5] R[2] Y[5] Y[5] Y[7]
IPUx_CSIx_
DATA18
G[1], R[3] R[3],G[4],B[3] R/G/B[4] R/G/B[6] Y/C[6] R[3] Y[6] Y[6] Y[8]
IPUx_CSIx_
DATA19
G[2], R[4] R[4],G[5],B[4] R/G/B[5] R/G/B[7] Y/C[7] R[4] Y[7] Y[7] Y[9]
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
92 NXP Semiconductors
Electrical Characteristics
4.12.10.2 Sensor Interface Timings
There are three camera timing modes supported by the IPU.
4.12.10.2.1 BT.656 and BT.1120 Video Mode
Smart camera sensors, which include imaging processing, usually support video mode transfer. They use
an embedded timing syntax to replace the IPU2_CSIx_VSYNC and IPU2_CSIx_HSYNC signals. The
timing syntax is defined by the BT.656/BT.1120 standards.
This operation mode follows the recommendations of ITU BT.656/ ITU BT.1120 specifications. The only
control signal used is IPU2_CSIx_PIX_CLK. Start-of-frame and active-line signals are embedded in the
data stream. An active line starts with a SAV code and ends with a EAV code. In some cases, digital
blanking is inserted in between EAV and SAV code. The CSI decodes and filters out the timing-coding
from the data stream, thus recovering IPU2_CSIx_VSYNC and IPU2_CSIx_HSYNC signals for internal
use. On BT.656 one component per cycle is received over the IPU2_CSIx_DATA_EN bus. On BT.1120
two components per cycle are received over the IPU2_CSIx_DATA_EN bus.
4.12.10.2.2 Gated Clock Mode
The IPU2_CSIx_VSYNC, IPU2_CSIx_HSYNC, and IPU2_CSIx_PIX_CLK signals are used in this
mode. See Figure 57.
Figure 57. Gated Clock Mode Timing Diagram
A frame starts with a rising edge on IPU2_CSIx_VSYNC (all the timings correspond to straight polarity
of the corresponding signals). Then IPU2_CSIx_HSYNC goes to high and hold for the entire line. Pixel
clock is valid as long as IPU2_CSIx_HSYNC is high. Data is latched at the rising edge of the valid pixel
clocks. IPU2_CSIx_HSYNC goes to low at the end of line. Pixel clocks then become invalid and the CSI
2The MSB bits are duplicated on LSB bits implementing color extension.
3The two MSB bits are duplicated on LSB bits implementing color extension.
4YCbCr, 8 bits—Supported within the BT.656 protocol (sync embedded within the data stream).
5RGB, 16 bits—Supported in two ways: (1) As a “generic data” input—with no on-the-fly processing; (2) With on-the-fly
processing, but only under some restrictions on the control protocol.
6YCbCr, 16 bits—Supported as a “generic-data” input—with no on-the-fly processing.
7YCbCr, 16 bits—Supported as a sub-case of the YCbCr, 20 bits, under the same conditions (BT.1120 protocol).
8YCbCr, 20 bits—Supported only within the BT.1120 protocol (syncs embedded within the data stream).
*16Y@$4*Y@@1*9@$-,
*16Y@$4*Y@@)4:/$
*16Y@$4*Y@@74:/$
4UBSUPG'SBNF OUIGSBNF
*16Y@$4*Y@@%"5"YY JOWBMJE
TUCZUF TUCZUF
JOWBMJE
"DUJWF-JOF
OUIGSBNF
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 93
stops receiving data from the stream. For the next line, the IPU2_CSIx_HSYNC timing repeats. For the
next frame, the IPU2_CSIx_VSYNC timing repeats.
4.12.10.2.3 Non-Gated Clock Mode
The timing is the same as the gated-clock mode (described in Section 4.12.10.2.2, “Gated Clock Mode,”)
except for the IPU2_CSIx_HSYNC signal, which is not used (see Figure 58). All incoming pixel clocks
are valid and cause data to be latched into the input FIFO. The IPU2_CSIx_PIX_CLK signal is inactive
(states low) until valid data is going to be transmitted over the bus.
Figure 58. Non-Gated Clock Mode Timing Diagram
The timing described in Figure 58 is that of a typical sensor. Some other sensors may have a slightly
different timing. The CSI can be programmed to support rising/falling-edge triggered
IPU2_CSIx_VSYNC; active-high/low IPU2_CSIx_HSYNC; and rising/falling-edge triggered
IPU2_CSIx_PIX_CLK.
IPU2_CSIx_VSYNC
IPU2_CSIx_PIX_CLK
IPU2_CSIx_DATA_EN[19:0] invalid
1st byte
n+1th frame
invalid
1st byte
nth frame
Start of Frame
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
94 NXP Semiconductors
Electrical Characteristics
4.12.10.3 Electrical Characteristics
Figure 59 depicts the sensor interface timing. IPU2_CSIx_PIX_CLK signal described here is not
generated by the IPU. Table 59 lists the sensor interface timing characteristics.
Figure 59. Sensor Interface Timing Diagram
4.12.10.4 IPU Display Interface Signal Mapping
The IPU supports a number of display output video formats. Table 60 defines the mapping of the Display
Interface Pins used during various supported video interface formats.
Table 59. Sensor Interface Timing Characteristics
ID Parameter Symbol Min Max Unit
IP1 Sensor output (pixel) clock frequency Fpck 0.01 180 MHz
IP2 Data and control setup time Tsu 2 ns
IP3 Data and control holdup time Thd 1 ns
Vsync to Hsync Tv-h 1/Fpck ns
Vsync and Hsync pulse width Tpulse 1/Fpck ns
Vsync to first data Tv-d 1/Fpck ns
Table 60. Video Signal Cross-Reference
i.MX 6Dual/6Quad LCD
Comment1,2
Port Name
(x = 0, 1)
RGB,
Signal
Name
(General)
RGB/TV Signal Allocation (Example)
16-bit
RGB
18-bit
RGB
24 Bit
RGB
8-bit
YCrCb3
16-bit
YCrCb
20-bit
YCrCb
IPUx_DISPx_DAT00 DAT[0] B[0] B[0] B[0] Y/C[0] C[0] C[0]
IPUx_DISPx_DAT01 DAT[1] B[1] B[1] B[1] Y/C[1] C[1] C[1]
IPUx_DISPx_DAT02 DAT[2] B[2] B[2] B[2] Y/C[2] C[2] C[2]
IPUx_DISPx_DAT03 DAT[3] B[3] B[3] B[3] Y/C[3] C[3] C[3]
IPUx_DISPx_DAT04 DAT[4] B[4] B[4] B[4] Y/C[4] C[4] C[4]
IP3
IPUx_CSIx_DATA_EN,
IPUx_CSIx_VSYNC,
IP2 1/IP1
IPUx_CSIx_PIX_CLK
(Sensor Output)
IPUx_CSIx_HSYNC
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 95
IPUx_DISPx_DAT05 DAT[5] G[0] B[5] B[5] Y/C[5] C[5] C[5]
IPUx_DISPx_DAT06 DAT[6] G[1] G[0] B[6] Y/C[6] C[6] C[6]
IPUx_DISPx_DAT07 DAT[7] G[2] G[1] B[7] Y/C[7] C[7] C[7]
IPUx_DISPx_DAT08 DAT[8] G[3] G[2] G[0] Y[0] C[8]
IPUx_DISPx_DAT09 DAT[9] G[4] G[3] G[1] Y[1] C[9]
IPUx_DISPx_DAT10 DAT[10] G[5] G[4] G[2] Y[2] Y[0]
IPUx_DISPx_DAT11 DAT[11] R[0] G[5] G[3] Y[3] Y[1]
IPUx_DISPx_DAT12 DAT[12] R[1] R[0] G[4] Y[4] Y[2]
IPUx_DISPx_DAT13 DAT[13] R[2] R[1] G[5] Y[5] Y[3]
IPUx_DISPx_DAT14 DAT[14] R[3] R[2] G[6] Y[6] Y[4]
IPUx_DISPx_DAT15 DAT[15] R[4] R[3] G[7] Y[7] Y[5]
IPUx_DISPx_DAT16 DAT[16] R[4] R[0] Y[6]
IPUx_DISPx_DAT17 DAT[17] R[5] R[1] Y[7]
IPUx_DISPx_DAT18 DAT[18] R[2] Y[8]
IPUx_DISPx_DAT19 DAT[19] R[3] Y[9]
IPUx_DISPx_DAT20 DAT[20] R[4]
IPUx_DISPx_DAT21 DAT[21] R[5]
IPUx_DISPx_DAT22 DAT[22] R[6]
IPUx_DISPx_DAT23 DAT[23] R[7]
IPUx_DIx_DISP_CLK PixCLK
IPUx_DIx_PIN01 May be required for anti-tearing
IPUx_DIx_PIN02 HSYNC
IPUx_DIx_PIN03 VSYNC VSYNC out
Table 60. Video Signal Cross-Reference (continued)
i.MX 6Dual/6Quad LCD
Comment1,2
Port Name
(x = 0, 1)
RGB,
Signal
Name
(General)
RGB/TV Signal Allocation (Example)
16-bit
RGB
18-bit
RGB
24 Bit
RGB
8-bit
YCrCb3
16-bit
YCrCb
20-bit
YCrCb
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
96 NXP Semiconductors
Electrical Characteristics
NOTE
Table 60 provides information for both the DISP0 and DISP1 ports.
However, DISP1 port has reduced pinout depending on IOMUXC
configuration and therefore may not support all configurations. See the
IOMUXC table for details.
4.12.10.5 IPU Display Interface Timing
The IPU Display Interface supports two kinds of display accesses: synchronous and asynchronous. There
are two groups of external interface pins to provide synchronous and asynchronous controls.
4.12.10.5.1 Synchronous Controls
The synchronous control changes its value as a function of a system or of an external clock. This control
has a permanent period and a permanent waveform.
IPUx_DIx_PIN04 Additional frame/row synchronous
signals with programmable timing
IPUx_DIx_PIN05
IPUx_DIx_PIN06
IPUx_DIx_PIN07
IPUx_DIx_PIN08
IPUx_DIx_D0_CS
IPUx_DIx_D1_CS Alternate mode of PWM output for
contrast or brightness control
IPUx_DIx_PIN11
IPUx_DIx_PIN12
IPUx_DIx_PIN13 Register select signal
IPUx_DIx_PIN14 Optional RS2
IPUx_DIx_PIN15 DRDY/DV Data validation/blank, data enable
IPUx_DIx_PIN16 Additional data synchronous
signals with programmable
features/timing
IPUx_DIx_PIN17 Q
1 Signal mapping (both data and control/synchronization) is flexible. The table provides examples.
2 Restrictions for ports IPUx_DISPx_DAT00 through IPUx_DISPx_DAT23 are as follows:
A maximum of three continuous groups of bits can be independently mapped to the external bus. Groups must not overlap.
The bit order is expressed in each of the bit groups, for example, B[0] = least significant blue pixel bit.
3This mode works in compliance with recommendation ITU-R BT.656. The timing reference signals (frame start, frame end, line
start, and line end) are embedded in the 8-bit data bus. Only video data is supported, transmission of non-video related data
during blanking intervals is not supported.
Table 60. Video Signal Cross-Reference (continued)
i.MX 6Dual/6Quad LCD
Comment1,2
Port Name
(x = 0, 1)
RGB,
Signal
Name
(General)
RGB/TV Signal Allocation (Example)
16-bit
RGB
18-bit
RGB
24 Bit
RGB
8-bit
YCrCb3
16-bit
YCrCb
20-bit
YCrCb
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 97
There are special physical outputs to provide synchronous controls:
The ipp_disp_clk is a dedicated base synchronous signal that is used to generate a base display
(component, pixel) clock for a display.
The ipp_pin_1– ipp_pin_7 are general purpose synchronous pins, that can be used to provide
HSYNC, VSYNC, DRDY or any else independent signal to a display.
The IPU has a system of internal binding counters for internal events (such as, HSYNC/VSYNC)
calculation. The internal event (local start point) is synchronized with internal DI_CLK. A suitable control
starts from the local start point with predefined UP and DOWN values to calculate control’s changing
points with half DI_CLK resolution. A full description of the counter system can be found in the IPU
chapter of the i.MX 6Dual/6Quad reference manual (IMX6DQRM).
4.12.10.5.2 Asynchronous Controls
The asynchronous control is a data-oriented signal that changes its value with an output data according to
additional internal flags coming with the data.
There are special physical outputs to provide asynchronous controls, as follows:
The ipp_d0_cs and ipp_d1_cs pins are dedicated to provide chip select signals to two displays.
The ipp_pin_11– ipp_pin_17 are general purpose asynchronous pins, that can be used to provide
WR. RD, RS or any other data-oriented signal to display.
NOTE
The IPU has independent signal generators for asynchronous signals
toggling. When a DI decides to put a new asynchronous data on the bus, a
new internal start (local start point) is generated. The signal generators
calculate predefined UP and DOWN values to change pins states with half
DI_CLK resolution.
4.12.10.6 Synchronous Interfaces to Standard Active Matrix TFT LCD Panels
4.12.10.6.1 IPU Display Operating Signals
The IPU uses four control signals and data to operate a standard synchronous interface:
IPP_DISP_CLK—Clock to display
HSYNC—Horizontal synchronization
VSYNC—Vertical synchronization
DRDY—Active data
All synchronous display controls are generated on the base of an internally generated “local start point”.
The synchronous display controls can be placed on time axis with DI’s offset, up and down parameters.
The display access can be whole number of DI clock (Tdiclk) only. The IPP_DATA can not be moved
relative to the local start point. The data bus of the synchronous interface is output direction only.
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
98 NXP Semiconductors
Electrical Characteristics
4.12.10.6.2 LCD Interface Functional Description
Figure 60 depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure,
signals are shown with negative polarity. The sequence of events for active matrix interface timing is:
DI_CLK internal DI clock is used for calculation of other controls.
IPP_DISP_CLK latches data into the panel on its negative edge (when positive polarity is selected).
In active mode, IPP_DISP_CLK runs continuously.
HSYNC causes the panel to start a new line. (Usually IPUx_DIx_PIN02 is used as HSYNC.)
VSYNC causes the panel to start a new frame. It always encompasses at least one HSYNC pulse.
(Usually IPUx_DIx_PIN03 is used as VSYNC.)
DRDY acts like an output enable signal to the CRT display. This output enables the data to be
shifted onto the display. When disabled, the data is invalid and the trace is off.
(DRDY can be used either synchronous or asynchronous generic purpose pin as well.)
Figure 60. Interface Timing Diagram for TFT (Active Matrix) Panels
4.12.10.6.3 TFT Panel Sync Pulse Timing Diagrams
Figure 61 depicts the horizontal timing (timing of one line), including both the horizontal sync pulse and
the data. All the parameters shown in the figure are programmable. All controls are started by
corresponding internal events—local start points. The timing diagrams correspond to inverse polarity of
the IPP_DISP_CLK signal and active-low polarity of the HSYNC, VSYNC, and DRDY signals.
123 mm–1
HSYNC
VSYNC
HSYNC
LINE 1 LINE 2 LINE 3 LINE 4 LINE n-1 LINE n
DRDY
IPP_DISP_CLK
IPP_DATA
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 99
Figure 61. TFT Panels Timing Diagram—Horizontal Sync Pulse
Figure 62 depicts the vertical timing (timing of one frame). All parameters shown in the figure are
programmable.
Figure 62. TFT Panels Timing Diagram—Vertical Sync Pulse
DI clock
VSYNC
HSYNC
DRDY
D0 D1
IP5o
IP13o
IP9o
IP8o IP8
IP9
Dn
IP10
IP7
IP5
IP6
local start point
local start point
local start point
IPP_DISP_CLK
IPP_DATA
IP14
VSYNC
HSYNC
DRDY
Start of frame End of frame
IP12
IP15
IP13
IP11
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
100 NXP Semiconductors
Electrical Characteristics
Table 61 shows timing characteristics of signals presented in Figure 61 and Figure 62.
Table 61. Synchronous Display Interface Timing Characteristics (Pixel Level)
ID Parameter Symbol Value Description Unit
IP5 Display interface clock period Tdicp (see1) Display interface clock IPP_DISP_CLK ns
IP6 Display pixel clock period Tdpcp DISP_CLK_PER_PIXEL
× Tdicp
Time of translation of one pixel to display,
DISP_CLK_PER_PIXEL—number of pixel
components in one pixel (1.n).
The DISP_CLK_PER_PIXEL is virtual
parameter to define display pixel clock
period.
The DISP_CLK_PER_PIXEL is received by
DC/DI one access division to n
components.
ns
IP7 Screen width time Tsw (SCREEN_WIDTH)
× Tdicp
SCREEN_WIDTH—screen width in,
interface clocks. horizontal blanking
included.
The SCREEN_WIDTH should be built by
suitable DI’s counter2.
ns
IP8 HSYNC width time Thsw (HSYNC_WIDTH) HSYNC_WIDTH—Hsync width in DI_CLK
with 0.5 DI_CLK resolution. Defined by DI’s
counter.
ns
IP9 Horizontal blank interval 1 Thbi1 BGXP × Tdicp BGXP—width of a horizontal blanking
before a first active data in a line (in
interface clocks). The BGXP should be built
by suitable DI’s counter.
ns
IP10 Horizontal blank interval 2 Thbi2 (SCREEN_WIDTH –
BGXP – FW) × Tdicp
Width a horizontal blanking after a last
active data in a line (in interface clocks)
FW—with of active line in interface clocks.
The FW should be built by suitable DI’s
counter.
ns
IP12 Screen height Tsh (SCREEN_HEIGHT)
× Tsw
SCREEN_HEIGHT— screen height in lines
with blanking.
The SCREEN_HEIGHT is a distance
between 2 VSYNCs.
The SCREEN_HEIGHT should be built by
suitable DI’s counter.
ns
IP13 VSYNC width Tvsw VSYNC_WIDTH VSYNC_WIDTH—Vsync width in DI_CLK
with 0.5 DI_CLK resolution. Defined by DI’s
counter.
ns
IP14 Vertical blank interval 1 Tvbi1 BGYP × Tsw BGYP—width of first Vertical
blanking interval in line. The BGYP should
be built by suitable DI’s counter.
ns
IP15 Vertical blank interval 2 Tvbi2 (SCREEN_HEIGHT –
BGYP – FH) × Tsw
Width of second vertical blanking interval in
line. The FH should be built by suitable DI’s
counter.
ns
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 101
The maximum accuracy of UP/DOWN edge of controls is:
The maximum accuracy of UP/DOWN edge of IPP_DISP_DATA is:
The DISP_CLK_PERIOD, DI_CLK_PERIOD parameters are register-controlled.
IP5o Offset of IPP_DISP_CLK Todicp DISP_CLK_OFFSET
× Tdiclk
DISP_CLK_OFFSET—offset of
IPP_DISP_CLK edges from local start
point, in DI_CLK×2
(0.5 DI_CLK Resolution).
Defined by DISP_CLK counter.
ns
IP13o Offset of VSYNC Tovs VSYNC_OFFSET
× Tdiclk
VSYNC_OFFSET—offset of Vsync edges
from a local start point, when a Vsync
should be active, in DI_CLK×2
(0.5 DI_CLK Resolution). The
VSYNC_OFFSET should be built by
suitable DI’s counter.
ns
IP8o Offset of HSYNC Tohs HSYNC_OFFSET
× Tdiclk
HSYNC_OFFSET—offset of Hsync edges
from a local start point, when a Hsync
should be active, in DI_CLK×2
(0.5 DI_CLK Resolution). The
HSYNC_OFFSET should be built by
suitable DI’s counter.
ns
IP9o Offset of DRDY Todrdy DRDY_OFFSET
× Tdiclk
DRDY_OFFSET—offset of DRDY edges
from a suitable local start point, when a
corresponding data has been set on the
bus, in DI_CLK×2
(0.5 DI_CLK Resolution).
