2010-2016 Microchip Technology Inc. DS40001452F-page 1
Devices Included In This Data Sheet
High-Performance RISC CPU
C Compiler Optimized Architecture
Only 49 Instructions
Operating Speed:
- DC – 20 MHz clock input @ 2.5V
- DC – 16 MHz clock input @ 1.8V
- DC – 200 ns instruction cycle
Interrupt Capability with Automatic Context
Saving
16-Level Deep Hardware Stack with Optional
Overflow/Underflow Reset
Direct, Indirect and Relative Addressing modes:
- Two full 16-bit File Select Registers (FSRs)
- FSRs can read program and data memory
Memory
Up to 28 Kbytes Linear Program Memory
Addressing
Up to 1024 Bytes Linear Data Memory
Addressing
High Endurance Flash Data Memory (HEF):
- 128B of nonvolatile data storage
100K Erase/Write Cycles
Flexible Oscil lator Structur e
16 MHz Internal Oscillator Block:
- Software selectable frequency range from
16 MHz to 31 kHz
31 kHz Low-Power Internal Oscillator
External Oscillator Block with:
- Four crystal/resonator modes up to 20 MHz
- Three external clock modes up to 20 MHz
Fail-Safe Clock Monitor:
- Allows for safe shutdown if peripheral clock
stops
Two-Speed Oscillator Start-up
Oscillator Start-up Timer (OST)
Analog Features
Analog-to-Digital Converter (ADC):
- 10-bit resolution
- Up to 28 channels
- Auto acquisition capability
- Conversion available during Sleep
Voltage Reference module:
- Fixed Voltage Reference (FVR) with 1.024V,
2.048V and 4.096V output levels
Temperature Indicator
eXtreme Low-Power (XLP) Management
PIC16LF1516/7/8/ 9 with XLP
Sleep mode: 20 nA @ 1.8V, typical
Watchdog Timer: 300 nA @ 1.8V, typical
Secondary Oscillator: 600 nA @ 32 kHz
Operating Current: 30 A/MHz @ 1.8V, typical
Special Microcontroller Features
Operating Voltage Range:
- 2.3V-5.5V (PIC16F1516/7/8/9)
- 1.8V-3.6V (PIC16LF1516/7/8/9)
Self-Programmable under Software Control
Power-on Reset (POR)
Power-up Timer (PWRT)
Low-Power Brown-out Reset (LPBOR)
Extended Watchdog Timer (WDT)
In-Circuit Serial Programming™ (ICSP™) via
Two Pins
In-Circuit Debug (ICD) via Two Pins
Enhanced Low-Voltage Programming (LVP)
Programmable Code Protection
Low-Power Sleep mode
Peripheral Highl ights
Up to 35 I/O Pins and 1 Input-Only Pin:
- High current sink/source 25 mA/25 mA
- Individually programmable weak pull-ups
- Individually programmable
interrupt-on-change (IOC) pins
Timer0: 8-Bit Timer/Counter with 8-Bit Prescaler
Enhanced Timer1:
- 16-bit timer/counter with prescaler
- External Gate Input mode
- Low-power 32 kHz secondary oscillator driver
Timer2: 8-Bit Timer/Counter with 8-Bit Period
Register, Prescaler and Postscaler
Two Capture/Compare (CCP) modules
PIC16F1516 PIC16LF1516
PIC16F1517 PIC16LF1517
PIC16F1518 PIC16LF1518
PIC16F1519 PIC16LF1519
PIC16(L)F1516/7/8/9
28/40/44 -Pin Flash Microcontr ollers with XLP Technology
PIC16(L)F1516/7/8/9
DS40001452F-page 2 2010-2016 Microchip Technology Inc.
Master Synchronous Serial Port (MSSP) with SPI
and I2C with:
- 7-bit address masking
- SMBus/PMBusTM compatibility
Enhanced Universal Synchronous Asynchronous
Receiver Transmitter (EUSART) module:
- RS-232, RS-485 and LIN compatible
- Auto-Baud Detect
- Auto-wake-up on start
PIC16(L)F151X/152X Family Types
Device
Data Sheet Index
Program Memor y
Flash (words)
Data SRAM
(bytes)
High Endurance Flash
(bytes)
I/O’s(2)
ADC
Timers
(8/16-bit)
EUSART
MSSP (I2C/SPI)
CCP
Debug(1)
XLP
10-bit (ch)
Advanced Control
PIC16(L)F1512 (1) 2048 128 128 25 17 Y2/1 1 1 2 I Y
PIC16(L)F1513 (1) 4096 256 128 25 17 Y2/1 1 1 2 I Y
PIC16(L)F1516 (2) 8192 512 128 25 17 N 2/1 1 1 2 I Y
PIC16(L)F1517 (2) 8192 512 128 36 28 N 2/1 1 1 2 I Y
PIC16(L)F1518 (2) 16384 1024 128 25 17 N 2/1 1 1 2 I Y
PIC16(L)F1519 (2) 16384 1024 128 36 28 N 2/1 1 1 2 I Y
PIC16(L)F1526 (3) 8192 768 128 54 30 N6/3 2 2 10 I Y
PIC16(L)F1527 (3) 16384 1536 128 54 30 N6/3 2 2 10 I Y
Note 1: I - Debugging, Integrated on Chip; H - Debugging, available using Debug Header.
2: One pin is input-only.
Dat a Shee t Index: (Unshaded devices are described in this document.)
1: DS40001624 PIC16(L)F1512/13 Data Sheet, 28-Pin Flash, 8-bit Microcontrollers.
2: DS40001452 PIC16(L)F1516/7/8/9 Data Sheet, 28/40/44-Pin Flash, 8-bit MCUs.
3: DS40001458 PIC16(L)F1526/27 Data Sheet, 64-Pin Flash, 8-bit MCUs.
Note: For other small form-factor package availability and marking information, please visit
http://www.microchip.com/packaging or contact your local sales office.
2010-2016 Microchip Technology Inc. DS40001452F-page 3
PIC16(L)F1516/7/8/9
FIGURE 1: 28-PIN SPDIP, SOIC, SSOP PACKAGE DIAGRAM FOR PIC16(L)F1516/1518
FIGURE 2: 28-PIN UQFN (4X4) PACKAGE DIAGRAM FOR PIC16(L)F1516/1518
28-Pin SPDIP, SOIC, SSOP
PIC16F1516/1518
PIC16LF1516/1518
1
2
3
4
5
6
7
8
9
10
VPP/MCLR/RE3
RA0
RA1
RA2
RA3
RA4
RA5
RB6/ICSPCLK
RB5
RB4
RB3
RB2
RB1
RB0
VDD
VSS
11
12
13
14 15
16
17
18
19
20
28
27
26
25
24
23
22
21
VSS
RA7
RA6
RC0
RC1
RC2
RC3
RC5
RC4
RC7
RC6
RB7/ICSPDAT
Note: See Table 1 for location of all peripheral functions.
2
3
6
1
18
19
20
21
15
7
16
17
RC0
5
4
RB7/ICSPDAT
RB6/ICSPCLK
RB5
RB4
RB3
RB2
RB1
RB0
VDD
VSS
RC7
RC6
RC5
RC4
RE3/MCLR/VPP
RA0
RA1
RA2
RA3
RA4
RA5
VSS
RA7
RA6
RC1
RC2
RC3
9
10
13
8
14
12
11
27
26
23
28
22
24
25
PIC16F1516/1518
PIC16LF1516/1518
28-Pin UQFN
Note 1: See Table 1 for location of all peripheral functions.
2: It is recommended that the exposed bottom pad be connected to VSS.
PIC16(L)F1516/7/8/9
DS40001452F-page 4 2010-2016 Microchip Technology Inc.
FIGURE 3: 28-PIN QFN (6X6) PACKAGE DIAGRAM FOR PIC16(L)F1516 /151 8
2
3
6
1
18
19
20
21
15
7
16
17
RC0
5
4
RB7/ICSPDAT
RB6/ICSPCLK
RB5
RB4
RB3
RB2
RB1
RB0
VDD
VSS
RC7
RC6
RC5
RC4
RE3/MCLR/VPP
RA0
RA1
RA2
RA3
RA4
RA5
VSS
RA7
RA6
RC1
RC2
RC3
9
10
13
8
14
12
11
27
26
23
28
22
24
25
PIC16F1516/1518
PIC16LF1516/1518
28-Pin QFN
Note 1: See Table 1 for location of all peripheral functions.
2: It is recommended that the exposed bottom pad be connected to VSS.
2010-2016 Microchip Technology Inc. DS40001452F-page 5
PIC16(L)F1516/7/8/9
FIGURE 4: 40-PIN PDIP PACKAGE DIAGRAM FOR PIC16(L)F1517/1519
40-Pin PDIP
PIC16F1517/1519
PIC16LF1517/1519
2
3
4
5
6
7
8
9
10
VPP/MCLR/RE3
RA0
RA1
RA2
RA3
RA4
RA5
RE0
RE1
RE2
RB6/ICSPCLK
RB5
RB4
RB3
RB2
RB1
RB0
VDD
VSS
RD2
11
12
13
14
15
16
17
18
19
20
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
VDD
VSS
RA7
RA6
RC0
RC1
RC2
RC3
RD0
RD1
RC5
RC4
RD3
RD4
RC7
RC6
RD7
RD6
RD5
RB7/ICSPDAT
1
Note 1: See Table 1 for location of all peripheral functions.
PIC16(L)F1516/7/8/9
DS40001452F-page 6 2010-2016 Microchip Technology Inc.
FIGURE 5: 40-PIN UQFN (5X5) PACKAGE DIAGRAM FOR PIC16(L)F1517/1519
FIGURE 6: 44-PIN TQFP PACKAGE DIAGRAM FOR PIC16(L)F1517/1519
10
2
3
4
5
6
1
17
18
19
20
11
12
13
14
34
8
7
40
39
38
37
36
35
15
16
26
27
28
29
30
21
22
23
24
25
32
31
9
33RA1
RA0
VPP/MCLR/RE3
RB3
ICSPDAT/RB7
ICSPCLK/RB6
RB5
RB4
RC6
RC5
RC4
RD3
RD2
RD1
RD0
RC3
RC2
RC1
RC0
RA7
VSS
VDD
RE2
RE1
RE0
RA5
RC7
RD4
RD5
RD6
RD7
VSS
VDD
RB0
RB1
RB2
40-Pin UQFN
RA3
RA2
PIC16F1517/1519
PIC16LF1517/1519
RA6
RA4
Note 1: See Tab l e 1 for location of all peripheral functions.
2: It is recommended that the exposed bottom pad be connected to VSS.
10
11
2
3
6
1
18
19
20
21
22
12
13
14
15
38
8
7
44
43
42
41
40
39
16
17
29
30
31
32
33
23
24
25
26
27
28
36
34
35
9
37
RA3
RA2
RA1
RA0
RE3
NC
ICSPDAT/RB7
ICSPCLK/RB6
RB5
RB4
NC
NC
NC
RC0
VSS
VDD
RB0
RB1
RB2
RB3
5
4
44-Pin TQFP
RA6
RA7
VSS
VDD
RE2
RE1
RE0
RA5
RA4
RC7
RD4
RD5
RD6
RD7
RC6
RC5
RC4
RD3
RD2
RD1
RD0
RC3
RC2
RC1
PIC16F1517/1519
PIC16LF1517/1519
Note: See Table 1 for location of all peripheral functions.
2010-2016 Microchip Technology Inc. DS40001452F-page 7
PIC16(L)F1516/7/8/9
TABLE 1: 28/40/44-PIN ALLOCATION TABLE
I/O
28-Pin SPDIP, SOIC, SSOP
28-Pin QFN, UQFN
40-Pin PDIP
40-Pin UQFN
44-Pin TQFP
ADC
Timers
CCP
EUSART
MSSP
Interrupt
Pull-up
Basic
RA0 227 217 19 AN0 SS(2)
RA1 3 28 3 18 20 AN1
RA2 4 1 4 19 21 AN2
RA3 5 2 5 20 22 AN3/VREF+—
RA4 6 3 6 21 23 T0CKI
RA5 7 4 7 22 24 AN4 SS(1) —— VCAP
RA6 10 714 29 31 OSC2/CLKOUT
RA7 9 6 13 28 30 OSC1/CLKIN
RB0 21 18 33 8 8 AN12 INT/IOC Y
RB1 22 19 34 9 9 AN10 IOC Y
RB2 23 20 35 10 10 AN8 IOC Y
RB3 24 21 36 11 11 AN9 CCP2(2) —— IOCY
RB4 25 22 37 12 14 AN11 IOC Y
RB5 2623381315 AN13 T1G IOC Y
RB6 27 24 39 14 16 IOC YICSPCLK/ICDCLK
RB7 28 25 40 15 17 IOC Y ICSPDAT/ICDDAT
RC0 11 815 30 32 SOSCO/T1CKI
RC1 12 9 16 31 35 SOSCI CCP2(1) ——
RC2 13 10 17 32 36 AN14 CCP1
RC3 14 11 18 33 37 AN15 SCK/SCL
RC4 15 12 23 38 42 AN16 SDI/SDA
RC5 16 13 24 39 43 AN17 SDO
RC6 17 14 25 40 44 AN18 TX/CK
RC7 18 15 26 1 1 AN19 RX/DT
RD0(3) 19 34 38 AN20
RD1(3) 20 35 39 AN21
RD2(3) 21 36 40 AN22
RD3(3) 22 37 41 AN23
RD4(3) 27 2 2 AN24
RD5(3) ——28 3 3 AN25
RD6(3) 29 4 4 AN26
RD7(3) ——30 5 5 AN27
RE0(3) 8 23 25 AN5
RE1(3) —— 9 2426 AN6
RE2(3) 10 25 27 AN7
RE3 12611618 Y MCLR
/VPP
VDD 20 17 11,
32
7,
26
7,
28
VSS 8,
19
5,
16
12,
31
6,
27
6,
29
——
NC 12,
13,
33,
34
Note 1: Peripheral pin location selected using APFCON register. Default location.
2: Peripheral pin location selected using APFCON register. Alternate location.
3: PIC16(L)F1517/9 only.
PIC16(L)F1516/7/8/9
DS40001452F-page 8 2010-2016 Microchip Technology Inc.
Table of Contents
1.0 Device Overview ........................................................................................................................................................................ 10
2.0 Enhanced Mid-range CPU ......................................................................................................................................................... 15
3.0 Memory Organization ................................................................................................................................................................. 17
4.0 Device Configuration .................................................................................................................................................................. 41
5.0 Oscillator Module (with Fail-Safe Clock Monitor) ....................................................................................................................... 47
6.0 Resets ........................................................................................................................................................................................ 62
7.0 Interrupts .................................................................................................................................................................................... 70
8.0 Power-Down Mode (Sleep) ........................................................................................................................................................ 80
9.0 Low Dropout (LDO) Voltage Regulator ...................................................................................................................................... 84
10.0 Watchdog Timer (WDT) ............................................................................................................................................................. 85
11.0 Flash Program Memory Control ................................................................................................................................................. 89
12.0 I/O Ports ................................................................................................................................................................................... 105
13.0 Interrupt-on-Change ................................................................................................................................................................. 124
14.0 Fixed Voltage Reference (FVR) ............................................................................................................................................... 128
15.0 Temperature Indicator Module ................................................................................................................................................. 130
16.0 Analog-to-Digital Converter (ADC) Module .............................................................................................................................. 132
17.0 Timer0 Module ......................................................................................................................................................................... 145
18.0 Timer1 Module with Gate Control............................................................................................................................................. 148
19.0 Timer2 Module ......................................................................................................................................................................... 159
20.0 Capture/Compare/PWM Modules ............................................................................................................................................ 163
21.0 Master Synchronous Serial Port (MSSP) Module .................................................................................................................... 171
22.0 Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) ............................................................... 222
23.0 In-Circuit Serial Programming™ (ICSP™) ............................................................................................................................... 251
24.0 Instruction Set Summary .......................................................................................................................................................... 253
25.0 Electrical Specifications............................................................................................................................................................ 267
26.0 DC and AC Characteristics Graphs and Charts ....................................................................................................................... 298
27.0 Development Support............................................................................................................................................................... 330
28.0 Packaging Information.............................................................................................................................................................. 334
Appendix A: Data Sheet Revision History.......................................................................................................................................... 355
The Microchip Website....................................................................................................................................................................... 356
Customer Change Notification Service .............................................................................................................................................. 356
Customer Support .............................................................................................................................................................................. 356
Product Identification System............................................................................................................................................................. 358
2010-2016 Microchip Technology Inc. DS40001452F-page 9
PIC16(L)F1516/7/8/9
TO OUR VALUED CUSTOMERS
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and
enhanced as new volumes and updates are introduced.
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via
E-mail at docerrors@microchip.com. We welcome your feedback.
Most Current Data Sheet
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:
http://www.microchip.com
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.
The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).
Errata
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision
of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:
Microchip’s Worldwide Website; http://www.microchip.com
Your local Microchip sales office (see last page)
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are
using.
Customer No tific atio n Syst em
Register on our website at www.microchip.com to receive the most current information on all of our products.
PIC16(L)F1516/7/8/9
DS40001452F-page 10 2010-2016 Microchip Technology Inc.
1.0 DEVICE OVERVIEW
The PIC16(L)F1516/7/8/9 are described within this data
sheet. Figure 1-1 shows a block diagram of the
PIC16(L)F1516/7/8/9 devices. Table 1-2 shows the
pinout descriptions.
Reference Table 1 -1 for peripherals available per
device.
TABLE 1-1: DEVICE PERIPHERAL
SUMMARY
Peripheral
PIC16(L)F1516
PIC16(L)F1517
PIC16(L)F1518
PIC16(L)F1519
Analog-to-Digital Converter (ADC) ●●●●
Fixed Voltage Reference (FVR) ●●●●
Temperature Indicator ●●●●
Capture/Compare/PWM Modules
CCP1 ●●●●
CCP2 ●●●●
EUSARTs
EUSART ●●●●
Master Synchronous Serial Ports
MSSP ●●●●
Timers
Timer0 ●●●●
Timer1 ●●●●
Timer2 ●●●●
2010-2016 Microchip Technology Inc. DS40001452F-page 11
PIC16(L)F1516/7/8/9
FIGURE 1-1: PIC16(L) F1516 /7/8 /9 BLOCK DIAGRAM
PORTB
Timer2MSSP
Timer0
CCP2
ADC
10-Bit
CCP1
Note 1: See applicable chapters for more information on peripherals.
2: See Ta b le 1 - 1 for peripherals available on specific devices.
3: PIC16(L)F1517/9 only.
4: RE<2:0>, PIC16(L)F1517/9 only.
CPU
Program
Flash Memory
PORTA
RAM
Timing
Generation
INTRC
Oscillator
MCLR
(Figure 2-1)
Timer1
OSC1/CLKIN
OSC2/CLKOUT
FVR
PORTC
PORTD(3)
PORTE(4)
Temp.
Indicator
EUSART
PIC16(L)F1516/7/8/9
DS40001452F-page 12 2010-2016 Microchip Technology Inc.
TABLE 1-2: PINOUT DESCRIPTION
Name Function Input
Type Output
Type Description
RA0/AN0/SS(2) RA0 TTL CMOS General purpose I/O.
AN0 AN ADC Channel 0 input.
SS ST Slave Select input.
RA1/AN1 RA1 TTL CMOS General purpose I/O.
AN1 AN ADC Channel 1 input.
RA2/AN2 RA2 TTL CMOS General purpose I/O.
AN2 AN ADC Channel 2 input.
RA3/AN3/VREF+ RA3 TTL CMOS General purpose I/O.
AN3 AN ADC Channel 3 input.
VREF+ AN ADC Positive Voltage Reference input.
RA4/T0CKI RA4 TTL CMOS General purpose I/O.
T0CKI ST Timer0 clock input.
RA5/AN4/SS(1)/VCAP RA5 TTL CMOS General purpose I/O.
AN4 AN ADC Channel 4 input.
SS ST Slave Select input.
VCAP Power Power Filter capacitor for Voltage Regulator (PIC16F1516/7/8/9 only).
RA6/OSC2/CLKOUT RA6 TTL CMOS General purpose I/O.
OSC2 XTAL Crystal/Resonator (LP, XT, HS modes).
CLKOUT CMOS FOSC/4 output.
RA7/OSC1/CLKIN RA7 TTL CMOS General purpose I/O.
OSC1 XTAL Crystal/Resonator (LP, XT, HS modes).
CLKIN ST External clock input (EC mode).
RB0/AN12/INT RB0 TTL CMOS General purpose I/O with IOC and WPU.
AN12 AN ADC Channel 12 input.
INT ST External interrupt.
RB1/AN10 RB1 TTL CMOS General purpose I/O with IOC and WPU.
AN10 AN ADC Channel 10 input.
RB2/AN8 RB2 TTL CMOS General purpose I/O with IOC and WPU.
AN8 AN ADC Channel 8 input.
RB3/AN9/CCP2(2) RB3 TTL CMOS General purpose I/O with IOC and WPU.
AN9 AN ADC Channel 9 input.
CCP2 ST CMOS Capture/Compare/PWM 2.
RB4/AN11 RB4 TTL CMOS General purpose I/O with IOC and WPU.
AN11 AN ADC Channel 11 input.
RB5/AN13/T1G RB5 TTL CMOS General purpose I/O with IOC and WPU.
AN13 AN ADC Channel 13 input.
T1G ST Timer1 Gate input.
RB6/ICSPCLK RB6 TTL CMOS General purpose I/O with IOC and WPU.
ICSPCLK ST CMOS In-Circuit Data I/O.
RB7/ICSPDAT RB7 TTL CMOS General purpose I/O with IOC and WPU.
ICSPDAT ST CMOS ICSP™ Data I/O.
Legend: AN = Analog input or output CMOS= CMOS compatible input or output OD = Open-Drain
TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I2C = Schmitt Trigger input with I2C
HV = High Voltage XTAL = Crystal levels
Note 1: Peripheral pin location selected using APFCON register (Register 12-1). Default location.
2: Peripheral pin location selected using APFCON register (Register 12-1). Alternate location.
3: PORTD and RE<2:0> available on PIC16(L)F1517/9 only.
2010-2016 Microchip Technology Inc. DS40001452F-page 13
PIC16(L)F1516/7/8/9
RC0/SOSCO/T1CKI RC0 ST CMOS General purpose I/O.
SOSCO XTAL Secondary oscillator connection.
T1CKI ST Timer1 clock input.
RC1/SOSCI/CCP2(1) RC1 ST CMOS General purpose I/O.
SOSCI XTAL Secondary oscillator connection.
CCP2 ST CMOS Capture/Compare/PWM 2.
RC2/AN14/CCP1 RC2 ST CMOS General purpose I/O.
AN14 AN ADC Channel 14 input.
CCP1 ST CMOS Capture/Compare/PWM 1.
RC3/AN15/SCK/SCL RC3 ST CMOS General purpose I/O.
AN15 AN ADC Channel 15 input.
SCK ST CMOS SPI clock.
SCL I2CODI
2C clock.
RC4/AN16/SDI/SDA RC4 ST CMOS General purpose I/O.
AN16 AN ADC Channel 16 input.
SDI ST SPI data input.
SDA I2CODI
2C data input/output.
RC5/AN17/SDO RC5 ST CMOS General purpose I/O.
AN17 AN ADC Channel 17 input.
SDO CMOS SPI data output.
RC6/AN18/TX/CK RC6 ST CMOS General purpose I/O.
AN18 AN ADC Channel 18 input.
TX CMOS USART asynchronous transmit.
CK ST CMOS USART synchronous clock.
RC7/AN19/RX/DT RC7 ST CMOS General purpose I/O.
AN19 AN ADC Channel 19 input.
RX ST USART asynchronous input.
DT ST CMOS USART synchronous data.
RD0(3)/AN20 RD0 ST CMOS General purpose I/O.
AN20 AN ADC Channel 20 input.
RD1(3)/AN21 RD1 ST CMOS General purpose I/O.
AN21 AN ADC Channel 21 input.
RD2(3)/AN22 RD2 ST CMOS General purpose I/O.
AN22 AN ADC Channel 22 input.
RD3(3)/AN23 RD3 ST CMOS General purpose I/O.
AN23 AN ADC Channel 23 input.
RD4(3)/AN24 RD4 ST CMOS General purpose I/O.
AN24 AN ADC Channel 24 input.
RD5(3)/AN25 RD5 ST CMOS General purpose I/O.
AN25 AN ADC Channel 25 input.
RD6(3)/AN26 RD6 ST CMOS General purpose I/O.
AN26 AN ADC Channel 26 input.
TABLE 1-2: PINOUT DESCRIPTION (CONTINUED)
Name Function Input
Type Output
Type Description
Legend: AN = Analog input or output CMOS= CMOS compatible input or output OD = Open-Drain
TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I2C = Schmitt Trigger input with I2C
HV = High Voltage XTAL = Crystal levels
Note 1: Peripheral pin location selected using APFCON register (Register 12-1). Default location.
2: Peripheral pin location selected using APFCON register (Register 12-1). Alternate location.
3: PORTD and RE<2:0> available on PIC16(L)F1517/9 only.
PIC16(L)F1516/7/8/9
DS40001452F-page 14 2010-2016 Microchip Technology Inc.
RD7(3)/AN27 RD7 ST CMOS General purpose I/O.
AN27 AN ADC Channel 27 input.
RE0(3)/AN5 RE0 ST CMOS General purpose I/O.
AN5 AN ADC Channel 5 input.
RE1(3)/AN6 RE1 ST CMOS General purpose I/O.
AN6 AN ADC Channel 6 input.
RE2(3)/AN7 RE2 ST CMOS General purpose I/O.
AN7 AN ADC Channel 7 input.
RE3/MCLR/VPP RE3 ST General purpose input with WPU.
MCLR ST Master Clear with internal pull-up.
VPP HV Programming voltage.
VDD VDD Power Positive supply.
VSS VSS Power Ground reference.
TABLE 1-2: PINOUT DESCRIPTION (CONTINUED)
Name Function Input
Type Output
Type Description
Legend: AN = Analog input or output CMOS= CMOS compatible input or output OD = Open-Drain
TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I2C = Schmitt Trigger input with I2C
HV = High Voltage XTAL = Crystal levels
Note 1: Peripheral pin location selected using APFCON register (Register 12-1). Default location.
2: Peripheral pin location selected using APFCON register (Register 12-1). Alternate location.
3: PORTD and RE<2:0> available on PIC16(L)F1517/9 only.
2010-2016 Microchip Technology Inc. DS40001452F-page 15
PIC16(L)F1516/7/8/9
2.0 ENHANCE D MID-RANGE CPU
This family of devices contain an enhanced mid-range
8-bit CPU core. The CPU has 49 instructions. Interrupt
capability includes automatic context saving. The
hardware stack is 16 levels deep and has Overflow and
Underflow Reset capability. Direct, Indirect, and
Relative addressing modes are available. Two File
Select Registers (FSRs) provide the ability to read
program and data memory.
Automatic Interrupt Context Saving
16-level Stack with Overflow and Underflow
File Select Registers
Instruction Set
FIGURE 2-1: CORE BLOC K DIAGRAM
Data Bus 8
14
Program
Bus
Instruction reg
Program Counter
8 Level Stack
(13-bit)
Direct Addr 7
12
Addr MUX
FSR reg
STATUS reg
MUX
ALU
Power-up
Timer
Power-on
Reset
Watchdog
Timer
Instruction
Decode &
Control
Timing
Generation
OSC1/CLKIN
OSC2/CLKOUT
VDD
8
8
Brown-out
Reset
12
3
VSS
Internal
Oscillator
Block
Configuration Data Bus 8
14
Program
Bus
Instruction reg
Program Counter
8 Level Stack
(13-bit)
Direct Addr 7
Addr MUX
FSR reg
STATUS reg
MUX
ALU
W reg
Instruction
Decode &
Control
Timing
Generation
VDD
8
8
3
VSS
Internal
Oscillator
Block
Configuration 15 Data Bus 8
14
Program
Bus
Instruction Reg
Program Counter
16-Level Stack
(15-bit)
Direct Addr 7
RAM Addr
Addr MUX
Indirect
Addr
FSR0 Reg
STATUS Reg
MUX
ALU
Instruction
Decode and
Control
Timing
Generation
VDD
8
8
3
VSS
Internal
Oscillator
Block
Configuration
Flash
Program
Memory RAM
FSR regFSR reg
FSR1 Reg
15
15
MUX
15
Program Memory
Read (PMR)
12
FSR regFSR reg
BSR Reg
5
Oscillator
Start-up Timer
PIC16(L)F1516/7/8/9
DS40001452F-page 16 2010-2016 Microchip Technology Inc.
2.1 Automatic Interrupt Context
Saving
During interrupts, certain registers are automatically
saved in shadow registers and restored when returning
from the interrupt. This saves stack space and user
code. See Section 7.5 “Automatic Context Saving”,
for more information.
2.2 16-Level Stack with Overflow and
Underflow
These devices have an external stack memory 15 bits
wide and 16 words deep. A Stack Overflow or Under-
flow will set the appropriate bit (STKOVF or STKUNF)
in the PCON register, and if enabled will cause a soft-
ware Reset. See Section 3.6 “St ack” for more details.
2.3 File Select Registers
There are two 16-bit File Select Registers (FSR). FSRs
can access all file registers and program memory,
which allows one Data Pointer for all memory. When an
FSR points to program memory, there is one additional
instruction cycle in instructions using INDF to allow the
data to be fetched. General purpose memory can now
also be addressed linearly, providing the ability to
access contiguous data larger than 80 bytes. There are
also new instructions to support the FSRs. See
Section 3.7 “Indirect Addressing” for more details.
2.4 Instructi on Set
There are 49 instructions for the enhanced mid-range
CPU to support the features of the CPU. See
Section 24.0 “Instruction Set Summary for more
details.
2010-2016 Microchip Technology Inc. DS40001452F-page 17
PIC16(L)F1516/7/8/9
3.0 MEMORY ORGANIZATION
These devices contain the following types of memory:
Program Memory
- Configuration Words
- Device ID
-User ID
- Flash Program Memory
Data Memory
- Core Registers
- Special Function Registers
- General Purpose RAM
- Common RAM
The following features are associated with access and
control of program memory and data memory:
PCL and PCLATH
•Stack
Indirect Addressing
3.1 Program Memory Organization
The enhanced mid-range core has a 15-bit program
counter capable of addressing a 32K x 14 program
memory space. Table 3-1 shows the memory sizes
implemented for these devices. Accessing a location
above these boundaries will cause a wrap-around within
the implemented memory space. The Reset vector is at
0000h and the interrupt vector is at 0004h (see
Figure 3-1 and Figure 3-2).
3.2 High-Endurance Flash
This device has a 128-byte section of high-endurance
Program Flash Memory (PFM) in lieu of data
EEPROM. This area is especially well suited for
nonvolatile data storage that is expected to be
updated frequently over the life of the end product.
See Section 11.2 “Flash Program Memory
Overview” for more information on writing data to
PFM. See Section 3.2.1.2 “Indirect Read with FSR”
for more information about using the FSR registers to
read byte data stored in PFM.
TABLE 3-1: DEVICE SIZES AND ADDRESSES
Device Program Memory
Space (Words) Last Program Memory
Address High-Endurance Flash
Memory Address Range (1)
PIC16F1516
PIC16LF1516 8,192 1FFFh 1F80h-1FFFh
PIC16F1827
PIC16LF1517
PIC16F1939
PIC16LF1518 16,384 3FFFh 3F80h-3FFFh
PIC16LF1933
PIC16LF1519
Note 1: High-endurance Flash applies to the low byte of each address in the range.
PIC16(L)F1516/7/8/9
DS40001452F-page 18 2010-2016 Microchip Technology Inc.
FIGURE 3-1: PROGRAM MEMORY MAP
AND STACK FOR
PIC16(L)F1516/7
FIGURE 3-2: PROGRAM MEMORY MAP
AND STACK FOR
PIC16(L)F1518/9
PC<14:0>
15
0000h
0004h
Stack Level 0
Stack Level 15
Reset Vector
Interrupt Vector
Stack Level 1
0005h
On-chip
Program
Memory
Page 0
07FFh
Rollover to Page 0
0800h
0FFFh
1000h
7FFFh
Page 1
Rollover to Page 3
Page 2
Page 3
17FFh
1800h
1FFFh
2000h
CALL, CALLW
RETURN, RETLW
Interrupt, RETFIE
PC<14:0>
15
0000h
0004h
Stack Level 0
Stack Level 15
Reset Vector
Interrupt Vector
Stack Level 1
0005h
On-chip
Program
Memory
Page 0
07FFh
Rollover to Page 0
0800h
0FFFh
1000h
7FFFh
Page 1
Rollover to Page 7
Page 2
Page 3
17FFh
1800h
1FFFh
2000h
Page 4
Page 7 3FFFh
4000h
CALL, CALLW
RETURN, RETLW
Interrupt, RETFIE
2010-2016 Microchip Technology Inc. DS40001452F-page 19
PIC16(L)F1516/7/8/9
3.2.1 READING PROGRAM MEMORY AS
DATA
There are two methods of accessing constants in
program memory. The first method is to use tables of
RETLW instructions. The second method is to set an
FSR to point to the program memory.
3.2.1.1 RETLW Instruction
The RETLW instruction can be used to provide access
to tables of constants. The recommended way to cre-
ate such a table is shown in Example 3-1.
EXAMPL E 3-1: RETLW INSTRUCTION
The BRW instruction makes this type of table very
simple to implement. If the code must remain portable
with previous generations of microcontrollers, then the
BRW instruction is not available so the older table read
method must be used.
3.2.1.2 Indirect Read with FSR
The program memory can be accessed as data by
setting bit 7 of the FSRxH register and reading the
matching INDFx register. The MOVIW instruction will
place the lower eight bits of the addressed word in the
W register. Writes to the program memory cannot be
performed via the INDF registers. Instructions that
access the program memory via the FSR require one
extra instruction cycle to complete. Example 3-2
demonstrates accessing the program memory via an
FSR.
The HIGH directive will set bit<7> if a label points to a
location in program memory.
EXAMPLE 3-2: ACCE SSING PROGRAM
MEMORY VIA FSR
constants
BRW ;Add Index in W to
;program counter to
;select data
RETLW DATA0 ;Index0 data
RETLW DATA1 ;Index1 data
RETLW DATA2
RETLW DATA3
my_function
;… LOTS OF CODE…
MOVLW DATA_INDEX
CALL constants
;… THE CONSTANT IS IN W
constants
DW DATA0 ;First constsnt
DW DATA1 ;Second constant
DW DATA2 ;
DW DATA3 ;
my_function
;… LOTS OF CODE…
MOVLW DATA_INDEX
MOVWF LOW constants
MOVWF FSR1H
MOVLW HIGH constants ;MSB is set
;automatically
MOVWF FSR1H
BTFSC STATUS,C ;carry from ADDLW?
INCF FSR1H,f ;yes
MOVIW 0[FSR1]
;THE PROGRAM MEMORY IS IN W
PIC16(L)F1516/7/8/9
DS40001452F-page 20 2010-2016 Microchip Technology Inc.
3.3 Data Memory Organization
The data memory is partitioned in 32 memory banks
with 128 bytes in a bank. Each bank consists of
(Figure 3-3):
12 core registers
20 Special Function Registers (SFR)
Up to 80 bytes of General Purpose RAM (GPR)
16 bytes of common RAM
The active bank is selected by writing the bank number
into the Bank Select Register (BSR). Unimplemented
memory will read as0’. All data memory can be
accessed either directly (via instructions that use the
file registers) or indirectly via the two File Select
Registers (FSR). See Section 3.7 “Indirect
Addressing” for more information.
Data Memory uses a 12-bit address. The upper five bits
of the address define the Bank address, and the lower
seven bits select the individual SFR, GPR and common
RAM locations in that bank.
3.3.1 CORE REGISTERS
The core registers contain the registers that directly
affect the basic operation. The core registers occupy
the first 12 addresses of every data memory bank
(addresses x00h/x08h through x0Bh/x8Bh). These
registers are listed below in Ta bl e 3 - 2 . For detailed
information, see Table 3 -7.
TABLE 3-2: CORE REGISTERS
Addresses BANKx
x00h or x80h INDF0
x01h or x81h INDF1
x02h or x82h PCL
x03h or x83h STATUS
x04h or x84h FSR0L
x05h or x85h FSR0H
x06h or x86h FSR1L
x07h or x87h FSR1H
x08h or x88h BSR
x09h or x89h WREG
x0Ah or x8Ah PCLATH
x0Bh or x8Bh INTCON
2010-2016 Microchip Technology Inc. DS40001452F-page 21
PIC16(L)F1516/7/8/9
3.3.1.1 STATUS Register
The STATUS register, shown in Register 3-1, contains:
the arithmetic status of the ALU
the Reset status
The STATUS register can be the destination for any
instruction, like any other register. If the STATUS
register is the destination for an instruction that affects
the Z, DC or C bits, then the write to these three bits is
disabled. These bits are set or cleared according to the
device logic. Furthermore, the TO and PD bits are not
writable. Therefore, the result of an instruction with the
STATUS register as destination may be different than
intended.
For example, CLRF STATUS will clear the upper three
bits and set the Z bit. This leaves the STATUS register
as ‘000u u1uu’ (where u = unchanged).
It is recommended, therefore, that only BCF, BSF,
SWAPF and MOVWF instructions are used to alter the
STATUS register, because these instructions do not
affect any Status bits. For other instructions not
affecting any Status bits (Refer to Section 24.0
“Instruction Set Summary”).
3.4 Reg is t er D e finiti ons: Status
Note 1: The C and DC bits operate as Borrow
and Digit Borrow out bits, respectively, in
subtraction.
REGISTER 3-1: STATUS: STAT US REGIS T ER
U-0 U-0 U-0 R-1/q R-1/q R/W-0/u R/W-0/u R/W-0/u
TO PD ZDC
(1) C(1)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition
bit 7-5 Unimplemented: Read as ‘0
bit 4 TO: Time-out bit
1 = After power-up, CLRWDT instruction or SLEEP instruction
0 = A WDT time-out occurred
bit 3 PD: Power-down bit
1 = After power-up or by the CLRWDT instruction
0 = By execution of the SLEEP instruction
bit 2 Z: Zero bit
1 = The result of an arithmetic or logic operation is zero
0 = The result of an arithmetic or logic operation is not zero
bit 1 DC: Digit Carry/Digit Borrow bit(1)
1 = A carry-out from the 4th low-order bit of the result occurred
0 = No carry-out from the 4th low-order bit of the result
bit 0 C: Carry/Borrow bit(1)
1 = A carry-out from the Most Significant bit of the result occurred
0 = No carry-out from the Most Significant bit of the result occurred
Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the
second operand.
