www.RFM.com E-mail: info@rfm.com Page 1 of 2
©2008 by RF Monolithics, Inc. RO3101E-1 - 3/26/08
CAUTION: Elec trostatic Sensitive D evic e. Obs erve precautions for handling.
Notes:
Electrical Characteristics
Characteristic Sym Notes Minimum Typical Maximum Units
Center Frequency (+25 °C) Absolute Frequency fC2,3,4,5 433.870 433.970 MHz
Tolerance from 433.920 MHz ΔfC±50 kHz
Insertion Loss IL 2,5,6 1.4 2.2 dB
Quality Factor Unloaded Q QU5,6,7 8280
50 Ω Loaded Q QL1228
Temperature Stability Turnover Temperature TO6,7,8 10 25 35 °C
Turnover Frequency fOfC
Frequency Temperature Coefficient FTC 0.032 ppm/°C2
Frequency Aging Absolute Value during the First Year |fA|1≤10 ppm/yr
DC Insulation Resistance between Any Two Terminals 5 1.0 MΩ
RF Equivalent RLC Model Mot ional Resistance RM5, 7, 9 17.5 Ω
Motional Inductance LM53.5 µH
Motional Capacitance CM2.5 fF
Shunt Static Capacitance CO5, 6, 9 2.5 pF
Test Fixture Shunt Inductance LTEST 2, 7 53.2 nH
Lid Symbolization (in addition to Lot and/or Date Codes) 750 // YWWS
Standard Reel Quantity Reel Size 7 Inch 10 500 Pieces/Reel
Reel Size 13 Inch 3000 Pieces/Reel
• Ideal for European 433.92 MHz Transmitters
• Very Low Series Resistance
• Quartz Stability
• Complies with Directive 2002/95/EC (RoHS)
The RO3101E-1 is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount, ceramic case.
It provides reliable, fundam ental-mode, quartz frequency stabilization of fixed-frequency transmitters
operating at 433.92 MHz. This SAW is designed specifically for remote-control and wireless security
transmitters operating in Europe under ETSI I-ETS 300 220 and in Germany under FTZ 17 TR 2100.
Absolute Maximum Ratings
Rating Value Units
Input Power Level 0 dBm
DC voltage 12 VDC
Storage Temperature Range -40 to +125 °C
Operating Temperature Range -40 to +105 °C
Soldering Temperature (10 seconds / 5 cycles max.) 260 °C
433.92 MHz
SAW
Resonator
RO3101E-1
1. Frequency aging is the change in fC with time and is spec ified at +65°C or
less. Aging may exceed the specification for prolonged temperatures
above +65°C. Typically, aging is greatest the first year after manufacture,
decreasing in subsequent years.
2. The center frequency, fC, is measured at the minimum insert ion loss point,
ILMIN, with the res onator in the 50 Ω test system (VSWR ≤ 1.2:1). The
shunt inductance, LTEST, is tuned for pa r allel resonance with CO at fC.
Typica lly, fOSCILLATOR or fTRANSMITTER is approximately equal to the
resonator fC.
3. One or more of the following United States patents apply: 4,454,48 8 and
4,616,197.
4. Typically, equipment utiliz ing this device requires emissi ons testing and
government app roval, which is the resp onsibility of the equipment
manufacturer.
5. Unless noted otherwise, case temperature TC= +25°C±2°C.
6. The design, manuf acturing process, an d sp ecifications of this device are
subject to change without notice.
7. Derived mat hematically from one or more of the following directly
measured parameters: fC, IL, 3 dB bandwidth, fC versus TC, and CO.
8. Turnover temperature, TO, is the tempera ture of maximum (or turnover)
frequenc y, fO. The nomina l frequenc y at an y case te mperature, TC, may be
calculated from: f = fO[1 - FTC (TO-TC)2]. Typically oscillator TO is
approximately equal to the specified resonator TO.
9. This equiv alent RLC model approximate s resonator performance near the
resonan t frequen cy and is provided for refer ence o nly. The capac itanc e CO
is the static (nonmotional) capacitance between the two terminals
measured at low frequency (10 MHz) with a c apacitance met er. The
measureme nt includes p arasitic cap acitanc e with "NC” pads unconne cted.
Case pa r as itic capacitance is approximately 0.05 pF. Trans ducer parallel
capacitance can by calculated as: CP≈CO-0.05pF.
10. Tape and Reel Standard Per ANSI / EIA 481.
SM3030-6 Case
3.0 X 3.0
Pb