The DRDY_OFFSET should be built by
suitable DI’s counter.
ns
1Display interface clock period immediate value.
DISP_CLK_PERIOD—number of DI_CLK per one Tdicp. Resolution 1/16 of DI_CLK.
DI_CLK_PERIOD—relation of between programing clock frequency and current system clock frequency
Display interface clock period average value.
2DI’s counter can define offset, period and UP/DOWN characteristic of output signal according to programed parameters of the
counter. Same of parameters in the table are not defined by DI’s registers directly (by name), but can be generated by
corresponding DI’s counter. The SCREEN_WIDTH is an input value for DI’s HSYNC generation counter. The distance between
HSYNCs is a SCREEN_WIDTH.
Table 61. Synchronous Display Interface Timing Characteristics (Pixel Level) (continued)
ID Parameter Symbol Value Description Unit
Tdicp
Tdiclk
DISP_CLK_PERIOD
DI_CLK_PERIOD
----------------------------------------------------
× for integer DISP_CLK_PERIOD
DI_CLK_PERIOD
----------------------------------------------------,
Tdiclk floor DISP_CLK_PERIOD
DI_CLK_PERIOD
---------------------------------------------------- 0.5 0.5±+


for fractional DISP_CLK_PERIOD
DI_CLK_PERIOD
----------------------------------------------------,
=
Tdicp Tdiclk
DISP_CLK_PERIOD
DI_CLK_PERIOD
----------------------------------------------------
×=
Accuracy 0.5 Tdiclk
×()0.62ns±=
Accuracy Tdiclk 0.62ns±=
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
102 NXP Semiconductors
Electrical Characteristics
Figure 63 depicts the synchronous display interface timing for access level. The DISP_CLK_DOWN and
DISP_CLK_UP parameters are register-controlled. Table 62 lists the synchronous display interface timing
characteristics.
Figure 63. Synchronous Display Interface Timing Diagram—Access Level
Table 62. Synchronous Display Interface Timing Characteristics (Access Level)
ID Parameter Symbol Min Typ1
1The exact conditions have not been finalized, but will likely match the current customer requirement for their specific display.
These conditions may be chip specific.
Max Unit
IP16 Display interface clock low
time
Tckl Tdicd-Tdicu-1.24 Tdicd2-Tdicu3
2Display interface clock down time
3Display interface clock up time where CEIL(X) rounds the elements of X to the nearest integers towards infinity.
Tdicd-Tdicu+1.24 ns
IP17 Display interface clock
high time
Tckh Tdicp-Tdicd+Tdicu-1.24 Tdicp-Tdicd+Tdicu Tdicp-Tdicd+Tdicu+1.2 ns
IP18 Data setup time Tdsu Tdicd-1.24 Tdicu ns
IP19 Data holdup time Tdhd Tdicp-Tdicd-1.24 Tdicp-Tdicu ns
IP20o Control signals offset
times (defined for each
pin)
Tocsu Tocsu-1.24 Tocsu Tocsu+1.24 ns
IP20 Control signals setup time
to display interface clock
(defined for each pin)
Tcsu Tdicd-1.24-Tocsu%Tdicp Tdicu ns
IP19 IP18
IP20
VSYNC
IP17IP16
DRDY
HSYNC
other controls
IP20o
local start point
Tdicd
Tdicu
IPP_DISP_CLK
IPP_DATA
Tdicd 1
2
---T
diclk ceil×2 DISP_CLK_DOWN×
DI_CLK_PERIOD
-----------------------------------------------------------


=
Tdicu 1
2
---T
diclk ceil×2 DISP_CLK_UP×
DI_CLK_PERIOD
------------------------------------------------


=
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 103
4.12.11 LVDS Display Bridge (LDB) Module Parameters
The LVDS interface complies with TIA/EIA 644-A standard. For more details, see TIA/EIA STANDARD
644-A, “Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits.”
4.12.12 MIPI D-PHY Timing Parameters
This section describes MIPI D-PHY electrical specifications, compliant with MIPI CSI-2 version 1.0,
D-PHY specification Rev. 1.0 (for MIPI sensor port x4 lanes) and MIPI DSI Version 1.01, and D-PHY
specification Rev. 1.0 (and also DPI version 2.0, DBI version 2.0, DSC version 1.0a at protocol layer) (for
MIPI display port x2 lanes).
4.12.12.1 Electrical and Timing Information
Table 63. LVDS Display Bridge (LDB) Electrical Specification
Parameter Symbol Test Condition Min Max Units
Differential Voltage Output Voltage VOD 100 Ω Differential load 250 450 mV
Output Voltage High Voh 100 Ω differential load
(0 V Diff—Output High Voltage static)
1.25 1.6 V
Output Voltage Low Vol 100 Ω differential load
(0 V Diff—Output Low Voltage static)
0.9 1.25 V
Offset Static Voltage VOS Two 49.9 Ω resistors in series between N-P
terminal, with output in either Zero or One state, the
voltage measured between the 2 resistors.
1.15 1.375 V
VOS Differential VOSDIFF Difference in VOS between a One and a Zero state -50 50 mV
Output short-circuited to GND ISA ISB With the output common shorted to GND -24 24 mA
VT Full Load Test VTLoad 100 Ω Differential load with a 3.74 kΩ load between
GND and I/O supply voltage
247 454 mV
Table 64. Electrical and Timing Information
Symbol Parameters Test Conditions Min Typ Max Unit
Input DC Specifications—Apply to DSI_CLK_P/_N and DSI_DATA_P/_N Inputs
VIInput signal voltage range Transient voltage range is limited from -300
mV to 1600 mV
-50 1350 mV
VLEAK Input leakage current VGNDSH(min) = VI = VGNDSH(max) +
VOH(absmax)
Lane module in LP Receive Mode
-10 10 mA
VGNDSH Ground Shift -50 50 mV
VOH(absmax) Maximum transient output
voltage level
——1.45V
tvoh(absmax) Maximum transient time
above VOH(absmax)
——20ns
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
104 NXP Semiconductors
Electrical Characteristics
HS Line Drivers DC Specifications
|VOD| HS Transmit Differential
output voltage magnitude
80 Ω<= RL< = 125 Ω140 200 270 mV
Δ|VOD| Change in Differential output
voltage magnitude between
logic states
80 Ω<= RL< = 125 Ω—— 10mV
VCMTX Steady-state common-mode
output voltage.
80 Ω<= RL< = 125 Ω150 200 250 mV
ΔVCMTX(1,0) Changes in steady-state
common-mode output voltage
between logic states
80 Ω<= RL< = 125 Ω—— 5 mV
VOHHS HS output high voltage 80 Ω<= RL< = 125 Ω——360mV
ZOS Single-ended output
impedance.
40 50 62.5 Ω
ΔZOS Single-ended output
impedance mismatch.
——10%
LP Line Drivers DC Specifications
VOL Output low-level SE voltage -50 50 mV
VOH Output high-level SE voltage 1.1 1.2 1.3 V
ZOLP Single-ended output
impedance.
110 Ω
ΔZOLP(01-10) Single-ended output
impedance mismatch driving
opposite level
——20%
ΔZOLP(0-11) Single-ended output
impedance mismatch driving
same level
——5%
HS Line Receiver DC Specifications
VIDTH Differential input high voltage
threshold
——70mV
VIDTL Differential input low voltage
threshold
—-70mV
VIHHS Single ended input high
voltage
——460mV
VILHS Single ended input low
voltage
—-40mV
VCMRXDC Input common mode voltage 70 330 mV
ZID Differential input impedance 80 125 Ω
Table 64. Electrical and Timing Information (continued)
Symbol Parameters Test Conditions Min Typ Max Unit
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 105
4.12.12.2 D-PHY Signaling Levels
The signal levels are different for differential HS mode and single-ended LP mode. Figure 64 shows both
the HS and LP signal levels on the left and right sides, respectively. The HS signaling levels are below
the LP low-level input threshold such that LP receiver always detects low on HS signals.
Figure 64. D-PHY Signaling Levels
LP Line Receiver DC Specifications
VIL Input low voltage 550 mV
VIH Input high voltage 920 mV
VHYST Input hysteresis 25 mV
Contention Line Receiver DC Specifications
VILF Input low fault threshold 200 450 mV
Table 64. Electrical and Timing Information (continued)
Symbol Parameters Test Conditions Min Typ Max Unit
HS Vout
Range
HS Vcm
Range
Max VOD
Min VOD
VCMTX,MIN
VOLHS
VCMTX,MAX
VOHHS
LP VIL
LP
VOL
LP
VIH
VOH,MAX
VOH,MIN
VIH
VIL
LP Threshold
Region
VGNDSH,MA
X
VGNDSH,MIN
GND
LP VOL
HS Differential Signaling LP Single-ended Signaling
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
106 NXP Semiconductors
Electrical Characteristics
4.12.12.3 HS Line Driver Characteristics
Figure 65. Ideal Single-ended and Resulting Differential HS Signals
4.12.12.4 Possible ΔVCMTX and ΔVOD Distortions of the Single-ended HS Signals
Figure 66. Possible ΔVCMTX and ΔVOD Distortions of the Single-ended HS Signals
4.12.12.5 D-PHY Switching Characteristics
Table 65. Electrical and Timing Information
Symbol Parameters Test Conditions Min Typ Max Unit
HS Line Drivers AC Specifications
Maximum serial data rate (forward
direction)
On DATAP/N outputs.
80 Ω <= RL <= 125 Ω
80 1000 Mbps
FDDRCLK DDR CLK frequency On DATAP/N outputs. 40 500 MHz
PDDRCLK DDR CLK period 80 Ω <= RL< = 125 Ω2 25 ns
VOD(1)
VOD(1)
VOD(0)
VOD(0)
VOD = VDP - VDN
VCMTX = (VDP + VDN)/2
0V
(Differential)
VDN
VDP
Ideal Single-Ended High Speed Signals
Ideal Differential High Speed Signals
VOD(0)
VOD (1)
VOD/2
VOD /2
VOD (SE HS Signals)
Static VCMTX (SE HS Signals)
Dynamic VCMTX (SE HS Signa ls)
VDN
VCM TX
VDP
VDN
VCMTX
VDP
VDN
VCM TX
VDP
VOD(0)
Δ
Δ
Δ
Δ
Δ
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 107
tCDC DDR CLK duty cycle tCDC = tCPH / PDDRCLK —50%
tCPH DDR CLK high time 1 UI
tCPL DDR CLK low time 1 UI
DDR CLK / DATA Jitter 75 ps pk-pk
tSKEW[PN] Intra-Pair (Pulse) skew 0.075 UI
tSKEW[TX] Data to Clock Skew 0.350 0.650 UI
trDifferential output signal rise time 20% to 80%, RL = 50 Ω 150 0.3UI ps
tfDifferential output signal fall time 20% to 80%, RL = 50 Ω 150 0.3UI ps
ΔVCMTX(HF) Common level variation above 450 MHz 80 Ω<= RL< = 125 Ω——15mV
rms
ΔVCMTX(LF) Common level variation between 50
MHz and 450 MHz
80 Ω<= RL< = 125 Ω——25mV
p
LP Line Drivers AC Specifications
trlp,tflp Single ended output rise/fall time 15% to 85%, CL<70 pF 25 ns
treo 30% to 85%, CL<70 pF 35 ns
δV/δtSR Signal slew rate 15% to 85%, CL<70 pF 120 mV/ns
CLLoad capacitance 0 70 pF
HS Line Receiver AC Specifications
tSETUP[RX] Data to Clock Receiver Setup time 0.15 UI
tHOLD[RX] Clock to Data Receiver Hold time 0.15 UI
ΔVCMRX(HF) Common mode interference beyond
450 MHz
200 mVpp
ΔVCMRX(LF) Common mode interference between
50 MHz and 450 MHz
—-5050mVpp
CCM Common mode termination 60 pF
LP Line Receiver AC Specifications
eSPIKE Input pulse rejection 300 Vps
TMIN Minimum pulse response 50 ns
VINT Pk-to-Pk interference voltage 400 mV
fINT Interference frequency 450 MHz
Model Parameters used for Driver Load switching performance evaluation
CPAD Equivalent Single ended I/O PAD
capacitance.
——1pF
CPIN Equivalent Single ended Package +
PCB capacitance.
——2pF
Table 65. Electrical and Timing Information (continued)
Symbol Parameters Test Conditions Min Typ Max Unit
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
108 NXP Semiconductors
Electrical Characteristics
4.12.12.6 High-Speed Clock Timing
Figure 67. DDR Clock Definition
4.12.12.7 Forward High-Speed Data Transmission Timing
The timing relationship of the DDR Clock differential signal to the Data differential signal is shown in
Figure 68:
Figure 68. Data to Clock Timing Definitions
4.12.12.8 Reverse High-Speed Data Transmission Timing
Figure 69. Reverse High-Speed Data Transmission Timing at Slave Side
LSEquivalent wire bond series inductance 1.5 nH
RSEquivalent wire bond series resistance 0.15 Ω
RLLoad Resistance 80 100 125 Ω
Table 65. Electrical and Timing Information (continued)
Symbol Parameters Test Conditions Min Typ Max Unit
1 Data Bit Time = 1UI
UIINST(1)
1 Data Bit Time = 1UI
UIINST(2)
CLKp
CLKn
1 DDR Clock Period = UIINST(1) + UIINST(2)
#,+P
2EFERENCE4IME
4#,+P
43%450 4(/,$
5)).34
43+%7
5)).34
#,+N
TTD
2UI 2UI
CLKp
CLKn
Clock to Data
Skew
NRZ Data
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 109
4.12.12.9 Low-Power Receiver Timing
Figure 70. Input Glitch Rejection of Low-Power Receivers
4.12.13 HSI Host Controller Timing Parameters
This section describes the timing parameters of the HSI Host Controller which are compliant with
High-Speed Synchronous Serial Interface (HSI) Physical Layer specification version 1.01.
4.12.13.1 Synchronous Data Flow
Figure 71. Synchronized Data Flow READY Signal Timing (Frame and Stream Transmission)
4.12.13.2 Pipelined Data Flow
Figure 72. Pipelined Data Flow READY Signal Timing (Frame Transmission Mode)
2*TLPX 2*TLPX
TMIN-RX TMIN-RX
eSPIKE
eSPIKE
Input
Output
VIH
VIL
N-bits Frame N-bits Frame
First bit of
frame
t
NomBi
t
Last bit of
frame
First bit of
frame
Last bit of
frame
DATA
FLAG
READY
Receiver has
detected the start
of the Frame
Receiver has captured
and stored a complete
Frame
N-bits Frame
Last bit of
frame
DATA
FLAG
N-bits Frame
First bit of
frame tNomBit
Last bit of
frame
First bit of
frame
READY
A Ready can change B Ready shall not
change to zero
Last bit of
frame
C. Ready can change D. Ready shall
maintain zero of if
receiver does not
have free space
E.
Ready
can
change
F. Ready
shall
maintain
its value
G. Ready
can change
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
110 NXP Semiconductors
Electrical Characteristics
4.12.13.3 Receiver Real-Time Data Flow
Figure 73. Receiver Real-Time Data Flow READY Signal Timing
4.12.13.4 Synchronized Data Flow Transmission with Wake
Figure 74. Synchronized Data Flow Transmission with WAKE
4.12.13.5 Stream Transmission Mode Frame Transfer
Figure 75. Stream Transmission Mode Frame Transfer (Synchronized Data Flow)
N-bits Frame N-bits Frame
First bit of
frame
t
NomBi
t
Last bit of
frame
First bit of
frame
Last bit of
frame
DATA
FLAG
READY
Receiver has
detected the start
of the Frame
Receiver has captured a
complete Frame
DATA
FLAG
READY
1. Transmitter has
data to transmit
3. First bit
received
PHY Frame PHY Frame
TX state
RX state
WAKE
A
A
B
B
C
C
D
D
A
A
2. Receiver in active
start state
4. Received
frame stored
5. Transmitter
has no more
data to
transmit
6. Receiver
can no longer
receive date
A: Sleep state(non-operational) B: Wake-up state C: Active state (full operational) D: Disable State(No communication ability)
Complete N-bits Frame Complete N-bits Frame
DATA
FLAG
READY
Channel
Description
bits
Payload Data Bits
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 111
4.12.13.6 Frame Transmission Mode (Synchronized Data Flow)
Figure 76. Frame Transmission Mode Transfer of Two Frames (Synchronized Data Flow)
4.12.13.7 Frame Transmission Mode (Pipelined Data Flow)
Figure 77. Frame Transmission Mode Transfer of Two Frames (Pipelined Data Flow)
4.12.13.8 DATA and FLAG Signal Timing Requirement for a 15 pF Load
Table 66. DATA and FLAG Timing
Parameter Description 1 Mbit/s 100 Mbit/s
tBit, nom Nominal bit time 1000 ns 10 ns
tRise, min and tFall, min Minimum allowed rise and fall time 2 ns 2 ns
tTxToRxSkew, maxfq Maximum skew between transmitter and receiver package pins 50 ns 0.5 ns
tEageSepTx, min Minimum allowed separation of signal transitions at transmitter package pins,
including all timing defects, for example, jitter and skew, inside the transmitter.
400 ns 4 ns
tEageSepRx, min Minimum separation of signal transitions, measured at the receiver package pins,
including all timing defects, for example, jitter and skew, inside the receiver.
350 ns 3.5 ns
Complete N-bits Frame Complete N-bits Frame
DATA
FLAG
READY
Channel
Description
bits
Payload Data Bits
Frame
start bit
Complete N-bits Frame Complete N-bits Frame
DATA
FLAG
READY
Channel
Description
bits
Payload Data Bits
Frame
start bit
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
112 NXP Semiconductors
Electrical Characteristics
4.12.13.9 DATA and FLAG Signal Timing
Figure 78. DATA and FLAG Signal Timing
4.12.14 PCIe PHY Parameters
The PCIe interface complies with PCIe specification Gen2 x1 lane and supports the PCI Express 1.1/2.0
standard.
4.12.14.1 PCIE_REXT Reference Resistor Connection
The impedance calibration process requires connection of reference resistor 200 Ω. 1% precision resistor
on PCIE_REXT pads to ground. It is used for termination impedance calibration.
4.12.15 Pulse Width Modulator (PWM) Timing Parameters
This section describes the electrical information of the PWM. The PWM can be programmed to select one
of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before
being input to the counter. The output is available at the pulse-width modulator output (PWMO) external
pin.
Figure 79 depicts the timing of the PWM, and Table 67 lists the PWM timing parameters.
Figure 79. PWM Timing
Table 67. PWM Output Timing Parameters
ID Parameter Min Max Unit
PWM Module Clock Frequency 0 ipg_clk MHz
P1 PWM output pulse width high 15 ns
P2 PWM output pulse width low 15 ns
DATA
(TX)
FLAG
(TX)
DATA
(RX)
FLAG
(RX)
50%
50%50%
50%
50%
50%
80%
80%
20%
20%20%20%
80%
80%
tEdgeSepTx
t
TxToRxSkew tEdgeSepRx
t
Bit
t
Rise
t
Fall
Note1
Note1 Note2
Note2
PWMn_OUT
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 113
4.12.16 SATA PHY Parameters
This section describes SATA PHY electrical specifications.