PIC16(L)F1516/7/8/9
DS40001452F-page 22 2010-2016 Microchip Technology Inc.
3.4.1 SPECIAL FUNCTION REGISTER
The Special Function Registers are registers used by
the application to control the desired operation of
peripheral functions in the device. The Special Function
Registers occupy the 20 bytes after the core registers of
every data memory bank (addresses x0Ch/x8Ch
through x1Fh/x9Fh). The registers associated with the
operation of the peripherals are described in the
appropriate peripheral chapter of this data sheet.
3.4.2 GENERAL PURPOSE RAM
There are up to 80 bytes of GPR in each data memory
bank. The Special Function Registers occupy the 20
bytes after the core registers of every data memory
bank (addresses x0Ch/x8Ch through x1Fh/x9Fh).
3.4.2.1 Linear Access to GPR
The general purpose RAM can be accessed in a
non-banked method via the FSRs. This can simplify
access to large memory structures. See Section 3.7.2
“Linear Data Me mory for more information.
3.4.3 COMMON RAM
There are 16 bytes of common RAM accessible from all
banks.
FIGURE 3-3: BANKED MEMORY
PARTITIONING
3.4.4 DEVICE MEMORY MAPS
The memory maps for PIC16(L)F1516/7 and
PIC16(L)F1518/9 are as shown in Table 3-3 and
Table 3-4, respectively.
0Bh
0Ch
1Fh
20h
6Fh
70h
7Fh
00h
Common RAM
(16 bytes)
General Purpose RAM
(80 bytes maximum)
Core Registers
(12 bytes)
Special Function Registers
(20 bytes maximum)
Memory Region
7-bit Bank Offset
2010-2016 Microchip Technology Inc. DS40001452F-page 23
PIC16(L)F1516/7/8/9
TABLE 3-3: PIC16(L)F1516/7 MEMORY MAP
Legend: = Unimplemented data memory locations, read as ‘0’.
Note 1: PIC16F/LF1516/7/8/9 only.
2: PIC16F1516/7 only.
BANK 0 BANK 1 BANK 2 BANK 3 BANK 4 BANK 5 BANK 6 BANK 7
000h
Core Registers
(Tab le 3 -2)
080h
Core Registers
(Tab le 3 -2)
100h
Core Registers
(Table 3-2)
180h
Core Registers
(Table 3-2)
200h
Core Registers
(Table 3-2)
280h
Core Registers
(Table 3-2)
300h
Core Registers
(Table 3-2)
380h
Core Registers
(Table 3-2)
00Bh 08Bh 10Bh 18Bh 20Bh 28Bh 30Bh 38Bh
00Ch PORTA 08Ch TRISA 10Ch LATA 18Ch ANSELA 20Ch 28Ch 30Ch 38Ch
00Dh PORTB 08Dh TRISB 10Dh LATB 18Dh ANSELB 20Dh WPUB 28Dh 30Dh 38Dh
00Eh PORTC 08Eh TRISC 10Eh LATC 18Eh ANSELC 20Eh —28Eh—30Eh—38Eh
00Fh PORTD(1) 08Fh TRISD(1) 10Fh LATD(1) 18Fh ANSELD(1) 20Fh —28Fh—30Fh—38Fh
010h PORTE 090h TRISE 110h LATE(1) 190h ANSELE(1) 210h WPUE 290h 310h 390h
011h PIR1 091h PIE1 111h 191h PMADRL 211h SSPBUF 291h CCPR1L 311h 391h
012h PIR2 092h PIE2 112h 192h PMADRH 212h SSPADD 292h CCPR1H 312h 392h
013h —093h—113h 193h PMDATL 213h SSPMSK 293h CCP1CON 313h 393h
014h —094h—114h 194h PMDATH 214h SSPSTAT 294h 314h 394h IOCBP
015h TMR0 095h OPTION_REG 115h 195h PMCON1 215h SSPCON1 295h 315h 395h IOCBN
016h TMR1L 096h PCON 116h BORCON 196h PMCON2 216h SSPCON2 296h 316h 396h IOCBF
017h TMR1H 097h WDTCON 117h FVRCON 197h VREGCON(2) 217h SSPCON3 297h 317h 397h
018h T1CON 098h —118h—198h—218h 298h CCPR2L 318h 398h
019h T1GCON 099h OSCCON 119h 199h RCREG 219h 299h CCPR2H 319h 399h
01Ah TMR2 09Ah OSCSTAT 11Ah 19Ah TXREG 21Ah 29Ah CCP2CON 31Ah —39Ah
01Bh PR2 09Bh ADRESL 11Bh 19Bh SPBRG 21Bh —29Bh—31Bh—39Bh
01Ch T2CON 09Ch ADRESH 11Ch 19Ch SPBRGH 21Ch 29Ch 31Ch 39Ch
01Dh 09Dh ADCON0 11Dh APFCON 19Dh RCSTA 21Dh 29Dh 31Dh 39Dh
01Eh 09Eh ADCON1 11Eh 19Eh TXSTA 21Eh —29Eh—31Eh—39Eh
01Fh —09Fh—11Fh 19Fh BAUDCON 21Fh —29Fh—31Fh—39Fh
020h
General
Purpose
Register
80 Bytes
0A0h
General
Purpose
Register
80 Bytes
120h
General
Purpose
Register
80 Bytes
1A0h
General
Purpose
Register
80 Bytes
220h
General
Purpose
Register
80 Bytes
2A0h
General
Purpose
Register
80 Bytes
320h General Purpose
Register
16 Bytes
3A0h
Unimplemented
Read as ‘0
32Fh
330h Unimplemented
Read as ‘0
06Fh 0EFh 16Fh 1EFh 26Fh 2EFh 36Fh 3EFh
070h
Common RAM
0F0h Common RAM
(Accesses
70h – 7Fh)
170h Common RAM
(Accesses
70h – 7Fh)
1F0h Common RAM
(Accesses
70h – 7Fh)
270h Common RAM
(Accesses
70h – 7Fh)
2F0h Common RAM
(Accesses
70h – 7Fh)
370h Common RAM
(Accesses
70h – 7Fh)
3F0h Common RAM
(Accesses
70h – 7Fh)
07Fh 0FFh 17Fh 1FFh 27Fh 2FFh 37Fh 3FFh
PIC16(L)F1516/7/8/9
DS40001452F-page 24 2010-2016 Microchip Technology Inc.
TABLE 3-3: PIC16(L)F1516/7 MEMORY MAP (CONTINUED)
BANK 8 BANK 9 BANK 10 BANK 11 BANK 12 BANK 13 BANK 14 BANK 15
400h
40Bh
Core Registers
(Ta b l e 3- 2 )
480h
48Bh
Core Registers
(Ta b l e 3- 2 )
500h
50Bh
Core Registers
(Ta b l e 3- 2 )
580h
58Bh
Core Registers
(Ta b l e 3- 2 )
600h
60Bh
Core Registers
(Ta b l e 3- 2 )
680h
68Bh
Core Registers
(Ta b l e 3- 2 )
700h
70Bh
Core Registers
(Ta b l e 3- 2 )
780h
78Bh
Core Registers
(Ta b l e 3- 2 )
40Ch
Unimplemented
Read as ‘0
48Ch
Unimplemented
Read as ‘0
50Ch
Unimplemented
Read as ‘0
58Ch
Unimplemented
Read as ‘0
60Ch
Unimplemented
Read as ‘0
68Ch
Unimplemented
Read as ‘0
70Ch
Unimplemented
Read as ‘0
78Ch
Unimplemented
Read as ‘0
46Fh 4EFh 56Fh 5EFh 66Fh 6EFh 76Fh 7EFh
470h Common RAM
(Accesses
70h – 7Fh)
4F0h Common RAM
(Accesses
70h – 7Fh)
570h Common RAM
(Accesses
70h – 7Fh)
5F0h Common RAM
(Accesses
70h – 7Fh)
670h Common RAM
(Accesses
70h – 7Fh)
6F0h Common RAM
(Accesses
70h – 7Fh)
770h Common RAM
(Accesses
70h – 7Fh)
7F0h Common RAM
(Accesses
70h – 7Fh)
47Fh 4FFh 57Fh 5FFh 67Fh 6FFh 77Fh 7FFh
BANK 16 BANK 17 B ANK 18 BANK 19 BANK 20 BANK 21 BANK 22 BANK 23
800h
80Bh
Core Registers
(Ta b l e 3- 2 )
880h
88Bh
Core Registers
(Ta b l e 3- 2 )
900h
90Bh
Core Registers
(Ta b l e 3- 2 )
980h
98Bh
Core Registers
(Ta b l e 3- 2 )
A00h
A0Bh
Core Registers
(Ta b l e 3- 2 )
A80h
A8Bh
Core Registers
(Ta b l e 3- 2 )
B00h
B0Bh
Core Registers
(Ta b l e 3- 2 )
B80h
B8Bh
Core Registers
(Ta b l e 3- 2 )
80Ch
Unimplemented
Read as ‘0
88Ch
Unimplemented
Read as ‘0
90Ch
Unimplemented
Read as ‘0
98Ch
Unimplemented
Read as ‘0
A0Ch
Unimplemented
Read as ‘0
A8Ch
Unimplemented
Read as ‘0
B0Ch
Unimplemented
Read as ‘0
B8Ch
Unimplemented
Read as ‘0
86Fh 8EFh 96Fh 9EFh A6Fh AEFh B6Fh BEFh
870h Common RAM
(Accesses
70h – 7Fh)
8F0h Common RAM
(Accesses
70h – 7Fh)
970h Common RAM
(Accesses
70h – 7Fh)
9F0h Common RAM
(Accesses
70h – 7Fh)
A70h Common RAM
(Accesses
70h – 7Fh)
AF0h Common RAM
(Accesses
70h – 7Fh)
B70h Common RAM
(Accesses
70h – 7Fh)
BF0h Common RAM
(Accesses
70h – 7Fh)
87Fh 8FFh 97Fh 9FFh A7Fh AFFh B7Fh BFFh
Legend: = Unimplemented data memory locations, read as ‘0’.
BANK 24 BANK 25 BANK 26 BANK 27 BANK 28 BANK 29 BANK 30
C00h
C0Bh
Core Registers
(Ta b l e 3- 2 )
C80h
C8Bh
Core Registers
(Ta b l e 3- 2 )
D00h
D0Bh
Core Registers
(Ta b l e 3- 2 )
D80h
D8Bh
Core Registers
(Ta b l e 3- 2 )
E00h
E0Bh
Core Registers
(Ta b l e 3- 2 )
E80h
E8Bh
Core Registers
(Ta b l e 3- 2 )
F00h
F0Bh
Core Registers
(Ta b l e 3- 2 )
C0Ch
C6Fh
Unimplemented
Read as ‘0
C8Ch
CEFh
Unimplemented
Read as ‘0
D0Ch
D6Fh
Unimplemented
Read as ‘0
D8Ch
DEFh
Unimplemented
Read as ‘0
E0Ch
E6Fh
Unimplemented
Read as ‘0
E8Ch
EEFh
Unimplemented
Read as ‘0
F0Ch
F6Fh
Unimplemented
Read as ‘0
C70h Common RAM
(Accesses
70h – 7Fh)
CF0h Common RAM
(Accesses
70h – 7Fh)
D70h Common RAM
(Accesses
70h – 7Fh)
DF0h Common RAM
(Accesses
70h – 7Fh)
E70h Common RAM
(Accesses
70h – 7Fh)
EF0h Common RAM
(Accesses
70h – 7Fh)
F70h Common RAM
(Accesses
70h – 7Fh)
C7Fh CFFh D7Fh DFFh E7Fh EFFh F7Fh
2010-2016 Microchip Technology Inc. DS40001452F-page 25
PIC16(L)F1516/7/8/9
TABLE 3-3: PIC16(L)F1516/7 MEMORY MAP (CONTINUED)
= Unimplemented data memory locations, read as ‘0’,
Bank 31
F80h
F8Bh
Core Registers
(Ta b l e 3 - 2 )
F8Ch
FE3h
Unimplemented
Read as ‘0
FE4h STATUS_SHAD
FE5h WREG_SHAD
FE6h BSR_SHAD
FE7h PCLATH_SHAD
FE8h FSR0L_SHAD
FE9h FSR0H_SHAD
FEAh FSR1L_SHAD
FEBh FSR1H_SHAD
FECh
FEDh STKPTR
FEEh TOSL
FEFh TOSH
FF0h Common RAM
(Accesses
70h – 7Fh)
FFFh
PIC16(L)F1516/7/8/9
DS40001452F-page 26 2010-2016 Microchip Technology Inc.
TABLE 3-4: PIC16(L)F1518/9 MEMORY MAP
Legend: = Unimplemented data memory locations, read as ‘0’.
Note 1: DSTEMP only.
2: PIC16F1518/9 only.
BANK 0 BANK 1 BANK 2 BANK 3 BANK 4 BANK 5 BANK 6 BANK 7
000h
Core Registers
(Tab le 3 -2)
080h
Core Registers
(Tab le 3 -2)
100h
Core Registers
(Table 3-2)
180h
Core Registers
(Table 3-2)
200h
Core Registers
(Table 3-2)
280h
Core Registers
(Table 3-2)
300h
Core Registers
(Table 3-2)
380h
Core Registers
(Table 3-2)
00Bh 08Bh 10Bh 18Bh 20Bh 28Bh 30Bh 38Bh
00Ch PORTA 08Ch TRISA 10Ch LATA 18Ch ANSELA 20Ch 28Ch 30Ch 38Ch
00Dh PORTB 08Dh TRISB 10Dh LATB 18Dh ANSELB 20Dh WPUB 28Dh 30Dh 38Dh
00Eh PORTC 08Eh TRISC 10Eh LATC 18Eh ANSELC 20Eh —28Eh—30Eh—38Eh
00Fh PORTD(1) 08Fh TRISD(1) 10Fh LATD(1) 18Fh ANSELD(1) 20Fh —28Fh—30Fh—38Fh
010h PORTE 090h TRISE 110h LATE(1) 190h ANSELE(1) 210h WPUE 290h 310h 390h
011h PIR1 091h PIE1 111h 191h PMADRL 211h SSPBUF 291h CCPR1L 311h 391h
012h PIR2 092h PIE2 112h 192h PMADRH 212h SSPADD 292h CCPR1H 312h 392h
013h —093h—113h 193h PMDATL 213h SSPMSK 293h CCP1CON 313h 393h
014h —094h—114h 194h PMDATH 214h SSPSTAT 294h 314h 394h IOCBP
015h TMR0 095h OPTION_REG 115h 195h PMCON1 215h SSPCON1 295h 315h 395h IOCBN
016h TMR1L 096h PCON 116h BORCON 196h PMCON2 216h SSPCON2 296h 316h 396h IOCBF
017h TMR1H 097h WDTCON 117h FVRCON 197h VREGCON(2) 217h SSPCON3 297h 317h 397h
018h T1CON 098h —118h—198h—218h 298h CCPR2L 318h 398h
019h T1GCON 099h OSCCON 119h 199h RCREG 219h 299h CCPR2H 319h 399h
01Ah TMR2 09Ah OSCSTAT 11Ah 19Ah TXREG 21Ah 29Ah CCP2CON 31Ah —39Ah
01Bh PR2 09Bh ADRESL 11Bh 19Bh SPBRG 21Bh —29Bh—31Bh—39Bh
01Ch T2CON 09Ch ADRESH 11Ch 19Ch SPBRGH 21Ch 29Ch 31Ch 39Ch
01Dh 09Dh ADCON0 11Dh APFCON 19Dh RCSTA 21Dh 29Dh 31Dh 39Dh
01Eh 09Eh ADCON1 11Eh 19Eh TXSTA 21Eh —29Eh—31Eh—39Eh
01Fh —09Fh—11Fh 19Fh BAUDCON 21Fh —29Fh—31Fh—39Fh
020h
General
Purpose
Register
80 Bytes
0A0h
General
Purpose
Register
80 Bytes
120h
General
Purpose
Register
80 Bytes
1A0h
General
Purpose
Register
80 Bytes
220h
General
Purpose
Register
80 Bytes
2A0h
General
Purpose
Register
80 Bytes
320h
General
Purpose
Register
80 Bytes
3A0h
General
Purpose
Register
80 Bytes
06Fh 0EFh 16Fh 1EFh 26Fh 2EFh 36Fh 3EFh
070h
Common RAM
0F0h
Accesses
70h – 7Fh
170h
Accesses
70h – 7Fh
1F0h
Accesses
70h – 7Fh
270h
Accesses
70h – 7Fh
2F0h
Accesses
70h – 7Fh
370h
Accesses
70h – 7Fh
3F0h
Accesses
70h – 7Fh
07Fh 0FFh 17Fh 1FFh 27Fh 2FFh 37Fh 3FFh
2010-2016 Microchip Technology Inc. DS40001452F-page 27
PIC16(L)F1516/7/8/9
TABLE 3-5: PIC16(L)F1518/9 MEMORY MAP (CONTINUED)
BANK 8 BANK 9 BANK 10 BANK 11 BANK 12 BANK 13 BANK 14 BANK 15
400h
40Bh
Core Registers
(Ta b l e 3- 2 )
480h
48Bh
Core Registers
(Ta b l e 3- 2 )
500h
50Bh
Core Registers
(Ta b l e 3- 2 )
580h
58Bh
Core Registers
(Ta b l e 3- 2 )
600h
60Bh
Core Registers
(Ta b l e 3- 2 )
680h
68Bh
Core Registers
(Ta b l e 3- 2 )
700h
70Bh
Core Registers
(Ta b l e 3- 2 )
780h
78Bh
Core Registers
(Ta b l e 3- 2 )
40Ch
Unimplemented
Read as ‘0
48Ch
Unimplemented
Read as ‘0
50Ch
Unimplemented
Read as ‘0
58Ch
Unimplemented
Read as ‘0
60Ch
Unimplemented
Read as ‘0
68Ch
Unimplemented
Read as ‘0
70Ch
Unimplemented
Read as ‘0
78Ch
Unimplemented
Read as ‘0
41Fh 49Fh 51Fh 59Fh 61Fh 69Fh 71Fh 79Fh
420h
General
Purpose
Register
80 Bytes
4A0h
General
Purpose
Register
80 Bytes
520h
General
Purpose
Register
80 Bytes
5A0h
General
Purpose
Register
80 Bytes
620h General Purpose
Register
48 Bytes
6A0h
Unimplemented
Read as ‘0
720h
Unimplemented
Read as ‘0
7A0h
Unimplemented
Read as ‘0
64Fh
650h Unimplemented
Read as ‘0
46Fh 4EFh 56Fh 5EFh 66Fh 6EFh 76Fh 7EFh
470h Common RAM
(Accesses
70h – 7Fh)
4F0h Common RAM
(Accesses
70h – 7Fh)
570h Common RAM
(Accesses
70h – 7Fh)
5F0h Common RAM
(Accesses
70h – 7Fh)
670h Common RAM
(Accesses
70h – 7Fh)
6F0h Common RAM
(Accesses
70h – 7Fh)
770h Common RAM
(Accesses
70h – 7Fh)
7F0h Common RAM
(Accesses
70h – 7Fh)
47Fh 4FFh 57Fh 5FFh 67Fh 6FFh 77Fh 7FFh
BANK 16 BANK 17 B ANK 18 BANK 19 BANK 20 BANK 21 BANK 22 BANK 23
800h
80Bh
Core Registers
(Ta b l e 3- 2 )
880h
88Bh
Core Registers
(Ta b l e 3- 2 )
900h
90Bh
Core Registers
(Ta b l e 3- 2 )
980h
98Bh
Core Registers
(Ta b l e 3- 2 )
A00h
A0Bh
Core Registers
(Ta b l e 3- 2 )
A80h
A8Bh
Core Registers
(Ta b l e 3- 2 )
B00h
B0Bh
Core Registers
(Ta b l e 3- 2 )
B80h
B8Bh
Core Registers
(Ta b l e 3- 2 )
80Ch
Unimplemented
Read as ‘0
88Ch
Unimplemented
Read as ‘0
90Ch
Unimplemented
Read as ‘0
98Ch
Unimplemented
Read as ‘0
A0Ch
Unimplemented
Read as ‘0
A8Ch
Unimplemented
Read as ‘0
B0Ch
Unimplemented
Read as ‘0
B8Ch
Unimplemented
Read as ‘0
86Fh 8EFh 96Fh 9EFh A6Fh AEFh B6Fh BEFh
870h Common RAM
(Accesses
70h – 7Fh)
8F0h Common RAM
(Accesses
70h – 7Fh)
970h Common RAM
(Accesses
70h – 7Fh)
9F0h Common RAM
(Accesses
70h – 7Fh)
A70h Common RAM
(Accesses
70h – 7Fh)
AF0h Common RAM
(Accesses
70h – 7Fh)
B70h Common RAM
(Accesses
70h – 7Fh)
BF0h Common RAM
(Accesses
70h – 7Fh)
87Fh 8FFh 97Fh 9FFh A7Fh AFFh B7Fh BFFh
PIC16(L)F1516/7/8/9
DS40001452F-page 28 2010-2016 Microchip Technology Inc.
TABLE 3-6: PIC16(L)F1518/9 MEMORY MAP (CONTINUED)
Legend: = Unimplemented data memory locations, read as ‘0’.
BANK 24 BANK 25 BANK 26 BANK 27 BANK 28 BANK 29 BANK 30
C00h
C0Bh
Core Registers
(Ta b l e 3- 2 )
C80h
C8Bh
Core Registers
(Ta b l e 3- 2 )
D00h
D0Bh
Core Registers
(Ta b l e 3- 2 )
D80h
D8Bh
Core Registers
(Ta b l e 3- 2 )
E00h
E0Bh
Core Registers
(Ta b l e 3- 2 )
E80h
E8Bh
Core Registers
(Ta b l e 3- 2 )
F00h
F0Bh
Core Registers
(Ta b l e 3- 2 )
C0Ch
Unimplemented
Read as ‘0
C8Ch
Unimplemented
Read as ‘0
D0Ch
Unimplemented
Read as ‘0
D8Ch
Unimplemented
Read as ‘0
E0Ch
Unimplemented
Read as ‘0
E8Ch
Unimplemented
Read as ‘0
F0Ch
Unimplemented
Read as ‘0
C6Fh CEFh D6Fh DEFh E6Fh EEFh F6Fh
C70h Common RAM
(Accesses
70h – 7Fh)
CF0h Common RAM
(Accesses
70h – 7Fh)
D70h Common RAM
(Accesses
70h – 7Fh)
DF0h Common RAM
(Accesses
70h – 7Fh)
E70h Common RAM
(Accesses
70h – 7Fh)
EF0h Common RAM
(Accesses
70h – 7Fh)
F70h Common RAM
(Accesses
70h – 7Fh)
C7Fh CFFh D7Fh DFFh E7Fh EFFh F7Fh
Bank 31
F80h
F8Bh
Core Registers
(Ta b l e 3 - 2 )
F8Ch
FE3h
Unimplemented
Read as ‘0
FE4h STATUS_SHAD
FE5h WREG_SHAD
FE6h BSR_SHAD
FE7h PCLATH_SHAD
FE8h FSR0L_SHAD
FE9h FSR0H_SHAD
FEAh FSR1L_SHAD
FEBh FSR1H_SHAD
FECh
FEDh STKPTR
FEEh TOSL
FEFh TOSH
FF0h Common RAM
(Accesses
70h – 7Fh)
FFFh
2010-2016 Microchip Technology Inc. DS40001452F-page 29
PIC16(L)F1516/7/8/9
3.4.5 CORE FUNCTION REGISTERS
SUMMARY
The Core Function registers listed in Table 3-7 can be
addressed from any Bank.
TABLE 3-7: CORE FUNCTION REGISTERS SUMMARY
Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on
POR, BOR Value on all
other R esets
Bank 0-31
x00h or
x80h INDF0 Addressing this location uses contents of FSR0H/FSR0L to address data memory
(not a physical register) xxxx xxxx uuuu uuuu
x01h or
x81h INDF1 Addressing this location uses contents of FSR1H/FSR1L to address data memory
(not a physical register) xxxx xxxx uuuu uuuu
x02h or
x82h PCL Program Counter (PC) Least Significant Byte 0000 0000 0000 0000
x03h or
x83h STATUS —TOPD ZDCC---1 1000 ---q quuu
x04h or
x84h FSR0L Indirect Data Memory Address 0 Low Pointer 0000 0000 uuuu uuuu
x05h or
x85h FSR0H Indirect Data Memory Address 0 High Pointer 0000 0000 0000 0000
x06h or
x86h FSR1L Indirect Data Memory Address 1 Low Pointer 0000 0000 uuuu uuuu
x07h or
x87h FSR1H Indirect Data Memory Address 1 High Pointer 0000 0000 0000 0000
x08h or
x88h BSR BSR4 BSR3 BSR2 BSR1 BSR0 ---0 0000 ---0 0000
x09h or
x89h WREG Working Register 0000 0000 uuuu uuuu
x0Ah or
x8Ah PCLATH Write Buffer for the upper 7 bits of the Program Counter -000 0000 -000 0000
x0Bh or
x8Bh INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 0000 0000 0000 0000
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as 0’, r = reserved.
Shaded locations are unimplemented, read as ‘0’.
PIC16(L)F1516/7/8/9
DS40001452F-page 30 2010-2016 Microchip Technology Inc.
3.4.6 SPECIAL FUNCTION REGISTERS
SUMMARY
The Special Function registers are listed in Tab l e 3-8.
TABLE 3-8: SPECIAL FUNCTION REGISTER SUMMARY
Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on
POR, BOR
Va lue on
all other
Resets
Bank 0
00Ch PORTA PORTA Data Latch when written: PORTA pins when read xxxx xxxx uuuu uuuu
00Dh PORTB PORTB Data Latch when written: PORTB pins when read xxxx xxxx uuuu uuuu
00Eh PORTC PORTC Data Latch when written: PORTC pins when read xxxx xxxx uuuu uuuu
00Fh PORTD PORTD Data Latch when written: PORTD pins when read xxxx xxxx uuuu uuuu
010h PORTE —RE3RE2
(3) RE1(3) RE0(3) ---- xxxx ---- uuuu
011h PIR1 TMR1GIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000
012h PIR2 OSFIF —BCLIF CCP2IF 0--- 0--0 0--- 0--0
013h Unimplemented
014h Unimplemented
015h TMR0 Holding Register for the 8-bit Timer0 Count xxxx xxxx uuuu uuuu
016h TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Count xxxx xxxx uuuu uuuu
017h TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Count xxxx xxxx uuuu uuuu
018h T1CON TMR1CS<1:0> T1CKPS<1:0> T1OSCEN T1SYNC —TMR1ON0000 00-0 uuuu uu-u
019h T1GCON TMR1GE T1GPOL T1GTM T1GSPM T1GGO/
DONE
T1GVAL T1GSS<1:0> 0000 0x00 uuuu uxuu
01Ah TMR2 Timer 2 Module Register 0000 0000 0000 0000
01Bh PR2 Timer 2 Period Register 1111 1111 1111 1111
01Ch T2CON T2OUTPS<3:0> TMR2ON T2CKPS<1:0> -000 0000 -000 0000
01Dh Unimplemented
01Eh Unimplemented
01Fh Unimplemented
Bank 1
08Ch TRISA PORTA Data Direction Register 1111 1111 1111 1111
08Dh TRISB PORTB Data Direction Register 1111 1111 1111 1111
08Eh TRISC PORTC Data Direction Register 1111 1111 1111 1111
08Fh TRISD(2) PORTD Data Direction Register 1111 1111 1111 1111
090h TRISE (3) TRISE2(2) TRISE1(2) TRISE0(2) ---- 1111 ---- 1111
091h PIE1 TMR1GIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000
092h PIE2 OSFIE —BCLIE CCP2IE 0--- 0--0 0--- 0--0
093h Unimplemented
094h Unimplemented
095h
OPTION_REG
WPUEN INTEDG TMR0CS TMR0SE PSA PS<2:0> 1111 1111 1111 1111
096h PCON STKOVF STKUNF —RWDTRMCLR RI POR BOR 00-1 11qq qq-q qquu
097h WDTCON WDTPS<4:0> SWDTEN --01 0110 --01 0110
098h Unimplemented
099h OSCCON —IRCF<3:0>—SCS<1:0>-011 1-00 -011 1-00
09Ah OSCSTAT SOSCR —OSTSHFIOFR LFIOFR HFIOFS 0-q0 --00 q-qq --0q
09Bh ADRESL ADC Result Register Low xxxx xxxx uuuu uuuu
09Ch ADRESH ADC Result Register High xxxx xxxx uuuu uuuu
09Dh ADCON0 —CHS<4:0>
GO/DONE
ADON -000 0000 -000 0000
09Eh ADCON1 ADFM ADCS<2:0>
ADPREF<1:0>
0000 --00 0000 --00
09Fh Unimplemented
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as 0’, r = reserved.
Shaded locations are unimplemented, read as ‘0’.
Note 1: PIC16F1516/7/8/9 only.
2: PIC16(L)F1517/9 only.
3: Unimplemented, read as ‘1’.
2010-2016 Microchip Technology Inc. DS40001452F-page 31
PIC16(L)F1516/7/8/9
Bank 2
10Ch LATA PORTA Data Latch xxxx xxxx uuuu uuuu
10Dh LATB PORTB Data Latch xxxx xxxx uuuu uuuu
10Eh LATC PORTC Data Latch xxxx xxxx uuuu uuuu
10Fh LATD(2) PORTD Data Latch xxxx xxxx uuuu uuuu
110h LATE(2) LATE2 LATE1 LATE0 ---- -xxx ---- -uuu
111h
to
115h
Unimplemented
116h BORCON SBOREN BORFS BORRDY 10-- ---q uu-- ---u
117h FVRCON FVREN FVRRDY TSEN TSRNG —ADFVR<1:0>0q00 --00 0q00 --00
118h
to
11Ch
Unimplemented
11Dh APFCON SSSEL CCP2SEL ---- --00 ---- --00
11Eh Unimplemented
11Fh Unimplemented
Bank 3
18Ch ANSELA —ANSA5 ANSA3 ANSA2 ANSA1 ANSA0 --1- 1111 --1- 1111
18Dh ANSELB ANSB5 ANSB4 ANSB3 ANSB2 ANSB1 ANSB0 --11 1111 --11 1111
18Eh ANSELC ANSC7 ANSC6 ANSC5 ANSC4 ANSC3 ANSC2 1111 11-- 1111 11--
18Fh ANSELD(2) ANSD7 ANSD6 ANSD5 ANSD4 ANSD3 ANSD2 ANSD1 ANSD0 1111 1111 1111 1111
190h ANSELE(2) ANSE2 ANSE1 ANSE0 ---- -111 ---- -111
191h PMADRL Program Memory Address Register Low Byte 0000 0000 0000 0000
192h PMADRH (3) Program Memory Address Register High Byte 1000 0000 1000 0000
193h PMDATL Program Memory Data Register Low Byte xxxx xxxx uuuu uuuu
194h PMDATH Program Memory Data Register High Byte --xx xxxx --uu uuuu
195h PMCON1 (3) CFGS LWLO FREE WRERR WREN WR RD 1000 x000 1000 q000
196h PMCON2 Program Memory control register 2 0000 0000 0000 0000
197h VREGCON(1) VREGPM Reserved ---- --01 ---- --01
198h Unimplemented
199h RCREG USART Receive Data Register 0000 0000 0000 0000
19Ah TXREG USART Transmit Data Register 0000 0000 0000 0000
19Bh SPBRG BRG<7:0> 0000 0000 0000 0000
19Ch SPBRGH BRG<15:8> 0000 0000 0000 0000
19Dh RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 0000 000x 0000 000x
19Eh TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 0000 0010 0000 0010
19Fh BAUDCON ABDOVF RCIDL SCKP BRG16 WUE ABDEN 01-0 0-00 01-0 0-00
TABLE 3-8: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)
Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on
POR, BOR
Va lue on
all other
Resets
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as 0’, r = reserved.
Shaded locations are unimplemented, read as ‘0’.
Note 1: PIC16F1516/7/8/9 only.
2: PIC16(L)F1517/9 only.
3: Unimplemented, read as ‘1’.
PIC16(L)F1516/7/8/9
DS40001452F-page 32 2010-2016 Microchip Technology Inc.
Bank 4
20Ch Unimplemented
20Dh WPUB WPUB7 WPUB6 WPUB5 WPUB4 WPUB3 WPUB2 WPUB1 WPUB0 1111 1111 1111 1111
20Eh Unimplemented
20Fh Unimplemented
210h WPUE WPUE3 ---- 1--- ---- 1---
211h SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register xxxx xxxx uuuu uuuu
212h SSPADD Synchronous Serial Port (I2C mode) Address Register 0000 0000 0000 0000
213h SSPMSK Synchronous Serial Port (I2C mode) Address Mask Register 1111 1111 1111 1111
214h SSPSTAT SMP CKE D/A PSR/WUA BF 0000 0000 0000 0000
215h SSPCON1 WCOL SSPOV SSPEN CKP SSPM<3:0> 0000 0000 0000 0000
216h SSPCON2 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN 0000 0000 0000 0000
217h SSPCON3 ACKTIM PCIE SCIE BOEN SDAHT SBCDE AHEN DHEN 0000 0000 0000 0000
218h
to
21Fh
Unimplemented
Bank 5
28Ch
to
290h
Unimplemented
291h CCPR1L Capture/Compare/PWM Register 1 (LSB) xxxx xxxx uuuu uuuu
292h CCPR1H Capture/Compare/PWM Register 1 (MSB) xxxx xxxx uuuu uuuu
293h CCP1CON DC1B<1:0> CCP1M<3:0> --00 0000 --00 0000
294h
to
297h
Unimplemented
298h CCPR2L Capture/Compare/PWM Register 2 (LSB) xxxx xxxx uuuu uuuu
299h CCPR2H Capture/Compare/PWM Register 2 (MSB) xxxx xxxx uuuu uuuu
29Ah CCP2CON DC2B<1:0> CCP2M<3:0> --00 0000 --00 0000
29Bh
to
29Fh
Unimplemented
Bank 6
30Ch
to
31Fh
Unimplemented
Bank 7
38Ch
to
393h
Unimplemented
394h IOCBN IOCBP<7:0> 0000 0000 0000 0000
395h IOCBN IOCBN<7:0> 0000 0000 0000 0000
396h IOCBF IOCBF<7:0> 0000 0000 0000 0000
397h
to
39Fh
Unimplemented
Bank 8-30
x0Ch
or
x8Ch
to
x1Fh
or
x9Fh
Unimplemented
TABLE 3-8: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)
Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on
POR, BOR
Va lue on
all other
Resets
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as 0’, r = reserved.
Shaded locations are unimplemented, read as ‘0’.
Note 1: PIC16F1516/7/8/9 only.
2: PIC16(L)F1517/9 only.
3: Unimplemented, read as ‘1’.
2010-2016 Microchip Technology Inc. DS40001452F-page 33
PIC16(L)F1516/7/8/9
Bank 31
F8Ch
to
FE3h
Unimplemented
FE4h STATUS_SHAD —ZDCC---- -xxx ---- -uuu
FE5h WREG_SHAD Working Register Shadow xxxx xxxx uuuu uuuu
FE6h BSR_SHAD Bank Select Register Shadow ---x xxxx ---u uuuu
FE7h PCLATH_SHAD Program Counter Latch High Register Shadow -xxx xxxx uuuu uuuu
FE8h FSR0L_SHAD Indirect Data Memory Address 0 Low Pointer Shadow xxxx xxxx uuuu uuuu
FE9h FSR0H_SHAD Indirect Data Memory Address 0 High Pointer Shadow xxxx xxxx uuuu uuuu
FEAh FSR1L_SHAD Indirect Data Memory Address 1 Low Pointer Shadow xxxx xxxx uuuu uuuu
FEBh FSR1H_SHAD Indirect Data Memory Address 1 High Pointer Shadow xxxx xxxx uuuu uuuu
FECh Unimplemented
FEDh STKPTR Current Stack pointer ---1 1111 ---1 1111
FEEh TOSL Top of Stack Low byte xxxx xxxx uuuu uuuu
FEFh TOSH Top of Stack High byte -xxx xxxx -uuu uuuu
TABLE 3-8: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)
Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on
POR, BOR
Va lue on
all other
Resets
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as 0’, r = reserved.
Shaded locations are unimplemented, read as ‘0’.
Note 1: PIC16F1516/7/8/9 only.
2: PIC16(L)F1517/9 only.
3: Unimplemented, read as ‘1’.
PIC16(L)F1516/7/8/9
DS40001452F-page 34 2010-2016 Microchip Technology Inc.
3.5 PCL and PCLATH
The Program Counter (PC) is 15 bits wide. The low byte
comes from the PCL register, which is a readable and
writable register. The high byte (PC<14:8>) is not directly
readable or writable and comes from PCLATH. On any
Reset, the PC is cleared. Figure 3-4 shows the five
situations for the loading of the PC.
FIGURE 3-4: LOADING OF PC IN
DIFFERENT SITUATIONS
3.5.1 MODIFYING PCL
Executing any instruction with the PCL register as the
destination simultaneously causes the Program
Counter PC<14:8> bits (PCH) to be replaced by the
contents of the PCLATH register. This allows the entire
contents of the program counter to be changed by writ-
ing the desired upper seven bits to the PCLATH regis-
ter. When the lower eight bits are written to the PCL
register, all 15 bits of the program counter will change
to the values contained in the PCLATH register and
those being written to the PCL register.
3.5.2 COMPUTED GOTO
A computed GOTO is accomplished by adding an offset to
the program counter (ADDWF PCL). When performing a
table read using a computed GOTO method, care should
be exercised if the table location crosses a PCL memory
boundary (each 256-byte block). Refer to the Application
Note AN556, Implementing a Table Read (DS00556).
3.5.3 COMPUTED FUNCTION CALLS
A computed function CALL allows programs to maintain
tables of functions and provide another way to execute
state machines or look-up tables. When performing a
table read using a computed function CALL, care
should be exercised if the table location crosses a PCL
memory boundary (each 256-byte block).
If using the CALL instruction, the PCH<2:0> and PCL
registers are loaded with the operand of the CALL
instruction. PCH<6:3> is loaded with PCLATH<6:3>.
The CALLW instruction enables computed calls by com-
bining PCLATH and W to form the destination address.
A computed CALLW is accomplished by loading the W
register with the desired address and executing CALLW.
The PCL register is loaded with the value of W and
PCH is loaded with PCLATH.
3.5.4 BRANCHING
The branching instructions add an offset to the PC.
This allows relocatable code and code that crosses
page boundaries. There are two forms of branching,
BRW and BRA. The PC will have incremented to fetch
the next instruction in both cases. When using either
branching instruction, a PCL memory boundary may be
crossed.
If using BRW, load the W register with the desired
unsigned address and execute BRW. The entire PC will
be loaded with the address PC + 1 + W.
If using BRA, the entire PC will be loaded with PC + 1 +,
the signed value of the operand of the BRA instruction.
2010-2016 Microchip Technology Inc. DS40001452F-page 35
PIC16(L)F1516/7/8/9
3.6 Stack
All devices have a 16-level x 15-bit wide hardware
stack (refer to Figures 3-5 through 3-8). The stack
space is not part of either program or data space. The
PC is PUSHed onto the stack when CALL or CALLW
instructions are executed or an interrupt causes a
branch. The stack is POPed in the event of a RETURN,
RETLW or a RETFIE instruction execution. PCLATH is
not affected by a PUSH or POP operation.
The stack operates as a circular buffer if the STVREN
bit is programmed to ‘0’ (Configuration Words). This
means that after the stack has been PUSHed 16 times,
the 17th PUSH overwrites the value that was stored
from the first PUSH. The 18th PUSH overwrites the
second PUSH (and so on). The STKOVF and STKUNF
flag bits will be set on an Overflow/Underflow, regard-
less of whether the Reset is enabled.
3.6.1 ACCESSING THE STACK
The stack is available through the TOSH, TOSL and
STKPTR registers. STKPTR is the current value of the
Stack Pointer. TOSH:TOSL register pair points to the
TOP of the stack. Both registers are read/writable. TOS
is split into TOSH and TOSL due to the 15-bit size of
the PC. To access the stack, adjust the value of
STKPTR, which will position TOSH:TOSL, then
read/write to TOSH:TOSL. STKPTR is five bits to allow
detection of overflow and underflow.
During normal program operation, CALL, CALLW and
Interrupts will increment STKPTR while RETLW,
RETURN, and RETFIE will decrement STKPTR. At any
time STKPTR can be inspected to see how much stack
is left. The STKPTR always points at the currently used
place on the stack. Therefore, a CALL or CALLW will
increment the STKPTR and then write the PC, and a
return will unload the PC and then decrement STKPTR.
Reference Figure 3-5 through 3-8 for examples of
accessing the stack.
FIGURE 3-5: ACCESSING THE STACK EXAMPLE 1
Note 1: There are no instructions/mnemonics
called PUSH or POP. These are actions
that occur from the execution of the
CALL, CALLW, RETURN, RETLW and
RETFIE instructions or the vectoring to
an interrupt address.
Note: Care should be taken when modifying the
STKPTR while interrupts are enabled.
0x0F
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
0x06
0x05
0x04
0x03
0x02
0x01
0x00
0x0000
STKPTR = 0x1F
Initial Stack Configuration:
After Reset, the stack is empty. The
empty stack is initialized so the Stack
Pointer is pointing at 0x1F. If the Stack
Overflow/Underflow Reset is enabled, the
TOSH/TOSL registers will return ‘0’. If
the Stack Overflow/Underflow Reset is
disabled, the TOSH/TOSL registers will
return the contents of stack address 0x0F.
0x1F STKPTR = 0x1F
Stack Reset Disabled
(STVREN = 0)
Stack Reset Enabled
(STVREN = 1)
TOSH:TOSL
TOSH:TOSL
PIC16(L)F1516/7/8/9
DS40001452F-page 36 2010-2016 Microchip Technology Inc.
FIGURE 3-6: ACCESSING THE STACK EXAMPLE 2
FIGURE 3-7: ACCESSING THE STACK EXAMPLE 3
0x0F
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
0x06
0x05
0x04
0x03
0x02
0x01
Return Address0x00 STKPTR = 0x00
This figure shows the stack configuration
after the first CALL or a single interrupt.
If a RETURN instruction is executed, the
return address will be placed in the
Program Counter and the Stack Pointer
decremented to the empty state (0x1F).
TOSH:TOSL
0x0F
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
Return Address0x06
Return Address0x05
Return Address0x04
Return Address0x03
Return Address0x02
Return Address0x01
Return Address0x00
STKPTR = 0x06
After seven CALLs or six CALLs and an
interrupt, the stack looks like the figure
on the left. A series of RETURN instructions
will repeatedly place the return addresses
into the Program Counter and pop the stack.
TOSH:TOSL
2010-2016 Microchip Technology Inc. DS40001452F-page 37
PIC16(L)F1516/7/8/9
FIGURE 3-8: ACCESSING THE STACK EXAMPLE 4
3.6.2 OVERFLOW/UNDERFLOW RESET
If the STVREN bit in Configuration Words is
programmed to ‘1’, the device will be reset if the stack
is PUSHed beyond the 16th level or POPed beyond the
first level, setting the appropriate bits (STKOVF or
STKUNF, respectively) in the PCON register.
3.7 Indirect Addressing
The INDFn registers are not physical registers. Any
instruction that accesses an INDFn register actually
accesses the register at the address specified by the
File Select Registers (FSR). If the FSRn address
specifies one of the two INDFn registers, the read will
return ‘0’ and the write will not occur (though Status bits
may be affected). The FSRn register value is created
by the pair FSRnH and FSRnL.
The FSR registers form a 16-bit address that allows an
addressing space with 65536 locations. These locations
are divided into three memory regions:
Traditional Data Memory
Linear Data Memory
Program Flash Memory
0x0F
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
0x06
0x05
0x04
0x03
0x02
0x01
Return Address0x00 STKPTR = 0x10
When the stack is full, the next CALL or
an interrupt will set the Stack Pointer to
0x10. This is identical to address 0x00
so the stack will wrap and overwrite the
return address at 0x00. If the Stack
Overflow/Underflow Reset is enabled, a
Reset will occur and location 0x00 will
not be overwritten.
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
TOSH:TOSL
PIC16(L)F1516/7/8/9
DS40001452F-page 38 2010-2016 Microchip Technology Inc.
FIGURE 3-9: INDIRECT ADDRESSI NG
0x0000
0x0FFF
Traditional
FSR
Address
Range
Data Memory
0x1000 Reserved
Linear
Data Memory
Reserved
0x2000
0x29AF
0x29B0
0x7FFF
0x8000
0xFFFF
0x0000
0x0FFF
0x0000
0x7FFF
Program
Flash Memory
Note: Not all memory regions are completely implemented. Consult device memory tables for memory limits.
0x1FFF
2010-2016 Microchip Technology Inc. DS40001452F-page 39
PIC16(L)F1516/7/8/9
3.7.1 TRADITIONAL DATA MEMORY
The traditional data memory is a region from FSR
address 0x000 to FSR address 0xFFF. The addresses
correspond to the absolute addresses of all SFR, GPR
and common registers.
FIGURE 3-10: TRAD ITIO NAL DATA MEMORY MAP
Indirect AddressingDirect Addressing
Bank Select Location Select
4BSR 6 0
From Opcode FSRxL70
Bank Select Location Select
00000 00001 00010 11111
0x00
0x7F
Bank 0 Bank 1 Bank 2 Bank 31
0FSRxH70
0000
PIC16(L)F1516/7/8/9
DS40001452F-page 40 2010-2016 Microchip Technology Inc.
3.7.2 LINEAR DATA MEMORY
The linear data memory is the region from FSR
address 0x2000 to FSR address 0x29AF. This region is
a virtual region that points back to the 80-byte blocks of
GPR memory in all the banks.
Unimplemented memory reads as 0x00. Use of the
linear data memory region allows buffers to be larger
than 80 bytes because incrementing the FSR beyond
one bank will go directly to the GPR memory of the next
bank.
The 16 bytes of common memory are not included in
the linear data memory region.
FIGURE 3-11: LINEAR DATA MEMORY
MAP
3.7.3 PROGRAM FLASH MEMORY
To make constant data access easier, the entire
program Flash memory is mapped to the upper half of
the FSR address space. When the MSB of FSRnH is
set, the lower 15 bits are the address in program
memory which will be accessed through INDF. Only the
lower eight bits of each memory location is accessible
via INDF. Writing to the program Flash memory cannot
be accomplished via the FSR/INDF interface. All
instructions that access program Flash memory via the
FSR/INDF interface will require one additional
instruction cycle to complete.
FIGURE 3-12: PROGRAM FLASH
MEMORY MAP
7
01
7
00
Location Select 0x2000
FSRnH FSRnL
0x020
Bank 0
0x06F
0x0A0
Bank 1
0x0EF
0x120
Bank 2
0x16F
0xF20
Bank 30
0xF6F
0x29AF
0
7
1
7
00
Location Select 0x8000
FSRnH FSRnL
0x0000
0x7FFF
0xFFFF
Program
Flash
Memory
(low 8
bits)
2010-2016 Microchip Technology Inc. DS40001452F-page 41
PIC16(L)F1516/7/8/9
4.0 DEVICE CONFIGURATION
Device configuration consists of Configuration Words,
Code Protection and Device ID.
4.1 Configurati on Words
There are several Configuration Word bits that allow
different oscillator and memory protection options.
These are implemented as Configuration Word 1 at
8007h and Configuration Word 2 at 8008h.
Note: The DEBUG bit in Configuration Words is
managed automatically by device
development tools including debuggers
and programmers. For normal device
operation, this bit should be maintained as
a ‘1’.
PIC16(L)F1516/7/8/9
DS40001452F-page 42 2010-2016 Microchip Technology Inc.
4.2 Register Definitions: Configuration Words
REGISTER 4-1: CONFIG1: CONFIGURATION WORD 1
R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 U-1
FCMEN IESO CLKOUTEN BOREN<1:0>
bit 13 bit 8
R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1
CP MCLRE PWRTE WDTE<1:0> FOSC<2:0>
bit 7 bit 0
Legend:
R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘1’
‘0’ = Bit is cleared ‘1’ = Bit is set -n = Value when blank or after Bulk Erase
bit 13 FCMEN: Fail-Safe Clock Monitor Enable bit
1 = Fail-Safe Clock Monitor is enabled
0 = Fail-Safe Clock Monitor is disabled
bit 12 IESO: Internal External Switchover bit
1 = Internal/External Switchover mode is enabled
0 = Internal/External Switchover mode is disabled
bit 11 CLKOUTEN: Clock Out Enable bit
If FOSC Configuration bits are set to LP, XT, HS modes:
This bit is ignored, CLKOUT function is disabled. Oscillator function on the CLKOUT pin.
All other FOSC modes:
1 = CLKOUT function is disabled. I/O function on the CLKOUT pin.
0 = CLKOUT function is enabled on the CLKOUT pin
bit 10-9 BOREN<1:0>: Brown-out Reset Enable bits
11 = BOR enabled
10 = BOR enabled during operation and disabled in Sleep
01 = BOR controlled by SBOREN bit of the BORCON register
00 = BOR disabled
bit 8 Unimplemented: Read as ‘1
bit 7 CP: Code Protection bit
1 = Program memory code protection is disabled
0 = Program memory code protection is enabled
bit 6 MCLRE: MCLR/VPP Pin Function Select bit
If LVP bit = 1:
This bit is ignored.
If LVP bit = 0:
1 =MCLR/VPP pin function is MCLR; Weak pull-up enabled.
0 =MCLR
/VPP pin function is digital input; MCLR internally disabled; Weak pull-up under control of
WPUE3 bit.
bit 5 PWRTE: Power-up Timer Enable bit
1 = PWRT disabled
0 = PWRT enabled
bit 4-3 WDTE<1:0>: Watchdog Timer Enable bit
11 = WDT enabled
10 = WDT enabled while running and disabled in Sleep
01 = WDT controlled by the SWDTEN bit in the WDTCON register
00 = WDT disabled
bit 2-0 FOSC<2:0>: Oscillator Selection bits
111 = ECH: External Clock, High-Power mode (4-20 MHz): device clock supplied to CLKIN pin
110 = ECM: External Clock, Medium-Power mode (0.5-4 MHz): device clock supplied to CLKIN pin
101 = ECL: External Clock, Low-Power mode (0-0.5 MHz): device clock supplied to CLKIN pin
100 = INTOSC oscillator: I/O function on CLKIN pin
011 = EXTRC oscillator: External RC circuit connected to CLKIN pin
010 = HS oscillator: High-speed crystal/resonator connected between OSC1 and OSC2 pins
001 = XT oscillator: Crystal/resonator connected between OSC1 and OSC2 pins
000 = LP oscillator: Low-power crystal connected between OSC1 and OSC2 pins
2010-2016 Microchip Technology Inc. DS40001452F-page 43
PIC16(L)F1516/7/8/9
REGISTER 4-2: CONFIG2: CONFIGURATION WORD 2
R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 U-1
LVP DEBUG LPBOR BORV STVREN
bit 13 bit 8
U-1 U-1 U-1 R/P-1 U-1 U-1 R/P-1 R/P-1
VCAPEN(1) —WRT<1:0>
bit 7 bit 0
Legend:
R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘1’
‘0’ = Bit is cleared ‘1’ = Bit is set -n = Value when blank or after Bulk Erase
bit 13 LVP: Low-Voltage Programming Enable bit
1 = Low-voltage programming enabled
0 = High-voltage on MCLR must be used for programming
bit 12 DEBUG: In-Circuit Debugger Mode bit
1 = In-Circuit Debugger disabled, ICSPCLK and ICSPDAT are general purpose I/O pins
0 = In-Circuit Debugger enabled, ICSPCLK and ICSPDAT are dedicated to the debugger
bit 11 LPBOR: Low-Power BOR
1 = Low-Power BOR is disabled
0 = Low-Power BOR is enabled
bit 10 BORV: Brown-out Reset Voltage Selection bit(2)
1 = Brown-out Reset voltage (Vbor), low trip point selected.
0 = Brown-out Reset voltage (Vbor), high trip point selected.
bit 9 STVREN: Stack Overflow/Underflow Reset Enable bit
1 = Stack Overflow or Underflow will cause a Reset
0 = Stack Overflow or Underflow will not cause a Reset
bit 8-5 Unimplemented: Read as ‘1
bit 4 VCAPEN: Voltage Regulator Capacitor Enable bits(1)
If PIC16LF1516/7/8/9 (regulator disabled):
These bits are ignored. All VCAP pin functions are disabled.
If PIC16F1516/7/8/9 (regulator enabled):
0 =V
CAP functionality is enabled on RA5
1 = All VCAP pin functions are disabled
bit 3-2 Unimplemented: Read as ‘1
bit 1-0 WRT<1:0>: Flash Memory Self-Write Protection bits
8 kW Flash memory (PIC16(L)F1516/7 only):
11 = Write protection off
10 = 000h to 1FFh write-protected, 200h to 1FFFh may be modified by PMCON control
01 = 000h to FFFh write-protected, 1000h to 1FFFh may be modified by PMCON control
00 = 000h to 1FFFh write-protected, no addresses may be modified by PMCON control
16 kW Flash memory (PIC16(L)F1518/9 only):
11 = Write protection off
10 = 000h to 1FFh write-protected, 200h to 3FFFh may be modified by PMCON control
01 = 000h to 1FFFh write-protected, 2000h to 3FFFh may be modified by PMCON control
00 = 000h to 3FFFh write-protected, no addresses may be modified by PMCON control
Note 1: PIC16F1516/7/8/9 only.
2: See Vbor parameter for specific trip point voltages.
PIC16(L)F1516/7/8/9
DS40001452F-page 44 2010-2016 Microchip Technology Inc.
4.3 Code Protection
Code protection allows the device to be protected from
unauthorized access. Program memory protection is
controlled independently. Internal access to the
program memory is unaffected by any code protection
setting.
4.3.1 PROGRAM MEMORY PROTECTION
The entire program memory space is protected from
external reads and writes by the CP bit in Configuration
Words. When CP = 0, external reads and writes of
program memory are inhibited and a read will return all
0s. The CPU can continue to read program memory,
regardless of the protection bit settings. Writing the
program memory is dependent upon the write
protection setting. See Section 4.4 “Write
Protection” for more information.
4.4 Wr ite Protection
Write protection allows the device to be protected from
unintended self-writes. Applications, such as
bootloader software, can be protected while allowing
other regions of the program memory to be modified.
The WRT<1:0> bits in Configuration Words define the
size of the program memory block that is protected.
4.5 User ID
Four memory locations (8000h-8003h) are designated as
ID locations where the user can store checksum or other
code identification numbers. These locations are
readable and writable during normal execution. See
Section 11.4 “User ID, Device ID and Configuration
Word Access” for more information on accessing these
memory locations. For more information on checksum
calculation, see the PIC16(L)F151X/152X Memory
Programming Specification (DS41442).
2010-2016 Microchip Technology Inc. DS40001452F-page 45
PIC16(L)F1516/7/8/9
4.6 Device ID and Revision ID
The memory location 8006h is where the Device ID and
Revision ID are stored. The upper nine bits hold the
Device ID. The lower five bits hold the Revision ID. See
Section 11.4 “User ID, Device ID and Configuration
Word Access” for more information on accessing
these memory locations.
Development tools, such as device programmers and
debuggers, may be used to read the Device ID and
Revision ID.
4.7 Reg is ter D e fi nitio n s : D e vice
REGISTER 4-3: DEVID: DEVICE ID REGISTER
RRRRRR
DEV<8:3>
bit 13 bit 8
RRRRRRRR
DEV<2:0> REV<4:0>
bit 7 bit 0
Legend:
R = Readable bit
‘1’ = Bit is set 0’ = Bit is cleared
bit 13-5 DEV<8:0>: Device ID bits
bit 4-0 REV<4:0>: Revision ID bits
These bits are used to identify the revision (see Table under DEV<8:0> above).
Device DEVID<13:0> Values
DEV<8:0> REV<4:0>
PIC16F1519 01 0110 111 x xxxx
PIC16F1518 01 0110 110 x xxxx
PIC16F1827 01 0110 101 x xxxx
PIC16F1516 01 0110 100 x xxxx
PIC16LF1519 01 0111 111 x xxxx
PIC16LF1518 01 0111 110 x xxxx
PIC16LF1517 01 0111 101 x xxxx
PIC16LF1516 01 0111 100 x xxxx
PIC16(L)F1516/7/8/9
DS40001452F-page 46 2010-2016 Microchip Technology Inc.
5.0 OSCILLATOR MODULE (W ITH
FAIL-SAFE CLOCK MONITOR)
5.1 Overview
The oscillator module has a wide variety of clock
sources and selection features that allow it to be used
in a wide range of applications while maximizing perfor-
mance and minimizing power consumption. Figure 5-1
illustrates a block diagram of the oscillator module.
Clock sources can be supplied from external oscillators,
quartz crystal resonators, ceramic resonators and
Resistor-Capacitor (RC) circuits. In addition, the system
clock source can be supplied from one of two internal
oscillators, with a choice of speeds selectable via
software. Additional clock features include:
Selectable system clock source between external
or internal sources via software.
Two-Speed Start-up mode, which minimizes
latency between external oscillator start-up and
code execution.
Fail-Safe Clock Monitor (FSCM) designed to
detect a failure of the external clock source (LP,
XT, HS, EC or RC modes) and switch
automatically to the internal oscillator.
Oscillator Start-up Timer (OST) ensures stability
of crystal oscillator sources
Fast start-up oscillator allows internal circuits to
power up and stabilize before switching to the 16
MHz HFINTOSC
The oscillator module can be configured in one of eight
clock modes.
1. ECL – External Clock Low-Power mode
(0 MHz to 0.5 MHz)
2. ECM – External Clock Medium-Power mode
(0.5 MHz to 4 MHz)
3. ECH – External Clock High-Power mode
(4 MHz to 20 MHz)
4. LP – 32 kHz Low-Power Crystal mode.
5. XT – Medium Gain Crystal or Ceramic Resonator
Oscillator mode (up to 4 MHz)
6. HS – High Gain Crystal or Ceramic Resonator
mode (4 MHz to 20 MHz)
7. RC – External Resistor-Capacitor (RC)
8. INTOSC – Internal oscillator (31 kHz to 16 MHz)
Clock Source modes are selected by the FOSC<2:0>
bits in the Configuration Words. The FOSC bits
determine the type of oscillator that will be used when
the device is first powered.
The EC clock mode relies on an external logic level
signal as the device clock source. The LP, XT, and HS
clock modes require an external crystal or resonator to
be connected to the device. Each mode is optimized for
a different frequency range. The RC clock mode
requires an external resistor and capacitor to set the
oscillator frequency.
The INTOSC internal oscillator block produces a low
and high-frequency clock source, designated
LFINTOSC and HFINTOSC. (see Internal Oscillator
Block, Figure 5-1). A wide selection of device clock
frequencies may be derived from these two clock
sources.
2010-2016 Microchip Technology Inc. DS40001452F-page 47
PIC16(L)F1516/7/8/9
FIGURE 5-1: SIMPLI FI ED P IC® MCU CLOCK SOURCE BLOCK DIAGRAM
OSC2
OSC1
Primary
Oscillator
(OSC)
SOSCO/
T1CKI
SOSCI
Secondary
Oscillator
(SOSC)
16 MHz
Primary Osc
Start-Up Osc
LF-INTOSC
(31.25 kHz)
INTOSC
Divide Circuit
IRCF<3:0>
INTOSC
Primary Clock
Secondary Clock
Clock Switch MUX
01
00
1x
Low-Power Mode
Event Switch
(SCS<1:0>)
2
4
Secondary Oscillator
Primary Oscillator
Internal Oscillator
HF-16 MHz
HF-4 MHz
HF-2 MHz
HF-1 MHz
HF-500 kHz
HF-250 kHz
HF-125 kHz
HF-62.5 kHz
HF-31.25 kHz
LF-31 kHz
HF-8 MHz
Internal Oscillator MUX
4
1111
1110
1101
1100
1011
1010/
0111
1001/
0110
1000/
0101
0100
0011
0010
0001
0000
/1
/2
/4
/8
/16
/32
/64
/128
/256
/512
Start-up
Control
Logic
PIC16(L)F1516/7/8/9
DS40001452F-page 48 2010-2016 Microchip Technology Inc.
5.2 Clock Source Types
Clock sources can be classified as external or internal.
External clock sources rely on external circuitry for the
clock source to function. Examples are: oscillator
modules (EC mode), quartz crystal resonators or
ceramic resonators (LP, XT and HS modes) and
Resistor-Capacitor (RC) mode circuits.
Internal clock sources are contained within the oscillator
module. The internal oscillator block has two internal
oscillators that are used to generate the internal system
clock sources: the 16 MHz High-Frequency Internal
Oscillator and the 31 kHz Low-Frequency Internal
Oscillator (LFINTOSC).
The system clock can be selected between external or
internal clock sources via the System Clock Select
(SCS) bits in the OSCCON register. See Section 5.3
“Clock Switching” for additional information.
5.2.1 EXTERNAL CLOCK SOURCES
An external clock source can be used as the device
system clock by performing one of the following
actions:
Program the FOSC<2:0> bits in the Configuration
Words to select an external clock source that will
be used as the default system clock upon a
device Reset.
Write the SCS<1:0> bits in the OSCCON register
to switch the system clock source to:
- Secondary oscillator during run time, or
- An external clock source determined by the
value of the FOSC bits.
See Section 5.3 “Clock Switchingfor more informa-
tion.
5.2.1.1 EC Mode
The External Clock (EC) mode allows an externally
generated logic level signal to be the system clock
source. When operating in this mode, an external clock
source is connected to the OSC1 input.
OSC2/CLKOUT is available for general purpose I/O or
CLKOUT. Figure 5-2 shows the pin connections for EC
mode.
EC mode has three power modes to select from through
Configuration Words:
High power, 4-20 MHz (FOSC = 111)
Medium power, 0.5-4 MHz (FOSC = 110)
Low power, 0-0.5 MHz (FOSC = 101)
The Oscillator Start-up Timer (OST) is disabled when
EC mode is selected. Therefore, there is no delay in
operation after a Power-on Reset (POR) or wake-up
from Sleep. Because the PIC® MCU design is fully
static, stopping the external clock input will have the
effect of halting the device while leaving all data intact.
Upon restarting the external clock, the device will
resume operation as if no time had elapsed.
FIGURE 5-2: EXTERNAL CLOCK (EC)
MODE OPERATION
5.2.1.2 LP, XT, HS Modes
The LP, XT and HS modes support the use of quartz
crystal resonators or ceramic resonators connected to
OSC1 and OSC2 (Figure 5-3). The three modes select
a low, medium or high gain setting of the internal
inverter-amplifier to support various resonator types
and speed.
LP Oscillator mode selects the lowest gain setting of the
internal inverter-amplifier. LP mode current consumption
is the least of the three modes. This mode is designed to
drive only 32.768 kHz tuning-fork type crystals (watch
crystals).
XT Oscillator mode selects the intermediate gain
setting of the internal inverter-amplifier. XT mode
current consumption is the medium of the three modes.
This mode is best suited to drive resonators with a
medium drive level specification.
HS Oscillator mode selects the highest gain setting of the
internal inverter-amplifier. HS mode current consumption
is the highest of the three modes. This mode is best
suited for resonators that require a high drive setting.
Figure 5-3 and Figure 5-4 show typical circuits for
quartz crystal and ceramic resonators, respectively.
OSC1/CLKIN
OSC2/CLKOUT
Clock from
Ext. System PIC® MCU
FOSC/4 or I/O(1)
Note 1: Output depends upon CLKOUTEN bit of the
Configuration Words.
2010-2016 Microchip Technology Inc. DS40001452F-page 49
PIC16(L)F1516/7/8/9
FIGURE 5-3: QUARTZ CRYSTAL
OPERATION (LP, XT OR
HS MODE)
FIGURE 5-4: CERAMIC RESONATOR
OPERATION
(XT OR HS MODE)
5.2.1.3 Oscillator Start-up Timer (OST)
If the oscillator module is configured for LP, XT or HS
modes, the Oscillator Start-up Timer (OST) counts
1024 oscillations from OSC1. This occurs following a
Power-on Reset (POR) and when the Power-up Timer
(PWRT) has expired (if configured), or a wake-up from
Sleep. During this time, the program counter does not
increment and program execution is suspended,
unless either FSCM or Two-Speed Start-up are
enabled. In this case, code will continue to execute at
the selected INTOSC frequency while the OST is
counting. The OST ensures that the oscillator circuit,
using a quartz crystal resonator or ceramic resonator,
has started and is providing a stable system clock to
the oscillator module.
In order to minimize latency between external oscillator
start-up and code execution, the Two-Speed Clock
Start-Up mode can be selected (see Section 5.4
“Two-Speed Clock Start-up Mode”).
Note 1: Quartz crystal characteristics vary
according to type, package and
manufacturer. The user should consult the
manufacturer data sheets for specifications
and recommended application.
2: Always verify oscillator performance over
the VDD and temperature range that is
expected for the application.
3: For oscillator design assistance, reference
the following Microchip Applications Notes:
AN826, Crystal Oscillator Basics and
Crystal Selection for rfPIC® and PIC®
Devices (DS00826)
AN849, Ba si c PIC® Oscillator Design
(DS00849)
AN943, Pra ctic al PI C® Oscillator
Analysis and Design (DS00943)
AN949, Making Y our Oscillator Work
(DS00949)
Note 1: A series resistor (RS) may be required for
quartz crystals with low drive level.
2: The value of RF varies with the Oscillator mode
selected (typically between 2 M to 10 M.
C1
C2
Quartz
RS(1)
OSC1/CLKIN
RF(2) Sleep
To Internal
Logic
PIC® MCU
Crystal
OSC2/CLKOUT
Note 1: A series resistor (RS) may be required for
ceramic resonators with low drive level.
2: The value of RF varies with the Oscillator mode
selected (typically between 2 M to 10 M.
3: An additional parallel feedback resistor (RP)
may be required for proper ceramic resonator
operation.
C1
C2 Ceramic RS(1)
OSC1/CLKIN
RF(2) Sleep
To Internal
Logic
PIC® MCU
RP(3)
Resonator
OSC2/CLKOUT
PIC16(L)F1516/7/8/9
DS40001452F-page 50 2010-2016 Microchip Technology Inc.
5.2.1.4 Secondary Oscillator
The secondary oscillator is a separate crystal oscillator
that is associated with the Timer1 peripheral. It is opti-
mized for timekeeping operations with a 32.768 kHz
crystal connected between the SOSCO and SOSCI
device pins.
The secondary oscillator can be used as an alternate
system clock source and can be selected during run
time using clock switching. Refer to Section 5.3
“Clock Switching” for more information.
FIGURE 5-5: QUARTZ CRYSTAL
OPERATION
(SECONDARY
OSCILLATOR)
5.2.1.5 External RC Mode
The external Resistor-Capacitor (RC) modes support
the use of an external RC circuit. This allows the
designer maximum flexibility in frequency choice while
keeping costs to a minimum when clock accuracy is not
required.
The RC circuit connects to OSC1. OSC2/CLKOUT is
available for general purpose I/O or CLKOUT. The
function of the OSC2/CLKOUT pin is determined by the
CLKOUTEN bit in Configuration Words.
Figure 5-6 shows the external RC mode connections.
FIGURE 5-6: EXTERNAL RC MODES
The RC oscillator frequency is a function of the supply
voltage, the resistor (REXT) and capacitor (CEXT) values
and the operating temperature. Other factors affecting
the oscillator frequency are:
threshold voltage variation
component tolerances
packaging variations in capacitance
The user also needs to take into account variation due
to tolerance of the external RC components used.
Note 1: Quartz crystal characteristics vary
according to type, package and
manufacturer. The user should consult the
manufacturer data sheets for specifications
and recommended application.
2: Always verify oscillator performance over
the VDD and temperature range that is
expected for the application.
3: For oscillator design assistance, reference
the following Microchip Applications Notes:
AN826, Crystal Oscillator Basics and
Crystal Selection for rfPIC® and PIC®
Devices (DS00826)
AN849, Ba si c PIC® Oscillator Design
(DS00849)
AN943, Pra ctic al PI C® Oscillator
Analysis and Design (DS00943)
AN949, Making Y our Oscillator Work
(DS00949)
TB097, Interfacing a Micro Crystal
MS1V -T1K 32.768 kHz Tuning Fork
Crystal to a PIC16F690/SS (DS91097)
AN1288, Design Practices for
Low-Power External Oscillators
(DS01288)
C1
C2
32.768 kHz
SOSCI
To Internal
Logic
PIC® MCU
Crystal
SOSCO
Quartz
OSC2/CLKOUT
CEXT
REXT
PIC® MCU
OSC1/CLKIN
FOSC/4 or
Internal
Clock
VDD
VSS
Recommended values: 10 k REXT 100 k, <3V
3 k REXT 100 k, 3-5V
CEXT > 20 pF, 2-5V
Note 1: Output depends upon CLKOUTEN bit of the
Configuration Words.
I/O(1)
2010-2016 Microchip Technology Inc. DS40001452F-page 51
PIC16(L)F1516/7/8/9
5.2.2 INTERNAL CLOCK SOURCES
The device may be configured to use the internal
oscillator block as the system clock by performing one
of the following actions:
Program the FOSC<2:0> bits in Configuration
Words to select the INTOSC clock source, which
will be used as the default system clock upon a
device Reset.
Write the SCS<1:0> bits in the OSCCON register
to switch the system clock source to the internal
oscillator during run time. See Section 5.3
“Clock Switching”for more information.
In INTOSC mode, OSC1/CLKIN is available for general
purpose I/O. OSC2/CLKOUT is available for general
purpose I/O or CLKOUT.
The function of the OSC2/CLKOUT pin is determined
by the CLKOUTEN bit in Configuration Words.
The internal oscillator block has two independent
oscillators that provides the internal system clock
source.
1. The HFINTOSC (High-Frequency Internal
Oscillator) is factory calibrated and operates at
16 MHz.
2. The LFINTOSC (Low-Frequency Internal
Oscillator) is uncalibrated and operates at
31 kHz.
5.2.2.1 HFINTOSC
The High-Frequency Internal Oscillator (HFINTOSC) is
a factory calibrated 16 MHz internal clock source.
The output of the HFINTOSC connects to a postscaler
and multiplexer (see Figure 5-1). The frequency derived
from the HFINTOSC can be selected via software using
the IRCF<3:0> bits of the OSCCON register. See
Section 5.2.2.4 “Internal Oscillator Clock Switch
Timing for more information.
The HFINTOSC is enabled by:
Configure the IRCF<3:0> bits of the OSCCON
register for the desired HF frequency, and
•FOSC<2:0> = 100, or
Set the System Clock Source (SCS) bits of the
OSCCON register to ‘1x’.
A fast start-up oscillator allows internal circuits to
power-up and stabilize before switching to HFINTOSC.
The High-Frequency Internal Oscillator Ready bit
(HFIOFR) of the OSCSTAT register indicates when the
HFINTOSC is running.
The High-Frequency Internal Oscillator Stable bit
(HFIOFS) of the OSCSTAT register indicates when the
HFINTOSC is running within 0.5% of its final value.
5.2.2.2 LFINTOSC
The Low-Frequency Internal Oscillator (LFINTOSC) is
an uncalibrated 31 kHz internal clock source.
The output of the LFINTOSC connects to a multiplexer
(see Figure 5-1). Select 31 kHz, via software, using the
IRCF<3:0> bits of the OSCCON register. See
Section 5.2.2.4 “Internal Oscillator Clock Switch
Timing” for more information. The LFINTOSC is also
the frequency for the Power-up Timer (PWRT),
Watchdog Timer (WDT) and Fail-Safe Clock Monitor
(FSCM).
The LFINTOSC is enabled by selecting 31 kHz
(IRCF<3:0> bits of the OSCCON register = 000) as the
system clock source (SCS bits of the OSCCON
register = 1x), or when any of the following are
enabled:
Configure the IRCF<3:0> bits of the OSCCON
register for the desired LF frequency, and
•FOSC<2:0> = 100, or
Set the System Clock Source (SCS) bits of the
OSCCON register to ‘1x
Peripherals that use the LFINTOSC are:
Power-up Timer (PWRT)
Watchdog Timer (WDT)
Fail-Safe Clock Monitor (FSCM)
The Low-Frequency Internal Oscillator Ready bit
(LFIOFR) of the OSCSTAT register indicates when the
LFINTOSC is running.
PIC16(L)F1516/7/8/9
DS40001452F-page 52 2010-2016 Microchip Technology Inc.
5.2.2.3 Internal Oscillator Frequency
Selection
The system clock speed can be selected via software
using the Internal Oscillator Frequency Select bits
IRCF<3:0> of the OSCCON register.
The outputs of the 16 MHz HFINTOSC postscaler and
the LFINTOSC connects to a multiplexer (see
Figure 5-1). The Internal Oscillator Frequency Select
bits IRCF<3:0> of the OSCCON register select the
frequency output of the internal oscillators. One of the
following frequencies can be selected via software:
•16 MHz
•8 MHz
•4 MHz
•2 MHz
•1 MHz
500 kHz (default after Reset)
250 kHz
125 kHz
62.5 kHz
31.25 kHz
31 kHz (LFINTOSC)
The IRCF<3:0> bits of the OSCCON register allow
duplicate selections for some frequencies. These dupli-
cate choices can offer system design trade-offs. Lower
power consumption can be obtained when changing
oscillator sources for a given frequency. Faster transi-
tion times can be obtained between frequency changes
that use the same oscillator source.
5.2.2.4 Internal Oscillator Clock Switch
Timing
When switching between the HFINTOSC and the
LFINTOSC, the new oscillator may already be shut
down to save power (see Figure 5-7). If this is the case,
there is a delay after the IRCF<3:0> bits of the
OSCCON register are modified before the frequency
selection takes place. The OSCSTAT register will
reflect the current active status of the HFINTOSC and
LFINTOSC oscillators. The sequence of a frequency
selection is as follows:
1. IRCF<3:0> bits of the OSCCON register are
modified.
2. If the new clock is shut down, a clock start-up
delay is started.
3. Clock switch circuitry waits for a falling edge of
the current clock.
4. The current clock is held low and the clock
switch circuitry waits for a rising edge in the new
clock.
5. The new clock is now active.
6. The OSCSTAT register is updated as required.
7. Clock switch is complete.
See Figure 5-7 for more details.
If the internal oscillator speed is switched between two
clocks of the same source, there is no start-up delay
before the new frequency is selected. Clock switching
time delays are shown in Table 5-1.
Start-up delay specifications are located in the
oscillator tables of Section 25.0 “Electrical
Specifications”.
Note: Following any Reset, the IRCF<3:0> bits
of the OSCCON register are set to0111
and the frequency selection is set to
500 kHz. The user can modify the IRCF
bits to select a different frequency.
2010-2016 Microchip Technology Inc. DS40001452F-page 53
PIC16(L)F1516/7/8/9
FIGURE 5-7: INTERNAL OSCILLATOR SWITCH TIMING
HFINTOSC
LFINTOSC
IRCF <3:0>
System Clock
HFINTOSC
LFINTOSC
IRCF <3:0>
System Clock
00
00
Oscillator Delay (1) 2-cycle Sync Running
2-cycle Sync Running
HFINTOSC LFINTOSC (FSCM and WDT disabled)
HFINTOSC LFINTOSC (Either FSCM or WDT enabled)
LFINTOSC
HFINTOSC
IRCF <3:0>
System Clock
= 0 0
Oscillator Delay (1) 2-cycle Sync Running
LFINTOSC HFINTOSC LFINTOSC turns off unless WDT or FSCM is enabled
Note 1: See Table 5-1 for more information.