4.12.16.1 Transmitter and Receiver Characteristics
The SATA PHY meets or exceeds the electrical compliance requirements defined in the SATA
specifications.
NOTE
The tables in the following sections indicate any exceptions to the SATA
specification or aspects of the SATA PHY that exceed the standard, as well
as provide information about parameters not defined in the standard.
The following subsections provide values obtained from a combination of simulations and silicon
characterization.
4.12.16.1.1 SATA PHY Transmitter Characteristics
Table 68 provides specifications for SATA PHY transmitter characteristics.
4.12.16.1.2 SATA PHY Receiver Characteristics
Table 69 provides specifications for SATA PHY receiver characteristics.
4.12.16.2 SATA_REXT Reference Resistor Connection
The impedance calibration process requires connection of reference resistor 191 Ω.1% precision resistor
on SATA_REXT pad to ground.
Resistor calibration consists of learning which state of the internal Resistor Calibration register causes an
internal, digitally trimmed calibration resistor to best match the impedance applied to the SATA_REXT
pin. The calibration register value is then supplied to all Tx and Rx termination resistors.
During the calibration process (for a few tens of microseconds), up to 0.3 mW can be dissipated in the
external SATA_REXT resistor. At other times, no power is dissipated by the SATA_REXT resistor.
Table 68. SATA PHY Transmitter Characteristics
Parameters Symbol Min Typ Max Unit
Transmit common mode voltage VCTM 0.4 0.6 V
Transmitter pre-emphasis accuracy (measured
change in de-emphasized bit)
—–0.50.5dB
Table 69. SATA PHY Receiver Characteristics
Parameters Symbol Min Typ Max Unit
Minimum Rx eye height (differential peak-to-peak) VMIN_RX_EYE_HEIGHT 175 mV
Tolerance PPM –400 400 ppm
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
114 NXP Semiconductors
Electrical Characteristics
4.12.17 SCAN JTAG Controller (SJC) Timing Parameters
Figure 80 depicts the SJC test clock input timing. Figure 81 depicts the SJC boundary scan timing.
Figure 82 depicts the SJC test access port. Figure 83 depicts the JTAG_TRST_B timing. Signal
parameters are listed in Table 70.
Figure 80. Test Clock Input Timing Diagram
Figure 81. Boundary Scan (JTAG) Timing Diagram
JTAG_TCK
(Input) VM VM
VIH VIL
SJ1
SJ2 SJ2
SJ3
SJ3
JTAG_TCK
(Input)
Data
Inputs
Data
Outputs
Data
Outputs
Data
Outputs
VIH
VIL
Input Data Valid
Output Data Valid
Output Data Valid
SJ4 SJ5
SJ6
SJ7
SJ6
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 115
Figure 82. Test Access Port Timing Diagram
Figure 83. JTAG_TRST_B Timing Diagram
Table 70. JTAG Timing
ID Parameter1,2
All Frequencies
Unit
Min Max
SJ0 JTAG_TCK frequency of operation 1/(3xTDC)10.001 22 MHz
SJ1 JTAG_TCK cycle time in crystal mode 45 ns
SJ2 JTAG_TCK clock pulse width measured at VM222.5 ns
SJ3 JTAG_TCK rise and fall times 3 ns
SJ4 Boundary scan input data set-up time 5 ns
SJ5 Boundary scan input data hold time 24 ns
SJ6 JTAG_TCK low to output data valid 40 ns
SJ7 JTAG_TCK low to output high impedance 40 ns
SJ8 JTAG_TMS, JTAG_TDI data set-up time 5 ns
JTAG_TCK
(Input)
JTAG_TDI
(Input)
JTAG_TDO
(Output)
JTAG_TDO
(Output)
JTAG_TDO
(Output)
VIH
VIL
Input Data Valid
Output Data Valid
Output Data Valid
JTAG_TMS
SJ8 SJ9
SJ10
SJ11
SJ10
JTAG_TCK
(Input)
(Input)
SJ13
SJ12
JTAG_TRST_B
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
116 NXP Semiconductors
Electrical Characteristics
4.12.18 SPDIF Timing Parameters
The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When
encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.
Table 71 and Figure 84 and Figure 85 show SPDIF timing parameters for the Sony/Philips Digital
Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for
SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.
SJ9 JTAG_TMS, JTAG_TDI data hold time 25 ns
SJ10 JTAG_TCK low to JTAG_TDO data valid 44 ns
SJ11 JTAG_TCK low to JTAG_TDO high impedance 44 ns
SJ12 JTAG_TRST_B assert time 100 ns
SJ13 JTAG_TRST_B set-up time to JTAG_TCK low 40 ns
1TDC = target frequency of SJC
2VM = mid-point voltage
Table 71. SPDIF Timing Parameters
Parameter Symbol
Timing Parameter Range
Unit
Min Max
SPDIF_IN Skew: asynchronous inputs, no specs apply 0.7 ns
SPDIF_OUT output (Load = 50pf)
Skew
Transition rising
Transition falling
1.5
24.2
31.3
ns
SPDIF_OUT output (Load = 30pf)
Skew
Transition rising
Transition falling
1.5
13.6
18.0
ns
Modulating Rx clock (SPDIF_SR_CLK) period srckp 40.0 ns
SPDIF_SR_CLK high period srckph 16.0 ns
SPDIF_SR_CLK low period srckpl 16.0 ns
Modulating Tx clock (SPDIF_ST_CLK) period stclkp 40.0 ns
SPDIF_ST_CLK high period stclkph 16.0 ns
SPDIF_ST_CLK low period stclkpl 16.0 ns
Table 70. JTAG Timing (continued)
ID Parameter1,2
All Frequencies
Unit
Min Max
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 117
Figure 84. SPDIF_SR_CLK Timing Diagram
Figure 85. SPDIF_ST_CLK Timing Diagram
4.12.19 SSI Timing Parameters
This section describes the timing parameters of the SSI module. The connectivity of the serial
synchronous interfaces are summarized in Table 72.
NOTE
The terms WL and BL used in the timing diagrams and tables refer to Word
Length (WL) and Bit Length (BL).
Table 72. AUDMUX Port Allocation
Port Signal Nomenclature Type and Access
AUDMUX port 1 SSI 1 Internal
AUDMUX port 2 SSI 2 Internal
AUDMUX port 3 AUD3 External – AUD3 I/O
AUDMUX port 4 AUD4 External – EIM or CSPI1 I/O through IOMUXC
AUDMUX port 5 AUD5 External – EIM or SD1 I/O through IOMUXC
AUDMUX port 6 AUD6 External – EIM or DISP2 through IOMUXC
AUDMUX port 7 SSI 3 Internal
SPDIF_SR_CLK
(Output)
VMVM
srckp
srckph
srckpl
SPDIF_ST_CLK
(Input)
VMVM
stclkp
stclkph
stclkpl
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
118 NXP Semiconductors
Electrical Characteristics
4.12.19.1 SSI Transmitter Timing with Internal Clock
Figure 86 depicts the SSI transmitter internal clock timing and Table 73 lists the timing parameters for
the SSI transmitter internal clock.
.
Figure 86. SSI Transmitter Internal Clock Timing Diagram
Table 73. SSI Transmitter Timing with Internal Clock
ID Parameter Min Max Unit
Internal Clock Operation
SS1 AUDx_TXC/AUDx_RXC clock period 81.4 ns
SS2 AUDx_TXC/AUDx_RXC clock high period 36.0 ns
SS4 AUDx_TXC/AUDx_RXC clock low period 36.0 ns
SS6 AUDx_TXC high to AUDx_TXFS (bl) high 15.0 ns
SS8 AUDx_TXC high to AUDx_TXFS (bl) low 15.0 ns
SS10 AUDx_TXC high to AUDx_TXFS (wl) high 15.0 ns
SS12 AUDx_TXC high to AUDx_TXFS (wl) low 15.0 ns
SS14 AUDx_TXC/AUDx_RXC Internal AUDx_TXFS rise time 6.0 ns
SS15 AUDx_TXC/AUDx_RXC Internal AUDx_TXFS fall time 6.0 ns
SS16 AUDx_TXC high to AUDx_TXD valid from high impedance 15.0 ns
SS17 AUDx_TXC high to AUDx_TXD high/low 15.0 ns
SS18 AUDx_TXC high to AUDx_TXD high impedance 15.0 ns
SS19
SS1
SS2 SS4
SS3
SS5
SS6 SS8
SS10 SS12
SS14
SS18
SS15
SS17
SS16
SS43
SS42
Note: AUDx_RXD input in synchronous mode only
AUDx_TXC
(Output)
AUDx_TXFS (wl)
(Output)
AUDx_TXFS (bl)
(Output)
AUDx_RXD
(Input)
AUDx_TXD
(Output)
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 119
NOTE
All the timings for the SSI are given for a non-inverted serial clock
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have
been inverted, all the timing remains valid by inverting the clock signal
AUDx_TXC/AUDx_RXC and/or the frame sync
AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.
All timings are on Audiomux Pads when SSI is being used for data
transfer.
The terms, WL and BL, refer to Word Length(WL) and Bit Length(BL).
For internal Frame Sync operation using external clock, the frame sync
timing is the same as that of transmit data (for example, during AC97
mode of operation).
Synchronous Internal Clock Operation
SS42 AUDx_RXD setup before AUDx_TXC falling 10.0 ns
SS43 AUDx_RXD hold after AUDx_TXC falling 0.0 ns
Table 73. SSI Transmitter Timing with Internal Clock (continued)
ID Parameter Min Max Unit
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
120 NXP Semiconductors
Electrical Characteristics
4.12.19.2 SSI Receiver Timing with Internal Clock
Figure 87 depicts the SSI receiver internal clock timing and Table 74 lists the timing parameters for the
receiver timing with the internal clock.
Figure 87. SSI Receiver Internal Clock Timing Diagram
Table 74. SSI Receiver Timing with Internal Clock
ID Parameter Min Max Unit
Internal Clock Operation
SS1 AUDx_TXC/AUDx_RXC clock period 81.4 ns
SS2 AUDx_TXC/AUDx_RXC clock high period 36.0 ns
SS3 AUDx_TXC/AUDx_RXC clock rise time 6.0 ns
SS4 AUDx_TXC/AUDx_RXC clock low period 36.0 ns
SS5 AUDx_TXC/AUDx_RXC clock fall time 6.0 ns
SS7 AUDx_RXC high to AUDx_TXFS (bl) high 15.0 ns
SS9 AUDx_RXC high to AUDx_TXFS (bl) low 15.0 ns
SS11 AUDx_RXC high to AUDx_TXFS (wl) high 15.0 ns
SS13 AUDx_RXC high to AUDx_TXFS (wl) low 15.0 ns
SS20 AUDx_RXD setup time before AUDx_RXC low 10.0 ns
SS21 AUDx_RXD hold time after AUDx_RXC low 0.0 ns
SS50
SS48
SS1
SS4SS2
SS51
SS20
SS21
SS49
SS7 SS9
SS11 SS13
SS47
SS3
SS5
AUDx_TXC
(Output)
AUDx_TXFS (bl)
(Output)
AUDx_TXFS (wl)
(Output)
AUDx_RXD
(Input)
AUDx_RXC
(Output)
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 121
NOTE
All the timings for the SSI are given for a non-inverted serial clock
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have
been inverted, all the timing remains valid by inverting the clock signal
AUDx_TXC/AUDx_RXC and/or the frame sync
AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.
All timings are on Audiomux Pads when SSI is being used for data
transfer.
AUDx_TXC and AUDx_RXC refer to the Transmit and Receive
sections of the SSI.
The terms, WL and BL, refer to Word Length (WL) and Bit Length(BL).
For internal Frame Sync operation using external clock, the frame sync
timing is same as that of transmit data (for example, during AC97 mode
of operation).
Oversampling Clock Operation
SS47 Oversampling clock period 15.04 ns
SS48 Oversampling clock high period 6.0 ns
SS49 Oversampling clock rise time 3.0 ns
SS50 Oversampling clock low period 6.0 ns
SS51 Oversampling clock fall time 3.0 ns
Table 74. SSI Receiver Timing with Internal Clock (continued)
ID Parameter Min Max Unit
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
122 NXP Semiconductors
Electrical Characteristics
4.12.19.3 SSI Transmitter Timing with External Clock
Figure 88 depicts the SSI transmitter external clock timing and Table 75 lists the timing parameters for
the transmitter timing with the external clock.
Figure 88. SSI Transmitter External Clock Timing Diagram
Table 75. SSI Transmitter Timing with External Clock
ID Parameter Min Max Unit
External Clock Operation
SS22 AUDx_TXC/AUDx_RXC clock period 81.4 ns
SS23 AUDx_TXC/AUDx_RXC clock high period 36.0 ns
SS24 AUDx_TXC/AUDx_RXC clock rise time 6.0 ns
SS25 AUDx_TXC/AUDx_RXC clock low period 36.0 ns
SS26 AUDx_TXC/AUDx_RXC clock fall time 6.0 ns
SS27 AUDx_TXC high to AUDx_TXFS (bl) high –10.0 15.0 ns
SS29 AUDx_TXC high to AUDx_TXFS (bl) low 10.0 ns
SS31 AUDx_TXC high to AUDx_TXFS (wl) high –10.0 15.0 ns
SS33 AUDx_TXC high to AUDx_TXFS (wl) low 10.0 ns
SS37 AUDx_TXC high to AUDx_TXD valid from high impedance 15.0 ns
SS38 AUDx_TXC high to AUDx_TXD high/low 15.0 ns
SS39 AUDx_TXC high to AUDx_TXD high impedance 15.0 ns
SS45
SS33
SS24
SS26
SS25
SS23
Note: AUDx_RXD Input in Synchronous mode only
SS31
SS29
SS27
SS22
SS44
SS39
SS38
SS37
SS46
AUDx_TXC
(Input)
AUDx_TXFS (bl)
(Input)
AUDx_TXFS (wl)
(Input)
AUDx_TXD
(Output)
AUDx_RXD
(Input)
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 123
NOTE
All the timings for the SSI are given for a non-inverted serial clock
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have
been inverted, all the timing remains valid by inverting the clock signal
AUDx_TXC/AUDx_RXC and/or the frame sync
AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.
All timings are on Audiomux Pads when SSI is being used for data
transfer.
AUDx_TXC and AUDx_RXC refer to the Transmit and Receive
sections of the SSI.
The terms WL and BL refer to Word Length (WL) and Bit Length (BL).
For internal Frame Sync operation using external clock, the frame sync
timing is same as that of transmit data (for example, during AC97 mode
of operation).
4.12.19.4 SSI Receiver Timing with External Clock
Figure 89 depicts the SSI receiver external clock timing and Table 76 lists the timing parameters for the
receiver timing with the external clock.
Figure 89. SSI Receiver External Clock Timing Diagram
Synchronous External Clock Operation
SS44 AUDx_RXD setup before AUDx_TXC falling 10.0 ns
SS45 AUDx_RXD hold after AUDx_TXC falling 2.0 ns
SS46 AUDx_RXD rise/fall time 6.0 ns
Table 75. SSI Transmitter Timing with External Clock (continued)
ID Parameter Min Max Unit
SS24
SS34
SS35
SS30
SS28
SS26
SS25
SS23
SS40
SS22
SS32
SS36
SS41
AUDx_TXC
(Input)
AUDx_TXFS (bl)
(Input)
AUDx_TXFS (wl)
(Input)
AUDx_RXD
(Input)
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
124 NXP Semiconductors
Electrical Characteristics
NOTE
All the timings for the SSI are given for a non-inverted serial clock
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have
been inverted, all the timing remains valid by inverting the clock signal
AUDx_TXC/AUDx_RXC and/or the frame sync
AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.
All timings are on Audiomux Pads when SSI is being used for data
transfer.
AUDx_TXC and AUDx_RXC refer to the Transmit and Receive
sections of the SSI.
The terms, WL and BL, refer to Word Length (WL) and Bit Length(BL).
For internal Frame Sync operation using external clock, the frame sync
timing is same as that of transmit data (for example, during AC97 mode
of operation).
Table 76. SSI Receiver Timing with External Clock
ID Parameter Min Max Unit
External Clock Operation
SS22 AUDx_TXC/AUDx_RXC clock period 81.4 ns
SS23 AUDx_TXC/AUDx_RXC clock high period 36 ns
SS24 AUDx_TXC/AUDx_RXC clock rise time 6.0 ns
SS25 AUDx_TXC/AUDx_RXC clock low period 36 ns
SS26 AUDx_TXC/AUDx_RXC clock fall time 6.0 ns
SS28 AUDx_RXC high to AUDx_TXFS (bl) high –10 15.0 ns
SS30 AUDx_RXC high to AUDx_TXFS (bl) low 10 ns
SS32 AUDx_RXC high to AUDx_TXFS (wl) high –10 15.0 ns
SS34 AUDx_RXC high to AUDx_TXFS (wl) low 10 ns
SS35 AUDx_TXC/AUDx_RXC External AUDx_TXFS rise time 6.0 ns
SS36 AUDx_TXC/AUDx_RXC External AUDx_TXFS fall time 6.0 ns
SS40 AUDx_RXD setup time before AUDx_RXC low 10 ns
SS41 AUDx_RXD hold time after AUDx_RXC low 2 ns
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 125
4.12.20 UART I/O Configuration and Timing Parameters
4.12.20.1 UART RS-232 I/O Configuration in Different Modes
The i.MX 6Dual/6Quad UART interfaces can serve both as DTE or DCE device. This can be configured
by the DCEDTE control bit (default 0 – DCE mode). Table 77 shows the UART I/O configuration based
on the enabled mode.
Table 77. UART I/O Configuration vs. Mode
Port
DTE Mode DCE Mode
Direction Description Direction Description
UARTx_RTS_B Output RTS from DTE to DCE Input RTS from DTE to DCE
UARTx_CTS_B Input CTS from DCE to DTE Output CTS from DCE to DTE
UARTx_DTR_B Output DTR from DTE to DCE Input DTR from DTE to DCE
UARTx_DSR_B Input DSR from DCE to DTE Output DSR from DCE to DTE
UARTx_DCD_B Input DCD from DCE to DTE Output DCD from DCE to DTE
UARTx_RI_B Input RING from DCE to DTE Output RING from DCE to DTE
UARTx_TX_DATA Input Serial data from DCE to DTE Output Serial data from DCE to DTE
UARTx_RX_DATA Output Serial data from DTE to DCE Input Serial data from DTE to DCE
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
126 NXP Semiconductors
Electrical Characteristics
4.12.20.2 UART RS-232 Serial Mode Timing
The following sections describe the electrical information of the UART module in the RS-232 mode.
4.12.20.2.1 UART Transmitter
Figure 90 depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1 stop bit
format. Table 78 lists the UART RS-232 serial mode transmit timing characteristics.
Figure 90. UART RS-232 Serial Mode Transmit Timing Diagram
4.12.20.2.2 UART Receiver
Figure 91 depicts the RS-232 serial mode receive timing with 8 data bit/1 stop bit format. Table 79 lists
serial mode receive timing characteristics.
Figure 91. UART RS-232 Serial Mode Receive Timing Diagram
Table 78. RS-232 Serial Mode Transmit Timing Parameters
ID Parameter Symbol Min Max Unit
UA1 Transmit Bit Time tTbit 1/Fbaud_rate1 – Tref_clk2
1Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.
2Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).
1/Fbaud_rate + Tref_clk
Table 79. RS-232 Serial Mode Receive Timing Parameters
ID Parameter Symbol Min Max Unit
UA2 Receive Bit Time1
1The UART receiver can tolerate 1/(16 ×Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not
exceed 3/(16 ×Fbaud_rate).
tRbit 1/Fbaud_rate2
1/(16 ×Fbaud_rate)
2Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.
1/Fbaud_rate +
1/(16 ×Fbaud_rate)
Bit 1 Bit 2Bit 0 Bit 4 Bit 5 Bit 6 Bit 7
UARTx_TX_DATA
(output) Bit 3
Start
Bit STOP
BIT
NEXT
START
BIT
POSSIBLE
PARITY
BIT
Par Bit
UA1
UA1 UA1
UA1
Bit 1 Bit 2Bit 0 Bit 4 Bit 5 Bit 6 Bit 7
UARTx_RX_DATA
(input) Bit 3
Start
Bit STOP
BIT
NEXT
START
BIT
POSSIBLE
PARITY
BIT
Par Bit
UA2 UA2
UA2 UA2
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 127
4.12.20.2.3 UART IrDA Mode Timing
The following subsections give the UART transmit and receive timings in IrDA mode.
UART IrDA Mode Transmitter
Figure 92 depicts the UART IrDA mode transmit timing, with 8 data bit/1 stop bit format. Table 80 lists
the transmit timing characteristics.
Figure 92. UART IrDA Mode Transmit Timing Diagram
UART IrDA Mode Receiver
Figure 93 depicts the UART IrDA mode receive timing, with 8 data bit/1 stop bit format. Table 81 lists
the receive timing characteristics.
Figure 93. UART IrDA Mode Receive Timing Diagram
Table 80. IrDA Mode Transmit Timing Parameters
ID Parameter Symbol Min Max Unit
UA3 Transmit Bit Time in IrDA mode tTIRbit 1/Fbaud_rate1 – Tref_clk2
1Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.
2Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).
1/Fbaud_rate + Tref_clk
UA4 Transmit IR Pulse Duration tTIRpulse (3/16) ×(1/Fbaud_rate) – Tref_clk (3/16) ×(1/Fbaud_rate) + Tref_clk
Table 81. IrDA Mode Receive Timing Parameters
ID Parameter Symbol Min Max Unit
UA5 Receive Bit Time1 in IrDA mode
1 The UART receiver can tolerate 1/(16 ×Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not
exceed 3/(16 ×Fbaud_rate).
tRIRbit 1/Fbaud_rate2
1/(16 ×Fbaud_rate)
2Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.
1/Fbaud_rate +
1/(16 ×Fbaud_rate)
UA6 Receive IR Pulse Duration tRIRpulse 1.41 μs (5/16) ×(1/Fbaud_rate)—
Bit 1 Bit 2
Bit 0 Bit 4 Bit 5 Bit 6 Bit 7
UARTx_TX_DATA
(output)
Bit 3
Start
Bit
STOP
BIT
POSSIBLE
PARITY
BIT
UA3 UA3 UA3 UA3
UA4
Bit 1 Bit 2
Bit 0 Bit 4 Bit 5 Bit 6 Bit 7Bit 3 STOP
BIT
POSSIBLE
PARITY
BIT
UA5 UA5 UA5 UA5
UA6
Start
Bit
UARTx_RX_DATA
(input)
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
128 NXP Semiconductors
Electrical Characteristics
4.12.21 USB HSIC Timings
This section describes the electrical information of the USB HSIC port.
NOTE
HSIC is a DDR signal. The following timing specification is for both rising
and falling edges.
4.12.21.1 Transmit Timing
Figure 94. USB HSIC Transmit Waveform
4.12.21.2 Receive Timing
Figure 95. USB HSIC Receive Waveform
Table 82. USB HSIC Transmit Parameters
Name Parameter Min Max Unit Comment
Tstrobe strobe period 4.166 4.167 ns
Todelay data output delay time 550 1350 ps Measured at 50% point
Tslew strobe/data rising/falling time 0.7 2 V/ns Averaged from 30% – 70% points
Table 83. USB HSIC Receive Parameters1
1The timings in the table are guaranteed when:
—AC I/O voltage is between 0.9x to 1x of the I/O supply
—DDR_SEL configuration bits of the I/O are set to (10)b
Name Parameter Min Max Unit Comment
Tstrobe strobe period 4.166 4.167 ns
Thold data hold time 300 ps Measured at 50% point
Tsetup data setup time 365 ps Measured at 50% point
Tslew strobe/data rising/falling time 0.7 2 V/ns Averaged from 30% – 70% points
USB_H_STROBE
USB_H_DATA
Todelay
Tstrobe
Todelay
USB_H_STROBE
USB_H_DATA
Thold
Tstrobe
Tsetup
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 129
4.12.22 USB PHY Parameters
This section describes the USB-OTG PHY and the USB Host port PHY parameters.
The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision
2.0 OTG, USB Host with the amendments below (On-The-Go and Embedded Host Supplement to the USB
Revision 2.0 Specification is not applicable to Host port).
USB ENGINEERING CHANGE NOTICE
Title: 5V Short Circuit Withstand Requirement Change
Applies to: Universal Serial Bus Specification, Revision 2.0
Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
USB ENGINEERING CHANGE NOTICE
Title: Pull-up/Pull-down resistors
Applies to: Universal Serial Bus Specification, Revision 2.0
USB ENGINEERING CHANGE NOTICE
Title: Suspend Current Limit Changes
Applies to: Universal Serial Bus Specification, Revision 2.0
USB ENGINEERING CHANGE NOTICE
Title: USB 2.0 Phase Locked SOFs
Applies to: Universal Serial Bus Specification, Revision 2.0
On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification
Revision 2.0 plus errata and ecn June 4, 2010
Battery Charging Specification (available from USB-IF)
Revision 1.2, December 7, 2010
Portable device only
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
130 NXP Semiconductors
Boot Mode Configuration
5 Boot Mode Configuration
This section provides information on boot mode configuration pins allocation and boot devices interfaces
allocation.
5.1 Boot Mode Configuration Pins
Table 84 provides boot options, functionality, fuse values, and associated pins. Several input pins are also
sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse.
The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an
unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX
6Dual/6Quad Fuse Map document and the System Boot chapter of the i.MX 6Dual/6Quad reference
manual (IMX6DQRM).
Table 84. Fuses and Associated Pins Used for Boot
Pin Direction at Reset eFuse Name
Boot Mode Selection
BOOT_MODE1 Input Boot Mode Selection
BOOT_MODE0 Input Boot Mode Selection
Boot Options1
EIM_DA0 Input BOOT_CFG1[0]
EIM_DA1 Input BOOT_CFG1[1]
EIM_DA2 Input BOOT_CFG1[2]
EIM_DA3 Input BOOT_CFG1[3]
EIM_DA4 Input BOOT_CFG1[4]
EIM_DA5 Input BOOT_CFG1[5]
EIM_DA6 Input BOOT_CFG1[6]
EIM_DA7 Input BOOT_CFG1[7]
EIM_DA8 Input BOOT_CFG2[0]
EIM_DA9 Input BOOT_CFG2[1]
EIM_DA10 Input BOOT_CFG2[2]
EIM_DA11 Input BOOT_CFG2[3]
EIM_DA12 Input BOOT_CFG2[4]
EIM_DA13 Input BOOT_CFG2[5]
EIM_DA14 Input BOOT_CFG2[6]
EIM_DA15 Input BOOT_CFG2[7]
EIM_A16 Input BOOT_CFG3[0]
EIM_A17 Input BOOT_CFG3[1]
Boot Mode Configuration
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 131
5.2 Boot Devices Interfaces Allocation
Table 85 lists the interfaces that can be used by the boot process in accordance with the specific boot
mode configuration. The table also describes the interface’s specific modes and IOMUXC allocation,
which are configured during boot when appropriate.
EIM_A18 Input BOOT_CFG3[2]
EIM_A19 Input BOOT_CFG3[3]
EIM_A20 Input BOOT_CFG3[4]
EIM_A21 Input BOOT_CFG3[5]
EIM_A22 Input BOOT_CFG3[6]
EIM_A23 Input BOOT_CFG3[7]
EIM_A24 Input BOOT_CFG4[0]
EIM_WAIT Input BOOT_CFG4[1]
EIM_LBA Input BOOT_CFG4[2]
EIM_EB0 Input BOOT_CFG4[3]
EIM_EB1 Input BOOT_CFG4[4]
EIM_RW Input BOOT_CFG4[5]
EIM_EB2 Input BOOT_CFG4[6]
EIM_EB3 Input BOOT_CFG4[7]
1Pin value overrides fuse settings for BT_FUSE_SEL = ‘0’. Signal Configuration as Fuse Override Input at Power
Up. These are special I/O lines that control the boot up configuration during product development. In production,
the boot configuration can be controlled by fuses.
Table 85. Interfaces Allocation During Boot
Interface IP Instance Allocated Pads During Boot Comment
SPI ECSPI-1 EIM_D17, EIM_D18, EIM_D16, EIM_EB2, EIM_D19,
EIM_D24, EIM_D25
SPI ECSPI-2 CSI0_DAT10, CSI0_DAT9, CSI0_DAT8, CSI0_DAT11,
EIM_LBA, EIM_D24, EIM_D25
SPI ECSPI-3 DISP0_DAT2, DISP0_DAT1, DISP0_DAT0,
DISP0_DAT3, DISP0_DAT4, DISP0_DAT5, DISP0_DAT6
SPI ECSPI-4 EIM_D22, EIM_D28, EIM_D21, EIM_D20, EIM_A25,
EIM_D24, EIM_D25
SPI ECSPI-5 SD1_DAT0, SD1_CMD, SD1_CLK, SD1_DAT1,
SD1_DAT2, SD1_DAT3, SD2_DAT3
EIM EIM EIM_DA[15:0], EIM_D[31:16], CSI0_DAT[19:4],
CSI0_DATA_EN, CSI0_VSYNC
Used for NOR, OneNAND boot
Only CS0 is supported
Table 84. Fuses and Associated Pins Used for Boot (continued)
Pin Direction at Reset eFuse Name
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
132 NXP Semiconductors
Boot Mode Configuration
NAND Flash GPMI NANDF_CLE, NANDF_ALE, NANDF_WP_B,
SD4_CMD, SD4_CLK, NANDF_RB0, SD4_DAT0,
NANDF_CS0, NANDF_CS1, NANDF_CS2,
NANDF_CS3, NANDF_D[7:0]
8 bit
Only CS0 is supported
SD/MMC USDHC-1 SD1_CLK, SD1_CMD,SD1_DAT0, SD1_DAT1,
SD1_DAT2, SD1_DAT3, NANDF_D0, NANDF_D1,
NANDF_D2, NANDF_D3, KEY_COL1
1, 4, or 8 bit
SD/MMC USDHC-2 SD2_CLK, SD2_CMD, SD2_DAT0, SD2_DAT1,
SD2_DAT2, SD2_DAT3, NANDF_D4, NANDF_D5,
NANDF_D6, NANDF_D7, KEY_ROW1
1, 4, or 8 bit
SD/MMC USDHC-3 SD3_CLK, SD3_CMD, SD3_DAT0, SD3_DAT1,
SD3_DAT2, SD3_DAT3, SD3_DAT4, SD3_DAT5,
SD3_DAT6, SD3_DAT7, GPIO_18
1, 4, or 8 bit
SD/MMC USDHC-4 SD4_CLK, SD4_CMD, SD4_DAT0, SD4_DAT1,
SD4_DAT2, SD4_DAT3, SD4_DAT4, SD4_DAT5,
SD4_DAT6, SD4_DAT7, NANDF_CS1
1, 4, or 8 bit
I2C I2C-1 EIM_D28, EIM_D21
I2C I2C-2 EIM_D16, EIM_EB2
I2C I2C-3 EIM_D18, EIM_D17
SATA SATA_PHY SATA_TXM, SATA_TXP, SATA_RXP, SATA_RXM,
SATA_REXT
USB USB-OTG
PHY
USB_OTG_DP
USB_OTG_DN
USB_OTG_VBUS
Table 85. Interfaces Allocation During Boot (continued)
Interface IP Instance Allocated Pads During Boot Comment
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 133
6 Package Information and Contact Assignments
This section includes the contact assignment information and mechanical package drawing.
6.1 Signal Naming Convention
The signal names of the i.MX6 series of products are standardized to align the signal names within the
family and across the documentation. Benefits of this standardization are as follows:
Signal names are unique within the scope of an SoC and within the series of products
Searches will return all occurrences of the named signal
Signal names are consistent between i.MX 6 series products implementing the same modules
The module instance is incorporated into the signal name
This standardization applies only to signal names. The ball names are preserved to prevent the need to
change schematics, BSDL models, IBIS models, and so on.
Throughout this document, the signal names are used except where referenced as a ball name (such as the
Functional Contact Assignments table, Ball Map table, and so on). A master list of signal names is in the
document, IMX 6 Series Standardized Signal Name Map (EB792). This list can be used to map the signal
names used in older documentation to the standardized naming conventions.
6.2 21 x 21 mm Package Information
6.2.1 Case FCPBGA, 21 x 21 mm, 0.8 mm Pitch, 25 x 25 Ball Matrix
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
134 NXP Semiconductors
Package Information and Contact Assignments
6.2.1.1 21 x 21 mm Lidded Package
Figure 96 and Figure 97 show the top, bottom, and side views of the 21 × 21 mm lidded package.
Figure 96. 21 x 21 mm Lidded Package Top, Bottom, and Side Views (Sheet 1 of 2)
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 135
Figure 97. 21 x 21 mm Lidded Package Top, Bottom, and Side Views (Sheet 2 of 2)
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
136 NXP Semiconductors
Package Information and Contact Assignments
6.2.2 21 x 21 mm Ground, Power, Sense, and Reference Contact
Assignments
Table 86 shows the device connection list for ground, power, sense, and reference contact signals.
Table 86. 21 x 21 mm Supplies Contact Assignment
Supply Rail Name Ball(s) Position(s) Remark
CSI_REXT D4
DRAM_VREF AC2
DSI_REXT G4
FA_ANA A5
GND A13, A25, A4, A8, AA10, AA13, AA16, AA19, AA22, AD4, D3,
F8, J15, L10, M15, P15, T15, U8, W17, AA7, AD7, D6, G10,
J18, L12, M18, P18, T17, V19, W18, AB24, AE1, D8, G19, J2,
L15, M8, P8, T19, V8, W19, AB3, AE25, E5, G3, J8, L18, N10,
R12, T8, W10, W3, AD10, B4, E6, H12, K10, L2, N15, R15,
U11, W11, W7, AD13, C1, E7, H15, K12, L5, N18, R17, U12,
W12, W8, AD16, C10, F5, H18, K15, L8, N8, R8, U15, W13,
W9, AD19, C4, F6, H8, K18, M10, P10, T11, U17, W15, Y24,
AD22, C6, F7, J12, K8, M12, P12, T12, U19, W16, Y5
GPANAIO C8 Analog output for NXP use only. This
output must remain unconnected
HDMI_DDCCEC K2 Analog ground reference for the Hot
Plug detect signal
HDMI_REF J1
HDMI_VP L7
HDMI_VPH M7
NVCC_CSI N7 Supply of the camera sensor interface
NVCC_DRAM R18, T18, U18, V10, V11, V12, V13,
V14, V15, V16, V17, V18, V9
Supply of the DDR interface
NVCC_EIM0 K19 Supply of the EIM interface
NVCC_EIM1 L19 Supply of the EIM interface
NVCC_EIM2 M19 Supply of the EIM interface
NVCC_ENET R19 Supply of the ENET interface
NVCC_GPIO P7 Supply of the GPIO interface
NVCC_JTAG J7 Supply of the JTAG tap controller
interface
NVCC_LCD P19 Supply of the LCD interface
NVCC_LVDS2P5 V7 Supply of the LVDS display interface
and DDR pre-drivers. Even if the LVDS
interface is not used, this supply must
remain powered.
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 137
NVCC_MIPI K7 Supply of the MIPI interface
NVCC_NANDF G15 Supply of the RAW NAND Flash
Memories interface
NVCC_PLL_OUT E8
NVCC_RGMII G18 Supply of the ENET interface
NVCC_SD1 G16 Supply of the SD card interface
NVCC_SD2 G17 Supply of the SD card interface
NVCC_SD3 G14 Supply of the SD card interface
PCIE_VP H7
PCIE_REXT A2
PCIE_VPH G7 PCI PHY supply
PCIE_VPTX G8 PCI PHY supply
SATA_REXT C14
SATA_VP G13
SATA_VPH G12
USB_H1_VBUS D10
USB_OTG_VBUS E9
VDD_CACHE_CAP N12 Cache supply input. This input should
be connected to (driven by)
VDD_SOC_CAP. The external
capacitor used for VDD_SOC_CAP is
sufficient for this supply.
VDD_FA B5
VDD_SNVS_CAP G9 Secondary supply for the SNVS
(internal regulator output—requires
capacitor if internal regulator is used)
VDD_SNVS_IN G11 Primary supply for the SNVS regulator
VDDARM_CAP H13, J13, K13, L13, M13, N13, P13, R13 Secondary supply for the ARM0 and
ARM1 cores (internal regulator
output—requires capacitor if internal
regulator is used)
VDDARM_IN H14, J14, K14, L14, M14, N14, P14, R14 Primary supply for the ARM0 and
ARM1 core regulator
VDDARM23_CAP H11, J11, K11, L11, M11, N11, P11, R11 Secondary supply for the ARM2 and
ARM3 cores (internal regulator
output—requires capacitor if internal
regulator is used)
VDDARM23_IN K9, L9, M9, N9, P9, R9, T9, U9 Primary supply for the ARM2 and
ARM3 core regulator
Table 86. 21 x 21 mm Supplies Contact Assignment (continued)
Supply Rail Name Ball(s) Position(s) Remark
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
138 NXP Semiconductors
Package Information and Contact Assignments
6.2.3 21 x 21 mm Functional Contact Assignments
Table 87 displays an alpha-sorted list of the signal assignments including power rails. The table also
includes out of reset pad state.
VDDHIGH_CAP H10, J10 Secondary supply for the 2.5 V domain
(internal regulator output—requires
capacitor if internal regulator is used)
VDDHIGH_IN H9, J9 Primary supply for the 2.5 V regulator
VDDPU_CAP H17, J17, K17, L17, M17, N17, P17 Secondary supply for the VPU and
GPU (internal regulator output—
requires capacitor if internal regulator
is used)
VDDSOC_CAP R10, T10, T13, T14, U10, U13, U14 Secondary supply for the SoC and PU
(internal regulator output—requires
capacitor if internal regulator is used)
VDDSOC_IN H16, J16, K16, L16, M16, N16, P16, R16, T16, U16 Primary supply for the SoC and PU
regulators
VDDUSB_CAP F9 Secondary supply for the 3 V domain
(internal regulator output—requires
capacitor if internal regulator is used)
ZQPAD AE17 Connect ZQPAD to an external 240Ω
1% resistor to GND. This is a reference
used during DRAM output buffer driver
calibration.