PIC16(L)F1516/7/8/9
DS40001452F-page 54 2010-2016 Microchip Technology Inc.
5.3 Clock Switching
The system clock source can be switched between
external and internal clock sources via software using
the System Clock Select (SCS) bits of the OSCCON
register. The following clock sources can be selected
using the SCS bits:
Default system oscillator determined by FOSC
bits in Configuration Words
Secondary oscillator 32 kHz crystal
Internal Oscillator Block (INTOSC)
5.3.1 SYSTEM CLOCK SELECT (SCS)
BITS
The System Clock Select (SCS) bits of the OSCCON
register selects the system clock source that is used for
the CPU and peripherals.
When the SCS bits of the OSCCON register = 00,
the system clock source is determined by value of
the FOSC<2:0> bits in the Configuration Words.
When the SCS bits of the OSCCON register = 01,
the system clock source is the secondary
oscillator.
When the SCS bits of the OSCCON register = 1x,
the system clock source is chosen by the internal
oscillator frequency selected by the IRCF<3:0>
bits of the OSCCON register. After a Reset, the
SCS bits of the OSCCON register are always
cleared.
When switching between clock sources, a delay is
required to allow the new clock to stabilize. These
oscillator delays are shown in Table 5-1.
5.3.2 OSCILLATOR START-UP TIMER
STATUS (OSTS) BIT
The Oscillator Start-up Timer Status (OSTS) bit of the
OSCSTAT register indicates whether the system clock
is running from the external clock source, as defined by
the FOSC<2:0> bits in the Configuration Words, or
from the internal clock source. In particular, OSTS
indicates that the Oscillator Start-up Timer (OST) has
timed out for LP, XT or HS modes. The OSTS does not
reflect the status of the secondary oscillator.
5.3.3 SECONDARY OSCILLATOR
The secondary oscillator is a separate crystal oscillator
associated with the Timer1 peripheral. It is optimized
for timekeeping operations with a 32.768 kHz crystal
connected between the SOSCO and SOSCI device
pins.
The secondary oscillator is enabled using the
T1OSCEN control bit in the T1CON register. See
Section 18.0 “T imer1 M odule with Gate Control” for
more information about the Timer1 peripheral.
5.3.4 SECONDARY OSCILLATOR READY
(SOSCR) BIT
The user must ensure that the secondary oscillator is
ready to be used before it is selected as a system clock
source. The Secondary Oscillator Ready (SOSCR) bit
of the OSCSTAT register indicates whether the
secondary oscillator is ready to be used. After the
SOSCR bit is set, the SCS bits can be configured to
select the secondary oscillator.
Note: Any automatic clock switch, which may
occur from Two-Speed Start-up or
Fail-Safe Clock Monitor, does not update
the SCS bits of the OSCCON register. The
user can monitor the OSTS bit of the
OSCSTAT register to determine the current
system clock source.
2010-2016 Microchip Technology Inc. DS40001452F-page 55
PIC16(L)F1516/7/8/9
5.4 Two-Speed Clock Start-up Mode
Two-Speed Start-up mode provides additional power
savings by minimizing the latency between external
oscillator start-up and code execution. In applications
that make heavy use of the Sleep mode, Two-Speed
Start-up will remove the external oscillator start-up
time from the time spent awake and can reduce the
overall power consumption of the device. This mode
allows the application to wake-up from Sleep, perform
a few instructions using the INTOSC internal oscillator
block as the clock source and go back to Sleep without
waiting for the external oscillator to become stable.
Two-Speed Start-up provides benefits when the
oscillator module is configured for LP, XT or HS
modes. The Oscillator Start-up Timer (OST) is
enabled for these modes and must count 1024
oscillations before the oscillator can be used as the
system clock source.
If the oscillator module is configured for any mode
other than LP, XT, or HS mode, then Two-Speed
Start-up is disabled. This is because the external clock
oscillator does not require any stabilization time after
POR or an exit from Sleep.
If the OST count reaches 1024 before the device
enters Sleep mode, the OSTS bit of the OSCSTAT
register is set and program execution switches to the
external oscillator. However, the system may never
operate from the external oscillator if the time spent
awake is very short.
5.4.1 TWO-SPEED START-UP MODE
CONFIGURATION
Two-Speed Start-up mode is configured by the
following settings:
IESO (of the Configuration Words) = 1;
Internal/External Switchover bit (Two-Speed
Start-up mode enabled).
SCS (of the OSCCON register) = 00.
FOSC<2:0> bits in the Configuration Words
configured for LP, XT or HS mode.
Two-Speed Start-up mode is entered after:
Power-on Reset (POR) and, if enabled, after
Power-up Timer (PWRT) has expired, or
Wake-up from Sleep.
Note: Executing a SLEEP instruction will abort
the oscillator start-up time and will cause
the OSTS bit of the OSCSTAT register to
remain clear.
TABLE 5-1: OSCILLATOR SWITCHING DELAYS
Switch From Switch To Oscillator Delay
Any clock source
LFINTOSC 1 cycle of each clock source
HFINTOSC 2 s (approx.)
ECH, ECM, ECL, EXTRC 2 cycles
LP, XT, HS 1024 Clock Cycles (OST)
Secondary Oscillator 1024 Secondary Oscillator Cycles
PIC16(L)F1516/7/8/9
DS40001452F-page 56 2010-2016 Microchip Technology Inc.
5.4.2 TWO-SPEED START-UP
SEQUENCE
1. Wake-up from Power-on Reset or Sleep.
2. Instructions begin execution by the internal
oscillator at the frequency set in the IRCF<3:0>
bits of the OSCCON register.
3. OST enabled to count 1024 clock cycles.
4. OST timed out, wait for falling edge of the
internal oscillator.
5. OSTS is set.
6. System clock held low until the next falling edge
of new clock (LP, XT or HS mode).
7. System clock is switched to external clock
source.
5.4.3 CHECKING TWO-SPEED CLOCK
STATUS
Checking the state of the OSTS bit of the OSCSTAT
register will confirm if the microcontroller is running
from the external clock source, as defined by the
FOSC<2:0> bits in the Configuration Words, or the
internal oscillator.
FIGURE 5-8: TWO-SPEED START-UP
0 1 1022 1023
PC + 1
TOSTT
INTOSC
OSC1
OSC2
Program Counter
System Clock
PC - N PC
2010-2016 Microchip Technology Inc. DS40001452F-page 57
PIC16(L)F1516/7/8/9
5.5 Fail-Safe Clock Monitor
The Fail-Safe Clock Monitor (FSCM) allows the device
to continue operating should the external oscillator fail.
The FSCM can detect oscillator failure any time after
the Oscillator Start-up Timer (OST) has expired. The
FSCM is enabled by setting the FCMEN bit in the
Configuration Words. The FSCM is applicable to all
external Oscillator modes (LP, XT, HS, EC, RC and
secondary oscillator).
FIGURE 5-9: FSCM BLOCK DIAGRAM
5.5.1 FAIL-SAFE DETECTION
The FSCM module detects a failed oscillator by
comparing the external oscillator to the FSCM sample
clock. The sample clock is generated by dividing the
LFINTOSC by 64 (see Figure 5-9). Inside the fail
detector block is a latch. The external clock sets the
latch on each falling edge of the external clock. The
sample clock clears the latch on each rising edge of the
sample clock. A failure is detected when an entire
half-cycle of the sample clock elapses before the
external clock goes low.
5.5.2 FAIL-SAFE OPERATION
When the external clock fails, the FSCM switches the
device clock to an internal clock source and sets the bit
flag OSFIF of the PIR2 register. Setting this flag will
generate an interrupt if the OSFIE bit of the PIE2
register is also set. The device firmware can then take
steps to mitigate the problems that may arise from a
failed clock. The system clock will continue to be
sourced from the internal clock source until the device
firmware successfully restarts the external oscillator
and switches back to external operation.
The internal clock source chosen by the FSCM is
determined by the IRCF<3:0> bits of the OSCCON
register. This allows the internal oscillator to be
configured before a failure occurs.
5.5.3 FAIL-SAFE CONDITION CLEARING
The Fail-Safe condition is cleared after a Reset,
executing a SLEEP instruction or changing the SCS bits
of the OSCCON register. When the SCS bits are
changed, the OST is restarted. While the OST is
running, the device continues to operate from the
INTOSC selected in OSCCON. When the OST times
out, the Fail-Safe condition is cleared after successfully
switching to the external clock source. The OSFIF bit
should be cleared prior to switching to the external
clock source. If the Fail-Safe condition still exists, the
OSFIF flag will again become set by hardware.
5.5.4 RESET OR WAKE-UP FROM SLEEP
The FSCM is designed to detect an oscillator failure
after the Oscillator Start-up Timer (OST) has expired.
The OST is used after waking up from Sleep and after
any type of Reset. The OST is not used with the EC or
RC Clock modes so that the FSCM will be active as
soon as the Reset or wake-up has completed. When
the FSCM is enabled, the Two-Speed Start-up is also
enabled. Therefore, the device will always be executing
code while the OST is operating.
External
LFINTOSC ÷ 64
S
R
Q
31 kHz
(~32 s)
488 Hz
(~2 ms)
Clock Monitor
Latch
Clock
Failure
Detected
Oscillator
Clock
Q
Sample Clock
Note: Due to the wide range of oscillator start-up
times, the Fail-Safe circuit is not active
during oscillator start-up (i.e., after exiting
Reset or Sleep). After an appropriate
amount of time, the user should check the
Status bits in the OSCSTAT register to
verify the oscillator start-up and that the
system clock switchover has successfully
completed.
PIC16(L)F1516/7/8/9
DS40001452F-page 58 2010-2016 Microchip Technology Inc.
FIGURE 5-10: FSCM TIMING DIAGRAM
OSCFIF
System
Clock
Output
Sample Clock
Failure
Detected
Oscillator
Failure
Note: The system clock is normally at a much higher frequency than the sample clock. The relative frequencies in
this example have been chosen for clarity.
(Q)
Te s t Test Test
Clock Monitor Output
2010-2016 Microchip Technology Inc. DS40001452F-page 59
PIC16(L)F1516/7/8/9
5.6 Register Definitions: Oscillator Control
REGISTER 5-1: OSCCON: OSCILLATOR CONTROL REGISTER
U-0 R/W-0/0 R/W-1/1 R/W-1/1 R/W-1/1 U-0 R/W-0/0 R/W-0/0
IRCF<3:0> SCS<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 Unimplemented: Read as ‘0
bit 6-3 IRCF<3:0>: Internal Oscillator Frequency Select bits
1111 =16MHz
1110 =8MHz
1101 =4MHz
1100 =2MHz
1011 =1MHz
1010 = 500 kHz(1)
1001 = 250 kHz(1)
1000 = 125 kHz(1)
0111 = 500 kHz (default upon Reset)
0110 = 250 kHz
0101 = 125 kHz
0100 = 62.5 kHz
001x = 31.25 kHz
000x =31kHz LF
bit 2 Unimplemented: Read as ‘0
bit 1-0 SCS<1:0>: System Clock Select bits
1x = Internal oscillator block
01 = Secondary oscillator
00 = Clock determined by FOSC<2:0> in Configuration Words.
Note 1: Duplicate frequency derived from HFINTOSC.
PIC16(L)F1516/7/8/9
DS40001452F-page 60 2010-2016 Microchip Technology Inc.
REGISTER 5-2: OSCSTAT: OSCILLATOR STATUS REGISTER
R-1/q U-0 R-q/q R-0/q U-0 U-0 R-0/q R-0/q
SOSCR OSTS HFIOFR LFIOFR HFIOFS
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Conditional
bit 7 SOSCR: Secondary Oscillator Ready bit
If T1OSCEN = 1:
1 = Secondary oscillator is ready
0 = Secondary oscillator is not ready
If T1OSCEN = 0:
1 = Timer1 clock source is always ready
bit 6 Unimplemented: Read as ‘0
bit 5 OSTS: Oscillator Start-up Timer Status bit
1 = Running from the clock defined by the FOSC<2:0> bits of the Configuration Words
0 = Running from an internal oscillator (FOSC<2:0> = 100)
bit 4 HFIOFR: High Frequency Internal Oscillator Ready bit
1 = HFINTOSC is ready
0 = HFINTOSC is not ready
bit 3-2 Unimplemented: Read as0
bit 1 LFIOFR: Low Frequency Internal Oscillator Ready bit
1 = LFINTOSC is ready
0 = LFINTOSC is not ready
bit 0 HFIOFS: High Frequency Internal Oscillator Stable bit
1 = HFINTOSC 16 MHz Oscillator is stable and is driving the INTOSC
0 = HFINTOSC 16 MHz is not stable, the Start-up Oscillator is driving INTOSC
TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bi t 2 Bit 1 Bit 0 Register
on Page
OSCCON IRCF<3:0> —SCS<1:0>59
OSCSTAT SOSCR OSTS HFIOFR LFIOFR HFIOFS 60
PIE2 OSFIE BCLIE CCP2IE 76
PIR2 OSFIF BCLIF CCP2IF 78
T1CON TMR1CS<1:0> T1CKPS<1:0> T1OSCEN T1SYNC TMR1ON 155
Legend: = unimplemented location, read as ‘0’. Shaded cells are not used by clock sources.
TABLE 5-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES
Name Bits Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 Bit 10/2 Bit 9/1 Bit 8/0 Register
on Page
CONFIG1 13:8 FCMEN IESO CLKOUTEN BOREN<1:0> 42
7:0 CP MCLRE PWRTE WDTE<1:0> FOSC<2:0>
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by clock sources.
2010-2016 Microchip Technology Inc. DS40001452F-page 61
PIC16(L)F1516/7/8/9
6.0 RESETS
There are multiple ways to reset this device:
Power-On Reset (POR)
Brown-Out Reset (BOR)
Low-Power Brown-Out Reset (LPBOR)
•MCLR Reset
•WDT Reset
RESET instruction
Stack Overflow
Stack Underflow
Programming mode exit
To allow VDD to stabilize, an optional Power-up Timer
can be enabled to extend the Reset time after a BOR
or POR event.
A simplified block diagram of the On-Chip Reset Circuit
is shown in Figure 6-1.
FIGURE 6-1: SIMPLI FIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT
Note 1: See Table for BOR active conditions.
Device
Reset
Power-on
Reset
WDT
Time-out
Brown-out
Reset
LPBOR
Reset
RESET Instruction
MCLRE
Sleep
BOR
Active(1)
PWRT
R
Done
PWRTE
LFINTOSC
VDD
ICSP™ Programming Mode
Exit
Stack
Pointer
PIC16(L)F1516/7/8/9
DS40001452F-page 62 2010-2016 Microchip Technology Inc.
6.1 Power-On Reset (POR)
The POR circuit holds the device in Reset until VDD has
reached an acceptable level for minimum operation.
Slow rising VDD, fast operating speeds or analog
performance may require greater than minimum VDD.
The PWRT, BOR or MCLR features can be used to
extend the start-up period until all device operation
conditions have been met.
6.1.1 POWER-UP TIMER (PWRT)
The Power-up Timer provides a nominal 64 ms time-
out on POR or Brown-out Reset.
The device is held in Reset as long as PWRT is active.
The PWRT delay allows additional time for the VDD to
rise to an acceptable level. The Power-up Timer is
enabled by clearing the PWRTE bit in Configuration
Words.
The Power-up Timer starts after the release of the POR
and BOR.
For additional information, refer to Application Note
AN607, Power-up Trouble Shoo ting (DS00607).
6.2 Brown-Out Reset (BOR)
The BOR circuit holds the device in Reset when VDD
reaches a selectable minimum level. Between the
POR and BOR, complete voltage range coverage for
execution protection can be implemented.
The Brown-out Reset module has four operating
modes controlled by the BOREN<1:0> bits in
Configuration Words. The four operating modes are:
BOR is always ON
BOR is off when in Sleep
BOR is controlled by software
BOR is always OFF
Refer to Tab le for more information.
The Brown-out Reset voltage level is selectable by
configuring the BORV bit in Configuration Words.
A VDD noise rejection filter prevents the BOR from
triggering on small events. If VDD falls below VBOR for
a duration greater than parameter TBORDC, the device
will reset. See Figure 6-2 for more information.
6.2.1 BOR IS ALWAYS ON
When the BOREN bits of Configuration Words are
programmed to ‘11’, the BOR is always ON. The device
start-up will be delayed until the BOR is ready and VDD
is higher than the BOR threshold.
BOR protection is active during Sleep. The BOR does
not delay wake-up from Sleep.
6.2.2 BOR IS OFF IN SLEEP
When the BOREN bits of Configuration Words are
programmed to10’, the BOR is on, except in Sleep.
The device start-up will be delayed until the BOR is
ready and VDD is higher than the BOR threshold.
BOR protection is not active during Sleep. The device
wake-up will be delayed until the BOR is ready.
6.2.3 BOR CONTROLLED BY SOFTWARE
When the BOREN bits of Configuration Words are
programmed to ‘01’, the BOR is controlled by the
SBOREN bit of the BORCON register. The device start-
up is not delayed by the BOR ready condition or the
VDD level.
BOR protection begins as soon as the BOR circuit is
ready. The status of the BOR circuit is reflected in the
BORRDY bit of the BORCON register.
BOR protection is unchanged by Sleep.
TABLE 6-1: BOR OPERATING MODES
BOREN<1:0> SBOREN Device Mode BOR Mode Instruction Execution upon:
Release of POR or Wake-up from Sleep
11 X X Active Waits for BOR ready(1) (BORRDY = 1)
10 X Awake Active Waits for BOR ready (BORRDY = 1)
Sleep Disabled
01 1X Active Waits for BOR ready(1) (BORRDY = 1)
0X Disabled Begins immediately (BORRDY = x)
00 X X Disabled
Note 1: In these specific cases, “Release of POR” and “Wake-up from Sleep”, there is no delay in start-up. The
BOR ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the
BOR circuit is forced on by the BOREN<1:0> bits.
2010-2016 Microchip Technology Inc. DS40001452F-page 63
PIC16(L)F1516/7/8/9
FIGURE 6-2: BROWN-OUT SITUATIONS
6.3 Reg is ter Defini tion s : B O R C ontr ol
REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER
R/W-1/u R/W-0/u U-0 U-0 U-0 U-0 U-0 R-q/u
SBOREN BORFS BORRDY
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition
bit 7 SBOREN: Software Brown-out Reset Enable bit(1)
If BOREN <1:0> in Configuration Words 01:
SBOREN is read/write, but has no effect on the BOR
If BOREN <1:0> in Configuration Words = 01:
1 =BOR Enabled
0 =BOR Disabled
bit 6 BORFS: Brown-out Reset Fast Start bit(1)
If BOREN<1:0> = 11 (Always on) or BOREN<1:0> = 00 (Always off)
BORFS is Read/Write, but has no effect.
If BOREN <1:0> = 10 (Disabled in Sleep) or BOREN<1:0> = 01 (Under software control):
1 = Band gap is forced on always (covers sleep/wake-up/operating cases)
0 = Band gap operates normally, and may turn off
bit 5-1 Unimplemented: Read as ‘0
bit 0 BORRDY: Brown-out Reset Circuit Ready Status bit
1 = The Brown-out Reset circuit is active
0 = The Brown-out Reset circuit is inactive
Note 1: BOREN<1:0> bits are located in Configuration Words.
TPWRT(1)
VBOR
VDD
Internal
Reset
VBOR
VDD
Internal
Reset TPWRT(1)
< TPWRT
TPWRT(1)
VBOR
VDD
Internal
Reset
Note 1: TPWRT delay only if PWRTE bit is programmed to ‘0’.
PIC16(L)F1516/7/8/9
DS40001452F-page 64 2010-2016 Microchip Technology Inc.
6.4 Low Power Brown-Out Reset
(LPBOR)
The Low-Power Brown-Out Reset (LPBOR) is an
essential part of the Reset subsystem. Refer to
Figure 6-1 to see how the BOR interacts with other
modules.
The LPBOR is used to monitor the external VDD pin.
When too low of a voltage is detected, the device is
held in Reset. When this occurs, a register bit (BOR) is
changed to indicate that a BOR Reset has occurred.
The same bit is set for both the BOR and the LPBOR.
Refer to Register 6-2.
6.4.1 ENABLING LPBOR
The LPBOR is controlled by the LPBOR bit of
Configuration Words. When the device is erased, the
LPBOR module defaults to disabled.
6.4.1.1 LPBOR Module Output
The output of the LPBOR module is a signal indicating
whether or not a Reset is to be asserted. This signal is
OR’d together with the Reset signal of the BOR mod-
ule to provide the generic BOR signal, which goes to
the PCON register and to the power control block.
6.5 MCLR
The MCLR is an optional external input that can reset
the device. The MCLR function is controlled by the
MCLRE bit of Configuration Words and the LVP bit of
Configuration Words (Table 6-2).
6.5.1 MCLR ENABLED
When MCLR is enabled and the pin is held low, the
device is held in Reset. The MCLR pin is connected to
VDD through an internal weak pull-up.
The device has a noise filter in the MCLR Reset path.
The filter will detect and ignore small pulses.
6.5.2 MCLR DISABLED
When MCLR is disabled, the pin functions as a general
purpose input and the internal weak pull-up is under
software control. See Section 12.6 “PORTE Regist ers”
for more information.
6.6 Watchdog Timer (W DT) Reset
The Watchdog Timer generates a Reset if the firmware
does not issue a CLRWDT instruction within the time-out
period. The TO and PD bits in the STATUS register are
changed to indicate the WDT Reset. See Section 10.0
“Watchdog Timer (WDT)” for more information.
6.7 RESET Instruction
A RESET instruction will cause a device Reset. The RI
bit in the PCON register will be set to ‘0’. See Table for
default conditions after a RESET instruction has
occurred.
6.8 Stack Overflow/Underflow Reset
The device can reset when the Stack Overflows or
Underflows. The STKOVF or STKUNF bits of the PCON
register indicate the Reset condition. These Resets are
enabled by setting the STVREN bit in Configuration
Words. See Section 3.6.2 “Overflow/Underflow
Reset” for more information.
6.9 Programming Mode Exit
Upon exit of Programming mode, the device will
behave as if a POR had just occurred.
6.10 Power-up Time r
The Power-up Timer optionally delays device execution
after a BOR or POR event. This timer is typically used to
allow VDD to stabilize before allowing the device to start
running.
The Power-up Timer is controlled by the PWRTE bit of
Configuration Words.
6.11 Start -up Sequence
Upon the release of a POR or BOR, the following must
occur before the device will begin executing:
1. Power-up Timer runs to completion (if enabled).
2. Oscillator start-up timer runs to completion (if
required for oscillator source).
3. MCLR must be released (if enabled).
The total time-out will vary based on oscillator configu-
ration and Power-up Timer configuration. See
Section 5.0 “Oscillator Module (with Fail-Safe
Clock Monitor)” for more information.
The Power-up Timer and oscillator start-up timer run
independently of MCLR Reset. If MCLR is kept low long
enough, the Power-up Timer and oscillator start-up
timer will expire. Upon bringing MCLR high, the device
will begin execution immediately (see Figure 6-3). This
is useful for testing purposes or to synchronize more
than one device operating in parallel.
TABLE 6-2: MCLR CONFIGURATION
MCLRE LVP MCLR
00Disabled
10Enabled
x1Enabled
Note: A Reset does not drive the MCLR pin low.
2010-2016 Microchip Technology Inc. DS40001452F-page 65
PIC16(L)F1516/7/8/9
FIGURE 6-3: RESET START-UP SEQUENCE
TOST
TMCLR
TPWRT
VDD
Internal POR
Power-Up Timer
MCLR
Internal RESET
Oscillator Modes
Oscillator Start-Up Timer
Oscillator
FOSC
Internal Oscillator
Oscillator
FOSC
External Clock (EC)
CLKIN
FOSC
External Crystal
PIC16(L)F1516/7/8/9
DS40001452F-page 66 2010-2016 Microchip Technology Inc.
6.12 Determining the Cause of a Reset
Upon any Reset, multiple bits in the STATUS and
PCON register are updated to indicate the cause of the
Reset. Tabl e and Tabl e show the Reset conditions of
these registers.
TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE
STKOVF STKUNF RWDT RMCLR RI POR BOR TO PD Condition
0 0 1 1 10 x11Power-on Reset
0 0 1 1 10 x0xIllegal, TO is set on POR
0 0 1 1 10 xx0Illegal, PD is set on POR
0 0 u 1 1u 011Brown-out Reset
u u 0 u uu u0uWDT Reset
u u u u uu u00WDT Wake-up from Sleep
u u u u uu u10Interrupt Wake-up from Sleep
u u u 0 uu uuuMCLR Reset during normal operation
u u u 0 uu u10MCLR Reset during Sleep
u u u u 0 u u u u RESET Instruction Executed
1 u u u uu uuuStack Overflow Reset (STVREN = 1)
u 1 u u uu uuuStack Underflow Reset (STVREN = 1)
TABLE 6-4: RESET CONDITION FOR SPECIAL REGISTERS
Condition Program
Counter STATUS
Register PCON
Register
Power-on Reset 0000h ---1 1000 00-- 110x
MCLR Reset during normal operation 0000h ---u uuuu uu-- 0uuu
MCLR Reset during Sleep 0000h ---1 0uuu uu-- 0uuu
WDT Reset 0000h ---0 uuuu uu-- uuuu
WDT Wake-up from Sleep PC + 1 ---0 0uuu uu-- uuuu
Brown-out Reset 0000h ---1 1uuu 00-- 11u0
Interrupt Wake-up from Sleep PC + 1(1) ---1 0uuu uu-- uuuu
RESET Instruction Executed 0000h ---u uuuu uu-- u0uu
Stack Overflow Reset (STVREN = 1) 0000h ---u uuuu 1u-- uuuu
Stack Underflow Reset (STVREN = 1) 0000h ---u uuuu u1-- uuuu
Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as ‘0’.
Note1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on
the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.
2010-2016 Microchip Technology Inc. DS40001452F-page 67
PIC16(L)F1516/7/8/9
6.13 Power Control (PCON) Register
The Power Control (PCON) register contains flag bits
to differentiate between a:
Power-on Reset (POR)
Brown-out Reset (BOR)
Reset Instruction Reset (RI)
•MCLR Reset (RMCLR)
Watchdog Timer Reset (RWDT)
Stack Underflow Reset (STKUNF)
Stack Overflow Reset (STKOVF)
The PCON register bits are shown in Register 6-2.
6.14 Register Definitions: Power Control
REGISTER 6-2: PCON: POWER CONTROL REGISTER
R/W/HS-0/q R/W/HS-0/q U-0 R/W/HC-1/q R/W/HC-1/q R/W/HC-1/q R/W/HC-q/u R/W/HC-q/u
STKOVF STKUNF RWDT RMCLR RI POR BOR
bit 7 bit 0
Legend:
HC = Bit is cleared by hardware HS = Bit is set by hardware
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -m/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition
bit 7 STKOVF: Stack Overflow Flag bit
1 = A Stack Overflow occurred
0 = A Stack Overflow has not occurred or cleared by firmware
bit 6 STKUNF: Stack Underflow Flag bit
1 = A Stack Underflow occurred
0 = A Stack Underflow has not occurred or cleared by firmware
bit 5 Unimplemented: Read as ‘0
bit 4 RWDT: Watchdog Timer Reset Flag bit
1 = A Watchdog Timer Reset has not occurred or set to ‘1’ by firmware
0 = A Watchdog Timer Reset has occurred (cleared by hardware)
bit 3 RMCLR: MCLR Reset Flag bit
1 = A MCLR Reset has not occurred or set to ‘1’ by firmware
0 = A MCLR Reset has occurred (cleared by hardware)
bit 2 RI: RESET Instruction Flag bit
1 = A RESET instruction has not been executed or set to ‘1’ by firmware
0 = A RESET instruction has been executed (cleared by hardware)
bit 1 POR: Power-on Reset Status bit
1 = No Power-on Reset occurred
0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0 BOR: Brown-out Reset Status bit
1 = No Brown-out Reset occurred
0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset occurs)
PIC16(L)F1516/7/8/9
DS40001452F-page 68 2010-2016 Microchip Technology Inc.
TABLE 6-5: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
BORCON SBOREN BORFS ———— BORRDY 63
PCON STKOVF STKUNF RWDT RMCLR RI POR BOR 67
STATUS —TOPD ZDC C21
WDTCON WDTPS<4:0> SWDTEN 86
Legend: — = unimplemented, read as 0. Shaded cells are not used by Resets.
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.
2010-2016 Microchip Technology Inc. DS40001452F-page 69
PIC16(L)F1516/7/8/9
7.0 INTERRUPTS
The interrupt feature allows certain events to preempt
normal program flow. Firmware is used to determine
the source of the interrupt and act accordingly. Some
interrupts can be configured to wake the MCU from
Sleep mode.
This chapter contains the following information for
Interrupts:
Operation
Interrupt Latency
Interrupts During Sleep
•INT Pin
Automatic Context Saving
Many peripherals produce interrupts. Refer to the
corresponding chapters for details.
A block diagram of the interrupt logic is shown in
Figure 7-1.
FIGURE 7-1: INTERRUPT LOGIC
TMR0IF
TMR0IE
INTF
INTE
IOCIF
IOCIE Interrupt
to CPU
Wake-up
(If in Sleep mode)
GIE
(TMR1IF) PIR1<0>
PIRn<7>
PIEn<7>
PEIE
Peripheral Interrupts
(TMR1IE) PIE1<0>
PIC16(L)F1516/7/8/9
DS40001452F-page 70 2010-2016 Microchip Technology Inc.
7.1 Operation
Interrupts are disabled upon any device Reset. They
are enabled by setting the following bits:
GIE bit of the INTCON register
Interrupt Enable bit(s) for the specific interrupt
event(s)
PEIE bit of the INTCON register (if the Interrupt
Enable bit of the interrupt event is contained in the
PIEx register)
The INTCON, PIR1 and PIR2 registers record individual
interrupts via interrupt flag bits. Interrupt flag bits will be
set, regardless of the status of the GIE, PEIE and
individual interrupt enable bits.
The following events happen when an interrupt event
occurs while the GIE bit is set:
Current prefetched instruction is flushed
GIE bit is cleared
Current Program Counter (PC) is pushed onto the
stack
Critical registers are automatically saved to the
shadow registers (See Section 7.5 “Automatic
Context Savi ng”)
PC is loaded with the interrupt vector 0004h
The firmware within the Interrupt Service Routine (ISR)
should determine the source of the interrupt by polling
the interrupt flag bits. The interrupt flag bits must be
cleared before exiting the ISR to avoid repeated
interrupts. Because the GIE bit is cleared, any interrupt
that occurs while executing the ISR will be recorded
through its interrupt flag, but will not cause the
processor to redirect to the interrupt vector.
The RETFIE instruction exits the ISR by popping the
previous address from the stack, restoring the saved
context from the shadow registers and setting the GIE
bit.
For additional information on a specific interrupt’s
operation, refer to its peripheral chapter.
7.2 Interrupt Latency
Interrupt latency is defined as the time from when the
interrupt event occurs to the time code execution at the
interrupt vector begins. The latency for synchronous
interrupts is three or four instruction cycles. For
asynchronous interrupts, the latency is three to five
instruction cycles, depending on when the interrupt
occurs. See Figure 7-2 and Figure 7-3 for more details.
Note 1: Individual interrupt flag bits are set,
regardless of the state of any other
enable bits.
2: All interrupts will be ignored while the GIE
bit is cleared. Any interrupt occurring
while the GIE bit is clear will be serviced
when the GIE bit is set again.
2010-2016 Microchip Technology Inc. DS40001452F-page 71
PIC16(L)F1516/7/8/9
FIGURE 7-2: INTERRUPT LATENCY
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
OSC1
CLKOUT
PC 0004h 0005h
PC
Inst(0004h)NOP
GIE
Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4
1 Cycle Instruction at PC
PC
Inst(0004h)NOP
2 Cycle Instruction at PC
FSR ADDR PC+1 PC+2 0004h 0005h
PC
Inst(0004h)NOP
GIE
PCPC-1
3 Cycle Instruction at PC
Execute
Interrupt
Inst(PC)
Interrupt Sampled
during Q1
Inst(PC)
PC-1 PC+1
NOP
PC New PC/
PC+1 0005hPC-1 PC+1/FSR
ADDR 0004h
NOP
Interrupt
GIE
Interrupt
INST(PC) NOPNOP
FSR ADDR PC+1 PC+2 0004h 0005h
PC
Inst(0004h)NOP
GIE
PCPC-1
3 Cycle Instruction at PC
Interrupt
INST(PC) NOPNOP NOP
Inst(0005h)
Execute
Execute
Execute
PIC16(L)F1516/7/8/9
DS40001452F-page 72 2010-2016 Microchip Technology Inc.
FIGURE 7-3: INT PIN INTERRUPT TIMING
Q2Q1 Q3 Q4 Q2Q1 Q3 Q4 Q2Q1 Q3 Q4 Q2Q1 Q3 Q4 Q2Q1 Q3 Q4
OSC1
CLKOUT
INT pin
INTF
GIE
INSTRUCTION FLOW
PC
Instruction
Fetched
Instruction
Executed
Interrupt Latency
PC PC + 1 PC + 1 0004h 0005h
Inst (0004h) Inst (0005h)
Dummy Cycle
Inst (PC) Inst (PC + 1)
Inst (PC – 1) Inst (0004h)
Dummy Cycle
Inst (PC)
Note 1: INTF flag is sampled here (every Q1).
2: Asynchronous interrupt latency = 3-5 TCY. Synchronous latency = 3-4 TCY, where TCY = instruction cycle time.
Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
3: CLKOUT not available in all oscillator modes.
4: For minimum width of INT pulse, refer to AC specifications in Section 25.0 “Electrical Specifications”.
5: INTF is enabled to be set any time during the Q4-Q1 cycles.
(1) (2)
(3) (4)
(5)
(1)
2010-2016 Microchip Technology Inc. DS40001452F-page 73
PIC16(L)F1516/7/8/9
7.3 Interrupts During Sleep
Some interrupts can be used to wake from Sleep. To
wake from Sleep, the peripheral must be able to
operate without the system clock. The interrupt source
must have the appropriate Interrupt Enable bit(s) set
prior to entering Sleep.
On waking from Sleep, if the GIE bit is also set, the
processor will branch to the interrupt vector. Otherwise,
the processor will continue executing instructions after
the SLEEP instruction. The instruction directly after the
SLEEP instruction will always be executed before
branching to the ISR. Refer to the Section 8.0 “Power-
Down Mode (Sleep)” for more details.
7.4 INT Pin
The INT pin can be used to generate an asynchronous
edge-triggered interrupt. This interrupt is enabled by
setting the INTE bit of the INTCON register. The
INTEDG bit of the OPTION_REG register determines on
which edge the interrupt will occur. When the INTEDG
bit is set, the rising edge will cause the interrupt. When
the INTEDG bit is clear, the falling edge will cause the
interrupt. The INTF bit of the INTCON register will be set
when a valid edge appears on the INT pin. If the GIE and
INTE bits are also set, the processor will redirect
program execution to the interrupt vector.
7.5 Automatic Context Saving
Upon entering an interrupt, the return PC address is
saved on the stack. Additionally, the following registers
are automatically saved in the Shadow registers:
W register
STATUS register (except for TO and PD)
BSR register
FSR registers
PCLATH register
Upon exiting the Interrupt Service Routine, these regis-
ters are automatically restored. Any modifications to
these registers during the ISR will be lost. If modifica-
tions to any of these registers are desired, the corre-
sponding Shadow register should be modified and the
value will be restored when exiting the ISR. The
Shadow registers are available in Bank 31 and are
readable and writable. Depending on the user’s
application, other registers may also need to be saved.
PIC16(L)F1516/7/8/9
DS40001452F-page 74 2010-2016 Microchip Technology Inc.
7.6 Reg is ter De finiti o n s : Inter r u pt C on trol
REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R-0/0
GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 GIE: Global Interrupt Enable bit
1 = Enables all active interrupts
0 = Disables all interrupts
bit 6 PEIE: Peripheral Interrupt Enable bit
1 = Enables all active peripheral interrupts
0 = Disables all peripheral interrupts
bit 5 TMR0IE: Timer0 Overflow Interrupt Enable bit
1 = Enables the Timer0 interrupt
0 = Disables the Timer0 interrupt
bit 4 INTE: INT External Interrupt Enable bit
1 = Enables the INT external interrupt
0 = Disables the INT external interrupt
bit 3 IOCIE: Interrupt-on-Change Enable bit
1 = Enables the interrupt-on-change
0 = Disables the interrupt-on-change
bit 2 TMR0IF: Timer0 Overflow Interrupt Flag bit
1 = TMR0 register has overflowed
0 = TMR0 register did not overflow
bit 1 INTF: INT External Interrupt Flag bit
1 = The INT external interrupt occurred
0 = The INT external interrupt did not occur
bit 0 IOCIF: Interrupt-on-Change Interrupt Flag bit(1)
1 = When at least one of the interrupt-on-change pins changed state
0 = None of the interrupt-on-change pins have changed state
Note 1: The IOCIF Flag bit is read-only and cleared when all the Interrupt-on-Change flags in the IOCBF register
have been cleared by software.
2010-2016 Microchip Technology Inc. DS40001452F-page 75
PIC16(L)F1516/7/8/9
REGISTER 7-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
TMR1GIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 TMR1GIE: Timer1 Gate Interrupt Enable bit
1 = Enables the Timer1 Gate Acquisition interrupt
0 = Disables the Timer1 Gate Acquisition interrupt
bit 6 ADIE: Analog-to-Digital Converter (ADC) Interrupt Enable bit
1 = Enables the ADC interrupt
0 = Disables the ADC interrupt
bit 5 RCIE: USART Receive Interrupt Enable bit
1 = Enables the USART receive interrupt
0 = Disables the USART receive interrupt
bit 4 TXIE: USART Transmit Interrupt Enable bit
1 = Enables the USART transmit interrupt
0 = Disables the USART transmit interrupt
bit 3 SSPIE: Synchronous Serial Port (MSSP) Interrupt Enable bit
1 = Enables the MSSP interrupt
0 = Disables the MSSP interrupt
bit 2 CCP1IE: CCP1 Interrupt Enable bit
1 = Enables the CCP1 interrupt
0 = Disables the CCP1 interrupt
bit 1 TMR2IE: TMR2 to PR2 Match Interrupt Enable bit
1 = Enables the Timer2 to PR2 match interrupt
0 = Disables the Timer2 to PR2 match interrupt
bit 0 TMR1IE: Timer1 Overflow Interrupt Enable bit
1 = Enables the Timer1 overflow interrupt
0 = Disables the Timer1 overflow interrupt
Note: Bit PEIE of the INTCON register must be
set to enable any peripheral interrupt.
PIC16(L)F1516/7/8/9
DS40001452F-page 76 2010-2016 Microchip Technology Inc.
REGISTER 7-3: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2
R/W-0/0 U-0 U-0 U-0 R/W-0/0 U-0 U-0 R/W-0/0
OSFIE —BCLIE CCP2IE
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 OSFIE: Oscillator Fail Interrupt Enable bit
1 = Enables the Oscillator Fail interrupt
0 = Disables the Oscillator Fail interrupt
bit 6-4 Unimplemented: Read as ‘0
bit 3 BCLIE: MSSP Bus Collision Interrupt Enable bit
1 = Enables the MSSP Bus Collision Interrupt
0 = Disables the MSSP Bus Collision Interrupt
bit 2-1 Unimplemented: Read as ‘0
bit 0 CCP2IE: CCP2 Interrupt Enable bit
1 = Enables the CCP2 interrupt
0 = Disables the CCP2 interrupt
Note: Bit PEIE of the INTCON register must be
set to enable any peripheral interrupt.
2010-2016 Microchip Technology Inc. DS40001452F-page 77
PIC16(L)F1516/7/8/9
REGISTER 7-4: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1
R/W-0/0 R/W-0/0 R-0/0 R-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
TMR1GIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 TMR1GIF: Timer1 Gate Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 6 ADIF: ADC Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 5 RCIF: USART Receive Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 4 TXIF: USART Transmit Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 3 SSPIF: Synchronous Serial Port (MSSP) Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 2 CCP1IF: CCP1 Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 1 TMR2IF: Timer2 to PR2 Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 0 TMR1IF: Timer1 Overflow Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the Global
Enable bit, GIE, of the INTCON register.
User software should ensure the
appropriate interrupt flag bits are clear prior
to enabling an interrupt.
PIC16(L)F1516/7/8/9
DS40001452F-page 78 2010-2016 Microchip Technology Inc.
REGISTER 7-5: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2
R/W-0/0 U-0 U-0 U-0 R/W-0/0 U-0 U-0 R/W-0/0
OSFIF —BCLIF CCP2IF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 OSFIF: Oscillator Fail Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 6-4 Unimplemented: Read as ‘0
bit 3 BCLIF: MSSP Bus Collision Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 2-1 Unimplemented: Read as ‘0
bit 0 CCP2IF: CCP2 Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the Global
Enable bit, GIE, of the INTCON register.
User software should ensure the
appropriate interrupt flag bits are clear prior
to enabling an interrupt.
TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 74
OPTION_REG WPUEN INTEDG TMR0CS TMR0SE PSA PS<2:0> 146
PIE1 TMR1GIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 75
PIE2 OSFIE ———BCLIE CCP2IE 76
PIR1 TMR1GIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 77
PIR2 OSFIF ———BCLIF CCP2IF 78
Legend: = unimplemented locations read as ‘0’. Shaded cells are not used by Interrupts.
2010-2016 Microchip Technology Inc. DS40001452F-page 79
PIC16(L)F1516/7/8/9
8.0 POWER-DOWN MODE (SLEEP)
The Power-Down mode is entered by executing a
SLEEP instruction.
Upon entering Sleep mode, the following conditions
exist:
1. WDT will be cleared but keeps running, if
enabled for operation during Sleep.
2. PD bit of the STATUS register is cleared.
3. TO bit of the STATUS register is set.
4. CPU clock is disabled.
5. 31 kHz LFINTOSC is unaffected and peripherals
that operate from it may continue operation in
Sleep.
6. Timer1 and peripherals that operate from
Timer1 continue operation in Sleep when the
Timer1 clock source selected is:
•LFINTOSC
•T1CKI
Secondary oscillator
7. ADC is unaffected, if the dedicated FRC
oscillator is selected.
8. I/O ports maintain the status they had before
SLEEP was executed (driving high, low or high-
impedance).
9. Resets other than WDT are not affected by
Sleep mode.
Refer to individual chapters for more details on
peripheral operation during Sleep.
To minimize current consumption, the following
conditions should be considered:
I/O pins should not be floating
External circuitry sinking current from I/O pins
Internal circuitry sourcing current from I/O pins
Current draw from pins with internal weak pull-ups
Modules using 31 kHz LFINTOSC
Modules using secondary oscillator
I/O pins that are high-impedance inputs should be
pulled to VDD or VSS externally to avoid switching
currents caused by floating inputs.
Examples of internal circuitry that might be sourcing
current include the FVR module. See Section 14.0
“Fixed Voltage Reference (FVR)” for more
information on this module.
8.1 Wake-up from Sleep
The device can wake-up from Sleep through one of the
following events:
1. External Reset input on MCLR pin, if enabled
2. BOR Reset, if enabled
3. POR Reset
4. Watchdog Timer, if enabled
5. Any external interrupt
6. Interrupts by peripherals capable of running
during Sleep (see individual peripheral for more
information)
The first three events will cause a device Reset. The
last three events are considered a continuation of
program execution. To determine whether a device
Reset or wake-up event occurred, refer to
Section 6.12 “Determining the Cause of a Reset”.
When the SLEEP instruction is being executed, the next
instruction (PC + 1) is prefetched. For the device to
wake-up through an interrupt event, the corresponding
interrupt enable bit must be enabled. Wake-up will
occur regardless of the state of the GIE bit. If the GIE
bit is disabled, the device continues execution at the
instruction after the SLEEP instruction. If the GIE bit is
enabled, the device executes the instruction after the
SLEEP instruction, the device will then call the Interrupt
Service Routine. In cases where the execution of the
instruction following SLEEP is not desirable, the user
should have a NOP after the SLEEP instruction.
The WDT is cleared when the device wakes up from
Sleep, regardless of the source of wake-up.
PIC16(L)F1516/7/8/9
DS40001452F-page 80 2010-2016 Microchip Technology Inc.
8.1.1 WAKE-UP USING INTERRUPTS
When global interrupts are disabled (GIE cleared) and
any interrupt source has both its interrupt enable bit
and interrupt flag bit set, one of the following will occur:
If the interrupt occurs before the execution of a
SLEEP instruction
-SLEEP instruction will execute as a NOP
- WDT and WDT prescaler will not be cleared
-TO
bit of the STATUS register will not be set
-PD
bit of the STATUS register will not be
cleared
If the interrupt occurs during or after the execu-
tion of a SLEEP instruction
-SLEEP instruction will be completely
executed
- Device will immediately wake-up from Sleep
- WDT and WDT prescaler will be cleared
-TO
bit of the STATUS register will be set
-PD bit of the STATUS register will be cleared
Even if the flag bits were checked before executing a
SLEEP instruction, it may be possible for flag bits to
become set before the SLEEP instruction completes.
To determine whether a SLEEP instruction executed,
test the PD bit. If the PD bit is set, the SLEEP instruction
was executed as a NOP.
FIGURE 8-1: WAKE-UP FROM SLEEP THROUGH INTERRUPT
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
OSC1(1)
CLKOUT(2)
Interrupt flag
GIE bit
(INTCON reg.)
Instruction Flow
PC
Instruction
Fetched
Instruction
Executed
PC PC + 1 PC + 2
Inst(PC) = Sleep
Inst(PC - 1)
Inst(PC + 1)
Sleep
Processor in
Sleep
Interrupt Latency(4)
Inst(PC + 2)
Inst(PC + 1)
Inst(0004h) Inst(0005h)
Inst(0004h)
Forced NOP
PC + 2 0004h 0005h
Forced NOP
TOST(3)
PC + 2
Note 1: XT, HS or LP Oscillator mode assumed.
2: CLKOUT is not available in XT, HS, or LP Oscillator modes, but shown here for timing reference.
3: TOST=1024 TOSC. This delay does not apply to EC, RC and INTOSC Oscillator modes or Two-Speed Start-up (see Section 5.4 “Two-
Speed Clock Start-up Mode”).
4: GIE = 1 assumed. In this case after wake-up, the processor calls the ISR at 0004h. If GIE = 0, execution will continue in-line.
2010-2016 Microchip Technology Inc. DS40001452F-page 81
PIC16(L)F1516/7/8/9
8.2 Low-Power Sleep M ode
The PIC16F1516/7/8/9 device contains an internal Low
Dropout (LDO) voltage regulator, which allows the
device I/O pins to operate at voltages up to 5.5V while
the internal device logic operates at a lower voltage.
The LDO and its associated reference circuitry must
remain active when the device is in Sleep mode. The
PIC16F1516/7/8/9 allows the user to optimize the oper-
ating current in Sleep, depending on the application
requirements.
A Low-Power Sleep mode can be selected by setting
the VREGPM bit of the VREGCON register. With this
bit set, the LDO and reference circuitry are placed in a
low-power state when the device is in Sleep.
8.2.1 SLEEP CURRENT VS. WAKE-UP
TIME
In the default operating mode, the LDO and reference
circuitry remain in the normal configuration while in
Sleep. The device is able to exit Sleep mode quickly
since all circuits remain active. In Low-Power Sleep
mode, when waking up from Sleep, an extra delay time
is required for these circuits to return to the normal con-
figuration and stabilize.
The Low-Power Sleep mode is beneficial for applica-
tions that stay in Sleep mode for long periods of time.
The normal mode is beneficial for applications that
need to wake from Sleep quickly and frequently.
8.2.2 PERIPHERAL USAGE IN SLEEP
Some peripherals that can operate in Sleep mode will
not operate properly with the Low-Power Sleep mode
selected. The LDO will remain in the normal power
mode when those peripherals are enabled. The Low-
Power Sleep mode is intended for use with these
peripherals:
Brown-Out Reset (BOR)
Watchdog Timer (WDT)
External interrupt pin/Interrupt-on-change pins
Timer1 (with external clock source)
CCP (Capture mode)
Note: The PIC16LF1516/7/8/9 does not have a
configurable Low-Power Sleep mode.
PIC16LF1516/7/8/9 is an unregulated
device and is always in the lowest power
state when in Sleep, with no wake-up time
penalty. This device has a lower maximum
VDD and I/O voltage than the
PIC16F1516/7/8/9. See Section 25.0
“Electrical Specifications” for more
information.
PIC16(L)F1516/7/8/9
DS40001452F-page 82 2010-2016 Microchip Technology Inc.
8.3 Register Definitions: Voltage Regulator Control
REGISTER 8-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER(1)
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-1/1
—VREGPMReserved
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-2 Unimplemented: Read as ‘0
bit 1 VREGPM: Voltage Regulator Power Mode Selection bit
1 = Low-Power Sleep mode enabled in Sleep(2)
Draws lowest current in Sleep, slower wake-up
0 = Normal-Power mode enabled in Sleep(2)
Draws higher current in Sleep, faster wake-up
bit 0 Reserved: Read as ‘1. Maintain this bit set.
Note 1: PIC16F1516/7/8/9 only.
2: See Section 25.0 “Electrical Specifications”.
TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 74
IOCBF IOCBF7 IOCBF6 IOCBF5 IOCBF4 IOCBF3 IOCBF2 IOCBF1 IOCBF0 125
IOCBN IOCBN7 IOCBN6 IOCBN5 IOCBN4 IOCBN3 IOCBN2 IOCBN1 IOCBN0 125
IOCBP IOCBP7 IOCBP6 IOCBP5 IOCBP4 IOCBP3 IOCBP2 IOCBP1 IOCBP0 125
PIE1 TMR1GIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 75
PIE2 OSFIE ———BCLIE CCP2IE 76
PIR1 TMR1GIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 77
PIR2 OSFIF ———BCLIF CCP2IF 78
STATUS —TOPD ZDC C21
VREGCON(1) —————VREGPM
Reserved 82
WDTCON WDTPS<4:0> SWDTEN 86
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used in Power-Down mode.
Note 1: PIC16F1516/7/8/9 only.
2010-2016 Microchip Technology Inc. DS40001452F-page 83
PIC16(L)F1516/7/8/9
9.0 LOW DROPOUT (LDO)
VOLTAGE REGULATOR
The PIC16F1516/7/8/9 has an internal Low Dropout
Regulator (LDO) which provides operation above 3.6V.
The LDO regulates a voltage for the internal device
logic while permitting the VDD and I/O pins to operate
at a higher voltage. There is no user enable/disable
control available for the LDO, it is always active. The
PIC16LF1516/7/8/9 operates at a maximum VDD of
3.6V and does not incorporate an LDO.
A device I/O pin may be configured as the LDO voltage
output, identified as the VCAP pin. Although not
required, an external low-ESR capacitor may be con-
nected to the VCAP pin for additional regulator stability.
The VCAPEN bit of Configuration Words enables or
disables the VCAP pin. Refer to Tabl e 9-1.
On power-up, the external capacitor will load the LDO
voltage regulator. To prevent erroneous operation, the
device is held in Reset while a constant current source
charges the external capacitor. After the cap is fully
charged, the device is released from Reset. For more
information on the constant current rate, refer to the
LDO Regulator Characteristics Table in Section 25.0
“Electrical Specifications”.
TABLE 9-1: VCAPEN SELECT BIT
VCAPENPin
0RA5
TABLE 9-2: SUMMARY OF CONFIGURATION WORD WITH LDO
Name Bits Bit -/7 Bit -/6 Bit 13/5 Bi t 12/4 Bit 11/3 Bit 10/2 Bit 9/1 Bit 8/0 Register
on Page
CONFIG2 13:8 LVP DEBUG LPBOR BORV STVREN 43
7:0 VCAPEN WRT<1:0>
Legend: = unimplemented locations read as ‘0’. Shaded cells are not used by LDO.
Note 1: PIC16F1516/7/8/9 only.
PIC16(L)F1516/7/8/9
DS40001452F-page 84 2010-2016 Microchip Technology Inc.
10.0 WATCHDOG TIME R (WDT)
The Watchdog Timer is a system timer that generates
a Reset if the firmware does not issue a CLRWDT
instruction within the time-out period. The Watchdog
Timer is typically used to recover the system from
unexpected events.
The WDT has the following features:
Independent clock source
Multiple operating modes
- WDT is always ON
- WDT is OFF when in Sleep
- WDT is controlled by software
- WDT is always OFF
Configurable time-out period is from 1 ms to 256
seconds (nominal)
Multiple Reset conditions
Operation during Sleep
FIGURE 10-1: WATCHDOG TIMER BLOCK DIAGRAM
LFINTOSC 23-bit Programmable
Prescaler WDT WDT Time-out
WDTPS<4:0>
SWDTEN
Sleep
WDTE<1:0> = 11
WDTE<1:0> = 01
WDTE<1:0> = 10
2010-2016 Microchip Technology Inc. DS40001452F-page 85
PIC16(L)F1516/7/8/9
10.1 Independent Clock Source
The WDT derives its time base from the 31 kHz
LFINTOSC internal oscillator. Time intervals in this
chapter are based on a nominal interval of 1 ms. See
Section 25.0 “Electrical Specifications” for the
LFINTOSC tolerances.
10.2 WDT Operating Modes
The Watchdog Timer module has four operating modes
controlled by the WDTE<1:0> bits in Configuration
Words. See Ta b l e .
10.2.1 WDT IS ALWAYS ON
When the WDTE bits of Configuration Words are set to
11’, the WDT is always ON.
WDT protection is active during Sleep.
10.2.2 WDT IS OFF IN SLEEP
When the WDTE bits of Configuration Words are set to
10’, the WDT is ON, except in Sleep.
WDT protection is not active during Sleep.
10.2.3 WDT CONTROLLED BY SOFTWARE
When the WDTE bits of Configuration Words are set to
01’, the WDT is controlled by the SWDTEN bit of the
WDTCON register.
WDT protection is unchanged by Sleep. See Table for
more details.
10.3 Time-O ut Period
The WDTPS bits of the WDTCON register set the
time-out period from 1 ms to 256 seconds (nominal).
After a Reset, the default time-out period is two
seconds.
10.4 Clearing the WDT
The WDT is cleared when any of the following
conditions occur:
•Any Reset
CLRWDT instruction is executed
Device enters Sleep
Device wakes up from Sleep
Oscillator fail
WDT is disabled
Oscillator Start-up Timer (OST) is running
See Table 10-2 for more information.
10.5 Operation During Sleep
When the device enters Sleep, the WDT is cleared. If
the WDT is enabled during Sleep, the WDT resumes
counting.
When the device exits Sleep, the WDT is cleared
again. The WDT remains clear until the OST, if
enabled, completes. See Section 5.0 “Oscillator
Module (with Fail-Safe Clock Monitor) for more
information on the OST.
When a WDT time-out occurs while the device is in
Sleep, no Reset is generated. Instead, the device
wakes up and resumes operation. The TO and PD bits
in the STATUS register are changed to indicate the
event. The RWDT bit in the PCON register can also be
used. See Section 3.0 “Memory Organization” and
The STATUS register (Register 3-1) for more
information.
TABLE 10-1: WDT OPERATING MODES
WDTE<1:0> SWDTE
NDevice
Mode WDT
Mode
11 X XActive
10 X Awake Active
Sleep Disabled
01 1XActive
0Disabled
00 X XDisabled
TABLE 10-2: WDT CLEARING CONDITIONS
Conditions WDT
WDTE<1:0> = 00
Cleared
WDTE<1:0> = 01 and SWDTEN = 0
WDTE<1:0> = 10 and enter Sleep
CLRWDT Command
Oscillator Fail Detected
Exit Sleep + System Clock = SOSC, EXTRC, INTOSC, EXTCLK
Exit Sleep + System Clock = XT, HS, LP Cleared until the end of OST
Change INTOSC divider (IRCF bits) Unaffected
PIC16(L)F1516/7/8/9
DS40001452F-page 86 2010-2016 Microchip Technology Inc.
10.6 Register Definitions: Watchdog Control
REGISTER 10-1: WDTCON: WATCHDOG TI MER CONTROL REGISTER
U-0 U-0 R/W-0/0 R/W-1/1 R/W-0/0 R/W-1/1 R/W-1/1 R/W-0/0
WDTPS<4:0> SWDTEN
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -m/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 Unimplemented: Read as ‘0
bit 5-1 WDTPS<4:0>: Watchdog Timer Period Select bits(1)
Bit Value = Prescale Rate
11111 = Reserved. Results in minimum interval (1:32)
10011 = Reserved. Results in minimum interval (1:32)
10010 = 1:8388608 (223) (Interval 256s nominal)
10001 = 1:4194304 (222) (Interval 128s nominal)
10000 = 1:2097152 (221) (Interval 64s nominal)
01111 = 1:1048576 (220) (Interval 32s nominal)
01110 = 1:524288 (219) (Interval 16s nominal)
01101 = 1:262144 (218) (Interval 8s nominal)
01100 = 1:131072 (217) (Interval 4s nominal)
01011 = 1:65536 (Interval 2s nominal) (Reset value)
01010 = 1:32768 (Interval 1s nominal)
01001 = 1:16384 (Interval 512 ms nominal)
01000 = 1:8192 (Interval 256 ms nominal)
00111 = 1:4096 (Interval 128 ms nominal)
00110 = 1:2048 (Interval 64 ms nominal)
00101 = 1:1024 (Interval 32 ms nominal)
00100 = 1:512 (Interval 16 ms nominal)
00011 = 1:256 (Interval 8 ms nominal)
00010 = 1:128 (Interval 4 ms nominal)
00001 = 1:64 (Interval 2 ms nominal)
00000 = 1:32 (Interval 1 ms nominal)
bit 0 SWDTEN: Software Enable/Disable for Watchdog Timer bit
If WDTE<1:0> = 00:
This bit is ignored.
If WDTE<1:0> = 01:
1 = WDT is turned on
0 = WDT is turned off
If WDTE<1:0> = 1x:
This bit is ignored.
Note 1: Times are approximate. WDT time is based on 31 kHz LFINTOSC.
2010-2016 Microchip Technology Inc. DS40001452F-page 87
PIC16(L)F1516/7/8/9
TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
OSCCON IRCF<3:0> —SCS<1:0>
59
STATUS ———TOPD ZDC C21
WDTCON WDTPS<4:0> SWDTEN 86
Legend: x = unknown, u = unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by Watchdog Timer.
TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG T IMER
Name Bits Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 Bit 10/2 Bit 9/1 Bit 8/0 Register
on Pa ge
CONFIG1 13:8 FCMEN IESO CLKOUTEN BOREN<1:0> 42
7:0 CP MCLRE PWRTE WDTE<1:0> FOSC<2:0>
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by Watchdog Timer.
PIC16(L)F1516/7/8/9
DS40001452F-page 88 2010-2016 Microchip Technology Inc.
11.0 FLASH PROGRAM MEMORY
CONTROL
The Flash program memory is readable and writable
during normal operation over the full VDD range.
Program memory is indirectly addressed using Special
Function Registers (SFRs). The SFRs used to access
program memory are:
•PMCON1
•PMCON2
•PMDATL
•PMDATH
PMADRL
•PMADRH
When accessing the program memory, the
PMDATH:PMDATL register pair forms a 2-byte word
that holds the 14-bit data for read/write, and the
PMADRH:PMADRL register pair forms a 2-byte word
that holds the 15-bit address of the program memory
location being read.
The write time is controlled by an on-chip timer. The write/
erase voltages are generated by an on-chip charge pump
rated to operate over the operating voltage range of the
device.
The Flash program memory can be protected in two
ways; by code protection (CP bit in Configuration Words)
and write protection (WRT<1:0> bits in Configuration
Words).
Code protection (CP = 0)(1), disables access, reading
and writing, to the Flash program memory via external
device programmers. Code protection does not affect
the self-write and erase functionality. Code protection
can only be reset by a device programmer performing
a Bulk Erase to the device, clearing all Flash program
memory, Configuration bits and User IDs.
Write protection prohibits self-write and erase to a
portion or all of the Flash program memory as defined
by the bits WRT<1:0>. Write protection does not affect
a device programmers ability to read, write or erase the
device.
11.1 PMADRL and PMADRH Registers
The PMADRH:PMADRL register pair can address up
to a maximum of 32K words of program memory. When
selecting a program address value, the MSB of the
address is written to the PMADRH register and the LSB
is written to the PMADRL register.
11.1.1 PMCON1 AND PMCON2
REGISTERS
PMCON1 is the control register for Flash program
memory accesses.
Control bits RD and WR initiate read and write,
respectively. These bits cannot be cleared, only set, in
software. They are cleared by hardware at completion
of the read or write operation. The inability to clear the
WR bit in software prevents the accidental, premature
termination of a write operation.
The WREN bit, when set, will allow a write operation to
occur. On power-up, the WREN bit is clear. The
WRERR bit is set when a write operation is interrupted
by a Reset during normal operation. In these situations,
following Reset, the user can check the WRERR bit
and execute the appropriate error handling routine.
The PMCON2 register is a write-only register. Attempting
to read the PMCON2 register will return all ‘0’s.
To enable writes to the program memory, a specific
pattern (the unlock sequence), must be written to the
PMCON2 register. The required unlock sequence
prevents inadvertent writes to the program memory
write latches and Flash program memory.
11.2 Flash Program Memory Overview
It is important to understand the Flash program memory
structure for erase and programming operations. Flash
program memory is arranged in rows. A row consists of
a fixed number of 14-bit program memory words. A row
is the minimum size that can be erased by user software.
After a row has been erased, the user can reprogram
all or a portion of this row. Data to be written into the
program memory row is written to 14-bit wide data write
latches. These write latches are not directly accessible
to the user, but may be loaded via sequential writes to
the PMDATH:PMDATL register pair.
See Table 11-1 for Erase Row size and the number of
write latches for Flash program memory.
Note 1: Code protection of the entire Flash
program memory array is enabled by
clearing the CP bit of Configuration Words.
Note: If the user wants to modify only a portion
of a previously programmed row, then the
contents of the entire row must be read
and saved in RAM prior to the erase.
Then, new data and retained data can be
written into the write latches to reprogram
the row of Flash program memory.
However, any unprogrammed locations
can be written without first erasing the
row. In this case, it is not necessary to
save and rewrite the other previously
programmed locations.
2010-2016 Microchip Technology Inc. DS40001452F-page 89
PIC16(L)F1516/7/8/9
11.2.1 READING THE FLASH PROGRAM
MEMORY
To read a program memory location, the user must:
1. Write the desired address to the
PMADRH:PMADRL register pair.
2. Clear the CFGS bit of the PMCON1 register.
3. Then, set control bit RD of the PMCON1 register.
Once the read control bit is set, the program memory
Flash controller will use the second instruction cycle to
read the data. This causes the second instruction
immediately following theBSF PMCON1,RD instruction
to be ignored. The data is available in the very next cycle,
in the PMDATH:PMDATL register pair; therefore, it can
be read as two bytes in the following instructions.
PMDATH:PMDATL register pair will hold this value until
another read or until it is written to by the user.
FIGURE 11-1: FLASH PROGRAM
MEMORY READ
FLOWCHART
TABLE 11-1: FLASH MEMORY
ORGANIZATION BY DEVICE
Device Row Erase
(words)
Write
Latches
(words)
PIC16(L)F1516
32 32
PIC16(L)F1517
PIC16(L)F1518
PIC16(L)F1519
Note: The two instructions following a program
memory read are required to be NOPs.
This prevents the user from executing a
2-cycle instruction on the next instruction
after the RD bit is set.
Start
Read Operation
Select
Program or Configuration Memory
(CFGS)
Select
Word Address
(PMADRH:PMADRL)
End
Read Operation
Instruction Fetched ignored
NOP execution forced
Instruction Fetched ignored
NOP execution forced
Initiate Read operation
(RD = 1)
Data read now in
PMDATH:PMDATL
PIC16(L)F1516/7/8/9
DS40001452F-page 90 2010-2016 Microchip Technology Inc.
FIGURE 11-2: FLASH PROGRAM MEMORY READ CYCLE EXECUTION
EXAMPLE 11-1: FLASH PROGRAM MEMORY READ
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
BSF PMCON1,RD
executed here
INSTR(PC + 1)
executed here
PC
PC + 1 PMADRH,PMADRL PC+3 PC + 5
Flash ADDR
RD bit
PMDATH,PMDATL
PC + 3 PC + 4
INSTR (PC + 1)
INSTR(PC - 1)
executed here INSTR(PC + 3)
executed here INSTR(PC + 4)
executed here
Flash Data
PMDATH
PMDATL
Register
INSTR (PC) INSTR (PC + 3) INSTR (PC + 4)
instruction ignored
Forced NOP
INSTR(PC + 2)
executed here
instruction ignored
Forced NOP
* This code block will read 1 word of program
* memory at the memory address:
PROG_ADDR_HI : PROG_ADDR_LO
* data will be returned in the variables;
* PROG_DATA_HI, PROG_DATA_LO
BANKSEL PMADRL ; Select Bank for PMCON registers
MOVLW PROG_ADDR_LO ;
MOVWF PMADRL ; Store LSB of address
MOVLW PROG_ADDR_HI ;
MOVWL PMADRH ; Store MSB of address
BCF PMCON1,CFGS ; Do not select Configuration Space
BSF PMCON1,RD ; Initiate read
NOP ; Ignored (Figure 11-2)
NOP ; Ignored (Figure 11-2)
MOVF PMDATL,W ; Get LSB of word
MOVWF PROG_DATA_LO ; Store in user location
MOVF PMDATH,W ; Get MSB of word
MOVWF PROG_DATA_HI ; Store in user location
2010-2016 Microchip Technology Inc. DS40001452F-page 91
PIC16(L)F1516/7/8/9
11.2.2 FLASH MEMORY UNLOCK
SEQUENCE
The unlock sequence is a mechanism that protects the
Flash program memory from unintended self-write
programming or erasing. The sequence must be
executed and completed without interruption to
successfully complete any of the following operations:
Row Erase
Load program memory write latches
Write of program memory write latches to
program memory
Write of program memory write latches to User
IDs
The unlock sequence consists of the following steps:
1. Write 55h to PMCON2
2. Write AAh to PMCON2
3. Set the WR bit in PMCON1
4. NOP instruction
5. NOP instruction
Once the WR bit is set, the processor will always force
two NOP instructions. When an Erase Row or Program
Row operation is being performed, the processor will stall
internal operations (typical 2 ms), until the operation is
complete and then resume with the next instruction.
When the operation is loading the program memory write
latches, the processor will always force the two NOP
instructions and continue uninterrupted with the next
instruction.
Since the unlock sequence must not be interrupted,
global interrupts should be disabled prior to the unlock
sequence and re-enabled after the unlock sequence is
completed.
FIGURE 11-3: FLASH PROGRAM
MEMORY UNLOCK
SEQUENCE FLOWCHART
Write 055h to
PMCON2
Start
Unlock Sequence
Write 0AAh to
PMCON2
Initiate
Write or Erase operation
(WR = 1)
Instruction Fetched ignored
NOP execution forced
End
Unlock Sequence
Instruction Fetched ignored
NOP execution forced
PIC16(L)F1516/7/8/9
DS40001452F-page 92 2010-2016 Microchip Technology Inc.
11.2.3 ERASING FLASH PROGRAM
MEMORY
While executing code, program memory can only be
erased by rows. To erase a row:
1. Load the PMADRH:PMADRL register pair with
any address within the row to be erased.
2. Clear the CFGS bit of the PMCON1 register.
3. Set the FREE and WREN bits of the PMCON1
register.
4. Write 55h, then AAh, to PMCON2 (Flash
programming unlock sequence).
5. Set control bit WR of the PMCON1 register to
begin the erase operation.
See Example 11-2.
After theBSF PMCON1,WR” instruction, the processor
requires two cycles to set up the erase operation. The
user must place two NOP instructions immediately fol-
lowing the WR bit set instruction. The processor will
halt internal operations for the typical 2 ms erase time.
This is not Sleep mode as the clocks and peripherals
will continue to run. After the erase cycle, the processor
will resume operation with the third instruction after the
PMCON1 write instruction.
FIGURE 11-4: FLASH PROGRAM
MEMORY ERASE
FLOWCHART
Disable Interrupts
(GIE = 0)
Start
Erase Operation
Select
Program or Configuration Memory
(CFGS)
Select Row Address
(PMADRH:PMADRL)
Select Erase Operation
(FREE = 1)
Enable Write/Erase Operation
(WREN = 1)
Unlock Sequence
(FIGURE x-x)
Disable Write/Erase Operation
(WREN = 0)
Re-enable Interrupts
(GIE = 1)
End
Erase Operation
CPU stalls while
Erase operation completes
(2ms typical)
Figure 11-3
2010-2016 Microchip Technology Inc. DS40001452F-page 93
PIC16(L)F1516/7/8/9
EXAMPLE 11-2: ERASING ONE ROW OF PROGRAM MEMORY
; This row erase routine assumes the following:
; 1. A valid address within the erase row is loaded in ADDRH:ADDRL
; 2. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM)
BCF INTCON,GIE ; Disable ints so required sequences will execute properly
BANKSEL PMADRL
MOVF ADDRL,W ; Load lower 8 bits of erase address boundary
MOVWF PMADRL
MOVF ADDRH,W ; Load upper 6 bits of erase address boundary
MOVWF PMADRH
BCF PMCON1,CFGS ; Not configuration space
BSF PMCON1,FREE ; Specify an erase operation
BSF PMCON1,WREN ; Enable writes
MOVLW 55h ; Start of required sequence to initiate erase
MOVWF PMCON2 ; Write 55h
MOVLW 0AAh ;
MOVWF PMCON2 ; Write AAh
BSF PMCON1,WR ; Set WR bit to begin erase
NOP ; NOP instructions are forced as processor starts
NOP ; row erase of program memory.
;
; The processor stalls until the erase process is complete
; after erase processor continues with 3rd instruction
BCF PMCON1,WREN ; Disable writes
BSF INTCON,GIE ; Enable interrupts
Required
Sequence
PIC16(L)F1516/7/8/9
DS40001452F-page 94 2010-2016 Microchip Technology Inc.
11.2.4 WRITING TO FLASH PROGRAM
MEMORY
Program memory is programmed using the following
steps:
1. Load the address in PMADRH:PMADRL of the
row to be programmed.
2. Load each write latch with data.
3. Initiate a programming operation.
4. Repeat steps 1 through 3 until all data is written.
Before writing to program memory, the word(s) to be
written must be erased or previously unwritten.
Program memory can only be erased one row at a time.
No automatic erase occurs upon the initiation of the
write.
Program memory can be written one or more words at
a time. The maximum number of words written at one
time is equal to the number of write latches. See
Figure 11-5 (row writes to program memory with 32
write latches) for more details.
The write latches are aligned to the Flash row address
boundary defined by the upper ten bits of
PMADRH:PMADRL, (PMADRH<6:0>:PMADRL<7:5>)
with the lower five bits of PMADRL, (PMADRL<4:0>)
determining the write latch being loaded. Write opera-
tions do not cross these boundaries. At the completion
of a program memory write operation, the data in the
write latches is reset to contain 0x3FFF.
The following steps should be completed to load the
write latches and program a row of program memory.
These steps are divided into two parts. First, each write
latch is loaded with data from the PMDATH:PMDATL
using the unlock sequence with LWLO = 1. When the
last word to be loaded into the write latch is ready, the
LWLO bit is cleared and the unlock sequence
executed. This initiates the programming operation,
writing all the latches into Flash program memory.
1. Set the WREN bit of the PMCON1 register.
2. Clear the CFGS bit of the PMCON1 register.
3. Set the LWLO bit of the PMCON1 register.
When the LWLO bit of the PMCON1 register is
1’, the write sequence will only load the write
latches and will not initiate the write to Flash
program memory.
4. Load the PMADRH:PMADRL register pair with
the address of the location to be written.
5. Load the PMDATH:PMDATL register pair with
the program memory data to be written.
6. Execute the unlock sequence (Section 11.2.2
“Flash Memory Unlock Sequence ). The write
latch is now loaded.
7. Increment the PMADRH:PMADRL register pair
to point to the next location.
8. Repeat steps 5 through 7 until all but the last
write latch has been loaded.
9. Clear the LWLO bit of the PMCON1 register.
When the LWLO bit of the PMCON1 register is
0’, the write sequence will initiate the write to
Flash program memory.
10. Load the PMDATH:PMDATL register pair with
the program memory data to be written.
11. Execute the unlock sequence (Section 11.2.2
“Flash Memory Unlock Sequence”). The
entire program memory latch content is now
written to Flash program memory.
An example of the complete write sequence is shown in
Example 11-3. The initial address is loaded into the
PMADRH:PMADRL register pair; the data is loaded
using indirect addressing.
Note: The special unlock sequence is required
to load a write latch with data or initiate a
Flash programming operation. If the
unlock sequence is interrupted, writing to
the latches or program memory will not be
initiated.
Note: The program memory write latches are
reset to the blank state (0x3FFF) at the
completion of every write or erase
operation. As a result, it is not necessary
to load all the program memory write
latches. Unloaded latches will remain in
the blank state.
PIC16(L)F1516/7/8/9
DS40001452F-page 95 2010-2016 Microchip Technology Inc.
FIGURE 11-5: BLOCK WRITES TO FLASH PROGRAM MEMORY WITH 32 WRITE LATCHES
PMDATH PMDATL
7 5 0 7 0
6 8
14
1414
Write Latch #31
1Fh
1414
PMADRH PMADRL
7 6 0 7 5 4 0
Program Memory Write Latches
14 14 14
510
PMADRH<6:0>
:PMADRL<7:5> Flash Program Memory
Row
Row
Address
Decode
Addr
Write Latch #30
1Eh
Write Latch #1
01h
Write Latch #0
00h
Addr AddrAddr
000h 001Fh001Eh0000h 0001h
001h 003Fh003Eh0020h 0021h
002h 005Fh005Eh0040h 0041h
3FEh 7FDFh7FDEh7FC0h 7FC1h
3FFh 7FFFh7FFEh7FE0h 7FE1h
14
r9 r8 r7 r6 r5 r4 r3-r1 r0 c4 c3 c2 c1 c0r2
PMADRL<4:0>
400h 8009h - 801Fh8000h - 8003h
Configuration
Words
USER ID 0 - 3
8007h - 8008h8006h
DEVID
REVID
reserved
8004h - 8005h
reserved
Configuration Memory
CFGS = 0
CFGS = 1
--
PIC16(L)F1516/7/8/9
DS40001452F-page 96 2010-2016 Microchip Technology Inc.
FIGURE 11-6: FLASH PROGRAM MEMORY WRITE FLOWCHART
Disable Interrupts
(GIE = 0)
Start
Write Operation
Select
Program or Config. Memory
(CFGS)
Select Row Address
(PMADRH:PMADRL)
Select Write Operation
(FREE = 0)
Enable Write/Erase
Operation (WREN = 1)
Unlock Sequence
(Figure x-x)
Disable
Write/Erase Operation
(WREN = 0)
Re-enable Interrupts
(GIE = 1)
End
Write Operation
No delay when writing to
Program Memory Latches
Determine number of words
to be written into Program or
Configuration Memory.
The number of words cannot
exceed the number of words
per row.
(word_cnt) Load the value to write
(PMDATH:PMDATL)
Update the word counter
(word_cnt--)
Last word to
write ?