Table 87. 21 x 21 mm Functional Contact Assignments
Ball Name Ball Power Group Ball Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function
(Signal Name) Input/Output Value2
BOOT_MODE0 C12 VDD_SNVS_IN GPIO ALT0 SRC_BOOT_MODE0 Input PD (100K)
BOOT_MODE1 F12 VDD_SNVS_IN GPIO ALT0 SRC_BOOT_MODE1 Input PD (100K)
CLK1_N C7 VDD_HIGH_CAP CLK1_N
CLK1_P D7 VDD_HIGH_CAP CLK1_P
CLK2_N C5 VDD_HIGH_CAP CLK2_N
CLK2_P D5 VDD_HIGH_CAP CLK2_P
CSI_CLK0M F4 NVCC_MIPI CSI_CLK_N
CSI_CLK0P F3 NVCC_MIPI CSI_CLK_P
CSI_D0M E4 NVCC_MIPI CSI_DATA0_N
CSI_D0P E3 NVCC_MIPI CSI_DATA0_P
CSI_D1M D1 NVCC_MIPI CSI_DATA1_N
Table 86. 21 x 21 mm Supplies Contact Assignment (continued)
Supply Rail Name Ball(s) Position(s) Remark
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 139
CSI_D1P D2 NVCC_MIPI CSI_DATA1_P
CSI_D2M E1 NVCC_MIPI CSI_DATA2_N
CSI_D2P E2 NVCC_MIPI CSI_DATA2_P
CSI_D3M F2 NVCC_MIPI CSI_DATA3_N
CSI_D3P F1 NVCC_MIPI CSI_DATA3_P
CSI0_DAT10 M1 NVCC_CSI GPIO ALT5 GPIO5_IO28 Input PU (100K)
CSI0_DAT11 M3 NVCC_CSI GPIO ALT5 GPIO5_IO29 Input PU (100K)
CSI0_DAT12 M2 NVCC_CSI GPIO ALT5 GPIO5_IO30 Input PU (100K)
CSI0_DAT13 L1 NVCC_CSI GPIO ALT5 GPIO5_IO31 Input PU (100K)
CSI0_DAT14 M4 NVCC_CSI GPIO ALT5 GPIO6_IO00 Input PU (100K)
CSI0_DAT15 M5 NVCC_CSI GPIO ALT5 GPIO6_IO01 Input PU (100K)
CSI0_DAT16 L4 NVCC_CSI GPIO ALT5 GPIO6_IO02 Input PU (100K)
CSI0_DAT17 L3 NVCC_CSI GPIO ALT5 GPIO6_IO03 Input PU (100K)
CSI0_DAT18 M6 NVCC_CSI GPIO ALT5 GPIO6_IO04 Input PU (100K)
CSI0_DAT19 L6 NVCC_CSI GPIO ALT5 GPIO6_IO05 Input PU (100K)
CSI0_DAT4 N1 NVCC_CSI GPIO ALT5 GPIO5_IO22 Input PU (100K)
CSI0_DAT5 P2 NVCC_CSI GPIO ALT5 GPIO5_IO23 Input PU (100K)
CSI0_DAT6 N4 NVCC_CSI GPIO ALT5 GPIO5_IO24 Input PU (100K)
CSI0_DAT7 N3 NVCC_CSI GPIO ALT5 GPIO5_IO25 Input PU (100K)
CSI0_DAT8 N6 NVCC_CSI GPIO ALT5 GPIO5_IO26 Input PU (100K)
CSI0_DAT9 N5 NVCC_CSI GPIO ALT5 GPIO5_IO27 Input PU (100K)
CSI0_DATA_EN P3 NVCC_CSI GPIO ALT5 GPIO5_IO20 Input PU (100K)
CSI0_MCLK P4 NVCC_CSI GPIO ALT5 GPIO5_IO19 Input PU (100K)
CSI0_PIXCLK P1 NVCC_CSI GPIO ALT5 GPIO5_IO18 Input PU (100K)
CSI0_VSYNC N2 NVCC_CSI GPIO ALT5 GPIO5_IO21 Input PU (100K)
DI0_DISP_CLK N19 NVCC_LCD GPIO ALT5 GPIO4_IO16 Input PU (100K)
DI0_PIN15 N21 NVCC_LCD GPIO ALT5 GPIO4_IO17 Input PU (100K)
DI0_PIN2 N25 NVCC_LCD GPIO ALT5 GPIO4_IO18 Input PU (100K)
DI0_PIN3 N20 NVCC_LCD GPIO ALT5 GPIO4_IO19 Input PU (100K)
DI0_PIN4 P25 NVCC_LCD GPIO ALT5 GPIO4_IO20 Input PU (100K)
DISP0_DAT0 P24 NVCC_LCD GPIO ALT5 GPIO4_IO21 Input PU (100K)
DISP0_DAT1 P22 NVCC_LCD GPIO ALT5 GPIO4_IO22 Input PU (100K)
DISP0_DAT10 R21 NVCC_LCD GPIO ALT5 GPIO4_IO31 Input PU (100K)
DISP0_DAT11 T23 NVCC_LCD GPIO ALT5 GPIO5_IO05 Input PU (100K)
DISP0_DAT12 T24 NVCC_LCD GPIO ALT5 GPIO5_IO06 Input PU (100K)
DISP0_DAT13 R20 NVCC_LCD GPIO ALT5 GPIO5_IO07 Input PU (100K)
Table 87. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function
(Signal Name) Input/Output Value2
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
140 NXP Semiconductors
Package Information and Contact Assignments
DISP0_DAT14 U25 NVCC_LCD GPIO ALT5 GPIO5_IO08 Input PU (100K)
DISP0_DAT15 T22 NVCC_LCD GPIO ALT5 GPIO5_IO09 Input PU (100K)
DISP0_DAT16 T21 NVCC_LCD GPIO ALT5 GPIO5_IO10 Input PU (100K)
DISP0_DAT17 U24 NVCC_LCD GPIO ALT5 GPIO5_IO11 Input PU (100K)
DISP0_DAT18 V25 NVCC_LCD GPIO ALT5 GPIO5_IO12 Input PU (100K)
DISP0_DAT19 U23 NVCC_LCD GPIO ALT5 GPIO5_IO13 Input PU (100K)
DISP0_DAT2 P23 NVCC_LCD GPIO ALT5 GPIO4_IO23 Input PU (100K)
DISP0_DAT20 U22 NVCC_LCD GPIO ALT5 GPIO5_IO14 Input PU (100K)
DISP0_DAT21 T20 NVCC_LCD GPIO ALT5 GPIO5_IO15 Input PU (100K)
DISP0_DAT22 V24 NVCC_LCD GPIO ALT5 GPIO5_IO16 Input PU (100K)
DISP0_DAT23 W24 NVCC_LCD GPIO ALT5 GPIO5_IO17 Input PU (100K)
DISP0_DAT3 P21 NVCC_LCD GPIO ALT5 GPIO4_IO24 Input PU (100K)
DISP0_DAT4 P20 NVCC_LCD GPIO ALT5 GPIO4_IO25 Input PU (100K)
DISP0_DAT5 R25 NVCC_LCD GPIO ALT5 GPIO4_IO26 Input PU (100K)
DISP0_DAT6 R23 NVCC_LCD GPIO ALT5 GPIO4_IO27 Input PU (100K)
DISP0_DAT7 R24 NVCC_LCD GPIO ALT5 GPIO4_IO28 Input PU (100K)
DISP0_DAT8 R22 NVCC_LCD GPIO ALT5 GPIO4_IO29 Input PU (100K)
DISP0_DAT9 T25 NVCC_LCD GPIO ALT5 GPIO4_IO30 Input PU (100K)
DRAM_A0 AC14 NVCC_DRAM DDR ALT0 DRAM_ADDR00 Output 0
DRAM_A1 AB14 NVCC_DRAM DDR ALT0 DRAM_ADDR01 Output 0
DRAM_A10 AA15 NVCC_DRAM DDR ALT0 DRAM_ADDR10 Output 0
DRAM_A11 AC12 NVCC_DRAM DDR ALT0 DRAM_ADDR11 Output 0
DRAM_A12 AD12 NVCC_DRAM DDR ALT0 DRAM_ADDR12 Output 0
DRAM_A13 AC17 NVCC_DRAM DDR ALT0 DRAM_ADDR13 Output 0
DRAM_A14 AA12 NVCC_DRAM DDR ALT0 DRAM_ADDR14 Output 0
DRAM_A15 Y12 NVCC_DRAM DDR ALT0 DRAM_ADDR15 Output 0
DRAM_A2 AA14 NVCC_DRAM DDR ALT0 DRAM_ADDR02 Output 0
DRAM_A3 Y14 NVCC_DRAM DDR ALT0 DRAM_ADDR03 Output 0
DRAM_A4 W14 NVCC_DRAM DDR ALT0 DRAM_ADDR04 Output 0
DRAM_A5 AE13 NVCC_DRAM DDR ALT0 DRAM_ADDR05 Output 0
DRAM_A6 AC13 NVCC_DRAM DDR ALT0 DRAM_ADDR06 Output 0
DRAM_A7 Y13 NVCC_DRAM DDR ALT0 DRAM_ADDR07 Output 0
DRAM_A8 AB13 NVCC_DRAM DDR ALT0 DRAM_ADDR08 Output 0
DRAM_A9 AE12 NVCC_DRAM DDR ALT0 DRAM_ADDR09 Output 0
DRAM_CAS AE16 NVCC_DRAM DDR ALT0 DRAM_CAS_B Output 0
DRAM_CS0 Y16 NVCC_DRAM DDR ALT0 DRAM_CS0_B Output 0
Table 87. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function
(Signal Name) Input/Output Value2
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 141
DRAM_CS1 AD17 NVCC_DRAM DDR ALT0 DRAM_CS1_B Output 0
DRAM_D0 AD2 NVCC_DRAM DDR ALT0 DRAM_DATA00 Input PU (100K)
DRAM_D1 AE2 NVCC_DRAM DDR ALT0 DRAM_DATA01 Input PU (100K)
DRAM_D10 AA6 NVCC_DRAM DDR ALT0 DRAM_DATA10 Input PU (100K)
DRAM_D11 AE7 NVCC_DRAM DDR ALT0 DRAM_DATA11 Input PU (100K)
DRAM_D12 AB5 NVCC_DRAM DDR ALT0 DRAM_DATA12 Input PU (100K)
DRAM_D13 AC5 NVCC_DRAM DDR ALT0 DRAM_DATA13 Input PU (100K)
DRAM_D14 AB6 NVCC_DRAM DDR ALT0 DRAM_DATA14 Input PU (100K)
DRAM_D15 AC7 NVCC_DRAM DDR ALT0 DRAM_DATA15 Input PU (100K)
DRAM_D16 AB7 NVCC_DRAM DDR ALT0 DRAM_DATA16 Input PU (100K)
DRAM_D17 AA8 NVCC_DRAM DDR ALT0 DRAM_DATA17 Input PU (100K)
DRAM_D18 AB9 NVCC_DRAM DDR ALT0 DRAM_DATA18 Input PU (100K)
DRAM_D19 Y9 NVCC_DRAM DDR ALT0 DRAM_DATA19 Input PU (100K)
DRAM_D2 AC4 NVCC_DRAM DDR ALT0 DRAM_DATA02 Input PU (100K)
DRAM_D20 Y7 NVCC_DRAM DDR ALT0 DRAM_DATA20 Input PU (100K)
DRAM_D21 Y8 NVCC_DRAM DDR ALT0 DRAM_DATA21 Input PU (100K)
DRAM_D22 AC8 NVCC_DRAM DDR ALT0 DRAM_DATA22 Input PU (100K)
DRAM_D23 AA9 NVCC_DRAM DDR ALT0 DRAM_DATA23 Input PU (100K)
DRAM_D24 AE9 NVCC_DRAM DDR ALT0 DRAM_DATA24 Input PU (100K)
DRAM_D25 Y10 NVCC_DRAM DDR ALT0 DRAM_DATA25 Input PU (100K)
DRAM_D26 AE11 NVCC_DRAM DDR ALT0 DRAM_DATA26 Input PU (100K)
DRAM_D27 AB11 NVCC_DRAM DDR ALT0 DRAM_DATA27 Input PU (100K)
DRAM_D28 AC9 NVCC_DRAM DDR ALT0 DRAM_DATA28 Input PU (100K)
DRAM_D29 AD9 NVCC_DRAM DDR ALT0 DRAM_DATA29 Input PU (100K)
DRAM_D3 AA5 NVCC_DRAM DDR ALT0 DRAM_DATA03 Input PU (100K)
DRAM_D30 AD11 NVCC_DRAM DDR ALT0 DRAM_DATA30 Input PU (100K)
DRAM_D31 AC11 NVCC_DRAM DDR ALT0 DRAM_DATA31 Input PU (100K)
DRAM_D32 AA17 NVCC_DRAM DDR ALT0 DRAM_DATA32 Input PU (100K)
DRAM_D33 AA18 NVCC_DRAM DDR ALT0 DRAM_DATA33 Input PU (100K)
DRAM_D34 AC18 NVCC_DRAM DDR ALT0 DRAM_DATA34 Input PU (100K)
DRAM_D35 AE19 NVCC_DRAM DDR ALT0 DRAM_DATA35 Input PU (100K)
DRAM_D36 Y17 NVCC_DRAM DDR ALT0 DRAM_DATA36 Input PU (100K)
DRAM_D37 Y18 NVCC_DRAM DDR ALT0 DRAM_DATA37 Input PU (100K)
DRAM_D38 AB19 NVCC_DRAM DDR ALT0 DRAM_DATA38 Input PU (100K)
DRAM_D39 AC19 NVCC_DRAM DDR ALT0 DRAM_DATA39 Input PU (100K)
DRAM_D4 AC1 NVCC_DRAM DDR ALT0 DRAM_DATA04 Input PU (100K)
Table 87. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function
(Signal Name) Input/Output Value2
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
142 NXP Semiconductors
Package Information and Contact Assignments
DRAM_D40 Y19 NVCC_DRAM DDR ALT0 DRAM_DATA40 Input PU (100K)
DRAM_D41 AB20 NVCC_DRAM DDR ALT0 DRAM_DATA41 Input PU (100K)
DRAM_D42 AB21 NVCC_DRAM DDR ALT0 DRAM_DATA42 Input PU (100K)
DRAM_D43 AD21 NVCC_DRAM DDR ALT0 DRAM_DATA43 Input PU (100K)
DRAM_D44 Y20 NVCC_DRAM DDR ALT0 DRAM_DATA44 Input PU (100K)
DRAM_D45 AA20 NVCC_DRAM DDR ALT0 DRAM_DATA45 Input PU (100K)
DRAM_D46 AE21 NVCC_DRAM DDR ALT0 DRAM_DATA46 Input PU (100K)
DRAM_D47 AC21 NVCC_DRAM DDR ALT0 DRAM_DATA47 Input PU (100K)
DRAM_D48 AC22 NVCC_DRAM DDR ALT0 DRAM_DATA48 Input PU (100K)
DRAM_D49 AE22 NVCC_DRAM DDR ALT0 DRAM_DATA49 Input PU (100K)
DRAM_D5 AD1 NVCC_DRAM DDR ALT0 DRAM_DATA05 Input PU (100K)
DRAM_D50 AE24 NVCC_DRAM DDR ALT0 DRAM_DATA50 Input PU (100K)
DRAM_D51 AC24 NVCC_DRAM DDR ALT0 DRAM_DATA51 Input PU (100K)
DRAM_D52 AB22 NVCC_DRAM DDR ALT0 DRAM_DATA52 Input PU (100K)
DRAM_D53 AC23 NVCC_DRAM DDR ALT0 DRAM_DATA53 Input PU (100K)
DRAM_D54 AD25 NVCC_DRAM DDR ALT0 DRAM_DATA54 Input PU (100K)
DRAM_D55 AC25 NVCC_DRAM DDR ALT0 DRAM_DATA55 Input PU (100K)
DRAM_D56 AB25 NVCC_DRAM DDR ALT0 DRAM_DATA56 Input PU (100K)
DRAM_D57 AA21 NVCC_DRAM DDR ALT0 DRAM_DATA57 Input PU (100K)
DRAM_D58 Y25 NVCC_DRAM DDR ALT0 DRAM_DATA58 Input PU (100K)
DRAM_D59 Y22 NVCC_DRAM DDR ALT0 DRAM_DATA59 Input PU (100K)
DRAM_D6 AB4 NVCC_DRAM DDR ALT0 DRAM_DATA06 Input PU (100K)
DRAM_D60 AB23 NVCC_DRAM DDR ALT0 DRAM_DATA60 Input PU (100K)
DRAM_D61 AA23 NVCC_DRAM DDR ALT0 DRAM_DATA61 Input PU (100K)
DRAM_D62 Y23 NVCC_DRAM DDR ALT0 DRAM_DATA62 Input PU (100K)
DRAM_D63 W25 NVCC_DRAM DDR ALT0 DRAM_DATA63 Input PU (100K)
DRAM_D7 AE4 NVCC_DRAM DDR ALT0 DRAM_DATA07 Input PU (100K)
DRAM_D8 AD5 NVCC_DRAM DDR ALT0 DRAM_DATA08 Input PU (100K)
DRAM_D9 AE5 NVCC_DRAM DDR ALT0 DRAM_DATA09 Input PU (100K)
DRAM_DQM0 AC3 NVCC_DRAM DDR ALT0 DRAM_DQM0 Output 0
DRAM_DQM1 AC6 NVCC_DRAM DDR ALT0 DRAM_DQM1 Output 0
DRAM_DQM2 AB8 NVCC_DRAM DDR ALT0 DRAM_DQM2 Output 0
DRAM_DQM3 AE10 NVCC_DRAM DDR ALT0 DRAM_DQM3 Output 0
DRAM_DQM4 AB18 NVCC_DRAM DDR ALT0 DRAM_DQM4 Output 0
DRAM_DQM5 AC20 NVCC_DRAM DDR ALT0 DRAM_DQM5 Output 0
DRAM_DQM6 AD24 NVCC_DRAM DDR ALT0 DRAM_DQM6 Output 0
Table 87. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function
(Signal Name) Input/Output Value2
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 143
DRAM_DQM7 Y21 NVCC_DRAM DDR ALT0 DRAM_DQM7 Output 0
DRAM_RAS AB15 NVCC_DRAM DDR ALT0 DRAM_RAS_B Output 0
DRAM_RESET Y6 NVCC_DRAM DDR ALT0 DRAM_RESET Output 0
DRAM_SDBA0 AC15 NVCC_DRAM DDR ALT0 DRAM_SDBA0 Output 0
DRAM_SDBA1 Y15 NVCC_DRAM DDR ALT0 DRAM_SDBA1 Output 0
DRAM_SDBA2 AB12 NVCC_DRAM DDR ALT0 DRAM_SDBA2 Output 0
DRAM_SDCKE0 Y11 NVCC_DRAM DDR ALT0 DRAM_SDCKE0 Output 0
DRAM_SDCKE1 AA11 NVCC_DRAM DDR ALT0 DRAM_SDCKE1 Output 0
DRAM_SDCLK_0 AD15 NVCC_DRAM DDRCLK ALT0 DRAM_SDCLK0_P Output 0
DRAM_SDCLK_0_B AE15 NVCC_DRAM DDRCLK DRAM_SDCLK0_N
DRAM_SDCLK_1 AD14 NVCC_DRAM DDRCLK ALT0 DRAM_SDCLK1_P Output 0
DRAM_SDCLK_1_B AE14 NVCC_DRAM DDRCLK DRAM_SDCLK1_N
DRAM_SDODT0 AC16 NVCC_DRAM DDR ALT0 DRAM_ODT0 Output 0
DRAM_SDODT1 AB17 NVCC_DRAM DDR ALT0 DRAM_ODT1 Output 0
DRAM_SDQS0 AE3 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS0_P Input Hi-Z
DRAM_SDQS0_B AD3 NVCC_DRAM DDRCLK DRAM_SDQS0_N
DRAM_SDQS1 AD6 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS1_P Input Hi-Z
DRAM_SDQS1_B AE6 NVCC_DRAM DDRCLK DRAM_SDQS1_N
DRAM_SDQS2 AD8 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS2_P Input Hi-Z
DRAM_SDQS2_B AE8 NVCC_DRAM DDRCLK DRAM_SDQS2_N