Increment Address
(PMADRH:PMADRL++)
Unlock Sequence
(Figure x-x)
CPU stalls while Write
operation completes
(2ms typical)
Load Write Latches Only
(LWLO = 1)
Write Latches to Flash
(LWLO = 0)
No
Yes
Figure 11-3
Figure 11-3
2010-2016 Microchip Technology Inc. DS40001452F-page 97
PIC16(L)F1516/7/8/9
EXAMPLE 11-3: WRITING TO FLASH PROGRAM MEMORY
; This write routine assumes the following:
; 1. 64 bytes of data are loaded, starting at the address in DATA_ADDR
; 2. Each word of data to be written is made up of two adjacent bytes in DATA_ADDR,
; stored in little endian format
; 3. A valid starting address (the least significant bits = 00000) is loaded in ADDRH:ADDRL
; 4. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM)
;BCF INTCON,GIE ; Disable ints so required sequences will execute properly
BANKSEL PMADRH ; Bank 3
MOVF ADDRH,W ; Load initial address
MOVWF PMADRH ;
MOVF ADDRL,W ;
MOVWF PMADRL ;
MOVLW LOW DATA_ADDR ; Load initial data address
MOVWF FSR0L ;
MOVLW HIGH DATA_ADDR ; Load initial data address
MOVWF FSR0H ;
BCF PMCON1,CFGS ; Not configuration space
BSF PMCON1,WREN ; Enable writes
BSF PMCON1,LWLO ; Only Load Write Latches
LOOP MOVIW FSR0++ ; Load first data byte into lower
MOVWF PMDATL ;
MOVIW FSR0++ ; Load second data byte into upper
MOVWF PMDATH ;
MOVF PMADRL,W ; Check if lower bits of address are '00000'
XORLW 0x1F ; Check if we're on the last of 32 addresses
ANDLW 0x1F ;
BTFSC STATUS,Z ; Exit if last of 32 words,
GOTO START_WRITE ;
MOVLW 55h ; Start of required write sequence:
MOVWF PMCON2 ; Write 55h
MOVLW 0AAh ;
MOVWF PMCON2 ; Write AAh
BSF PMCON1,WR ; Set WR bit to begin write
NOP ; NOP instructions are forced as processor
; loads program memory write latches
NOP ;
INCF PMADRL,F ; Still loading latches Increment address
GOTO LOOP ; Write next latches
START_WRITE
BCF PMCON1,LWLO ; No more loading latches - Actually start Flash program
; memory write
MOVLW 55h ; Start of required write sequence:
MOVWF PMCON2 ; Write 55h
MOVLW 0AAh ;
MOVWF PMCON2 ; Write AAh
BSF PMCON1,WR ; Set WR bit to begin write
NOP ; NOP instructions are forced as processor writes
; all the program memory write latches simultaneously
NOP ; to program memory.
; After NOPs, the processor
; stalls until the self-write process in complete
; after write processor continues with 3rd instruction
BCF PMCON1,WREN ; Disable writes
BSF INTCON,GIE ; Enable interrupts
Required
Sequence
Required
Sequence
PIC16(L)F1516/7/8/9
DS40001452F-page 98 2010-2016 Microchip Technology Inc.
11.3 Modifying Flash Program Memory
When modifying existing data in a program memory
row, and data within that row must be preserved, it
must first be read and saved in a RAM image. Program
memory is modified using the following steps:
1. Load the starting address of the row to be
modified.
2. Read the existing data from the row into a RAM
image.
3. Modify the RAM image to contain the new data
to be written into program memory.
4. Load the starting address of the row to be
rewritten.
5. Erase the program memory row.
6. Load the write latches with data from the RAM
image.
7. Initiate a programming operation.
FIGURE 11-7: FLASH PROGRAM
MEMORY MODIFY
FLOWCHART
Start
Modify Operation
Read Operation
(Figure x.x)
Erase Operation
(Figure x.x)
Modify Image
The words to be modified are
changed in the RAM image
End
Modify Operation
Write Operation
use RAM image
(Figure x.x)
An image of the entire row read
must be stored in RAM
Figure 11-2
Figure 11-4
Figure 11-5
2010-2016 Microchip Technology Inc. DS40001452F-page 99
PIC16(L)F1516/7/8/9
11.4 User ID, Device ID and
Configurati on Word Access
Instead of accessing program memory, the User ID’s,
Device ID/Revision ID and Configuration Words can be
accessed when CFGS = 1 in the PMCON1 register.
This is the region that would be pointed to by
PC<15> = 1, but not all addresses are accessible.
Different access may exist for reads and writes. Refer
to Tab le .
When read access is initiated on an address outside
the parameters listed in Table , the PMDATH:PMDATL
register pair is cleared, reading back ‘0’s.
EXAMPLE 11-4: CONFIGURATION WORD AND DEVICE ID ACCESS
TABLE 11-1: USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS = 1)
Address Function Read Access Write Access
8000h-8003h User IDs Yes Yes
8006h Device ID/Revision ID Yes No
8007h-8008h Configuration Words 1 and 2 Yes No
* This code block will read 1 word of program memory at the memory address:
* PROG_ADDR_LO (must be 00h-08h) data will be returned in the variables;
* PROG_DATA_HI, PROG_DATA_LO
BANKSEL PMADRL ; Select correct Bank
MOVLW PROG_ADDR_LO ;
MOVWF PMADRL ; Store LSB of address
CLRF PMADRH ; Clear MSB of address
BSF PMCON1,CFGS ; Select Configuration Space
BCF INTCON,GIE ; Disable interrupts
BSF PMCON1,RD ; Initiate read
NOP ; Executed (See Figure 11-2)
NOP ; Ignored (See Figure 11-2)
BSF INTCON,GIE ; Restore interrupts
MOVF PMDATL,W ; Get LSB of word
MOVWF PROG_DATA_LO ; Store in user location
MOVF PMDATH,W ; Get MSB of word
MOVWF PROG_DATA_HI ; Store in user location
PIC16(L)F1516/7/8/9
DS40001452F-page 100 2010-2016 Microchip Technology Inc.
11.5 Write Verify
It is considered good programming practice to verify that
program memory writes agree with the intended value.
Since program memory is stored as a full page then the
stored program memory contents are compared with
the intended data stored in RAM after the last write is
complete.
FIGURE 11-8: FLASH PROGRAM
MEMORY VERIFY
FLOWCHART
Start
Verify Operation
Read Operation
(Figure x.x)
End
Verify Operation
This routine assumes that the last row
of data written was from an image
saved in RAM. This image will be used
to verify the data currently stored in
Flash Program Memory.
PMDAT =
RAM image
?
Last
Word ?
Fail
Verify Operation
No
Yes
Yes
No
Figure 11-2
2010-2016 Microchip Technology Inc. DS40001452F-page 101
PIC16(L)F1516/7/8/9
11.6 Register Definitions: Flash Program Memory Control
REGISTER 11-2: PMDATL: PROGRAM MEMORY DATA LOW BYTE REGISTER
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
PMDAT<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 PMDAT<7:0>: Read/write value for Least Significant bits of program memory
REGISTER 11-3: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER
U-0 U-0 R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
—PMDAT<13:8>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 Unimplemented: Read as ‘0
bit 5-0 PMDAT<13:8>: Read/write value for Most Significant bits of program memory
REGISTER 11-4: PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
PMADR<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 PMADR<7:0>: Specifies the Least Significant bits for program memory address
REGISTER 11-5: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER
U-1 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
(1) PMADR<14:8>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 Unimplemented: Read as ‘1
bit 6-0 PMADR<14:8>: Specifies the Most Significant bits for program memory address
Note 1: Unimplemented, read as ‘1’.
PIC16(L)F1516/7/8/9
DS40001452F-page 102 2010-2016 Microchip Technology Inc.
REGISTER 11-6: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER
U-1 R/W-0/0 R/W-0/0 R/W/HC-0/0 R/W/HC-x/q(2) R/W-0/0 R/S/HC-0/0 R/S/HC-0/0
(1) CFGS LWLO FREE WRERR WREN WR RD
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
S = Bit can only be set x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared HC = Bit is cleared by hardware
bit 7 Unimplemented: Read as ‘1
bit 6 CFGS: Configuration Select bit
1 = Access Configuration, User ID and Device ID Registers
0 = Access Flash program memory
bit 5 LWLO: Load Write Latches Only bit(3)
1 = Only the addressed program memory write latch is loaded/updated on the next WR command
0 = The addressed program memory write latch is loaded/updated and a write of all program memory write latches
will be initiated on the next WR command
bit 4 FREE: Program Flash Erase Enable bit
1 = Performs an erase operation on the next WR command (hardware cleared upon completion)
0 = Performs an write operation on the next WR command
bit 3 WRERR: Program/Erase Error Flag bit
1 = Condition indicates an improper program or erase sequence attempt or termination (bit is set automatically
on any set attempt (write ‘1’) of the WR bit).
0 = The program or erase operation completed normally.
bit 2 WREN: Program/Erase Enable bit
1 = Allows program/erase cycles
0 = Inhibits programming/erasing of program Flash
bit 1 WR: Write Control bit
1 = Initiates a program Flash program/erase operation.
The operation is self-timed and the bit is cleared by hardware once operation is complete.
The WR bit can only be set (not cleared) in software.
0 = Program/erase operation to the Flash is complete and inactive.
bit 0 RD: Read Control bit
1 = Initiates a program Flash read. Read takes one cycle. RD is cleared in hardware. The RD bit can only be set
(not cleared) in software.
0 = Does not initiate a program Flash read.
Note 1: Unimplemented bit, read as ‘1’.
2: The WRERR bit is automatically set by hardware when a program memory write or erase operation is started (WR = 1) .
3: The LWLO bit is ignored during a program memory erase operation (FREE = 1).
2010-2016 Microchip Technology Inc. DS40001452F-page 103
PIC16(L)F1516/7/8/9
REGISTER 11-7: PMCON2: PROGRAM MEMORY CONTROL 2 REGISTER
W-0/0 W-0/0 W-0/0 W-0/0 W-0/0 W-0/0 W-0/0 W-0/0
Program Memory Control Register 2
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
S = Bit can only be set x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 Flash Memo ry Unlock Pattern bit s
To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the
PMCON1 register. The value written to this register is used to unlock the writes. There are specific
timing requirements on these writes.
TABLE 11-2: SUMMARY OF REGISTERS ASSOCIATED WITH FLASH PROGRAM MEMORY
Name Bi t 7 Bit 6 Bit 5 B it 4 Bit 3 Bit 2 Bit 1 B it 0 Register
on Page
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 74
PMCON1 (1) CFGS LWLO FREE WRERR WREN WR RD 102
PMCON2 Program Memory Control Register 2 103
PMADRL PMADRL<7:0> 101
PMADRH (1) PMADRH<6:0> 101
PMDATL PMDATL<7:0> 101
PMDATH PMDATH<5:0> 101
Legend: = unimplemented location, read as ‘0’. Shaded cells are not used by Flash program memory.
Note 1: Unimplemented, read as1’.
TABLE 11-3: SUMMARY OF CONFIGURATION WORD WITH FLASH PROGRAM MEMORY
Name Bits Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 Bit 10/2 Bit 9/1 Bit 8/0 Register
on Pa ge
CONFIG1 13:8 FCMEN IESO CLKOUTEN BOREN<1:0> 42
7:0 CP MCLRE PWRTE WDTE<1:0> FOSC<2:0>
CONFIG2 13:8 LVP DEBUG BORV STVREN 43
7:0 VCAPEN(1) —WRT<1:0>
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by Flash program memory.
PIC16(L)F1516/7/8/9
DS40001452F-page 104 2010-2016 Microchip Technology Inc.
12.0 I/O PORTS
Each port has three standard registers for its operation.
These registers are:
TRISx registers (data direction)
PORTx registers (reads the levels on the pins of
the device)
LATx registers (output latch)
Some ports may have one or more of the following
additional registers. These registers are:
ANSELx (analog select)
WPUx (weak pull-up)
In general, when a peripheral is enabled on a port pin,
that pin cannot be used as a general purpose output.
However, the pin can still be read.
The Data Latch (LATx register) is useful for
read-modify-write operations on the value that the I/O
pins are driving.
A write operation to the LATx register has the same
effect as a write to the corresponding PORTx register.
A read of the LATx register reads of the values held in
the I/O PORT latches, while a read of the PORTx
register reads the actual I/O pin value.
Ports that support analog inputs have an associated
ANSELx register. When an ANSEL bit is set, the digital
input buffer associated with that bit is disabled.
Disabling the input buffer prevents analog signal levels
on the pin between a logic high and low from causing
excessive current in the logic input circuitry. A
simplified model of a generic I/O port, without the
interfaces to other peripherals, is shown in Figure 12-1.
FIGURE 12-1: GENERIC I/O PORT
OPERATION
TABLE 12-1: PORT AVAILABILITY PER
DEVICE
Device
PORT A
PORTB
PORTC
PORTD
PORTE
PIC16(L)F1516/8 ●●●
PIC16(L)F1517/9 ●●●●●
QD
CK
Write LATx
Data Register
I/O pin
Read PORTx
Write PORTx
TRISx
Read LATx
Data Bus
To peripherals
ANSELx
VDD
VSS
2010-2016 Microchip Technology Inc. DS40001452F-page 105
PIC16(L)F1516/7/8/9
12.1 Alternate Pin Function
The Alternate Pin Function Control (APFCON)
registers are used to steer specific peripheral input and
output functions between different pins. The APFCON
registers are shown in Register 12-1. For this device
family, the following functions can be moved between
different pins.
•SS
(Slave Select)
CCP2
These bits have no effect on the values of any TRIS
register. PORT and TRIS overrides will be routed to the
correct pin. The unselected pin will be unaffected.
REGISTER 12-1: APFCON: ALTERNATE PIN FUNCTION CONTROL REGISTER
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0
SSSEL CCP2SEL
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-2 Unimplemented: Read as 0
bit 1 SSSEL: Pin Selection bit
0 =SS function is on RA5
1 =SS function is on RA0
bit 0 CCP2SEL: Pin Selection bit
0 = CCP2 function is on RC1
1 = CCP2 function is on RB3
PIC16(L)F1516/7/8/9
DS40001452F-page 106 2010-2016 Microchip Technology Inc.
12.2 PORTA Registers
12.2.1 DATA REGISTER
PORTA is a 8-bit wide, bidirectional port. The
corresponding data direction register is TRISA
(Register 12-3). Setting a TRISA bit (= 1) will make the
corresponding PORTA pin an input (i.e., disable the
output driver). Clearing a TRISA bit (= 0) will make the
corresponding PORTA pin an output (i.e., enables
output driver and puts the contents of the output latch
on the selected pin). Example 12-1 shows how to
initialize an I/O port.
Reading the PORTA register (Register 12-2) reads the
status of the pins, whereas writing to it will write to the
PORT latch. All write operations are read-modify-write
operations. Therefore, a write to a port implies that the
port pins are read, this value is modified and then
written to the PORT data latch (LATA).
12.2.2 DIRECTION CONTROL
The TRISA register (Register 12-3) controls the
PORTA pin output drivers, even when they are being
used as analog inputs. The user should ensure the bits
in the TRISA register are maintained set when using
them as analog inputs. I/O pins configured as analog
input always read ‘0’.
12.2.3 ANALOG CONTROL
The ANSELA register (Register 12-5) is used to
configure the Input mode of an I/O pin to analog.
Setting the appropriate ANSELA bit high will cause all
digital reads on the pin to be read as ‘0’ and allow
analog functions on the pin to operate correctly.
The state of the ANSELA bits has no effect on digital
output functions. A pin with TRIS clear and ANSEL set
will still operate as a digital output, but the Input mode
will be analog. This can cause unexpected behavior
when executing read-modify-write instructions on the
affected port.
EXAMPLE 12-1: INITIA LI ZING PORTA
12.2.4 PORTA FUNCTIONS AND OUTPUT
PRIORITIES
Each PORTA pin is multiplexed with other functions. The
pins, their combined functions and their output priorities
are shown in Table 12-2.
When multiple outputs are enabled, the actual pin
control goes to the peripheral with the highest priority.
Analog input functions, such as ADC, are not shown in
the priority lists. These inputs are active when the I/O
pin is set for Analog mode using the ANSELx registers.
Digital output functions may control the pin when it is in
Analog mode with the priority shown in the priority list.
Note: The ANSELA bits default to the Analog
mode after Reset. To use any pins as
digital general purpose or peripheral
inputs, the corresponding ANSEL bits
must be initialized to ‘0’ by user software.
TABLE 12-2: PORTA OUTPUT PRIORITY
Pin Name Function Priority(1)
RA0 RA0
RA1 RA1
RA2 RA2
RA3 RA3
RA4 RA4
RA5 VCAP (PIC16F1516/7/8/9 only)
RA5
RA6 CLKOUT
OSC2
RA6
RA7 RA7
Note 1: Priority listed from highest to lowest.
; This code example illustrates
; initializing the PORTA register. The
; other ports are initialized in the same
; manner.
BANKSEL PORTA ;
CLRF PORTA ;Init PORTA
BANKSEL LATA ;Data Latch
CLRF LATA ;
BANKSEL ANSELA ;
CLRF ANSELA ;digital I/O
BANKSEL TRISA ;
MOVLW B'00111000' ;Set RA<5:3> as inputs
MOVWF TRISA ;and set RA<2:0> as
;outputs
2010-2016 Microchip Technology Inc. DS40001452F-page 107
PIC16(L)F1516/7/8/9
REGISTER 12-2: PORTA: PORTA REGISTER
R/W-x/x R/W-x/x R/W-x/x R/W-x/x R/W-x/x R/W-x/x R/W-x/x R/W-x/x
RA7 RA6 RA5 RA4 RA3 RA2 RA1 RA0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 RA<7:0>: PORTA I/O Value bits(1)
1 = Port pin is > VIH
0 = Port pin is < VIL
Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is the
return of actual I/O pin values.
REGISTER 12-3: TRISA: PORTA TRI-STATE REGISTER
R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1
TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 TRISA<7:0>: PORTA Tri-State Control bits
1 = PORTA pin configured as an input (tri-stated)
0 = PORTA pin configured as an output
PIC16(L)F1516/7/8/9
DS40001452F-page 108 2010-2016 Microchip Technology Inc.
REGISTER 12-4: LATA: PORTA DATA LATCH REGISTER
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
LATA7 LATA6 LATA5 LATA4 LATA3 LATA2 LATA1 LATA0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-4 LATA<7:0>: PORTA Output Latch Value bits(1)
Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is the
return of actual I/O pin values.
REGISTER 12-5: ANSELA: PORTA ANALOG SELECT REGISTER
U-0 U-0 R/W-1/1 U-0 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1
ANSA5 ANSA3 ANSA2 ANSA1 ANSA0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 Unimplemented: Read as0
bit 5 ANSA5: Analog Select between Analog or Digital Function on pins RA5, respectively
0 = Digital I/O. Pin is assigned to port or digital special function.
1 = Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.
bit 4 Unimplemented: Read as ‘0
bit 3-0 ANSA<3:0>: Analog Select between Analog or Digital Function on pins RA<3:0>, respectively
0 = Digital I/O. Pin is assigned to port or digital special function.
1 = Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to
allow external control of the voltage on the pin.
2010-2016 Microchip Technology Inc. DS40001452F-page 109
PIC16(L)F1516/7/8/9
TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
ANSELA —ANSA5 ANSA3 ANSA2 ANSA1 ANSA0 108
APFCON ———— SSSEL CCP2SEL 105
LATA LATA7 LATA6 LATA5 LATA4 LATA3 LATA2 LATA1 LATA0 108
OPTION_REG WPUEN INTEDG TMR0CS TMR0SE PSA PS<2:0> 146
PORTA RA7 RA6 RA5 RA4 RA3 RA2 RA1 RA0 107
TRISA TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 107
Legend: x = unknown, u = unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTA.
TABLE 12-4: SUMMARY OF CONFIGURATION WORD WITH PORTA
Name Bits Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 Bit 10/2 Bit 9/1 Bit 8/0 Register
on Pa ge
CONFIG1 13:8 FCMEN IESO CLKOUTEN BOREN<1:0.> 42
7:0 CP MCLRE PWRTE WDTE<1:0> FOSC<2:0>
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by PORTA.
PIC16(L)F1516/7/8/9
DS40001452F-page 110 2010-2016 Microchip Technology Inc.
12.3 PORTB Registers
12.3.1 DATA REGISTER
PORTB is a 8-bit wide, bidirectional port. The
corresponding data direction register is TRISB
(Register 12-7). Setting a TRISB bit (= 1) will make the
corresponding PORTB pin an input (i.e., put the
corresponding output driver in a High-Impedance mode).
Clearing a TRISB bit (= 0) will make the corresponding
PORTB pin an output (i.e., enable the output driver and
put the contents of the output latch on the selected pin).
Example 12-1 shows how to initialize an I/O port.
Reading the PORTB register (Register 12-6) reads the
status of the pins, whereas writing to it will write to the
PORT latch. All write operations are read-modify-write
operations. Therefore, a write to a port implies that the
port pins are read, this value is modified and then written
to the PORT data latch (LATB).
12.3.2 DIRECTION CONTROL
The TRISB register (Register 12-7) controls the PORTB
pin output drivers, even when they are being used as
analog inputs. The user should ensure the bits in the
TRISB register are maintained set when using them as
analog inputs. I/O pins configured as analog input always
read ‘0’.
12.3.3 ANALOG CONTROL
The ANSELB register (Register 12-9) is used to
configure the Input mode of an I/O pin to analog.
Setting the appropriate ANSELB bit high will cause all
digital reads on the pin to be read as ‘0’ and allow
analog functions on the pin to operate correctly.
The state of the ANSELB bits has no effect on digital out-
put functions. A pin with TRIS clear and ANSELB set will
still operate as a digital output, but the Input mode will be
analog. This can cause unexpected behavior when exe-
cuting read-modify-write instructions on the affected
port.
12.3.4 PORTB FUNCTIONS AND OUTPUT
PRIORITIES
Each PORTB pin is multiplexed with other functions. The
pins, their combined functions and their output priorities
are shown in Table 12-5.
When multiple outputs are enabled, the actual pin
control goes to the peripheral with the highest priority.
Analog input and some digital input functions are not
included in the list below. These input functions can
remain active when the pin is configured as an output.
Certain digital input functions override other port
functions and are included in the priority list.
Note: The ANSELB bits default to the Analog
mode after Reset. To use any pins as
digital general purpose or peripheral
inputs, the corresponding ANSEL bits
must be initialized to ‘0’ by user software.
TABLE 12-5: PORTB OUTPUT PRIORITY
Pin Name Function Priority(1)
RB0 RB0
RB1 RB1
RB2 RB2
RB3 CCP2
RB3
RB4 RB4
RB5 RB5
RB6 ICDCLK
RB6
RB7 ICDDAT
RB7
Note 1: Priority listed from highest to lowest.
2010-2016 Microchip Technology Inc. DS40001452F-page 111
PIC16(L)F1516/7/8/9
REGISTER 12-6: PORTB: PORTB REGISTER
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 RB<7:0>: PORTB General Purpose I/O Pin bits(1)
1 = Port pin is > VIH
0 = Port pin is < VIL
Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is the
return of actual I/O pin values.
REGISTER 12-7: TRISB: PORTB TRI-STATE REGISTER
R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1
TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 TRISB<7:0>: PORTB Tri-State Control bits
1 = PORTB pin configured as an input (tri-stated)
0 = PORTB pin configured as an output
REGISTER 12-8: LATB: PORTB DATA LATCH REGISTER
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 LATB<7:0>: PORTB Output Latch Value bits(1)
Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is the
return of actual I/O pin values.
PIC16(L)F1516/7/8/9
DS40001452F-page 112 2010-2016 Microchip Technology Inc.
REGISTER 12-9: ANSELB: PORTB ANALOG SELECT REGISTER
U-0 U-0 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1
ANSB5 ANSB4 ANSB3 ANSB2 ANSB1 ANSB0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 Unimplemented: Read as ‘0
bit 5-0 ANSB<5:0>: Analog Select between Analog or Digital Function on pins RB<5:0>, respectively
0 = Digital I/O. Pin is assigned to port or digital special function.
1 = Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external
control of the voltage on the pin.
REGISTER 12-10: WPUB: WEAK PULL-UP PORTB REGISTER
R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1
WPUB7 WPUB6 WPUB5 WPUB4 WPUB3 WPUB2 WPUB1 WPUB0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 WPUB<7:0>: Weak Pull-up Register bits
1 = Pull-up enabled
0 = Pull-up disabled
Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
2: The weak pull-up device is automatically disabled if the pin is in configured as an output.
TABLE 12-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
ANSELB ANSB5 ANSB4 ANSB3 ANSB2 ANSB1 ANSB0 112
APFCON SSSEL CCP2SEL 105
LATB LATB7 LAT B6 LATB5 L ATB4 LATB3 LATB2 LATB1 LATB0 111
OPTION_REG WPUEN INTEDG TMR0CS TMR0SE PSA PS<2:0> 146
PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 111
TRISB TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 111
WPUB WPUB7 WPUB6 WPUB5 WPUB4 WPUB3 WPUB2 WPUB1 WPUB0 112
Legend: x = unknown, u = unchanged, - = unimplemented locations read as ‘0’. Shaded cells are not used by PORTB.
2010-2016 Microchip Technology Inc. DS40001452F-page 113
PIC16(L)F1516/7/8/9
12.4 PORTC Registers
12.4.1 DATA REGISTER
PORTC is a 8-bit wide bidirectional port. The
corresponding data direction register is TRISC
(Register 12-12). Setting a TRISC bit (= 1) will make the
corresponding PORTC pin an input (i.e., put the
corresponding output driver in a High-Impedance mode).
Clearing a TRISC bit (= 0) will make the corresponding
PORTC pin an output (i.e., enable the output driver and
put the contents of the output latch on the selected pin).
Example 12-1 shows how to initialize an I/O port.
Reading the PORTC register (Register 12-11) reads the
status of the pins, whereas writing to it will write to the
PORT latch. All write operations are read-modify-write
operations. Therefore, a write to a port implies that the
port pins are read, this value is modified and then written
to the PORT data latch (LATC).
12.4.2 DIRECTION CONTROL
The TRISC register (Register 12-12) controls the
PORTC pin output drivers, even when they are being
used as analog inputs. The user should ensure the bits in
the TRISC register are maintained set when using them
as analog inputs. I/O pins configured as analog input
always read ‘0’.
12.4.3 ANALOG CONTROL
The ANSELC register (Register 12-14) is used to
configure the Input mode of an I/O pin to analog.
Setting the appropriate ANSELC bit high will cause all
digital reads on the pin to be read as ‘0’ and allow
analog functions on the pin to operate correctly.
The state of the ANSELC bits has no effect on digital out-
put functions. A pin with TRIS clear and ANSELC set will
still operate as a digital output, but the Input mode will be
analog. This can cause unexpected behavior when
executing read-modify-write instructions on the affected
port.
12.4.4 PORTC FUNCTIONS AND OUTPUT
PRIORITIES
Each PORTC pin is multiplexed with other functions. The
pins, their combined functions and their output priorities
are shown in Table 12-7.
When multiple outputs are enabled, the actual pin
control goes to the peripheral with the highest priority.
Analog input and some digital input functions are not
included in the list below. These input functions can
remain active when the pin is configured as an output.
Certain digital input functions override other port
functions and are included in the priority list.
Note: The ANSELC bits default to the Analog
mode after Reset. To use any pins as
digital general purpose or peripheral
inputs, the corresponding ANSEL bits
must be initialized to ‘0’ by user software.
TABLE 12-7: PORTC OUTPUT PRIORITY
Pin Name Function Priority(1)
RC0 SOSCO
RC0
RC1 SOSCI
CCP2
RC1
RC2 CCP1
RC2
RC3 SCL
SCK
RC3(2)
RC4 SDA
RC4(2)
RC5 SDO
RC5
RC6 CK
TX
RC6
RC7 DT
RC7
Note 1: Priority listed from highest to lowest.
2: RC3 and RC4 read the I2C ST input when
I2C mode is enabled.
PIC16(L)F1516/7/8/9
DS40001452F-page 114 2010-2016 Microchip Technology Inc.
REGISTER 12-11: PORTC: PORTC REGISTER
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 RC<7:0>: PORTC General Purpose I/O Pin bits(1)
1 = Port pin is > VIH
0 = Port pin is < VIL
Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is the
return of actual I/O pin values.
REGISTER 12-12: TRISC: PORTC TRI-STATE REGISTER
R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1
TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 TRISC<7:0>: PORTC Tri-State Control bits
1 = PORTC pin configured as an input (tri-stated)
0 = PORTC pin configured as an output
REGISTER 12-13: LATC: PORTC DATA LATCH REGISTER
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
LATC7 LATC6 LATC5 LATC4 LATC3 LATC2 LATC1 LATC0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 LATC<7:0>: PORTC Output Latch Value bits(1)
Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is the
return of actual I/O pin values.
2010-2016 Microchip Technology Inc. DS40001452F-page 115
PIC16(L)F1516/7/8/9
REGISTER 12-14: ANSELC: PORTC ANALOG SELECT REGISTER
R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 U-0 U-0
ANSC7 ANSC6 ANSC3 ANSC3 ANSC3 ANSC2
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-2 ANSC<7:2>: Analog Select between Analog or Digital Function on pins RC<7:2>, respectively
0 = Digital I/O. Pin is assigned to port or digital special function.
1 = Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.
bit 1-0 Unimplemented: Read as0
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to
allow external control of the voltage on the pin.
TABLE 12-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
ANSELC ANSC7 ANSC6 ANSC5 ANSC4 ANSC3 ANSC2 115
APFCON SSSEL CCP2SEL 105
LATC LATC7 LATC6 LATC5 LATC4 LATC3 LATC2 LATC1 LATC0 114
PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 114
TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 114
Legend: x = unknown, u = unchanged, - = unimplemented locations read as ‘0’. Shaded cells are not used by PORTC.
PIC16(L)F1516/7/8/9
DS40001452F-page 116 2010-2016 Microchip Technology Inc.
12.5 PORTD Registers
(PIC16F1517/1519 only)
12.5.1 DATA REGISTER
PORTD is a 8-bit wide, bidirectional port. The
corresponding data direction register is TRISD
(Register 12-16). Setting a TRISD bit (= 1) will make the
corresponding PORTD pin an input (i.e., put the
corresponding output driver in a High-Impedance mode).
Clearing a TRISD bit (= 0) will make the corresponding
PORTD pin an output (i.e., enable the output driver and
put the contents of the output latch on the selected pin).
Example 12-1 shows how to initialize an I/O port.
Reading the PORTD register (Register 12-15) reads the
status of the pins, whereas writing to it will write to the
PORT latch. All write operations are read-modify-write
operations. Therefore, a write to a port implies that the
port pins are read, this value is modified and then written
to the PORT data latch (LATD).
12.5.2 DIRECTION CONTROL
The TRISD register (Register 12-16) controls the
PORTD pin output drivers, even when they are being
used as analog inputs. The user should ensure the bits in
the TRISD register are maintained set when using them
as analog inputs. I/O pins configured as analog input
always read ‘0’.
12.5.3 ANALOG CONTROL
The ANSELD register (Register 12-18) is used to
configure the Input mode of an I/O pin to analog.
Setting the appropriate ANSELD bit high will cause all
digital reads on the pin to be read as ‘0’ and allow
analog functions on the pin to operate correctly.
The state of the ANSELD bits has no effect on digital out-
put functions. A pin with TRIS clear and ANSELD set will
still operate as a digital output, but the Input mode will be
analog. This can cause unexpected behavior when
executing read-modify-write instructions on the affected
port.
12.5.4 PORTD FUNCTIONS AND OUTPUT
PRIORITIES
PORTD has no peripheral outputs, so the PORTD
output has no priority function.
Note: The ANSELD bits default to the Analog
mode after Reset. To use any pins as
digital general purpose or peripheral
inputs, the corresponding ANSEL bits
must be initialized to ‘0’ by user software.
2010-2016 Microchip Technology Inc. DS40001452F-page 117
PIC16(L)F1516/7/8/9
REGISTER 12-15: PORTD: PORTD REGISTER
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 RD<7:0>: PORTD General Purpose I/O Pin bits(1)
1 = Port pin is > VIH
0 = Port pin is < VIL
Note 1: Writes to PORTD are actually written to corresponding LATD register. Reads from PORTD register is the
return of actual I/O pin values.
REGISTER 12-16: TRISD: PORTD TRI-STATE REGISTER
R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1
TRISD7 TRISD6 TRISD5 TRISD4 TRISD5 TRISD5 TRISD5 TRISD4
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 TRISD<7:0>: PORTD Tri-State Control bits
1 = PORTD pin configured as an input (tri-stated)
0 = PORTD pin configured as an output
REGISTER 12-17: LATD: PORTD DATA LATCH REGISTER
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 LATD<7:0>: PORTD Output Latch Value bits(1)
Note 1: Writes to PORTD are actually written to corresponding LATD register. Reads from PORTD register is the
return of actual I/O pin values.
PIC16(L)F1516/7/8/9
DS40001452F-page 118 2010-2016 Microchip Technology Inc.
REGISTER 12-18: ANSELD: PORTD ANALOG SELECT REGISTER
R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1
ANSD7 ANSD6 ANSD5 ANSD4 ANSD3 ANSD2 ANSD1 ANSD0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 ANSD<7:0>: Analog Select between Analog or Digital Function on pins RD<7:0>, respectively
0 = Digital I/O. Pin is assigned to port or digital special function.
1 = Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to
allow external control of the voltage on the pin.
TABLE 12-9: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD(1)
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
ANSELD ANSD7 ANSD6 ANSD5 ANSD4 ANSD3 ANSD2 ANSD1 ANSD0 118
LATD LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0 117
PORTD RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 117
TRISD TRISD7 TRISD6 TRISB5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 117
Legend: x = unknown, u = unchanged, - = unimplemented locations read as 0’. Shaded cells are not used by
PORTD.
Note 1: PIC16F1517/1519 only.
2010-2016 Microchip Technology Inc. DS40001452F-page 119
PIC16(L)F1516/7/8/9
12.6 PORTE Registers
12.6.1 DATA REGISTER
PORTE is a 4-bit wide, bidirectional port. The
corresponding data direction register is TRISE. Setting a
TRISE bit (= 1) will make the corresponding PORTE pin
an input (i.e., put the corresponding output driver in a
High-Impedance mode). Clearing a TRISE bit (= 0) will
make the corresponding PORTE pin an output (i.e.,
enable the output driver and put the contents of the
output latch on the selected pin). The exception is RE3,
which is input only and its TRIS bit will always read as
1’. Example 12-1 shows how to initialize an I/O port.
Reading the PORTE register (Register 12-19) reads
the status of the pins, whereas writing to it will write to
the PORT latch. All write operations are
read-modify-write operations. Therefore, a write to a
port implies that the port pins are read, this value is
modified and then written to the PORT data latch
(LATE). RE3 reads ‘0’ when MCLRE = 1.
12.6.2 ANALOG CONTROL
The ANSELE register (Register 12-22) is used to
configure the Input mode of an I/O pin to analog.
Setting the appropriate ANSELE bit high will cause all
digital reads on the pin to be read as ‘0’ and allow
analog functions on the pin to operate correctly.
The state of the ANSELE bits has no effect on digital
output functions. A pin with TRIS clear and ANSEL set
will still operate as a digital output, but the Input mode
will be analog. This can cause unexpected behavior
when executing read-modify-write instructions on the
affected port.
The TRISE register (Register 12-20) controls the PORTE
pin output drivers, even when they are being used as
analog inputs. The user should ensure the bits in the
TRISE register are maintained set when using them as
analog inputs. I/O pins configured as analog input always
read ‘0’.
12.6.3 PORTE FUNCTIONS AND OUTPUT
PRIORITIES
PORTE has no peripheral outputs, so the PORTE
output has no priority function.
Note: RE<2:0> and TRISE<2:0> pins are
available on PIC16(L)F1517/9 only.
Note: The ANSELE bits default to the Analog
mode after Reset. To use any pins as
digital general purpose or peripheral
inputs, the corresponding ANSEL bits
must be initialized to ‘0’ by user software.
PIC16(L)F1516/7/8/9
DS40001452F-page 120 2010-2016 Microchip Technology Inc.
REGISTER 12-19: PORTE: PORTE REGISTER
U-0 U-0 U-0 U-0 R-x/u R/W-x/u R/W-x/u R/W-x/u
RE3 RE2(1) RE1(1) RE0(1)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-4 Unimplemented: Read as ‘0
bit 3-0 RE<3:0>: PORTE I/O Pin bits(1)
1 = Port pin is > VIH
0 = Port pin is < VIL
Note 1: RE<2:0> are not implemented on the PIC16(L)F1516/8. Read as ‘0’. Writes to RE<2:0> are actually writ-
ten to corresponding LATE register. Reads from PORTE register is the return of actual I/O pin values.
REGISTER 12-20: TRISE: PORTE TRI-STATE REGISTER
U-0 U-0 U-0 U-0 U-1(2) R/W-1 R/W-1 R/W-1
TRISE2(1) TRISE1(1) TRISE0(1)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-4 Unimplemented: Read as ‘0
bit 3 Unimplemented: Read as1
bit 2-0 TRISE<2:0>: RE<2:0> Tri-State Control bits(1)
1 = PORTE pin configured as an input (tri-stated)
0 = PORTE pin configured as an output
Note 1: TRISE<2:0> are not implemented on the PIC16(L)F1517/9. Read as ‘0’.
2: Unimplemented, read as1’.
2010-2016 Microchip Technology Inc. DS40001452F-page 121
PIC16(L)F1516/7/8/9
REGISTER 12-21: LATE: PORTE DATA LATCH REGISTER(2)
U-0 U-0 U-0 U-0 U-0 R/W-x/u R/W-x/u R/W-x/u
LATE2 LATE1 LATE0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-3 Unimplemented: Read as ‘0
bit 2-0 LATE<2:0>: PORTE Output Latch Value bits(1)
Note 1: Writes to PORTE are actually written to corresponding LATE register. Reads from PORTE register is the
return of actual I/O pin values.
2: PIC16(L)F1517/9 only.
REGISTER 12-22: ANSELE: PORTE ANALOG SELECT REGISTER(2)
U-0 U-0 U-0 U-0 U-0 R/W-1 R/W-1 R/W-1
ANSE2 ANSE1 ANSE0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-3 Unimplemented: Read as0
bit 2-0 ANSE<2:0>: Analog Select between Analog or Digital Function on pins RE<2:0>, respectively
0 = Digital I/O. Pin is assigned to port or digital special function.
1 = Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to
allow external control of the voltage on the pin.
2: PIC16(L)F1517/9 only.
PIC16(L)F1516/7/8/9
DS40001452F-page 122 2010-2016 Microchip Technology Inc.
REGISTER 12-23: WPUE: WEAK PULL-UP PORTE REGISTER(1,2)
U-0 U-0 U-0 U-0 R/W-1/1 U-0 U-0 U-0
WPUE3
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-4 Unimplemented: Read as ‘0
bit 3 WPUE: Weak Pull-up Register bit
1 = Pull-up enabled
0 = Pull-up disabled
bit 2-0 Unimplemented: Read as ‘0
Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
2: The weak pull-up device is automatically disabled if the pin is in configured as an output.
TABLE 12-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
ADCON0 CHS<4:0> GO/DONE ADON 137
ANSELE(1) ———— ANSE2 ANSE1 ANSE0 121
CCPxCON DCxB<1:0> CCPxM<3:0> 168
LATE ————LATE2(1) LATE1(1) LATE0(1) 121
PORTE ————RE3RE2
(1) RE1(1) RE0(1) 120
TRISE ————(2) TRISE2(1) TRISE1(1) TRISE0(1) 120
WPUE ——— WPUE3 ———122
Legend: x = unknown, u = unchanged, – = unimplemented locations read as0’. Shaded cells are not used by
PORTE.
Note1: These bits are not implemented on the PIC16(L)F1516/8 devices, read as0’.
2: Unimplemented, read as ‘1’.
TABLE 12-11: SUMMARY OF CONFIGURATION WORD WITH PORTE
Name Bits Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 Bit 10/2 Bit 9/1 Bit 8/0 Register
on Page
CONFIG1 13:8 FCMEN IESO CLKOUTEN BOREN<1:0> 42
7:0 CP MCLRE PWRTE WDTE<1:0> FOSC<2:0>
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by PORTE.
2010-2016 Microchip Technology Inc. DS40001452F-page 123
PIC16(L)F1516/7/8/9
13.0 INTERRUPT-ON-CHANGE
The PORTB pins can be configured to operate as
Interrupt-On-Change (IOC) pins. An interrupt can be
generated by detecting a signal that has either a rising
edge or a falling edge. Any individual PORTB pin, or
combination of PORTB pins, can be configured to
generate an interrupt. The interrupt-on-change module
has the following features:
Interrupt on Change enable (Master Switch)
Individual pin configuration
Rising and falling edge detection
Individual pin interrupt flags
Figure 13-1 is a block diagram of the IOC module.
13.1 Enabling the Module
To allow individual PORTB pins to generate an interrupt,
the IOCIE bit of the INTCON register must be set. If the
IOCIE bit is disabled, the edge detection on the pin will
still occur, but an interrupt will not be generated.
13.2 Individual Pin Configuration
For each PORTB pin, a rising edge detector and a falling
edge detector are present. To enable a pin to detect a
rising edge, the associated IOCBPx bit of the IOCBP
register is set. To enable a pin to detect a falling edge,
the associated IOCBNx bit of the IOCBN register is set.
A pin can be configured to detect rising and falling
edges simultaneously by setting both the IOCBPx bit
and the IOCBNx bit of the IOCBP and IOCBN registers,
respectively.
13.3 Interrupt Flags
The IOCBFx bits located in the IOCBF register are
status flags that correspond to the interrupt-on-change
pins of PORTB. If an expected edge is detected on an
appropriately enabled pin, then the status flag for that pin
will be set, and an interrupt will be generated if the IOCIE
bit is set. The IOCIF bit of the INTCON register reflects
the status of all IOCBFx bits.
13.4 Clearing Interrupt Flags
The individual status flags, (IOCBFx bits), can be
cleared by resetting them to zero. If another edge is
detected during this clearing operation, the associated
status flag will be set at the end of the sequence,
regardless of the value actually being written.
In order to ensure that no detected edge is lost while
clearing flags, only AND operations masking out known
changed bits should be performed. The following
sequence is an example of what should be performed.
EXAMPLE 13-1: CLEA RING INTERRUPT
FLAGS
(PORTA EXAMPLE)
13.5 Operation in Sleep
The interrupt-on-change interrupt sequence will wake
the device from Sleep mode, if the IOCIE bit is set.
If an edge is detected while in Sleep mode, the IOCBF
register will be updated prior to the first instruction
executed out of Sleep.
MOVLW 0xff
XORWF IOCAF, W
ANDWF IOCAF, F
PIC16(L)F1516/7/8/9
DS40001452F-page 124 2010-2016 Microchip Technology Inc.
FIGURE 13-1: INTERRUPT-ON-CHANGE BLOCK DIAGRAM
D
CK
R
Q
D
CK
R
Q
RBx
IOCBNx
IOCBPx
Q2
D
CK
SQ
Q4Q1
Data Bus =
0 or 1
write IOCBFx
IOCIE
To Data Bus
IOCBFx
Edge
Detect
IOC Interrupt
to CPU core
From all other
IOCBFx individual
Pin Detectors
Q1
Q2
Q3
Q4
Q4Q1
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
Q4
Q4Q1 Q4Q1 Q4Q1
2010-2016 Microchip Technology Inc. DS40001452F-page 125
PIC16(L)F1516/7/8/9
13.6 Regis t er D e finition s : In te r r upt-o n - c hange C ontr o l
REGISTER 13-1: IOCBP: INTERRUPT-ON-CHANGE PORTB POSITIVE EDGE REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
IOCBP7 IOCBP6 IOCBP5 IOCBP4 IOCBP3 IOCBP2 IOCBP1 IOCBP0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 IOCBP<7:0>: Interrupt-on-Change PORTB Positive Edge Enable bits
1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCBFx bit and IOCIF flag will be set
upon detecting an edge.
0 = Interrupt-on-Change disabled for the associated pin.
REGISTER 13-2: IOCBN: INTERRUPT-ON-CHANGE PORTB NEGATIVE EDGE REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
IOCBN7 IOCBN6 IOCBN5 IOCBN4 IOCBN3 IOCBN2 IOCBN1 IOCBN0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 IOCBN<7:0>: Interrupt-on-Change PORTB Negative Edge Enable bits
1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCBFx bit and IOCIF flag will be
set upon detecting an edge.
0 = Interrupt-on-Change disabled for the associated pin.
REGISTER 13-3: IOCBF: INTERRUPT-ON-CHANGE PORTB FLAG REGISTER
R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0
IOCBF7 IOCBF6 IOCBF5 IOCBF4 IOCBF3 IOCBF2 IOCBF1 IOCBF0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared HS - Bit is set in hardware
bit 7-0 IOCBF7:0>: Interrupt-on-Change PORTB Flag bits
1 = An enabled change was detected on the associated pin.
Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge
was detected on RBx.
0 = No change was detected, or the user cleared the detected change.
PIC16(L)F1516/7/8/9
DS40001452F-page 126 2010-2016 Microchip Technology Inc.
TABLE 13-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
ANSELB ANSB5 ANSB4 ANSB3 ANSB2 ANSB1 ANSB0 112
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 74
IOCBF IOCBP7 IOCBP6 IOCBP5 IOCBP4 IOCBP3 IOCBP2 IOCBP1 IOCBP0 125
IOCBN IOCBN7 IOCBN6 IOCBN5 IOCBN4 IOCBN3 IOCBN2 IOCBN1 IOCBN0 125
IOCBP IOCBF7 IOCBF6 IOCBF5 IOCBF4 IOCBF3 IOCBF2 IOCBF1 IOCBF0 125
TRISB TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 111
Legend: — = unimplemented location, read as ‘0. Shaded cells are not used by Interrupt-on-Change.
2010-2016 Microchip Technology Inc. DS40001452F-page 127
PIC16(L)F1516/7/8/9
14.0 FIXE D VOLTAGE REFERENCE
(FVR)
The Fixed Voltage Reference, or FVR, is a stable
voltage reference, independent of VDD, with 1.024V,
2.048V or 4.096V selectable output levels. The output
of the FVR can be configured to supply a reference
voltage to the following:
ADC input channel
ADC positive reference
The FVR can be enabled by setting the FVREN bit of
the FVRCON register.
14.1 Independent Gain Amplifiers
The output of the FVR supplied to the ADC module is
routed through a programmable gain amplifier. The
amplifier can be configured to amplify the reference
voltage by 1x, 2x or 4x, to produce the three possible
voltage levels.
The ADFVR<1:0> bits of the FVRCON register are
used to enable and configure the gain amplifier settings
for the reference supplied to the ADC module. Refer-
ence Section 16.0 “Analog-to-Digital Converter
(ADC) Module” for additional information.
To minimize current consumption when the FVR is
disabled, the FVR buffers should be turned off by
clearing the Buffer Gain Selection bits.
14.2 FVR Stabilization Period
When the Fixed Voltage Reference module is enabled, it
requires time for the reference and amplifier circuits to
stabilize. Once the circuits stabilize and are ready for use,
the FVRRDY bit of the FVRCON register will be set. See
Section 25.0 “Electrical Specifications” for the
minimum delay requirement.
FIGURE 14-1: VOLTAGE REFERENCE BLOCK DIAGRAM
FVR BUFFER1
(To ADC Module)
x1
x2
x4
+
-
1.024V Fixed
Reference
FVREN
FVRRDY
2
ADFVR<1:0>
Any peripheral requiring
the Fixed Reference
(See Table 14-1)
TABLE 14-1: PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR)
Peripheral Conditions Description
HFINTOSC FOSC<2:0> = 100 and
IRCF<3:0> = 000x INTOSC is active and device is not in Sleep
BOR
BOREN<1:0> = 11 BOR always enabled
BOREN<1:0> = 10 and BORFS = 1BOR disabled in Sleep mode, BOR Fast Start enabled.
BOREN<1:0> = 01 and BORFS = 1BOR under software control, BOR Fast Start enabled
LDO All PIC16F1516/7/8/9 devices, when
VREGPM = 1 and not in Sleep
The device runs off of the low-power regulator when in Sleep
mode.
PIC16(L)F1516/7/8/9
DS40001452F-page 128 2010-2016 Microchip Technology Inc.
14.3 Register Definitions: FVR Control
REGISTER 14-1: FVRCON: FIXED VOLT AGE REFERENCE CONTROL REGISTER
R/W-0/0 R-q/q R/W-0/0 R/W-0/0 U-0 U-0 R/W-0/0 R/W-0/0
FVREN(1) FVRRDY(2) TSEN(3) TSRNG(3) —ADFVR<1:0>
(1)
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition
bit 7 FVREN: Fixed Voltage Reference Enable bit(1)
0 = Fixed Voltage Reference is disabled
1 = Fixed Voltage Reference is enabled
bit 6 FVRRDY: Fixed Voltage Reference Ready Flag bit(2)
0 = Fixed Voltage Reference output is not ready or not enabled
1 = Fixed Voltage Reference output is ready for use
bit 5 TSEN: Temperature Indicator Enable bit(3)
0 = Temperature Indicator is disabled
1 = Temperature Indicator is enabled
bit 4 TSRNG: Temperature Indicator Range Selection bit(3)
0 =VOUT = VDD - 2VT (Low Range)
1 =V
OUT = VDD - 4VT (High Range)
bit 3-2 Unimplemented: Read as ‘0
bit 1-0 ADFVR<1:0>: ADC FVR Buffer Gain Selection bits(1)
11 = ADC FVR Buffer Gain is 4x, with output VADFVR = 4x VFVR(4)
10 = ADC FVR Buffer Gain is 2x, with output VADFVR = 2x VFVR(4)
01 = ADC FVR Buffer Gain is 1x, with output VADFVR = 1x VFVR
00 = ADC FVR Buffer is off
Note 1: To minimize current consumption when the FVR is disabled, the FVR buffers should be turned off by
clearing the Buffer Gain Selection bits.
2: FVRRDY is always ‘1’ on PIC16F1516/7/8/9 only.
3: See Section 15.0 “Temperature Indicator Module” for additional information.
4: Fixed Voltage Reference output cannot exceed VDD.
TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE
Name Bit 7 Bit 6 Bi t 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 R e gister
on page
FVRCON FVREN FVRRDY TSEN TSRNG —ADFVR<1:0>128
Legend: Shaded cells are unused by the Fixed Voltage Reference module.
2010-2016 Microchip Technology Inc. DS40001452F-page 129
PIC16(L)F1516/7/8/9
15.0 TEMPERATURE INDICATOR
MODULE
This family of devices is equipped with a temperature
circuit designed to measure the operating temperature
of the silicon die. The circuit’s range of operating
temperature falls between -40°C and +85°C. The
output is a voltage that is proportional to the device
temperature. The output of the temperature indicator is
internally connected to the device ADC.
The circuit may be used as a temperature threshold
detector or a more accurate temperature indicator,
depending on the level of calibration performed. A one-
point calibration allows the circuit to indicate a
temperature closely surrounding that point. A two-point
calibration allows the circuit to sense the entire range
of temperature more accurately. Reference Application
Note AN1333, Use and Calibration of the Internal
Temperature Indicator (DS01333) for more details
regarding the calibration process.
15.1 Circuit Operation
Figure 15-1 shows a simplified block diagram of the
temperature circuit. The proportional voltage output is
achieved by measuring the forward voltage drop across
multiple silicon junctions.
Equation 15-1 describes the output characteristics of
the temperature indicator.
EQUATION 15-1: VOUT RANGES
The temperature sense circuit is integrated with the
Fixed Voltage Reference (FVR) module. See
Section 14.0 “Fixed Voltage Reference (FVR)” for
more information.
The circuit is enabled by setting the TSEN bit of the
FVRCON register. When disabled, the circuit draws no
current.
The circuit operates in either high or low range. The high
range, selected by setting the TSRNG bit of the
FVRCON register, provides a wider output voltage. This
provides more resolution over the temperature range,
but may be less consistent from part to part. This range
requires a higher bias voltage to operate and thus, a
higher VDD is needed.
The low range is selected by clearing the TSRNG bit of
the FVRCON register. The low range generates a lower
voltage drop and thus, a lower bias voltage is needed to
operate the circuit. The low range is provided for low
voltage operation.
FIGURE 15-1: TEMPERATURE CIRCUIT
DIAGRAM
15.2 Minimum Operating VDD
When the temperature circuit is operated in low range,
the device may be operated at any operating voltage
that is within specifications.
When the temperature circuit is operated in high range,
the device operating voltage, VDD, must be high
enough to ensure that the temperature circuit is
correctly biased.
Table 15-1 shows the recommended minimum VDD vs.
range setting.
TABLE 15-1: RECOMMENDED VDD VS.
RANGE
15.3 Temperature Output
The output of the circuit is measured using the internal
Analog-to-Digital Converter. A channel is reserved for
the temperature circuit output. Refer to Section 16.0
“Analog-to-Digital Converter (ADC) Module” for
detailed information.
High Range: VOUT = VDD - 4VT
Low Range: VOUT = VDD - 2VT
Min. VDD, TSRNG = 1Min. VDD, TSRNG = 0
3.6V 1.8V
TSEN
TSRNG
VDD
VOUT To A DC
PIC16(L)F1516/7/8/9
DS40001452F-page 130 2010-2016 Microchip Technology Inc.
15.4 ADC Acquisition Time
To ensure accurate temperature measurements, the
user must wait at least 200 s after the ADC input
multiplexer is connected to the temperature indicator
output before the conversion is performed. In addition,
the user must wait 200 s between sequential
conversions of the temperature indicator output.
TABLE 15-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR
Name Bit 7 Bit 6 Bi t 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 R e gister
on page
FVRCON FVREN FVRRDY TSEN TSRNG ADFVR<1:0> 128
Legend: Shaded cells are unused by the temperature indicator module.
2010-2016 Microchip Technology Inc. DS40001452F-page 131
PIC16(L)F1516/7/8/9
16.0 ANALOG-TO-DIGITAL
CONVERTER (ADC) MODULE
The Analog-to-Digital Converter (ADC) allows
conversion of an analog input signal to a 10-bit binary
representation of that signal. This device uses analog
inputs, which are multiplexed into a single sample and
hold circuit. The output of the sample and hold is
connected to the input of the converter. The converter
generates a 10-bit binary result via successive
approximation and stores the conversion result into the
ADC result registers (ADRESH:ADRESL register pair).
Figure 16-1 shows the block diagram of the ADC.
The ADC voltage reference is software selectable to be
either internally generated or externally supplied.
The ADC can generate an interrupt upon completion of
a conversion. This interrupt can be used to wake up the
device from Sleep.
FIGURE 16-1: ADC BLOCK DIAGRAM
Note 1: When ADON = 0, all multiplexer inputs are disconnected.
2: See ADCON0 register (Register 16-1) for detailed analog channel selection per device.
VDD
VREF+ADPREF = 10
ADPREF = 0x
FVR
FVR Buffer1
ADON(1)
GO/DONE
VSS
ADC
00000
00001
00010
00011
CHS<4:0>(2)
AN0
AN1
AN2
VREF+/AN3
11111 ADRESH ADRESL
10
16
ADFM 0 = Left Justify
1 = Right Justify
Temp Indicator 11110
11011
AN27
11100
11101
Reserved
Reserved
ADPREF = 11
PIC16(L)F1516/7/8/9
DS40001452F-page 132 2010-2016 Microchip Technology Inc.
16.1 ADC Configuration
When configuring and using the ADC the following
functions must be considered:
Port configuration
Channel selection
ADC voltage reference selection
ADC conversion clock source
Interrupt control
Result formatting
16.1.1 PORT CONFIGURATION
The ADC can be used to convert both analog and
digital signals. When converting analog signals, the I/O
pin should be configured for analog by setting the
associated TRIS and ANSEL bits. Refer to
Section 12.0 “I/O Ports” for more information.
16.1.2 CHANNEL SELECTION
There are up to 30 channel selections available:
AN<19:8, 4:0> pins (PIC16(L)F1516/8 only)
AN<27:0> pins (PIC16(L)F1517/9 only)
Temperature Indicator
FVR (Fixed Voltage Reference) Output
Refer to Section 14.0 “Fixed Voltage Reference
(FVR)” and Section 15.0 “Temperature Indicator
Module” for more information on these channel
selections.
The CHS bits of the ADCON0 register determine which
channel is connected to the sample and hold circuit.
When changing channels, a delay is required before
starting the next conversion. Refer to Section 16.2
“ADC Operation” for more information.
16.1.3 ADC VOLTAGE REFERENCE
The ADPREF bits of the ADCON1 register provides
control of the positive voltage reference. The positive
voltage reference can be:
•V
REF+ pin
•V
DD
See Section 14.0 “Fixed Voltage Reference (FVR)”
for more details on the Fixed Voltage Reference.
16.1.4 CONVERSION CLOCK
The source of the conversion clock is software
selectable via the ADCS bits of the ADCON1 register.
There are seven possible clock options:
•F
OSC/2
•F
OSC/4
•F
OSC/8
•F
OSC/16
•F
OSC/32
•F
OSC/64
•F
RC (dedicated internal FRC oscillator)
The time to complete one bit conversion is defined as
TAD. One full 10-bit conversion requires 11.5 TAD
periods as shown in Figure 16-2.
For correct conversion, the appropriate TAD specifica-
tion must be met. Refer to the ADC conversion require-
ments in Section 25.0 “E lectrical Spec ifica tions” for
more information. Table gives examples of appropriate
ADC clock selections.
Note: Analog voltages on any pin that is defined
as a digital input may cause the input
buffer to conduct excess current.
Note: Unless using the FRC, any changes in the
system clock frequency will change the
ADC clock frequency, which may
adversely affect the ADC result.
2010-2016 Microchip Technology Inc. DS40001452F-page 133
PIC16(L)F1516/7/8/9
FIGURE 16-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES
TABLE 16-1: ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES
ADC Clock Period (TAD) Device Freque ncy (FOSC)
ADC
Clock Source ADCS<2:0> 20 MHz 16 MHz 8 MHz 4 MHz 1 MHz
Fosc/2 000 100 ns(2) 125 ns(2) 250 ns(2) 500 ns(2) 2.0 s
Fosc/4 100 200 ns(2) 250 ns(2) 500 ns(2) 1.0 s4.0 s
Fosc/8 001 400 ns(2) 0.5 s(2) 1.0 s2.0 s8.0 s(3)
Fosc/16 101 800 ns 1.0 s2.0 s4.0 s16.0 s(3)
Fosc/32 010 1.6 s2.0 s4.0 s8.0 s(3) 32.0 s(3)
Fosc/64 110 3.2 s4.0 s8.0 s(3) 16.0 s(3) 64.0 s(3)
FRC x11 1.0-6.0 s(1,4) 1.0-6.0 s(1,4) 1.0-6.0 s(1,4) 1.0-6.0 s(1,4) 1.0-6.0 s(1,4)
Legend: Shaded cells are outside of recommended range.
Note 1: The FRC source has a typical TAD time of 1.6 s for VDD.
2: These values violate the minimum required TAD time.
3: For faster conversion times, the selection of another clock source is recommended.
4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is
derived from the system clock FOSC. However, the FRC oscillator source must be used when conversions
are to be performed with the device in Sleep mode.
TAD1 TAD2TAD3TAD4 TAD5TAD6 TAD7TAD8TAD11
Set GO bit
Holding capacitor is disconnected from analog input (typically 100 ns)
TAD9 TAD10
TCY - TAD
ADRESH:ADRESL is loaded, GO bit is cleared,
ADIF bit is set, holding capacitor is connected to analog input.
Conversion starts
b0
b9 b6 b5 b4 b3 b2 b1
b8 b7
On the following cycle:
PIC16(L)F1516/7/8/9
DS40001452F-page 134 2010-2016 Microchip Technology Inc.
16.1.5 INTERRUPTS
The ADC module allows for the ability to generate an
interrupt upon completion of an Analog-to-Digital
conversion. The ADC Interrupt Flag is the ADIF bit in
the PIR1 register. The ADC Interrupt Enable is the
ADIE bit in the PIE1 register. The ADIF bit must be
cleared in software.
This interrupt can be generated while the device is
operating or while in Sleep. If the device is in Sleep, the
interrupt will wake-up the device. Upon waking from
Sleep, the next instruction following the SLEEP instruc-
tion is always executed. If the user is attempting to
wake-up from Sleep and resume in-line code execu-
tion, the GIE and PEIE bits of the INTCON register
must be disabled. If the GIE and PEIE bits of the
INTCON register are enabled, execution will switch to
the Interrupt Service Routine.
16.1.6 RESULT FORMATTING
The 10-bit ADC conversion result can be supplied in
two formats, left justified or right justified. The ADFM bit
of the ADCON1 register controls the output format.
Figure shows the two output formats.
Note 1: The ADIF bit is set at the completion of
every conversion, regardless of whether
or not the ADC interrupt is enabled.
2: The ADC operates during Sleep only
when the FRC oscillator is selected.
FIGURE 16-3: 10-BIT ADC CONVERSION RESULT FORMAT
ADRESH ADRESL
(ADFM = 0)MSB LSB
bit 7 bit 0 bit 7 bit 0
10-bit ADC Result Unimplemented: Read as ‘0
(ADFM = 1)MSB LSB
bit 7 bit 0 bit 7 bit 0
Unimplemented: Read as ‘0 10-bit ADC Result
2010-2016 Microchip Technology Inc. DS40001452F-page 135
PIC16(L)F1516/7/8/9
16.2 ADC Operation
16.2.1 STARTING A CONVERSION
To enable the ADC module, the ADON bit of the
ADCON0 register must be set to a ‘1’. Setting the GO/
DONE bit of the ADCON0 register to a ‘1’ will start the
Analog-to-Digital conversion.
16.2.2 COMPLETION OF A CONVERSION
When the conversion is complete, the ADC module will:
Clear the GO/DONE bit
Set the ADIF Interrupt Flag bit
Update the ADRESH and ADRESL registers with
new conversion result
16.2.3 TERMINATING A CONVERSION
If a conversion must be terminated before completion,
the GO/DONE bit can be cleared in software. The
ADRESH and ADRESL registers will be updated with
the partially complete Analog-to-Digital conversion
sample. Incomplete bits will match the last bit
converted.
16.2.4 ADC OPERATION DURING SLEEP
The ADC module can operate during Sleep. This
requires the ADC clock source to be set to the FRC
option. When the FRC oscillator source is selected, the
ADC waits one additional instruction before starting the
conversion. This allows the SLEEP instruction to be
executed, which can reduce system noise during the
conversion. If the ADC interrupt is enabled, the device
will wake-up from Sleep when the conversion
completes. If the ADC interrupt is disabled, the ADC
module is turned off after the conversion completes,
although the ADON bit remains set.
When the ADC clock source is something other than
FRC, a SLEEP instruction causes the present conver-
sion to be aborted and the ADC module is turned off,
although the ADON bit remains set.
16.2.5 SPECIAL EVENT TRIGGER
The Special Event Trigger of the CCPx module allows
periodic ADC measurements without software inter-
vention. When this trigger occurs, the GO/DONE bit is
set by hardware and the Timer1 counter resets to zero.
Using the Special Event Trigger does not assure
proper ADC timing. It is the user’s responsibility to
ensure that the ADC timing requirements are met.
Refer to Section 20.0 “Capture/Compare/PWM
Modules” for more information.
Note: The GO/DONE bit should not be set in the
same instruction that turns on the ADC.
Refer to Section 16.2.6 “ADC Conver-
sion Procedure”.
Note: A device Reset forces all registers to their
Reset state. Thus, the ADC module is
turned off and any pending conversion is
terminated.
TABLE 16-2: SPECIAL EVENT TRIGGER
Device CCP
PIC16(L)F1516
CCP2
PIC16(L)F1517
PIC16(L)F1518
PIC16(L)F1519
PIC16(L)F1516/7/8/9
DS40001452F-page 136 2010-2016 Microchip Technology Inc.
16.2.6 ADC CONVERSION PROCEDURE
This is an example procedure for using the ADC to
perform an Analog-to-Digital conversion:
1. Configure Port:
Disable pin output driver (Refer to the TRIS
register)
Configure pin as analog (Refer to the ANSEL
register)
Disable weak pull-ups, either globally (Refer
to the OPTION_REG register) or individually
(Refer to the appropriate WPUx register)
2. Configure the ADC module:
Select ADC conversion clock
Configure voltage reference
Select ADC input channel
Turn on ADC module
3. Configure ADC interrupt (optional):
Clear ADC interrupt flag
Enable ADC interrupt
Enable peripheral interrupt
Enable global interrupt(1)
4. Wait the required acquisition time(2).
5. Start conversion by setting the GO/DONE bit.
6. Wait for ADC conversion to complete by one of
the following:
Polling the GO/DONE bit
Waiting for the ADC interrupt (interrupts
enabled)
7. Read ADC Result.
8. Clear the ADC interrupt flag (required if interrupt
is enabled).
EXAMPLE 16-1: ADC CON VERSION
Note 1: The global interrupt can be disabled if the
user is attempting to wake up from Sleep
and resume in-line code execution.
2: Refer to Section 16.4 “ADC Acquisi-
tion Re quir ements”.
;This code block configures the ADC
;for polling, Vdd and Vss references, Frc
;clock and AN0 input.
;
;Conversion start & polling for completion
; are included.
;
BANKSEL ADCON1 ;
MOVLW B’11110000’ ;Right justify, Frc
;clock
MOVWF ADCON1 ;Vdd and Vss Vref
BANKSEL TRISA ;
BSF TRISA,0 ;Set RA0 to input
BANKSEL ANSEL ;
BSF ANSEL,0 ;Set RA0 to analog
BANKSEL WPUA
BCF WPUA, 0 ;Disable weak pull-
up on RA0
BANKSEL ADCON0 ;
MOVLW B’00000001’ ;Select channel AN0
MOVWF ADCON0 ;Turn ADC On
CALL SampleTime ;Acquisiton delay
BSF ADCON0,ADGO ;Start conversion
BTFSC ADCON0,ADGO ;Is conversion done?
GOTO $-1 ;No, test again
BANKSEL ADRESH ;
MOVF ADRESH,W ;Read upper 2 bits
MOVWF RESULTHI ;store in GPR space
BANKSEL ADRESL ;
MOVF ADRESL,W ;Read lower 8 bits
MOVWF RESULTLO ;Store in GPR space
2010-2016 Microchip Technology Inc. DS40001452F-page 137
PIC16(L)F1516/7/8/9
16.3 Register Definitions: ADC Control
REGISTER 16-1: ADCON0: ADC CONTROL REGISTER 0
U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
CHS<4:0> GO/DONE ADON
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 Unimplemented: Read as ‘0
bit 6-2 CHS<4:0>: Analog Channel Select bits
11111 = FVR (Fixed Voltage Reference) Buffer 1 Output(1)
11110 = Temperature Indicator(2).
11101 = Reserved. No channel connected.
11100 = Reserved. No channel connected.
11011 =AN27
(3)
10100 =AN20
(3)
10011 =AN19
10010 =AN18
10001 =AN17
10000 =AN16
01111 =AN15
01110 =AN14
01101 =AN13
01100 =AN12
01011 =AN11
01010 =AN10
01001 =AN9
01000 =AN8
00111 =AN7
(3)
00110 =AN6
(3)
00101 =AN5
(3)
00100 =AN4
00011 =AN3
00010 =AN2
00001 =AN1
00000 =AN0
bit 1 GO/DONE: ADC Conversion Status bit
1 = ADC conversion cycle in progress. Setting this bit starts an ADC conversion cycle.
This bit is automatically cleared by hardware when the ADC conversion has completed.
0 = ADC conversion completed/not in progress
bit 0 ADON: ADC Enable bit
1 = ADC is enabled
0 = ADC is disabled and consumes no operating current
Note 1: See Section 14.0 “Fixed Volt age Reference (FVR)” for more information.
2: See Section 15.0 “Temperature Indicator Module” for more information.
3: AN<7:5> and AN<27:20> are PIC16(L)F1517/9 only.
PIC16(L)F1516/7/8/9
DS40001452F-page 138 2010-2016 Microchip Technology Inc.
REGISTER 16-2: ADCON1: ADC CONTROL REGISTER 1
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0 R/W-0/0 R/W-0/0
ADFM ADCS<2:0> ADPREF<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 ADFM: ADC Result Format Select bit
1 = Right justified. Six Most Significant bits of ADRESH are set to ‘0’ when the conversion result is
loaded.
0 = Left justified. Six Least Significant bits of ADRESL are set to ‘0’ when the conversion result is
loaded.
bit 6-4 ADCS<2:0>: ADC Conversion Clock Select bits
000 =F
OSC/2
001 =F
OSC/8
010 =F
OSC/32
011 =F
RC (clock supplied from a dedicated FRC oscillator)
100 =F
OSC/4
101 =F
OSC/16
110 =F
OSC/64
111 =F
RC (clock supplied from a dedicated FRC oscillator)
bit 3-2 Unimplemented: Read as0
bit 1-0 ADPREF<1:0>: ADC Positive Voltage Reference Configuration bits
00 =V
REF is connected to VDD
01 = Reserved
10 =V
REF is connected to external VREF+ pin(1)
11 =VREF is connected to internal Fixed Voltage Reference (FVR) module(1)
Note 1: When selecting the FVR or the VREF+ pin as the source of the positive reference, be aware that a
minimum voltage specification exists. See Section 25.0 “Electrical Specifications” for details.
2010-2016 Microchip Technology Inc. DS40001452F-page 139
PIC16(L)F1516/7/8/9
REGISTER 16-3: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
ADRES<9:2>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 ADRES<9:2>: ADC Result Register bits
Upper eight bits of 10-bit conversion result
REGISTER 16-4: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
ADRES<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 ADRES<1:0>: ADC Result Register bits
Lower two bits of 10-bit conversion result
bit 5-0 Reserved: Do not use.
PIC16(L)F1516/7/8/9
DS40001452F-page 140 2010-2016 Microchip Technology Inc.
REGISTER 16-5: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
ADRES<9:8>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-2 Reserved: Do not use.
bit 1-0 ADRES<9:8>: ADC Result Register bits
Upper two bits of 10-bit conversion result
REGISTER 16-6: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u
ADRES<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 ADRES<7:0>: ADC Result Register bits
Lower eight bits of 10-bit conversion result
2010-2016 Microchip Technology Inc. DS40001452F-page 141
PIC16(L)F1516/7/8/9
16.4 ADC Acquisition Requirements
For the ADC to meet its specified accuracy, the charge
holding capacitor (CHOLD) must be allowed to fully
charge to the input channel voltage level. The Analog
Input model is shown in Figure 16-4. The source
impedance (RS) and the internal sampling switch (RSS)
impedance directly affect the time required to charge
the capacitor CHOLD. The sampling switch (RSS)
impedance varies over the device voltage (VDD), refer
to Figure 16-4. The maximum recommended
impedance for analog sources is 10 k. As the
source impedance is decreased, the acquisition time
may be decreased. After the analog input channel is
selected (or changed), an ADC acquisition must be
done before the conversion can be started. To
calculate the minimum acquisition time, Equation 16-1
may be used. This equation assumes that 1/2 LSb error
is used (1,024 steps for the ADC). The 1/2 LSb error is
the maximum error allowed for the ADC to meet its
specified resolution.
EQUATION 16-1: ACQUISITION TIME EXAMPLE
TACQ Amplifier Settling Time Hold Cap acitor Charging Time Temperature Coefficient++=
TAMP TCTCOFF++=
2µs TCTemperature - 25°C0.05µs/°C++=
TCCHOLD RIC RSS RS++ ln(1/2047)=
13.5pF 1k
7k
10k
++ ln(0.0004885)=
1.20=µs
VAPPLIED 1e
Tc
RC
---------



VAPPLIED 11
2n1+
1
--------------------------


=
VAPPLIED 11
2n1+
1
--------------------------


VCHOLD=
VAPPLIED 1e
TC
RC
----------



VCHOLD=
;[1] VCHOLD charged to within 1/2 lsb
;[2] VCHOLD charge response to VAPPLIED
;combining [1] and [2]
The value for TC can be approximated with the following equations:
Solving for TC:
Therefore:
Temperature 50°C and external impedance of 10k
5.0 V V DD=
Assumptions:
Note: Where n = number of bits of the ADC.
TACQ 2µs 1.20µs 50°C- 25°C0.05µs/°C++=
4.45µs=
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.
2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
3: The maximum recommended impedance for analog sources is 10 k. This is required to meet the pin
leakage specification.
PIC16(L)F1516/7/8/9
DS40001452F-page 142 2010-2016 Microchip Technology Inc.
FIGURE 16-4: ANALOG INPUT MODEL
FIGURE 16-5: ADC TRANS FER FUN CTION
CPIN
VA
Rs
Analog
5 pF
VDD
VT 0.6V
VT 0.6V I LEAKAGE(1)
RIC 1k
Sampling
Switch
SS Rss
CHOLD = 10 pF
VSS/VREF-
6V
Sampling Switch
5V
4V
3V
2V
567891011
(k)
VDD
Legend:
CPIN
VT
I LEAKAGE
RIC
SS
CHOLD
= Input Capacitance
= Threshold Voltage
= Leakage current at the pin due to
= Interconnect Resistance
= Sampling Switch
= Sample/Hold Capacitance
various junctions
RSS
Note 1: Refer to Section 25.0 “Electrical Specifications”.
RSS = Resistance of Sampling Switch
Input
pin
3FFh
3FEh
ADC Output Code
3FDh
3FCh
03h
02h
01h
00h
Full-Scale
3FBh
0.5 LSB
VREF-Zero-Scale
Transition VREF+
Transition
1.5 LSB
Full-Scale Range
Analog Input Voltage
2010-2016 Microchip Technology Inc. DS40001452F-page 143
PIC16(L)F1516/7/8/9
TABLE 16-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 B it 2 B it 1 Bit 0 Register
on Page
ADCON0 —CHS<4:0>GO/DONEADON 137
ADCON1 ADFM ADCS<2:0> ADPREF<1:0> 138
ADRESH ADC Result Register High 139, 140
ADRESL ADC Result Register Low 139, 140
ANSELA —ANSA5—ANSA3
ANSA2 ANSA1 ANSA0 108
ANSELB —ANSB5
ANSB4 ANSB3 ANSB2 ANSB1 ANSB0 112
ANSELC ANSC7 ANSC6 ANSC5 ANSC4 ANSC3 ANSC2 115
ANSELD(1) ANSD7 ANSD6 ANSD5 ANSD4 ANSD3 ANSD2 ANSD1 ANSD0 118
ANSELE(1) —————ANSE2
ANSE1 ANSE0 121
CCP1CON DC1B<1:0> CCP1M<3:0> 168
CCP2CON DC2B<1:0> CCP2M<3:0> 168
FVRCON FVREN FVRRDY TSEN TSRNG —ADFVR<1:0>
128
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 74
PIE1 TMR1GIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 75
PIR1 TMR1GIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 77
TRISA TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 107
TRISB TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 111
TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 114
TRISD(1) TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 117
TRISE ————(2) TRISE2(1) TRISE1(1) TRISE0(1) 120
Legend: = unimplemented read as ‘0’. Shaded cells are not used for ADC module.
Note 1: PIC16(L)F1517/9 only.
PIC16(L)F1516/7/8/9
DS40001452F-page 144 2010-2016 Microchip Technology Inc.
17.0 TIMER0 MODULE
The Timer0 module is an 8-bit timer/counter with the
following features:
8-bit timer/counter register (TMR0)
8-bit prescaler (independent of Watchdog Timer)
Programmable internal or external clock source
Programmable external clock edge selection
Interrupt on overflow
TMR0 can be used to gate Timer1
Figure 17-1 is a block diagram of the Timer0 module.
17.1 Timer0 Operation
The Timer0 module can be used as either an 8-bit timer
or an 8-bit counter.
17.1.1 8-BIT TIMER MODE
The Timer0 module will increment every instruction
cycle, if used without a prescaler. 8-Bit Timer mode is
selected by clearing the TMR0CS bit of the
OPTION_REG register.
When TMR0 is written, the increment is inhibited for
two instruction cycles immediately following the write.
17.1.2 8-BIT COUNTER MODE
In 8-Bit Counter mode, the Timer0 module will
increment on every rising or falling edge of the T0CKI
pin.
8-Bit Counter mode, using the T0CKI pin, is selected by
setting the TMR0CS bit in the OPTION_REG register to
1’.
The rising or falling transition of the incrementing edge
for either input source is determined by the TMR0SE bit
in the OPTION_REG register.
FIGURE 17-1: BLOCK DIAGRAM OF THE TIMER0
Note: The value written to the TMR0 register
can be adjusted, in order to account for
the two instruction cycle delay when
TMR0 is written.