DRAM_SDQS3 AC10 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS3_P Input Hi-Z
DRAM_SDQS3_B AB10 NVCC_DRAM DDRCLK DRAM_SDQS3_N
DRAM_SDQS4 AD18 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS4_P Input Hi-Z
DRAM_SDQS4_B AE18 NVCC_DRAM DDRCLK DRAM_SDQS4_N
DRAM_SDQS5 AD20 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS5_P Input Hi-Z
DRAM_SDQS5_B AE20 NVCC_DRAM DDRCLK DRAM_SDQS5_N
DRAM_SDQS6 AD23 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS6_P Input Hi-Z
DRAM_SDQS6_B AE23 NVCC_DRAM DDRCLK DRAM_SDQS6_N
DRAM_SDQS7 AA25 NVCC_DRAM DDRCLK ALT0 DRAM_SDQS7_P Input Hi-Z
DRAM_SDQS7_B AA24 NVCC_DRAM DDRCLK DRAM_SDQS7_N
DRAM_SDWE AB16 NVCC_DRAM DDR ALT0 DRAM_SDWE_B Output 0
DSI_CLK0M H3 NVCC_MIPI DSI_CLK_N
DSI_CLK0P H4 NVCC_MIPI DSI_CLK_P
DSI_D0M G2 NVCC_MIPI DSI_DATA0_N
DSI_D0P G1 NVCC_MIPI DSI_DATA0_P
DSI_D1M H2 NVCC_MIPI DSI_DATA1_N
Table 87. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function
(Signal Name) Input/Output Value2
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
144 NXP Semiconductors
Package Information and Contact Assignments
DSI_D1P H1 NVCC_MIPI DSI_DATA1_P
EIM_A16 H25 NVCC_EIM1 GPIO ALT0 EIM_ADDR16 Output 0
EIM_A17 G24 NVCC_EIM1 GPIO ALT0 EIM_ADDR17 Output 0
EIM_A18 J22 NVCC_EIM1 GPIO ALT0 EIM_ADDR18 Output 0
EIM_A19 G25 NVCC_EIM1 GPIO ALT0 EIM_ADDR19 Output 0
EIM_A20 H22 NVCC_EIM1 GPIO ALT0 EIM_ADDR20 Output 0
EIM_A21 H23 NVCC_EIM1 GPIO ALT0 EIM_ADDR21 Output 0
EIM_A22 F24 NVCC_EIM1 GPIO ALT0 EIM_ADDR22 Output 0
EIM_A23 J21 NVCC_EIM1 GPIO ALT0 EIM_ADDR23 Output 0
EIM_A24 F25 NVCC_EIM1 GPIO ALT0 EIM_ADDR24 Output 0
EIM_A25 H19 NVCC_EIM0 GPIO ALT0 EIM_ADDR25 Output 0
EIM_BCLK N22 NVCC_EIM2 GPIO ALT0 EIM_BCLK Output 0
EIM_CS0 H24 NVCC_EIM1 GPIO ALT0 EIM_CS0_B Output 1
EIM_CS1 J23 NVCC_EIM1 GPIO ALT0 EIM_CS1_B Output 1
EIM_D16 C25 NVCC_EIM0 GPIO ALT5 GPIO3_IO16 Input PU (100K)
EIM_D17 F21 NVCC_EIM0 GPIO ALT5 GPIO3_IO17 Input PU (100K)
EIM_D18 D24 NVCC_EIM0 GPIO ALT5 GPIO3_IO18 Input PU (100K)
EIM_D19 G21 NVCC_EIM0 GPIO ALT5 GPIO3_IO19 Input PU (100K)
EIM_D20 G20 NVCC_EIM0 GPIO ALT5 GPIO3_IO20 Input PU (100K)
EIM_D21 H20 NVCC_EIM0 GPIO ALT5 GPIO3_IO21 Input PU (100K)
EIM_D22 E23 NVCC_EIM0 GPIO ALT5 GPIO3_IO22 Input PD (100K)
EIM_D23 D25 NVCC_EIM0 GPIO ALT5 GPIO3_IO23 Input PU (100K)
EIM_D24 F22 NVCC_EIM0 GPIO ALT5 GPIO3_IO24 Input PU (100K)
EIM_D25 G22 NVCC_EIM0 GPIO ALT5 GPIO3_IO25 Input PU (100K)
EIM_D26 E24 NVCC_EIM0 GPIO ALT5 GPIO3_IO26 Input PU (100K)
EIM_D27 E25 NVCC_EIM0 GPIO ALT5 GPIO3_IO27 Input PU (100K)
EIM_D28 G23 NVCC_EIM0 GPIO ALT5 GPIO3_IO28 Input PU (100K)
EIM_D29 J19 NVCC_EIM0 GPIO ALT5 GPIO3_IO29 Input PU (100K)
EIM_D30 J20 NVCC_EIM0 GPIO ALT5 GPIO3_IO30 Input PU (100K)
EIM_D31 H21 NVCC_EIM0 GPIO ALT5 GPIO3_IO31 Input PD (100K)
EIM_DA0 L20 NVCC_EIM2 GPIO ALT0 EIM_AD00 Input PU (100K)
EIM_DA1 J25 NVCC_EIM2 GPIO ALT0 EIM_AD01 Input PU (100K)
EIM_DA2 L21 NVCC_EIM2 GPIO ALT0 EIM_AD02 Input PU (100K)
EIM_DA3 K24 NVCC_EIM2 GPIO ALT0 EIM_AD03 Input PU (100K)
EIM_DA4 L22 NVCC_EIM2 GPIO ALT0 EIM_AD04 Input PU (100K)
EIM_DA5 L23 NVCC_EIM2 GPIO ALT0 EIM_AD05 Input PU (100K)
Table 87. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function
(Signal Name) Input/Output Value2
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 145
EIM_DA6 K25 NVCC_EIM2 GPIO ALT0 EIM_AD06 Input PU (100K)
EIM_DA7 L25 NVCC_EIM2 GPIO ALT0 EIM_AD07 Input PU (100K)
EIM_DA8 L24 NVCC_EIM2 GPIO ALT0 EIM_AD08 Input PU (100K)
EIM_DA9 M21 NVCC_EIM2 GPIO ALT0 EIM_AD09 Input PU (100K)
EIM_DA10 M22 NVCC_EIM2 GPIO ALT0 EIM_AD10 Input PU (100K)
EIM_DA11 M20 NVCC_EIM2 GPIO ALT0 EIM_AD11 Input PU (100K)
EIM_DA12 M24 NVCC_EIM2 GPIO ALT0 EIM_AD12 Input PU (100K)
EIM_DA13 M23 NVCC_EIM2 GPIO ALT0 EIM_AD13 Input PU (100K)
EIM_DA14 N23 NVCC_EIM2 GPIO ALT0 EIM_AD14 Input PU (100K)
EIM_DA15 N24 NVCC_EIM2 GPIO ALT0 EIM_AD15 Input PU (100K)
EIM_EB0 K21 NVCC_EIM2 GPIO ALT0 EIM_EB0_B Output 1
EIM_EB1 K23 NVCC_EIM2 GPIO ALT0 EIM_EB1_B Output 1
EIM_EB2 E22 NVCC_EIM0 GPIO ALT5 GPIO2_IO30 Input PU (100K)
EIM_EB3 F23 NVCC_EIM0 GPIO ALT5 GPIO2_IO31 Input PU (100K)
EIM_LBA K22 NVCC_EIM1 GPIO ALT0 EIM_LBA_B Output 1
EIM_OE J24 NVCC_EIM1 GPIO ALT0 EIM_OE Output 1
EIM_RW K20 NVCC_EIM1 GPIO ALT0 EIM_RW Output 1
EIM_WAIT M25 NVCC_EIM2 GPIO ALT0 EIM_WAIT Input PU (100K)
ENET_CRS_DV U21 NVCC_ENET GPIO ALT5 GPIO1_IO25 Input PU (100K)
ENET_MDC V20 NVCC_ENET GPIO ALT5 GPIO1_IO31 Input PU (100K)
ENET_MDIO V23 NVCC_ENET GPIO ALT5 GPIO1_IO22 Input PU (100K)
ENET_REF_CLK3V22 NVCC_ENET GPIO ALT5 GPIO1_IO23 Input PU (100K)
ENET_RX_ER W23 NVCC_ENET GPIO ALT5 GPIO1_IO24 Input PU (100K)
ENET_RXD0 W21 NVCC_ENET GPIO ALT5 GPIO1_IO27 Input PU (100K)
ENET_RXD1 W22 NVCC_ENET GPIO ALT5 GPIO1_IO26 Input PU (100K)
ENET_TX_EN V21 NVCC_ENET GPIO ALT5 GPIO1_IO28 Input PU (100K)
ENET_TXD0 U20 NVCC_ENET GPIO ALT5 GPIO1_IO30 Input PU (100K)
ENET_TXD1 W20 NVCC_ENET GPIO ALT5 GPIO1_IO29 Input PU (100K)
GPIO_0 T5 NVCC_GPIO GPIO ALT5 GPIO1_IO00 Input PD (100K)
GPIO_1 T4 NVCC_GPIO GPIO ALT5 GPIO1_IO01 Input PU (100K)
GPIO_16 R2 NVCC_GPIO GPIO ALT5 GPIO7_IO11 Input PU (100K)
GPIO_17 R1 NVCC_GPIO GPIO ALT5 GPIO7_IO12 Input PU (100K)
GPIO_18 P6 NVCC_GPIO GPIO ALT5 GPIO7_IO13 Input PU (100K)
GPIO_19 P5 NVCC_GPIO GPIO ALT5 GPIO4_IO05 Input PU (100K)
GPIO_2 T1 NVCC_GPIO GPIO ALT5 GPIO1_IO02 Input PU (100K)
GPIO_3 R7 NVCC_GPIO GPIO ALT5 GPIO1_IO03 Input PU (100K)
Table 87. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function
(Signal Name) Input/Output Value2
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
146 NXP Semiconductors
Package Information and Contact Assignments
GPIO_4 R6 NVCC_GPIO GPIO ALT5 GPIO1_IO04 Input PU (100K)
GPIO_5 R4 NVCC_GPIO GPIO ALT5 GPIO1_IO05 Input PU (100K)
GPIO_6 T3 NVCC_GPIO GPIO ALT5 GPIO1_IO06 Input PU (100K)
GPIO_7 R3 NVCC_GPIO GPIO ALT5 GPIO1_IO07 Input PU (100K)
GPIO_8 R5 NVCC_GPIO GPIO ALT5 GPIO1_IO08 Input PU (100K)
GPIO_9 T2 NVCC_GPIO GPIO ALT5 GPIO1_IO09 Input PU (100K)
HDMI_CLKM J5 HDMI_VPH HDMI_TX_CLK_N
HDMI_CLKP J6 HDMI_VPH HDMI_TX_CLK_P
HDMI_D0M K5 HDMI_VPH HDMI_TX_DATA0_N
HDMI_D0P K6 HDMI_VPH HDMI_TX_DATA0_P
HDMI_D1M J3 HDMI_VPH HDMI_TX_DATA1_N
HDMI_D1P J4 HDMI_VPH HDMI_TX_DATA1_P
HDMI_D2M K3 HDMI_VPH HDMI_TX_DATA2_N
HDMI_D2P K4 HDMI_VPH HDMI_TX_DATA2_P
HDMI_HPD K1 HDMI_VPH HDMI_TX_HPD
JTAG_MOD H6 NVCC_JTAG GPIO ALT0 JTAG_MODE Input PU (100K)
JTAG_TCK H5 NVCC_JTAG GPIO ALT0 JTAG_TCK Input PU (47K)
JTAG_TDI G5 NVCC_JTAG GPIO ALT0 JTAG_TDI Input PU (47K)
JTAG_TDO G6 NVCC_JTAG GPIO ALT0 JTAG_TDO Output Keeper
JTAG_TMS C3 NVCC_JTAG GPIO ALT0 JTAG_TMS Input PU (47K)
JTAG_TRSTB C2 NVCC_JTAG GPIO ALT0 JTAG_TRST_B Input PU (47K)
KEY_COL0 W5 NVCC_GPIO GPIO ALT5 GPIO4_IO06 Input PU (100K)
KEY_COL1 U7 NVCC_GPIO GPIO ALT5 GPIO4_IO08 Input PU (100K)
KEY_COL2 W6 NVCC_GPIO GPIO ALT5 GPIO4_IO10 Input PU (100K)
KEY_COL3 U5 NVCC_GPIO GPIO ALT5 GPIO4_IO12 Input PU (100K)
KEY_COL4 T6 NVCC_GPIO GPIO ALT5 GPIO4_IO14 Input PU (100K)
KEY_ROW0 V6 NVCC_GPIO GPIO ALT5 GPIO4_IO07 Input PU (100K)
KEY_ROW1 U6 NVCC_GPIO GPIO ALT5 GPIO4_IO09 Input PU (100K)
KEY_ROW2 W4 NVCC_GPIO GPIO ALT5 GPIO4_IO11 Input PU (100K)
KEY_ROW3 T7 NVCC_GPIO GPIO ALT5 GPIO4_IO13 Input PU (100K)
KEY_ROW4 V5 NVCC_GPIO GPIO ALT5 GPIO4_IO15 Input PD (100K)
LVDS0_CLK_N V4 NVCC_LVDS_2P5 LVDS LVDS0_CLK_N
LVDS0_CLK_P V3 NVCC_LVDS_2P5 LVDS ALT0 LVDS0_CLK_P Input Keeper
LVDS0_TX0_N U2 NVCC_LVDS_2P5 LVDS LVDS0_TX0_N
LVDS0_TX0_P U1 NVCC_LVDS_2P5 LVDS ALT0 LVDS0_TX0_P Input Keeper
LVDS0_TX1_N U4 NVCC_LVDS_2P5 LVDS LVDS0_TX1_N
Table 87. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function
(Signal Name) Input/Output Value2
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 147
LVDS0_TX1_P U3 NVCC_LVDS_2P5 LVDS ALT0 LVDS0_TX1_P Input Keeper
LVDS0_TX2_N V2 NVCC_LVDS_2P5 LVDS LVDS0_TX2_N
LVDS0_TX2_P V1 NVCC_LVDS_2P5 LVDS ALT0 LVDS0_TX2_P Input Keeper
LVDS0_TX3_N W2 NVCC_LVDS_2P5 LVDS LVDS0_TX3_N
LVDS0_TX3_P W1 NVCC_LVDS_2P5 LVDS ALT0 LVDS0_TX3_P Input Keeper
LVDS1_CLK_N Y3 NVCC_LVDS_2P5 LVDS LVDS1_CLK_N
LVDS1_CLK_P Y4 NVCC_LVDS_2P5 LVDS ALT0 LVDS1_CLK_P Input Keeper
LVDS1_TX0_N Y1 NVCC_LVDS_2P5 LVDS LVDS1_TX0_N
LVDS1_TX0_P Y2 NVCC_LVDS_2P5 LVDS ALT0 LVDS1_TX0_P Input Keeper
LVDS1_TX1_N AA2 NVCC_LVDS_2P5 LVDS LVDS1_TX1_N
LVDS1_TX1_P AA1 NVCC_LVDS_2P5 LVDS ALT0 LVDS1_TX1_P Input Keeper
LVDS1_TX2_N AB1 NVCC_LVDS_2P5 LVDS LVDS1_TX2_N
LVDS1_TX2_P AB2 NVCC_LVDS_2P5 LVDS ALT0 LVDS1_TX2_P Input Keeper
LVDS1_TX3_N AA3 NVCC_LVDS_2P5 LVDS LVDS1_TX3_N
LVDS1_TX3_P AA4 NVCC_LVDS_2P5 LVDS ALT0 LVDS1_TX3_P Input Keeper
NANDF_ALE A16 NVCC_NANDF GPIO ALT5 GPIO6_IO08 Input PU (100K)
NANDF_CLE C15 NVCC_NANDF GPIO ALT5 GPIO6_IO07 Input PU (100K)
NANDF_CS0 F15 NVCC_NANDF GPIO ALT5 GPIO6_IO11 Input PU (100K)
NANDF_CS1 C16 NVCC_NANDF GPIO ALT5 GPIO6_IO14 Input PU (100K)
NANDF_CS2 A17 NVCC_NANDF GPIO ALT5 GPIO6_IO15 Input PU (100K)
NANDF_CS3 D16 NVCC_NANDF GPIO ALT5 GPIO6_IO16 Input PU (100K)
NANDF_D0 A18 NVCC_NANDF GPIO ALT5 GPIO2_IO00 Input PU (100K)
NANDF_D1 C17 NVCC_NANDF GPIO ALT5 GPIO2_IO01 Input PU (100K)
NANDF_D2 F16 NVCC_NANDF GPIO ALT5 GPIO2_IO02 Input PU (100K)
NANDF_D3 D17 NVCC_NANDF GPIO ALT5 GPIO2_IO03 Input PU (100K)
NANDF_D4 A19 NVCC_NANDF GPIO ALT5 GPIO2_IO04 Input PU (100K)
NANDF_D5 B18 NVCC_NANDF GPIO ALT5 GPIO2_IO05 Input PU (100K)
NANDF_D6 E17 NVCC_NANDF GPIO ALT5 GPIO2_IO06 Input PU (100K)
NANDF_D7 C18 NVCC_NANDF GPIO ALT5 GPIO2_IO07 Input PU (100K)
NANDF_RB0 B16 NVCC_NANDF GPIO ALT5 GPIO6_IO10 Input PU (100K)
NANDF_WP_B E15 NVCC_NANDF GPIO ALT5 GPIO6_IO09 Input PU (100K)
ONOFF D12 VDD_SNVS_IN GPIO SRC_ONOFF Input PU (100K)
PCIE_RXM B1 PCIE_VPH PCIE_RX_N
PCIE_RXP B2 PCIE_VPH PCIE_RX_P
PCIE_TXM A3 PCIE_VPH PCIE_TX_N
PCIE_TXP B3 PCIE_VPH PCIE_TX_P
Table 87. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function
(Signal Name) Input/Output Value2
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
148 NXP Semiconductors
Package Information and Contact Assignments
PMIC_ON_REQ D11 VDD_SNVS_IN GPIO ALT0 SNVS_PMIC_ON_REQ Output Open
Drain with
PU (100K)
PMIC_STBY_REQ F11 VDD_SNVS_IN GPIO ALT0 CCM_PMIC_STBY_REQ Output 0
POR_B C11 VDD_SNVS_IN GPIO ALT0 SRC_POR_B Input PU (100K)
RGMII_RD0 C24 NVCC_RGMII DDR ALT5 GPIO6_IO25 Input PU (100K)
RGMII_RD1 B23 NVCC_RGMII DDR ALT5 GPIO6_IO27 Input PU (100K)
RGMII_RD2 B24 NVCC_RGMII DDR ALT5 GPIO6_IO28 Input PU (100K)
RGMII_RD3 D23 NVCC_RGMII DDR ALT5 GPIO6_IO29 Input PU (100K)
RGMII_RX_CTL D22 NVCC_RGMII DDR ALT5 GPIO6_IO24 Input PD (100K)
RGMII_RXC B25 NVCC_RGMII DDR ALT5 GPIO6_IO30 Input PD (100K)
RGMII_TD0 C22 NVCC_RGMII DDR ALT5 GPIO6_IO20 Input PU (100K)
RGMII_TD1 F20 NVCC_RGMII DDR ALT5 GPIO6_IO21 Input PU (100K)
RGMII_TD2 E21 NVCC_RGMII DDR ALT5 GPIO6_IO22 Input PU (100K)
RGMII_TD3 A24 NVCC_RGMII DDR ALT5 GPIO6_IO23 Input PU (100K)
RGMII_TX_CTL C23 NVCC_RGMII DDR ALT5 GPIO6_IO26 Input PD (100K)
RGMII_TXC D21 NVCC_RGMII DDR ALT5 GPIO6_IO19 Input PD (100K)
RTC_XTALI D9 VDD_SNVS_CAP RTC_XTALI
RTC_XTALO C9 VDD_SNVS_CAP RTC_XTALO
SATA_RXM A14 SATA_VPH SATA_PHY_RX_N
SATA_RXP B14 SATA_VPH SATA_PHY_RX_P
SATA_TXM B12 SATA_VPH SATA_PHY_TX_N
SATA_TXP A12 SATA_VPH SATA_PHY_TX_P
SD1_CLK D20 NVCC_SD1 GPIO ALT5 GPIO1_IO20 Input PU (100K)
SD1_CMD B21 NVCC_SD1 GPIO ALT5 GPIO1_IO18 Input PU (100K)
SD1_DAT0 A21 NVCC_SD1 GPIO ALT5 GPIO1_IO16 Input PU (100K)
SD1_DAT1 C20 NVCC_SD1 GPIO ALT5 GPIO1_IO17 Input PU (100K)
SD1_DAT2 E19 NVCC_SD1 GPIO ALT5 GPIO1_IO19 Input PU (100K)
SD1_DAT3 F18 NVCC_SD1 GPIO ALT5 GPIO1_IO21 Input PU (100K)
SD2_CLK C21 NVCC_SD2 GPIO ALT5 GPIO1_IO10 Input PU (100K)
SD2_CMD F19 NVCC_SD2 GPIO ALT5 GPIO1_IO11 Input PU (100K)
SD2_DAT0 A22 NVCC_SD2 GPIO ALT5 GPIO1_IO15 Input PU (100K)
SD2_DAT1 E20 NVCC_SD2 GPIO ALT5 GPIO1_IO14 Input PU (100K)
SD2_DAT2 A23 NVCC_SD2 GPIO ALT5 GPIO1_IO13 Input PU (100K)
SD2_DAT3 B22 NVCC_SD2 GPIO ALT5 GPIO1_IO12 Input PU (100K)
SD3_CLK D14 NVCC_SD3 GPIO ALT5 GPIO7_IO03 Input PU (100K)
SD3_CMD B13 NVCC_SD3 GPIO ALT5 GPIO7_IO02 Input PU (100K)
Table 87. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function
(Signal Name) Input/Output Value2
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 149
SD3_DAT0 E14 NVCC_SD3 GPIO ALT5 GPIO7_IO04 Input PU (100K)
SD3_DAT1 F14 NVCC_SD3 GPIO ALT5 GPIO7_IO05 Input PU (100K)
SD3_DAT2 A15 NVCC_SD3 GPIO ALT5 GPIO7_IO06 Input PU (100K)
SD3_DAT3 B15 NVCC_SD3 GPIO ALT5 GPIO7_IO07 Input PU (100K)
SD3_DAT4 D13 NVCC_SD3 GPIO ALT5 GPIO7_IO01 Input PU (100K)
SD3_DAT5 C13 NVCC_SD3 GPIO ALT5 GPIO7_IO00 Input PU (100K)
SD3_DAT6 E13 NVCC_SD3 GPIO ALT5 GPIO6_IO18 Input PU (100K)
SD3_DAT7 F13 NVCC_SD3 GPIO ALT5 GPIO6_IO17 Input PU (100K)
SD3_RST D15 NVCC_SD3 GPIO ALT5 GPIO7_IO08 Input PU (100K)
SD4_CLK E16 NVCC_NANDF GPIO ALT5 GPIO7_IO10 Input PU (100K)
SD4_CMD B17 NVCC_NANDF GPIO ALT5 GPIO7_IO09 Input PU (100K)
SD4_DAT0 D18 NVCC_NANDF GPIO ALT5 GPIO2_IO08 Input PU (100K)
SD4_DAT1 B19 NVCC_NANDF GPIO ALT5 GPIO2_IO09 Input PU (100K)
SD4_DAT2 F17 NVCC_NANDF GPIO ALT5 GPIO2_IO10 Input PU (100K)
SD4_DAT3 A20 NVCC_NANDF GPIO ALT5 GPIO2_IO11 Input PU (100K)
SD4_DAT4 E18 NVCC_NANDF GPIO ALT5 GPIO2_IO12 Input PU (100K)
SD4_DAT5 C19 NVCC_NANDF GPIO ALT5 GPIO2_IO13 Input PU (100K)
SD4_DAT6 B20 NVCC_NANDF GPIO ALT5 GPIO2_IO14 Input PU (100K)
SD4_DAT7 D19 NVCC_NANDF GPIO ALT5 GPIO2_IO15 Input PU (100K)
TAMPER E11 VDD_SNVS_IN GPIO ALT0 SNVS_TAMPER Input PD (100K)
TEST_MODE E12 VDD_SNVS_IN TCU_TEST_MODE Input PD (100K)
USB_H1_DN F10 VDD_USB_CAP USB_H1_DN
USB_H1_DP E10 VDD_USB_CAP USB_H1_DP
USB_OTG_CHD_B B8 VDD_USB_CAP USB_OTG_CHD_B
USB_OTG_DN B6 VDD_USB_CAP USB_OTG_DN
USB_OTG_DP A6 VDD_USB_CAP USB_OTG_DP
XTALI A7 NVCC_PLL XTALI
XTALO B7 NVCC_PLL XTALO
1The state immediately after reset and before ROM firmware or software has executed.
2Variance of the pull-up and pull-down strengths are shown in the tables as follows:
Table 21, “GPIO I/O DC Parameters,” on page 37.
Table 23, “LPDDR2 I/O DC Electrical Parameters,” on page 39.
Table 24, “DDR3/DDR3L I/O DC Electrical Parameters,” on page 40.
3ENET_REF_CLK is used as a clock source for MII and RGMII modes only. RMII mode uses either GPIO_16 or RGMII_TX_CTL
as a clock source. For more information on these clocks, see your specific device reference manual and the Hardware
Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).
Table 87. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function
(Signal Name) Input/Output Value2
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
150 NXP Semiconductors
Package Information and Contact Assignments
6.2.4 Signals with Different Reset States
For most of the signals, the state during reset is same as the state after reset, given in Out of Reset Condition
column of Table 87, “21 x 21 mm Functional Contact Assignments”. However, there are few signals for
which the state during reset is different from the state after reset. These signals along with their state during
reset are given in Table 88.
Table 88. Signals with Differing Before Reset and After Reset States
Ball Name
Before Reset State
Input/Output Value
EIM_A16 Input PD (100K)
EIM_A17 Input PD (100K)
EIM_A18 Input PD (100K)
EIM_A19 Input PD (100K)
EIM_A20 Input PD (100K)
EIM_A21 Input PD (100K)
EIM_A22 Input PD (100K)
EIM_A23 Input PD (100K)
EIM_A24 Input PD (100K)
EIM_A25 Input PD (100K)
EIM_DA0 Input PD (100K)
EIM_DA1 Input PD (100K)
EIM_DA2 Input PD (100K)
EIM_DA3 Input PD (100K)
EIM_DA4 Input PD (100K)
EIM_DA5 Input PD (100K)
EIM_DA6 Input PD (100K)
EIM_DA7 Input PD (100K)
EIM_DA8 Input PD (100K)
EIM_DA9 Input PD (100K)
EIM_DA10 Input PD (100K)
EIM_DA11 Input PD (100K)
EIM_DA12 Input PD (100K)
EIM_DA13 Input PD (100K)
EIM_DA14 Input PD (100K)
EIM_DA15 Input PD (100K)
EIM_EB0 Input PD (100K)
EIM_EB1 Input PD (100K)
EIM_EB2 Input PD (100K)
EIM_EB3 Input PD (100K)
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 151
EIM_LBA Input PD (100K)
EIM_RW Input PD (100K)
EIM_WAIT Input PD (100K)
GPIO_17 Output Drive state unknown (x)
GPIO_19 Output Drive state unknown (x)
KEY_COL0 Output Drive state unknown (x)
Table 88. Signals with Differing Before Reset and After Reset States (continued)
Ball Name
Before Reset State
Input/Output Value
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
152 NXP Semiconductors
Package Information and Contact Assignments
6.2.5 21 x 21 mm, 0.8 mm Pitch Ball Map
Table 89 shows the FCPBGA 21 x 21 mm, 0.8 mm pitch ball map.
Table 89. 21 x 21 mm, 0.8 mm Pitch Ball Map
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
A
PCIE_REXT
PCIE_TXM
GND
FA_ANA
USB_OTG_DP
XTALI
GND
NC1
NC1
NC1
SATA_TXP
GND
SATA_RXM
SD3_DAT2
NANDF_ALE
NANDF_CS2
NANDF_D0
NANDF_D4
SD4_DAT3
SD1_DAT0
SD2_DAT0
SD2_DAT2
RGMII_TD3
GND
B
PCIE_RXM
PCIE_RXP
PCIE_TXP
GND
VDD_FA
USB_OTG_DN
XTALO
USB_OTG_CHD_B
NC1
NC1
NC1
SATA_TXM
SD3_CMD
SATA_RXP
SD3_DAT3
NANDF_RB0
SD4_CMD
NANDF_D5
SD4_DAT1
SD4_DAT6
SD1_CMD
SD2_DAT3
RGMII_RD1
RGMII_RD2
RGMII_RXC
C
GND
JTAG_TRSTB
JTAG_TMS
GND
CLK2_N
GND
CLK1_N
GPANAIO
RTC_XTALO
GND
POR_B
BOOT_MODE0
SD3_DAT5
SATA_REXT
NANDF_CLE
NANDF_CS1
NANDF_D1
NANDF_D7
SD4_DAT5
SD1_DAT1
SD2_CLK
RGMII_TD0
RGMII_TX_CTL
RGMII_RD0
EIM_D16
D
CSI_D1M
CSI_D1P
GND
CSI_REXT
CLK2_P
GND
CLK1_P
GND
RTC_XTALI
USB_H1_VBUS
PMIC_ON_REQ
ONOFF
SD3_DAT4
SD3_CLK
SD3_RST
NANDF_CS3
NANDF_D3
SD4_DAT0
SD4_DAT7
SD1_CLK
RGMII_TXC
RGMII_RX_CTL
RGMII_RD3
EIM_D18
EIM_D23
E
CSI_D2M
CSI_D2P
CSI_D0P
CSI_D0M
GND
GND
GND
NVCC_PLL_OUT
USB_OTG_VBUS
USB_H1_DP
TAMPER
TEST_MODE
SD3_DAT6
SD3_DAT0
NANDF_WP_B
SD4_CLK
NANDF_D6
SD4_DAT4
SD1_DAT2
SD2_DAT1
RGMII_TD2
EIM_EB2
EIM_D22
EIM_D26
EIM_D27
F
CSI_D3P
CSI_D3M
CSI_CLK0P
CSI_CLK0M
GND
GND
GND
GND
VDDUSB_CAP
USB_H1_DN
PMIC_STBY_REQ
BOOT_MODE1
SD3_DAT7
SD3_DAT1
NANDF_CS0
NANDF_D2
SD4_DAT2
SD1_DAT3
SD2_CMD
RGMII_TD1
EIM_D17
EIM_D24
EIM_EB3
EIM_A22
EIM_A24
G
DSI_D0P
DSI_D0M
GND
DSI_REXT
JTAG_TDI
JTAG_TDO
PCIE_VPH
PCIE_VPTX
VDD_SNVS_CAP
GND
VDD_SNVS_IN
SATA_VPH
SATA_VP
NVCC_SD3
NVCC_NANDF
NVCC_SD1
NVCC_SD2
NVCC_RGMII
GND
EIM_D20
EIM_D19
EIM_D25
EIM_D28
EIM_A17
EIM_A19
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 153
H
DSI_D1P
DSI_D1M
DSI_CLK0M
DSI_CLK0P
JTAG_TCK
JTAG_MOD
PCIE_VP
GND
VDDHIGH_IN
VDDHIGH_CAP
VDDARM23_CAP
GND
VDDARM_CAP
VDDARM_IN
GND
VDDSOC_IN
VDDPU_CAP
GND
EIM_A25
EIM_D21
EIM_D31
EIM_A20
EIM_A21
EIM_CS0
EIM_A16
J
HDMI_REF
GND
HDMI_D1M
HDMI_D1P
HDMI_CLKM
HDMI_CLKP
NVCC_JTAG
GND
VDDHIGH_IN
VDDHIGH_CAP
VDDARM23_CAP
GND
VDDARM_CAP
VDDARM_IN
GND
VDDSOC_IN
VDDPU_CAP
GND
EIM_D29
EIM_D30
EIM_A23
EIM_A18
EIM_CS1
EIM_OE
EIM_DA1
K
HDMI_HPD
HDMI_DDCCEC
HDMI_D2M
HDMI_D2P
HDMI_D0M
HDMI_D0P
NVCC_MIPI
GND
VDDARM23_IN
GND
VDDARM23_CAP
GND
VDDARM_CAP
VDDARM_IN
GND
VDDSOC_IN
VDDPU_CAP
GND
NVCC_EIM0
EIM_RW
EIM_EB0
EIM_LBA
EIM_EB1
EIM_DA3
EIM_DA6
L
CSI0_DAT13
GND
CSI0_DAT17
CSI0_DAT16
GND
CSI0_DAT19
HDMI_VP
GND
VDDARM23_IN
GND
VDDARM23_CAP
GND
VDDARM_CAP
VDDARM_IN
GND
VDDSOC_IN
VDDPU_CAP
GND
NVCC_EIM1
EIM_DA0
EIM_DA2
EIM_DA4
EIM_DA5
EIM_DA8
EIM_DA7
M
CSI0_DAT10
CSI0_DAT12
CSI0_DAT11
CSI0_DAT14
CSI0_DAT15
CSI0_DAT18
HDMI_VPH
GND
VDDARM23_IN
GND
VDDARM23_CAP
GND
VDDARM_CAP
VDDARM_IN
GND
VDDSOC_IN
VDDPU_CAP
GND
NVCC_EIM2
EIM_DA11
EIM_DA9
EIM_DA10
EIM_DA13
EIM_DA12
EIM_WAIT
N
CSI0_DAT4
CSI0_VSYNC
CSI0_DAT7
CSI0_DAT6
CSI0_DAT9
CSI0_DAT8
NVCC_CSI
GND
VDDARM23_IN
GND
VDDARM23_CAP
VDD_CACHE_CAP
VDDARM_CAP
VDDARM_IN
GND
VDDSOC_IN
VDDPU_CAP
GND
DI0_DISP_CLK
DI0_PIN3
DI0_PIN15
EIM_BCLK
EIM_DA14
EIM_DA15
DI0_PIN2
P
CSI0_PIXCLK
CSI0_DAT5
CSI0_DATA_EN
CSI0_MCLK
GPIO_19
GPIO_18
NVCC_GPIO
GND
VDDARM23_IN
GND
VDDARM23_CAP
GND
VDDARM_CAP
VDDARM_IN
GND
VDDSOC_IN
VDDPU_CAP
GND
NVCC_LCD
DISP0_DAT4
DISP0_DAT3
DISP0_DAT1
DISP0_DAT2
DISP0_DAT0
DI0_PIN4
Table 89. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
154 NXP Semiconductors
Package Information and Contact Assignments
R
GPIO_17
GPIO_16
GPIO_7
GPIO_5
GPIO_8
GPIO_4
GPIO_3
GND
VDDARM23_IN
VDDSOC_CAP
VDDARM23_CAP
GND
VDDARM_CAP
VDDARM_IN
GND
VDDSOC_IN
GND
NVCC_DRAM
NVCC_ENET
DISP0_DAT13
DISP0_DAT10
DISP0_DAT8
DISP0_DAT6
DISP0_DAT7
DISP0_DAT5
T
GPIO_2
GPIO_9
GPIO_6
GPIO_1
GPIO_0
KEY_COL4
KEY_ROW3
GND
VDDARM23_IN
VDDSOC_CAP
GND
GND
VDDSOC_CAP
VDDSOC_CAP
GND
VDDSOC_IN
GND
NVCC_DRAM
GND
DISP0_DAT21
DISP0_DAT16
DISP0_DAT15
DISP0_DAT11
DISP0_DAT12
DISP0_DAT9
U
LVDS0_TX0_P
LVDS0_TX0_N
LVDS0_TX1_P
LVDS0_TX1_N
KEY_COL3
KEY_ROW1
KEY_COL1
GND
VDDARM23_IN
VDDSOC_CAP
GND
GND
VDDSOC_CAP
VDDSOC_CAP
GND
VDDSOC_IN
GND
NVCC_DRAM
GND
ENET_TXD0
ENET_CRS_DV
DISP0_DAT20
DISP0_DAT19
DISP0_DAT17
DISP0_DAT14
V
LVDS0_TX2_P
LVDS0_TX2_N
LVDS0_CLK_P
LVDS0_CLK_N
KEY_ROW4
KEY_ROW0
NVCC_LVDS2P5
GND
NVCC_DRAM
NVCC_DRAM
NVCC_DRAM
NVCC_DRAM
NVCC_DRAM
NVCC_DRAM
NVCC_DRAM
NVCC_DRAM
NVCC_DRAM
NVCC_DRAM
GND
ENET_MDC
ENET_TX_EN
ENET_REF_CLK
ENET_MDIO
DISP0_DAT22
DISP0_DAT18
W
LVDS0_TX3_P
LVDS0_TX3_N
GND
KEY_ROW2
KEY_COL0
KEY_COL2
GND
GND
GND
GND
GND
GND
GND
DRAM_A4
GND
GND
GND
GND
GND
ENET_TXD1
ENET_RXD0
ENET_RXD1
ENET_RX_ER
DISP0_DAT23
DRAM_D63
Y
LVDS1_TX0_N
LVDS1_TX0_P
LVDS1_CLK_N
LVDS1_CLK_P
GND
DRAM_RESET
DRAM_D20
DRAM_D21
DRAM_D19
DRAM_D25
DRAM_SDCKE0
DRAM_A15
DRAM_A7
DRAM_A3
DRAM_SDBA1
DRAM_CS0
DRAM_D36
DRAM_D37
DRAM_D40
DRAM_D44
DRAM_DQM7
DRAM_D59
DRAM_D62
GND
DRAM_D58
AA
LVDS1_TX1_P
LVDS1_TX1_N
LVDS1_TX3_N
LVDS1_TX3_P
DRAM_D3
DRAM_D10
GND
DRAM_D17
DRAM_D23
GND
DRAM_SDCKE1
DRAM_A14
GND
DRAM_A2
DRAM_A10
GND
DRAM_D32
DRAM_D33
GND
DRAM_D45
DRAM_D57
GND
DRAM_D61
DRAM_SDQS7_B
DRAM_SDQS7
AB
LVDS1_TX2_N
LVDS1_TX2_P
GND
DRAM_D6
DRAM_D12
DRAM_D14
DRAM_D16
DRAM_DQM2
DRAM_D18
DRAM_SDQS3_B
DRAM_D27
DRAM_SDBA2
DRAM_A8
DRAM_A1
DRAM_RAS
DRAM_SDWE
DRAM_SDODT1
DRAM_DQM4
DRAM_D38
DRAM_D41
DRAM_D42
DRAM_D52
DRAM_D60
GND
DRAM_D56
Table 89. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 155
AC
DRAM_D4
DRAM_VREF
DRAM_DQM0
DRAM_D2
DRAM_D13
DRAM_DQM1
DRAM_D15
DRAM_D22
DRAM_D28
DRAM_SDQS3
DRAM_D31
DRAM_A11
DRAM_A6
DRAM_A0
DRAM_SDBA0
DRAM_SDODT0
DRAM_A13
DRAM_D34
DRAM_D39
DRAM_DQM5
DRAM_D47
DRAM_D48
DRAM_D53
DRAM_D51
DRAM_D55
AD
DRAM_D5
DRAM_D0
DRAM_SDQS0_B
GND
DRAM_D8
DRAM_SDQS1
GND
DRAM_SDQS2
DRAM_D29
GND
DRAM_D30
DRAM_A12
GND
DRAM_SDCLK_1
DRAM_SDCLK_0
GND
DRAM_CS1
DRAM_SDQS4
GND
DRAM_SDQS5
DRAM_D43
GND
DRAM_SDQS6
DRAM_DQM6
DRAM_D54
AE
GND
DRAM_D1
DRAM_SDQS0
DRAM_D7
DRAM_D9
DRAM_SDQS1_B
DRAM_D11
DRAM_SDQS2_B
DRAM_D24
DRAM_DQM3
DRAM_D26
DRAM_A9
DRAM_A5
DRAM_SDCLK_1_B
DRAM_SDCLK_0_B
DRAM_CAS
ZQPAD
DRAM_SDQS4_B
DRAM_D35
DRAM_SDQS5_B
DRAM_D46
DRAM_D49
DRAM_SDQS6_B
DRAM_D50
GND
1MLB is only supported in automotive and consumer graded parts. These balls are not connected in industrial graded parts.
Table 89. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
156 NXP Semiconductors
Revision History
7 Revision History
Table 90 provides a revision history for the i.MX 6Dual/6Quad data sheet.
Table 90. i.MX 6Dual/6Quad Data Sheet Document Revision History
Rev.
Number Date Substantive Change(s)
6 10/2018 Revision 6 changes:
Table 20, “XTALI and RTC_XTALI DC Parameters,” on page 37,
Row: XTALI input leakage current at startup, IXTALI_STARTUP: Changed from “... driven 32 KHz RTC
clock @ 1.1V” to “...driven 24 MHz clock at 1.1V.”
Table 47, “eMMC4.4/4.41 Interface Timing Specification,” on page 77,
Row: SD2, uSDHC Output Delay: Changed tOD from 2.5 ns minimum to 2.8 ns and 7.1 ns maximum
to 6.8 ns.
(Revision History table continues on next page.)
Revision History
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 157
5 09/2017 Rev. 5 changes include the following:
Changed throughout:
– Changed terminology from “floating” to “not connected”.
– Removed VADC feature from 19mm x 19mm package. Contact NXP sales and marketing with
enablement options.
Section 1, “Introduction” on page 1: Corrected A9 core speed from 1 GHz to 800 MHz.
Section 1.2, “Features” on page 4: Changed Internal/external peripheral item from “LVDS serial ports—
One port up to 165 MPixels/sec…” to: “…—One port up to 170 MPixels/sec…”.
Table 1, “Example Orderable Part Numbers”: Added part numbers for silicon revision 1.4 with suffix “E”.
Section 1.3, “Signal Naming Convention” on page 7” and Section 6.1, “Signal Naming Convention”:
changed wording from updated or changed signal naming, to standard signal naming.
Table 2, “i.MX 6Dual/6Quad Modules List,” on page 9:
– Added bullet to uSDHC row: “Conforms to the SD Host Controller Standard Specification v3.0
Section 4, “Electrical Characteristics” on page 18: Changed several references from JESD and JEDEC
standards to cross references to the Section 4.10, “Multi-Mode DDR Controller (MMDC).
Table 4, “Absolute Maximum Ratings,” on page 19: Multiple changes:
– Core supply voltages: Separated rows by LDO enabled and LDO bypass. For LDO enabled, changed
maximum value from 1.5 to 1.6V.
– Renamed Internal supply voltages to Core supply output voltage (LDO enabled) and changed
maximum value from 1.3 to 1.4V. Added symbol NVCC_PLL_OUT.
– Reordered VDD_HIGH_IN row and changed maximum value from 3.6 to 3.7V.
– DDR I/O supply voltage row changes:
— Changed Symbols from “Supplies denoted as I/O supply” to: “NVCC_DRAM”
— Added footnote.
– GPIO I/O supply voltage: Added symbols. Changed maximum value from 3.6 to 3.7V.
– Resequenced: HDMI, PCIe, and SATA PHY high (VPH) supply voltage to precede low (VP)
– Added row: RGMII I/O supply voltage
– Added row, Vin/Vout input/output voltage range (non-DDR pins) distinguishing between DDR pins.
– Changed maximum value for Vin/Vout input/output voltage range DDR pins to OVDD+0.4.
– Added footnotes to both maximum values of Vin/Vout input/output voltage range.
– Added row: USB_OTG_CHD_B
Section 4.1.2, “Thermal Resistance” on page 20: Added NOTE: “Per JEDEC JESD51-2, the intent of
thermal resistance measurements…”.
Section 4.1.5, “Maximum Measured Supply Currents” on page 24: Clarified language throughout this
section regarding the use case to estimate the maximum supply current.
Section 4.2.1, “Power-Up Sequence” on page 31:
– Removed content about calculating the proper current limiting resistor for a coin cell.
– Removed inference to internal POR.
Section 4.5.2, “OSC32K” on page 35: Removed content about calculating the proper current limiting
resistor for a coin cell.
Section 4.6.1, “XTALI and RTC_XTALI (Clock Inputs) DC Parameters” on page 37:
– Added “NOTE: The Vil and Vih specifications only apply when an external clock source is used…”.
(Revision History table continues on next page.)
Table 90. i.MX 6Dual/6Quad Data Sheet Document Revision History (continued)
Rev.
Number Date Substantive Change(s)
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
158 NXP Semiconductors
Revision History
5
(Cont.)
09/2017 Table 20, “XTALI and RTC_XTALI DC Parameters,” on page 37:
– Added footnote to RTC_XTALI high level DC input voltage row: “This voltage specification must not be
exceeded and …”.
Section 4.6.4, “RGMII I/O 2.5V I/O DC Electrical Parameters” on page 38: Added section and table.
Section 4.10, “Multi-Mode DDR Controller (MMDC)” on page 60: Replaced section with new content.
Was: 4.9.4 DDR SDRAM Specific Parameters (DDR3/DDR3L/LPDDR2)” with timing diagrams and
parameter tables for DDR3/DDR3L/LPDDR2.
Table 47, “eMMC4.4/4.41 Interface Timing Specification,” on page 77,
– Corrected SD3, uSDHC Input Setup Time, minimum value from 2.6ns to 1.7ns.
– Added footnote to Card Input Clock regarding duty cycle range.
Table 48, “SDR50/SDR104 Interface Timing Specification,” on page 78: Changes to Min/Max values:
– SD2 min from: 0.3 x tCLK; to: 0.46 x tCLK
– SD2 max from: 0.7 x tCLK to: 0.54 x tCLK
– SD3 min from: 0.3 x tCLK; to: 0.46 x tCLK. Also corrected ID from duplicate SD2 to SD3.
– SD3 max from: 0.7 x tCLK; to: 0.54 x tCLK
– SD5 max from: 1 ns; to: 0.74 ns
Table 58, “Camera Input Signal Cross Reference, Format, and Bits Per Cycle,” on page 91: Changed
RGB565, 16 bits column heading from 2 cycles to 1 cycle.
Table 59, “Sensor Interface Timing Characteristics,” on page 94, Sensor Interface Timing characteristics:
Added rows to include Vsync values.
Table 86, “21 x 21 mm Supplies Contact Assignment,” on page 136: Added description to ZQPAD.
Table 87, “21 x 21 mm Functional Contact Assignments,” on page 138:
– Changed rows DRAM_SDCLK_0 and DRAM_SDCLK_1, Out of Reset Conditions from “Input–Hi-Z” to
“Output–0”.
– Added description to GPANAIO row: “…output for NXP use only…”
(Revision History table continues on next page.)
Table 90. i.MX 6Dual/6Quad Data Sheet Document Revision History (continued)
Rev.
Number Date Substantive Change(s)
Revision History
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 159
4 07/2015 Added footnote to Table 1, “Example Orderable Part Numbers,” on page 3: If a 24 MHz input clock is
used (required for USB), the maximum SoC speed is limited to 996 MHz.
Section 1.2, “Features” changed Five UARTs, from up to 4.0 Mbps, to up to 5.0 Mbps.
Table 6, “Operating Ranges,” on page 21, Row: run mode: LDO bypassed, removed LDO bypassed for
operation up to 852 MHz.
Table 6, “Operating Ranges,” on page 21: Row: VDD_HIGH internal regulator, changed minimum
parameter value from 2.8 to 2.7V.
Table 6, “Operating Ranges,” on page 21: Removed footnote: VDDSOC and VDDPU output voltages
must be set according to this rule: VDDARM-VDDSOC/PU<50mV. This was a duplicate footnote,
renumbered footnotes accordingly.
Table 6, “Operating Ranges,” on page 21: Changed value: Standby/DSM Mode, VDD_SOC_IN, minimum
voltage, from 0.9V to 1.05V.
Table 8, “Maximum Supply Currents,” on page 25, Differentiated VDD_ARM_IN, VDD_ARM23_IN, and
VDD_SOC_IN by frequency and by Power Virus/CoreMark maximum current.
Table 20, “XTALI and RTC_XTALI DC Parameters,” on page 37, Added rows: Input capacitance; Startup
current; and DC input current and their values.
Table 37, “EIM Bus Timing Parameters,” on page 51, Changed WE4–WE17 minimum and maximum
parameter values from, 0.5 t (k+1)/2-1.25, to
0.5 x t x (k+1)-1.25.
Table 38, “EIM Asynchronous Timing Parameters Relative to Chip Select,,” on page 58 Added to end of
formulas in the minimum, typical, and maximum parameter values for WE31–WE42 and WE45–WE46,
×
t. For example from 3-CSN, to 3-CSN
×
t. Also added maximum value to MAXDTI of 10.
Table 58, “DDR3/DDR3L Write Cycle,” on page 90, Changed minimum parameter value of DDR17 from
240 to 125; and of DDR18 from 240 to 150.
Figure 29, “LPDDR2 Command and Address Timing Diagram,” on page 91, LP2 signal cycle reduced.
Table 62, “LPDDR2 Write Cycle,” on page 93, Changed LP21 minimum and maximum parameter value
from -0.25/+0.25 to 0.8/1.2.
Figure 33, "ECSPI Master Mode Timing Diagram," on page 70, Added footnote: Note: ECSPIx_MOSI is
always driven (not tri-stated) between actual data transmissions. This limits the ECSPI to be connected
between a single master and a single slave.
Figure 34, "ECSPI Slave Mode Timing Diagram," on page 71, Added footnote: Note: ECSPIx_MISO is
always driven (not tri-stated) between actual data transmissions. This limits the ECSPI to be connected
between a single master and a single slave.
Figure 57, "Gated Clock Mode Timing Diagram," on page 92, Corrected IPU2_CSIx_HSYNC trace
drawing.
Section 4.12.22, “USB PHY Parameters” Specified Battery Charging Specification applies to portable
devices only.
(Revision History table continues on next page.)
Table 90. i.MX 6Dual/6Quad Data Sheet Document Revision History (continued)
Rev.
Number Date Substantive Change(s)
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
160 NXP Semiconductors
Revision History
Rev. 3 02/2014 Updates throughout for Silicon revision D, include:
- Figure 1 Part number nomenclature diagram.
- Example Orderable Part Number tables, Table 1
Feature description for Miscellaneous IPs and interfaces; SSI and ESAI.
Table 6, UART 1–5 description change: programmable baud rate up to 5 MHz.
Table 6, uSDHC 1–4 description change: including SDXC cards up to 2 TB.
Table 6, operating range for Run mode: LDO bypassed, minimum value corrected to 1.150 V.
Table 6, table footnotes, added LDO enabled mode footnote for internal LDO output set points.
Table 61, added table footnote to the Comment heading in the Comment column.
Removed table “On-Chip LDOs and their On-Chip Loads.”
Section 4.1.4, External Clock Sources; added Note, “The internal RTC oscillator does not …”.
Section 4.1.5, reworded second paragraph about the power management IC to explain that a robust
thermal design is required for the increased system power dissipation.
Table 8, Maximum Supply Currents: NVCC_RGMII Condition value changed to N=6.
Table 8, Maximum Supply currents: Added row; NVCC_LVDS2P5
Section 4.2.1 Power-Up Sequence: reworded third bulleted item regarding POR control.
Section 4.2.1 Power-Up Sequence: removed Note.
Section 4.5.2 OSC32K, second paragraph reworded to describe OSC32K automatic switching.
Section 4.5.2 OSC32K, added Note following second paragraph to caution use of internal oscillator use.
Table 20 XTALI and RTC_XTALI DC parameters; changed RTC_XTALI Vih minimum value to 0.8.
Table 20 XTALI and RTC_XTALI DC parameters; changed RTC_XTALI Vih maximum value to 1.1.
Table 34 Reset Timing Parameters; removed footnote.
Section 4.9.3 External Interface Module; enhanced wording to first paragraph to describe operating
frequency for data transfers, and to explain register settings are valid for entire range of frequencies.
Table 37. EIM Bus Timing Parameters; reworded footnotes for clarity.
Table 38. EIM Asynchronous Timing Parameters; removed comment from the Max heading cell.
Table 38. EIM Asynchronous Timing Parameters; reworded footnote 2 for clarity.
Table 53. RMII Signal Timing; parameter M19 Max value relaxed to 13.5 ns.
Table 95. Corrected the ALT5 Default Function names.
Figure 96 and Figure 97 21 x 21 mm Lidded Package; updated drawing (Rev D).
Rev. 2.3 07/26
/2013
Table 95, 21 x 21Functional Contact Assignments:
Restored NANDF_WP_B row and description.
System Timing Parameters Table 34, Reset timing parameter, CC1 description clarified, change from:
“Duration of SRC_POR_B to be qualified as valid (input slope <= 5 ns)” to:
“Duration of SRC_POR_B to be qualified as valid”
and added a footnote to the parameter with the following text:
“SRC_POR_B rise and fall times must be 5 ns or less.”
This change was made for clarity and does not represent a specification change.
Rev. 2.2 07/2013 Editor corrections to revision history links. No technical content changes.
Rev. 2.1 07/2013 Figure 1, Changed temperature references from Consumer to Commercial.
Table 95, 21 x 21Functional Contact Assignments:
—Removed rows: DRAM_VREF, HDMI_DDCCEC, and HDMI_REF.
—Due to a typographical error in revision 2.0, the ball names for rows EIM_DA2 through EIM_DA15 were
ordered incorrectly. This has been corrected in revision 2.1. The ball map is correct in both revision 2.0
and 2.1.
(Revision History table continues on next page.)
Table 90. i.MX 6Dual/6Quad Data Sheet Document Revision History (continued)
Rev.
Number Date Substantive Change(s)
Revision History
i.MX 6Dual/6Quad Applications Processors for Industrial Products, Rev. 6, 11/2018
NXP Semiconductors 161
Rev. 2 04/2013 Substantive changes throughout this document are as follows:
Incorporated standardized signal names. This change is extensive throughout.
Added reference to EB792, i.MX Signal Name Mapping.
Figures updated to align to standardized signal names.
Aligned references to FCBGA to read FCPBGA throughout document.
Updated references to eMMC standard to include 4.41.
Table 1 “Example Industrial Grade Orderable Part Numbers”: Part Numbers MCIMX6Q4AVT10AC,
MCIMX6Q4AVT08AC, MCIMX6D4AVT10AC, and MCIMX6D4AVT08AC were updated to show GPU
instead of VPU as an option.
Table 2, “i.MX 6Dual/6Quad Modules List,” Changed reference to Global Power Controller to read
General Power Controller.
Table 4, “Absolute Maximum Ratings,” Added VDD_ARM23_IN to Core supply voltages.
Table 6 “Operating Ranges”: Run Mode - LDO Enabled, VDD_ARM_IN/VDD_ARM23_IN, 792 MHz,
input voltage minimum changed to 1.275V and VDD_ARM CAP minimum changed to 1.150V.
NVCC_NAND, changed to NVCC_NANDF.
Table 6 “Operating Ranges”: Added reference for information on product lifetime: i.MX 6Dual/6Quad
Product Usage Lifetime Estimates Application Note, AN4724.
Table 9. “Maximum Supply Currents”: Added current for i.MX6Dual
Table 10 “Stop Mode Current and Power Consumption”: Added SNVS Only mode.
Table 22 “GPIO I/O DC Parameters”: Removed parameters Iskod and Isspp.
Table 48, “ECSPI Master Mode Timing Parameters,” Updated parameter CS6 ECSPIx_SSx Lag Time
(CS hold time) Min from Half SCLK period to Half SCLK period-2.
Table 77 “SD/eMMC4.3 Interface Timing Specification,” eMMC parameter SD8 value Min updated from
5.6 ns to 1.5 ns.
Table 89 RGMII Signal Switching Specifications RGMII parameter TskewR units corrected.
Table 134 “21 x 21 mm Functional Contact Assignments,” Updated GPIO_1 Ball Name value to PU
(100K).
Table 134 “21 x 21 mm Functional Contact Assignments,” Clarification of ENET_REF_CLK naming.
Removed section, EIM Signal Cross Reference. Signal names are now aligned with reference manual.
Section 1.2, “Features added bulleted item regarding the SOC-level memory system.
Section 4.2.1, “Power-Up Sequence” updated wording.
Section 4.3.2, “Regulators for Analog Modules”: Added NVCC_PLL_OUT to section heading.
Section 4.6.1, “XTALI and RTC_XTALI (Clock Inputs) DC Parameters”: Added section.
Section 4.10, “General-Purpose Media Interface (GPMI) Timing” figures replaced, tables revised.
Table 90. i.MX 6Dual/6Quad Data Sheet Document Revision History (continued)
Rev.
Number Date Substantive Change(s)
Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.
While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C?5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C?Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. Arm, AMBA, Artisan, Cortex, Jazelle, Keil, SecurCore,
Thumb, TrustZone, and µVision are registered trademarks of Arm Limited (or its subsidiaries) in
the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart,
Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of Arm
Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are
registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word
marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.
© 2012-2018 NXP B.V.
Document Number: IMX6DQIEC
Rev. 6
11/2018
How to Reach Us:
Home Page:
nxp.com
Web Support:
nxp.com/support