T0CKI
TMR0SE
TMR0
PS<2:0>
Data Bus
Set Flag bit TMR0IF
on Overflow
TMR0CS
0
1
0
18
8
8-bit
Prescaler
FOSC/4
PSA
Sync
2 TCY
Overflow to Timer1
2010-2016 Microchip Technology Inc. DS40001452F-page 145
PIC16(L)F1516/7/8/9
17.1.3 SOFTWARE PROGRAMMABLE
PRESCALER
A software programmable prescaler is available for
exclusive use with Timer0. The prescaler is enabled by
clearing the PSA bit of the OPTION_REG register.
There are eight prescaler options for the Timer0
module ranging from 1:2 to 1:256. The prescale values
are selectable via the PS<2:0> bits of the
OPTION_REG register. In order to have a 1:1 prescaler
value for the Timer0 module, the prescaler must be
disabled by setting the PSA bit of the OPTION_REG
register.
The prescaler is not readable or writable. All instructions
writing to the TMR0 register will clear the prescaler.
17.1.4 TIMER0 INTERRUPT
Timer0 will generate an interrupt when the TMR0
register overflows from FFh to 00h. The TMR0IF
interrupt flag bit of the INTCON register is set every
time the TMR0 register overflows, regardless of
whether or not the Timer0 interrupt is enabled. The
TMR0IF bit can only be cleared in software. The
Timer0 interrupt enable is the TMR0IE bit of the
INTCON register.
17.1.5 8-BIT COUNTER MODE
SYNCHRONIZATION
When in 8-Bit Counter mode, the incrementing edge on
the T0CKI pin must be synchronized to the instruction
clock. Synchronization can be accomplished by
sampling the prescaler output on the Q2 and Q4 cycles
of the instruction clock. The high and low periods of the
external clocking source must meet the timing
requirements as shown in Section 25.0 “Electrical
Specifications”.
17.1.6 OPERATION DURING SLEEP
Timer0 cannot operate while the processor is in Sleep
mode. The contents of the TMR0 register will remain
unchanged while the processor is in Sleep mode.
Note: The Watchdog Timer (WDT) uses its own
independent prescaler.
Note: The Timer0 interrupt cannot wake the
processor from Sleep since the timer is
frozen during Sleep.
PIC16(L)F1516/7/8/9
DS40001452F-page 146 2010-2016 Microchip Technology Inc.
17.2 Register Definitions: Option Register
REGISTER 17-1: OPTION_REG: OPTION REGISTER
R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1
WPUEN INTEDG TMR0CS TMR0SE PSA PS<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 WPUEN: Weak Pull-up Enable bit
1 = All weak pull-ups are disabled (except MCLR, if it is enabled)
0 = Weak pull-ups are enabled by individual WPUx latch values
bit 6 INTEDG: Interrupt Edge Select bit
1 = Interrupt on rising edge of INT pin
0 = Interrupt on falling edge of INT pin
bit 5 TMR0CS: Timer0 Clock Source Select bit
1 = Transition on T0CKI pin
0 = Internal instruction cycle clock (FOSC/4)
bit 4 TMR0SE: Timer0 Source Edge Select bit
1 = Increment on high-to-low transition on T0CKI pin
0 = Increment on low-to-high transition on T0CKI pin
bit 3 PSA: Prescaler Assignment bit
1 = Prescaler is not assigned to the Timer0 module
0 = Prescaler is assigned to the Timer0 module
bit 2-0 PS<2:0>: Prescaler Rate Select bits
000
001
010
011
100
101
110
111
1 : 2
1 : 4
1 : 8
1 : 16
1 : 32
1 : 64
1 : 128
1 : 256
Bit Value Timer0 Rate
TABLE 17-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 74
OPTION_REG WPUEN INTEDG TMR0CS TMR0SE PSA PS<2:0> 146
TMR0 Timer0 Module Register 144*
TRISA TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 107
Legend: = Unimplemented locations, read as ‘0’. Shaded cells are not used by the Timer0 module.
* Page provides register information.
2010-2016 Microchip Technology Inc. DS40001452F-page 147
PIC16(L)F1516/7/8/9
18.0 TIMER1 MODULE WITH GATE
CONTROL
The Timer1 module is a 16-bit timer/counter with the
following features:
16-bit timer/counter register pair (TMR1H:TMR1L)
Programmable internal or external clock source
2-bit prescaler
32 kHz secondary oscillator circuit
Optionally synchronized comparator out
Multiple Timer1 gate (count enable) sources
Interrupt on overflow
Wake-up on overflow (external clock,
Asynchronous mode only)
Time base for the Capture/Compare function
Special Event Trigger (with CCP)
Selectable Gate Source Polarity
Gate Toggle mode
Gate Single-pulse mode
Gate Value Status
Gate Event Interrupt
Figure 18-1 is a block diagram of the Timer1 module.
FIGURE 18-1: TIMER1 BLOCK DIAGRAM
TMR1H TMR1L
T1SYNC
T1CKPS<1:0>
Prescaler
1, 2, 4, 8
0
1
Synchronized
clock input
2
Set flag bit
TMR1IF on
Overflow TMR1(2)
TMR1ON
Note 1: ST Buffer is high speed type when using T1CKI.
2: Timer1 register increments on rising edge.
3: Synchronize does not operate while in Sleep.
T1G
Secondary
FOSC/4
Internal
Clock
SOSCO/T1CKI
SOSCI
T1OSCEN
1
0
TMR1CS<1:0>
(1)
Synchronize(3)
det
Sleep input
TMR1GE
0
1
00
01
10
T1GPOL
D
Q
CK
Q
0
1
T1GVAL
T1GTM
Single Pulse
Acq. Control
T1GSPM
T1GGO/DONE
T1GSS<1:0>
EN
OUT
10
11
00
01
FOSC
Internal
Clock
R
D
EN
Q
Q1
RD
T1GCON
Data Bus
det
Interrupt
TMR1GIF
Set
T1CLK
FOSC/2
Internal
Clock
D
EN
Q
T1G_IN
TMR1ON
LFINTOSC
From Timer0
Overflow
From Timer2
To Clock Switching Modules
11
Match PR2
Reserved
Oscillator
PIC16(L)F1516/7/8/9
DS40001452F-page 148 2010-2016 Microchip Technology Inc.
18.1 Timer1 Operation
The Timer1 module is a 16-bit incrementing counter
which is accessed through the TMR1H:TMR1L register
pair. Writes to TMR1H or TMR1L directly update the
counter.
When used with an internal clock source, the module is
a timer and increments on every instruction cycle.
When used with an external clock source, the module
can be used as either a timer or counter and incre-
ments on every selected edge of the external source.
Timer1 is enabled by configuring the TMR1ON and
TMR1GE bits in the T1CON and T1GCON registers,
respectively. Table 18-1 displays the Timer1 enable
selections.
18.2 Clock Source S election
The TMR1CS<1:0> and T1OSCEN bits of the T1CON
register are used to select the clock source for Timer1.
Table 18-2 displays the clock source selections.
18.2.1 INTERNAL CLOCK SOURCE
When the internal clock source is selected the
TMR1H:TMR1L register pair will increment on multiples
of FOSC as determined by the Timer1 prescaler.
When the FOSC internal clock source is selected, the
Timer1 register value will increment by four counts every
instruction clock cycle. Due to this condition, a 2 LSB
error in resolution will occur when reading the Timer1
value. To utilize the full resolution of Timer1, an
asynchronous input signal must be used to gate the
Timer1 clock input.
The following asynchronous source may be used:
Asynchronous event on the T1G pin to Timer1
gate
18.2.2 EXTERNAL CLOCK SOURCE
When the external clock source is selected, the Timer1
module may work as a timer or a counter.
When enabled to count, Timer1 is incremented on the
rising edge of the external clock input T1CKI. This
external clock source can be synchronized to the
microcontroller system clock and run asynchronously.
When used as a timer with a clock oscillator, an
external 32.768 kHz crystal can be used in conjunction
with the secondary oscillator circuit.
TABLE 18-1: TIMER1 ENABLE
SELECTIONS
TMR1ON TMR1GE Timer1
Operation
00Off
01Off
10Always On
11Count Enabled
Note: In Counter mode, a falling edge must be
registered by the counter prior to the first
incrementing rising edge after any one or
more of the following conditions:
Timer1 enabled after POR
Write to TMR1H or TMR1L
Timer1 is disabled
Timer1 is disabled (TMR1ON =0)
when T1CKI is high then Timer1 is
enabled (TMR1ON=1) when T1CKI is
low.
TABLE 18-2: CLOCK SOURCE SELECTIONS
TMR1CS1 TMR1CS0 T1OSCEN Clock Source
11xLFINTOSC
101Secondary Oscillator Circuit on SOSCI/SOSCO Pins
100External Clocking on T1CKI Pin
01xSystem Clock (FOSC)
00xInstruction Clock (FOSC/4)
2010-2016 Microchip Technology Inc. DS40001452F-page 149
PIC16(L)F1516/7/8/9
18.3 Timer1 Prescaler
Timer1 has four prescaler options allowing 1, 2, 4 or 8
divisions of the clock input. The T1CKPS bits of the
T1CON register control the prescale counter. The
prescale counter is not directly readable or writable;
however, the prescaler counter is cleared upon a write to
TMR1H or TMR1L.
18.4 Secondary Oscillator
Timer1 uses the low-power secondary oscillator circuit
on pins SOSCI and SOSCO. The secondary oscillator
is designed to use an external 32.768 kHz crystal.
The secondary oscillator circuit is enabled by setting
the T1OSCEN bit of the T1CON register. The oscillator
will continue to run during Sleep.
18.5 Timer1 Operation in
Asynchronous Counter Mode
If control bit T1SYNC of the T1CON register is set, the
external clock input is not synchronized. The timer
increments asynchronously to the internal phase
clocks. If the external clock source is selected then the
timer will continue to run during Sleep and can
generate an interrupt on overflow, which will wake-up
the processor. However, special precautions in
software are needed to read/write the timer (see
Section 18.5.1 “Reading and Writing Timer1 in
Asynchronous Counter Mode”).
18.5.1 READING AND WRITING TIMER1 IN
ASYNCHRONOUS COUNTER
MODE
Reading TMR1H or TMR1L while the timer is running
from an external asynchronous clock will ensure a valid
read (taken care of in hardware). However, the user
should keep in mind that reading the 16-bit timer in two
8-bit values itself, poses certain problems, since the
timer may overflow between the reads.
For writes, it is recommended that the user simply stop
the timer and write the desired values. A write
contention may occur by writing to the timer registers,
while the register is incrementing. This may produce an
unpredictable value in the TMR1H:TMR1L register
pair.
18.6 Timer1 Gate
Timer1 can be configured to count freely or the count
can be enabled and disabled using Timer1 gate
circuitry. This is also referred to as Timer1 Gate Enable.
Timer1 gate can also be driven by multiple selectable
sources.
18.6.1 TIMER1 GATE ENABLE
The Timer1 Gate Enable mode is enabled by setting
the TMR1GE bit of the T1GCON register. The polarity
of the Timer1 Gate Enable mode is configured using
the T1GPOL bit of the T1GCON register.
When Timer1 Gate Enable mode is enabled, Timer1
will increment on the rising edge of the Timer1 clock
source. When Timer1 Gate Enable mode is disabled,
no incrementing will occur and Timer1 will hold the
current count. See Figure 18-3 for timing details.
18.6.2 TIMER1 GATE SOURCE
SELECTION
The Timer1 gate source can be selected from one of
four different sources. Source selection is controlled by
the T1GSS bits of the T1GCON register. The polarity
for each available source is also selectable. Polarity
selection is controlled by the T1GPOL bit of the
T1GCON register.
Note: The oscillator requires a start-up and
stabilization time before use. Thus,
T1OSCEN should be set and a suitable
delay observed prior to using Timer1. A
suitable delay similar to the OST delay
can be implemented in software by
clearing the TMR1IF bit then presetting
the TMR1H:TMR1L register pair to
FC00h. The TMR1IF flag will be set when
1024 clock cycles have elapsed, thereby
indicating that the oscillator is running and
reasonably stable.
Note: When switching from synchronous to
asynchronous operation, it is possible to
skip an increment. When switching from
asynchronous to synchronous operation,
it is possible to produce an additional
increment.
TABLE 18-3: TIMER1 GATE ENABLE
SELECTIONS
T1CLK T1GPOL T1G Timer1 Operation
00Counts
01Holds Count
10Holds Count
11Counts
PIC16(L)F1516/7/8/9
DS40001452F-page 150 2010-2016 Microchip Technology Inc.
TABLE 18-4: TIMER1 GATE SOURCES
18.6.2.1 T1G Pin Gate Operation
The T1G pin is one source for Timer1 gate control. It
can be used to supply an external source to the Timer1
gate circuitry.
18.6.2.2 Timer0 Overflow Gate Operation
When Timer0 increments from FFh to 00h, a
low-to-high pulse will automatically be generated and
internally supplied to the Timer1 gate circuitry.
18.6.2.3 Timer2 Match PR2 Operation
When Timer2 increments and matches PR2, a
low-to-high pulse will automatically be generated and
internally supplied to the Timer1 gate circuitry.
18.6.3 TIMER1 GATE TOGGLE MODE
When Timer1 Gate Toggle mode is enabled, it is pos-
sible to measure the full-cycle length of a Timer1 gate
signal, as opposed to the duration of a single-level
pulse.
The Timer1 gate source is routed through a flip-flop
that changes state on every incrementing edge of the
signal. See Figure 18-4 for timing details.
Timer1 Gate Toggle mode is enabled by setting the
T1GTM bit of the T1GCON register. When the T1GTM
bit is cleared, the flip-flop is cleared and held clear. This
is necessary in order to control which edge is
measured.
18.6.4 TIMER1 GATE SINGLE-PULSE
MODE
When Timer1 Gate Single-Pulse mode is enabled, it is
possible to capture a single-pulse gate event. Timer1
Gate Single-Pulse mode is first enabled by setting the
T1GSPM bit in the T1GCON register. Next, the
T1GGO/DONE bit in the T1GCON register must be set.
The Timer1 will be fully enabled on the next incrementing
edge. On the next trailing edge of the pulse, the
T1GGO/DONE bit will automatically be cleared. No other
gate events will be allowed to increment Timer1 until the
T1GGO/DONE bit is once again set in software. See
Figure 18-5 for timing details.
If the Single-Pulse Gate mode is disabled by clearing the
T1GSPM bit in the T1GCON register, the T1GGO/DONE
bit should also be cleared.
Enabling the Toggle mode and the Single-Pulse mode
simultaneously will permit both sections to work
together. This allows the cycle times on the Timer1
gate source to be measured. See Figure 18-6 for timing
details.
18.6.5 TIMER1 GATE VALUE STATUS
When Timer1 Gate Value Status is utilized, it is possi-
ble to read the most current level of the gate control
value. The value is stored in the T1GVAL bit in the
T1GCON register. The T1GVAL bit is valid even when
the Timer1 gate is not enabled (TMR1GE bit is
cleared).
18.6.6 TIMER1 GATE EVENT INTERRUPT
When Timer1 Gate Event Interrupt is enabled, it is pos-
sible to generate an interrupt upon the completion of a
gate event. When the falling edge of T1GVAL occurs,
the TMR1GIF flag bit in the PIR1 register will be set. If
the TMR1GIE bit in the PIE1 register is set, then an
interrupt will be recognized.
The TMR1GIF flag bit operates even when the Timer1
gate is not enabled (TMR1GE bit is cleared).
T1GSS Timer 1 Ga te Sour ce
00 Timer1 Gate Pin
01 Overflow of Timer0
(TMR0 increments from FFh to 00h)
10 Timer2 match PR2
11 Reserved
Note: Enabling Toggle mode at the same time
as changing the gate polarity may result in
indeterminate operation.
2010-2016 Microchip Technology Inc. DS40001452F-page 151
PIC16(L)F1516/7/8/9
18.7 Timer1 Interrupt
The Timer1 register pair (TMR1H:TMR1L) increments
to FFFFh and rolls over to 0000h. When Timer1 rolls
over, the Timer1 interrupt flag bit of the PIR1 register is
set. To enable the interrupt on rollover, the user must
set these bits:
TMR1ON bit of the T1CON register
TMR1IE bit of the PIE1 register
PEIE bit of the INTCON register
GIE bit of the INTCON register
The interrupt is cleared by clearing the TMR1IF bit in
the Interrupt Service Routine.
18.8 Timer1 Operation During Sleep
Timer1 can only operate during Sleep when setup in
Asynchronous Counter mode. In this mode, an external
crystal or clock source can be used to increment the
counter. To set up the timer to wake the device:
TMR1ON bit of the T1CON register must be set
TMR1IE bit of the PIE1 register must be set
PEIE bit of the INTCON register must be set
T1SYNC bit of the T1CON register must be set
TMR1CS bits of the T1CON register must be
configured
T1OSCEN bit of the T1CON register must be
configured
The device will wake-up on an overflow and execute
the next instructions. If the GIE bit of the INTCON
register is set, the device will call the Interrupt Service
Routine.
Timer1 secondary oscillator will continue to operate in
Sleep regardless of the T1SYNC bit setting.
18.9 CCP Capture/Comp are Time Base
The CCP modules use the TMR1H:TMR1L register
pair as the time base when operating in Capture or
Compare mode.
In Capture mode, the value in the TMR1H:TMR1L
register pair is copied into the CCPR1H:CCPR1L
register pair on a configured event.
In Compare mode, an event is triggered when the value
CCPR1H:CCPR1L register pair matches the value in
the TMR1H:TMR1L register pair. This event can be a
Special Event Trigger.
For more information, see Section 20.0
“Capture/Compare/PWM Modules.
18.10 CCP Special Event Trigger
When the CCP is configured to trigger a special event,
the trigger will clear the TMR1H:TMR1L register pair.
This special event does not cause a Timer1 interrupt.
The CCP module may still be configured to generate a
CCP interrupt.
In this mode of operation, the CCPR1H:CCPR1L
register pair becomes the period register for Timer1.
Timer1 should be synchronized and FOSC/4 should be
selected as the clock source in order to utilize the Spe-
cial Event Trigger. Asynchronous operation of Timer1
can cause a Special Event Trigger to be missed.
In the event that a write to TMR1H or TMR1L coincides
with a Special Event Trigger from the CCP, the write will
take precedence.
For more information, see Section 16.2.5 “Special
Event Trigger”.
FIGURE 18-2: TIMER1 INCREMENTING EDGE
Note: The TMR1H:TMR1L register pair and the
TMR1IF bit should be cleared before
enabling interrupts.
T1CKI = 1
when TMR1
Enabled
T1CKI = 0
when TMR1
Enabled
Note 1: Arrows indicate counter increments.
2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.
PIC16(L)F1516/7/8/9
DS40001452F-page 152 2010-2016 Microchip Technology Inc.
FIGURE 18-3: TIMER1 GATE ENABLE MODE
FIGURE 18-4: TIMER1 GATE TOGGLE MODE
TMR1GE
T1GPOL
T1G_IN
T1CKI
T1GVAL
Timer1 N N + 1 N + 2 N + 3 N + 4
TMR1GE
T1GPOL
T1GTM
T1G_IN
T1CKI
T1GVAL
Timer1 N N + 1 N + 2 N + 3 N + 4 N + 5 N + 6 N + 7 N + 8
2010-2016 Microchip Technology Inc. DS40001452F-page 153
PIC16(L)F1516/7/8/9
FIGURE 18-5: TIMER1 GATE SINGLE-PULSE MODE
TMR1GE
T1GPOL
T1G_IN
T1CKI
T1GVAL
Timer1 N N + 1 N + 2
T1GSPM
T1GGO/
DONE
Set by software
Cleared by hardware on
falling edge of T1GVAL
Set by hardware on
falling edge of T1GVAL
Cleared by software
Cleared by
software
TMR1GIF
Counting enabled on
rising edge of T1G
PIC16(L)F1516/7/8/9
DS40001452F-page 154 2010-2016 Microchip Technology Inc.
FIGURE 18-6: TIMER1 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE
TMR1GE
T1GPOL
T1G_IN
T1CKI
T1GVAL
Timer1 NN + 1
N + 2
T1GSPM
T1GGO/
DONE
Set by software
Cleared by hardware on
falling edge of T1GVAL
Set by hardware on
falling edge of T1GVAL
Cleared by software
Cleared by
software
TMR1GIF
T1GTM
Counting enabled on
rising edge of T1G
N + 4
N + 3
2010-2016 Microchip Technology Inc. DS40001452F-page 155
PIC16(L)F1516/7/8/9
18.11 Register Definitions: Timer1 Control
REGISTER 18-1: T1CON: TIMER1 CONTROL REGISTER
R/W-0/u R/W-0/u R/W-0/u R/W-0/u R/W-0/u R/W-0/u U-0 R/W-0/u
TMR1CS<1:0> T1CKPS<1:0> T1OSCEN T1SYNC —TMR1ON
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 TMR1CS<1:0>: Timer1 Clock Source Select bits
11 = Timer1 clock source is LFINTOSC
10 = Timer1 clock source is pin or oscillator:
If T1OSCEN = 0:
External clock from T1CKI pin (on the rising edge)
If T1OSCEN = 1:
Crystal oscillator on SOSCI/SOSCO pins
01 = Timer1 clock source is system clock (FOSC)
00 = Timer1 clock source is instruction clock (FOSC/4)
bit 5-4 T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits
11 = 1:8 Prescale value
10 = 1:4 Prescale value
01 = 1:2 Prescale value
00 = 1:1 Prescale value
bit 3 T1OSCEN: LP Oscillator Enable Control bit
1 = Secondary oscillator circuit enabled for Timer1
0 = Secondary oscillator circuit disabled for Timer1
bit 2 T1SYNC: Timer1 External Clock Input Synchronization Control bit
TMR1CS<1:0> = 1X:
1 = Do not synchronize external clock input
0 = Synchronize external clock input with system clock (FOSC)
TMR1CS<1:0> = 0X:
This bit is ignored. Timer1 uses the internal clock when TMR1CS<1:0> = 1X.
bit 1 Unimplemented: Read as ‘0
bit 0 TMR1ON: Timer1 On bit
1 = Enables Timer1
0 = Stops Timer1
Clears Timer1 gate flip-flop
PIC16(L)F1516/7/8/9
DS40001452F-page 156 2010-2016 Microchip Technology Inc.
REGISTER 18-2: T1GCON: TIMER1 GATE CONTROL REGISTER
R/W-0/u R/W-0/u R/W-0/u R/W-0/u R/W/HC-0/u R-x/x R/W-0/u R/W-0/u
TMR1GE T1GPOL T1GTM T1GSPM T1GGO/
DONE
T1GVAL T1GSS<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared HC = Bit is cleared by hardware
bit 7 TMR1GE: Timer1 Gate Enable bit
If TMR1ON = 0:
This bit is ignored
If TMR1ON = 1:
1 = Timer1 counting is controlled by the Timer1 gate function
0 = Timer1 counts regardless of Timer1 gate function
bit 6 T1GPOL: Timer1 Gate Polarity bit
1 = Timer1 gate is active-high (Timer1 counts when gate is high)
0 = Timer1 gate is active-low (Timer1 counts when gate is low)
bit 5 T1GTM: Timer1 Gate Toggle Mode bit
1 = Timer1 Gate Toggle mode is enabled
0 = Timer1 Gate Toggle mode is disabled and toggle flip-flop is cleared
Timer1 gate flip-flop toggles on every rising edge.
bit 4 T1GSPM: Timer1 Gate Single-Pulse Mode bit
1 = Timer1 Gate Single-Pulse mode is enabled and is controlling Timer1 gate
0 = Timer1 Gate Single-Pulse mode is disabled
bit 3 T1GGO/DONE: Timer1 Gate Single-Pulse Acquisition Status bit
1 = Timer1 gate single-pulse acquisition is ready, waiting for an edge
0 = Timer1 gate single-pulse acquisition has completed or has not been started
bit 2 T1GVAL: Timer1 Gate Current State bit
Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L.
Unaffected by Timer1 Gate Enable (TMR1GE).
bit 1-0 T1GSS<1:0>: Timer1 Gate Source Select bits
11 = Reserved
10 = Timer2 Match PR2
01 = Timer0 overflow output
00 = Timer1 gate pin
2010-2016 Microchip Technology Inc. DS40001452F-page 157
PIC16(L)F1516/7/8/9
TABLE 18-5: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
ANSELB ANSB5 ANSB4 ANSB3 ANSB2 ANSB1 ANSB0 112
CCP1CON DC1B<1:0> CCP1M<3:0> 168
CCP2CON DC2B<1:0> CCP2M<3:0> 168
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 74
PIE1 TMR1GIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 75
PIR1 TMR1GIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 77
TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Count 151*
TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Count 151*
TRISB TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 112
TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 115
T1CON TMR1CS<1:0> T1CKPS<1:0> T1OSCEN T1SYNC —TMR1ON
155
T1GCON TMR1GE T1GPOL T1GTM T1GSPM T1GGO/
DONE
T1GVAL T1GSS<1:0> 156
Legend: — = unimplemented, read as 0’. Shaded cells are not used by the Timer1 module.
* Page provides register information.
PIC16(L)F1516/7/8/9
DS40001452F-page 158 2010-2016 Microchip Technology Inc.
19.0 TIMER2 MODULE
The Timer2 module incorporates the following features:
8-bit Timer and Period registers (TMR2 and PR2,
respectively)
Readable and writable (both registers)
Software programmable prescaler (1:1, 1:4, 1:16,
and 1:64)
Software programmable postscaler (1:1 to 1:16)
Interrupt on TMR2 match with PR2, respectively
Optional use as the shift clock for the MSSP
modules
See Figure 19-1 for a block diagram of Timer2.
FIGURE 19-1: TIMER2 BLOCK DIAGRAM
Comparator
TMR2 Sets Flag
TMR2
Output
Reset
Postscaler
Prescaler
PR2
2
FOSC/4
1:1 to 1:16
1:1, 1:4, 1:16, 1:64
EQ
4
bit TMR2IF
T2OUTPS<3:0>
T2CKPS<1:0>
2010-2016 Microchip Technology Inc. DS40001452F-page 159
PIC16(L)F1516/7/8/9
19.1 Timer2 Operation
The clock input to the Timer2 modules is the system
instruction clock (FOSC/4).
TMR2 increments from 00h on each clock edge.
A 4-bit counter/prescaler on the clock input allows direct
input, divide-by-4 and divide-by-16 prescale options.
These options are selected by the prescaler control bits,
T2CKPS<1:0> of the T2CON register. The value of
TMR2 is compared to that of the Period register, PR2, on
each clock cycle. When the two values match, the
comparator generates a match signal as the timer
output. This signal also resets the value of TMR2 to 00h
on the next cycle and drives the output
counter/postscaler (see Section 19.2 “Timer2
Interrupt”).
The TMR2 and PR2 registers are both directly readable
and writable. The TMR2 register is cleared on any
device Reset, whereas the PR2 register initializes to
FFh. Both the prescaler and postscaler counters are
cleared on the following events:
a write to the TMR2 register
a write to the T2CON register
Power-on Reset (POR)
Brown-out Reset (BOR)
•MCLR
Reset
Watchdog Timer (WDT) Reset
Stack Overflow Reset
Stack Underflow Reset
RESET Instruction
19.2 Timer2 Interrupt
Timer2 can also generate an optional device interrupt.
The Timer2 output signal (TMR2-to-PR2 match)
provides the input for the 4-bit counter/postscaler. This
counter generates the TMR2 match interrupt flag which
is latched in TMR2IF of the PIR1 register. The interrupt
is enabled by setting the TMR2 Match Interrupt Enable
bit, TMR2IE of the PIE1 register.
A range of 16 postscale options (from 1:1 through 1:16
inclusive) can be selected with the postscaler control
bits, T2OUTPS<3:0>, of the T2CON register.
19.3 Timer2 Output
The unscaled output of TMR2 is available primarily to
the CCP1 module, where it is used as a time base for
operations in PWM mode.
Timer2 can be optionally used as the shift clock source
for the MSSP module operating in SPI mode.
Additional information is provided in Section 21.0
“Master Synchronous Serial Port (MSSP) Module”
19.4 Timer2 Operation During Sleep
Timer2 cannot be operated while the processor is in
Sleep mode. The contents of the TMR2 and PR2
registers will remain unchanged while the processor is
in Sleep mode.
Note: TMR2 is not cleared when T2CON is
written.
PIC16(L)F1516/7/8/9
DS40001452F-page 160 2010-2016 Microchip Technology Inc.
19.5 Regis t er D e finiti o n s: Timer2 C o n tr o l
REGISTER 19-1: T2CON: TIMER2 CONTROL REGISTER
U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
T2OUTPS<3:0> TMR2ON T2CKPS<1:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 Unimplemented: Read as ‘0
bit 6-3 T2OUTPS<3:0>: Timer2 Output Postscaler Select bits
1111 = 1:16 Postscaler
1110 = 1:15 Postscaler
1101 = 1:14 Postscaler
1100 = 1:13 Postscaler
1011 = 1:12 Postscaler
1010 = 1:11 Postscaler
1001 = 1:10 Postscaler
1000 = 1:9 Postscaler
0111 = 1:8 Postscaler
0110 = 1:7 Postscaler
0101 = 1:6 Postscaler
0100 = 1:5 Postscaler
0011 = 1:4 Postscaler
0010 = 1:3 Postscaler
0001 = 1:2 Postscaler
0000 = 1:1 Postscaler
bit 2 TMR2ON: Timer2 On bit
1 = Timer2 is ON
0 = Timer2 is OFF
bit 1-0 T2CKPS<1:0>: Timer2 Clock Prescale Select bits
11 = Prescaler is 64
10 = Prescaler is 16
01 =Prescaler is 4
00 =Prescaler is 1
2010-2016 Microchip Technology Inc. DS40001452F-page 161
PIC16(L)F1516/7/8/9
TABLE 19-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
CCP1CON DC1B<1:0> CCP1M<3:0> 168
CCP2CON DC2B<1:0> CCP2M<3:0> 168
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 74
PIE1 TMR1GIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 75
PIR1 TMR1GIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 77
PR2 Timer2 Module Period Register 158*
T2CON T2OUTPS<3:0> TMR2ON T2CKPS<1:0> 160
TMR2 Holding Register for the 8-bit TMR2 Register 158*
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for Timer2 module.
* Page provides register information.
PIC16(L)F1516/7/8/9
DS40001452F-page 162 2010-2016 Microchip Technology Inc.
20.0 CAPTURE/COMPARE/PWM
MODULES
The Capture/Compare/PWM module is a peripheral
which allows the user to time and control different
events, and to generate Pulse-Width Modulation
(PWM) signals. In Capture mode, the peripheral allows
the timing of the duration of an event. The Compare
mode allows the user to trigger an external event when
a predetermined amount of time has expired. The
PWM mode can generate Pulse-Width Modulated
signals of varying frequency and duty cycle.
This family of devices contains two standard Capture/
Compare/PWM modules (CCP1 and CCP2).
20.1 Capture Mode
The Capture mode function described in this section is
available and identical for CCP modules CCP1 and
CCP2.
Capture mode makes use of the 16-bit Timer1
resource. When an event occurs on the CCPx pin, the
16-bit CCPRxH:CCPRxL register pair captures and
stores the 16-bit value of the TMR1H:TMR1L register
pair, respectively. An event is defined as one of the
following and is configured by the CCPxM<3:0> bits of
the CCPxCON register:
Every falling edge
Every rising edge
Every 4th rising edge
Every 16th rising edge
When a capture is made, the Interrupt Request Flag bit
CCPxIF of the PIRx register is set. The interrupt flag
must be cleared in software. If another capture occurs
before the value in the CCPRxH, CCPRxL register pair
is read, the old captured value is overwritten by the new
captured value.
Figure 20-1 shows a simplified diagram of the Capture
operation.
20.1.1 CCP PIN CONFIGURATION
In Capture mode, the CCPx pin should be configured
as an input by setting the associated TRIS control bit.
Also, the CCP2 pin function can be moved to
alternative pins using the APFCON register. Refer to
Register 12-1 for more details.
FIGURE 20-1: CAPTURE MODE
OPERATION BLOCK
DIAGRAM
20.1.2 TIMER1 MODE RESOURCE
Timer1 must be running in Timer mode or Synchronized
Counter mode for the CCP module to use the capture
feature. In Asynchronous Counter mode, the capture
operation may not work.
See Section 18.0 “Timer1 Module with Gate
Control” for more information on configuring Timer1.
20.1.3 SOFTWARE INTERRUPT MODE
When the Capture mode is changed, a false capture
interrupt may be generated. The user should keep the
CCPxIE interrupt enable bit of the PIEx register clear to
avoid false interrupts. Additionally, the user should
clear the CCPxIF interrupt flag bit of the PIRx register
following any change in Operating mode.
Note 1: In devices with more than one CCP
module, it is very important to pay close
attention to the register names used. A
number placed after the module acronym
is used to distinguish between separate
modules. For example, the CCP1CON
and CCP2CON control the same
operational aspects of two completely
different CCP modules.
2: Throughout this section, generic
references to a CCP module in any of its
operating modes may be interpreted as
being equally applicable to CCPx module.
Register names, module signals, I/O pins,
and bit names may use the generic
designator ‘x’ to indicate the use of a
numeral to distinguish a particular module,
when required.
TABLE 20-1: PWM RESOURCES
Device Name CCP1 CCP2
PIC16(L)F1516/7/8/9 Standard PWM Standard PWM
Note: If the CCPx pin is configured as an output,
a write to the port can cause a capture
condition.
CCPRxH CCPRxL
TMR1H TMR1L
Set Flag bit CCPxIF
(PIRx register)
Capture
Enable
CCPxM<3:0>
Prescaler
1, 4, 16
and
Edge Detect
pin
CCPx
System Clock (FOSC)
2010-2016 Microchip Technology Inc. DS40001452F-page 163
PIC16(L)F1516/7/8/9
20.1.4 CCP PRESCALER
There are four prescaler settings specified by the
CCPxM<3:0> bits of the CCPxCON register. Whenever
the CCP module is turned off, or the CCP module is not
in Capture mode, the prescaler counter is cleared. Any
Reset will clear the prescaler counter.
Switching from one capture prescaler to another does not
clear the prescaler and may generate a false interrupt. To
avoid this unexpected operation, turn the module off by
clearing the CCPxCON register before changing the
prescaler. Example 20-1 demonstrates the code to
perform this function.
EXAMPLE 20-1: CHANGING B ETWEE N
CAPTURE PRESCALERS
20.1.5 CAPTURE DURING SLEEP
Capture mode depends upon the Timer1 module for
proper operation. There are two options for driving the
Timer1 module in Capture mode. It can be driven by the
instruction clock (FOSC/4), or by an external clock source.
When Timer1 is clocked by FOSC/4, Timer1 will not
increment during Sleep. When the device wakes from
Sleep, Timer1 will continue from its previous state.
Capture mode will operate during Sleep when Timer1
is clocked by an external clock source.
20.1.6 ALTERNATE PIN LOCATIONS
This module incorporates I/O pins that can be moved to
other locations with the use of the alternate pin function
register APFCON. To determine which pins can be
moved and what their default locations are upon a
Reset, see Section 12.1 “Al ternate Pin Function” for
more information.
20.2 Compare Mode
The Compare mode function described in this section
is available and identical for CCP modules CCP1 and
CCP2.
Compare mode makes use of the 16-bit Timer1
resource. The 16-bit value of the CCPRxH:CCPRxL
register pair is constantly compared against the 16-bit
value of the TMR1H:TMR1L register pair. When a
match occurs, one of the following events can occur:
Toggle the CCPx output
Set the CCPx output
Clear the CCPx output
Generate a Special Event Trigger
Generate a Software Interrupt
The action on the pin is based on the value of the
CCPxM<3:0> control bits of the CCPxCON register. At
the same time, the interrupt flag CCPxIF bit is set.
All Compare modes can generate an interrupt.
Figure 20-2 shows a simplified diagram of the
Compare operation.
FIGURE 20-2: COMPARE MODE
OPERATION BLOCK
DIAGRAM
20.2.1 CCPX PIN CONFIGURATION
The user must configure the CCPx pin as an output by
clearing the associated TRIS bit.
The CCP2 pin function can be moved to alternate pins
using the APFCON register (Register 12-1). Refer to
Section 12.1 “Alternate Pin Function” for more
details.
20.2.2 TIMER1 MODE RESOURCE
In Compare mode, Timer1 must be running in either
Timer mode or Synchronized Counter mode. The
compare operation may not work in Asynchronous
Counter mode.
See Section 18.0 “Timer1 Module with Gate Control”
for more information on configuring Timer1.
BANKSEL CCPxCON ;Set Bank bits to point
;to CCPxCON
CLRF CCPxCON ;Turn CCP module off
MOVLW NEW_CAPT_PS ;Load the W reg with
;the new prescaler
;move value and CCP ON
MOVWF CCPxCON ;Load CCPxCON with this
;value
Note: Clearing the CCPxCON register will force
the CCPx compare output latch to the
default low level. This is not the PORT I/O
data latch.
Note: Clocking Timer1 from the system clock
(FOSC) should not be used in Compare
mode. In order for Compare mode to
recognize the trigger event on the CCPx
pin, TImer1 must be clocked from the
instruction clock (FOSC/4) or from an
external clock source.
CCPRxH CCPRxL
TMR1H TMR1L
Comparator
QS
R
Output
Logic
Special Event Trigger
Set CCPxIF Interrupt Flag
(PIRx)
Match
TRIS
CCPxM<3:0>
Mode Select
Output Enable
Pin
CCPx
4
PIC16(L)F1516/7/8/9
DS40001452F-page 164 2010-2016 Microchip Technology Inc.
20.2.3 SOFTWARE INTERRUPT MODE
When Generate Software Interrupt mode is chosen
(CCPxM<3:0> = 1010), the CCPx module does not
assert control of the CCPx pin (see the CCPxCON
register).
20.2.4 SPECIAL EVENT TRIGGER
When Special Event Trigger mode is chosen
(CCPxM<3:0> = 1011), the CCPx module does the
following:
•Resets Timer1
Starts an ADC conversion if ADC is enabled
The CCPx module does not assert control of the CCPx
pin in this mode.
The Special Event Trigger output of the CCP occurs
immediately upon a match between the TMR1H,
TMR1L register pair and the CCPRxH, CCPRxL regis-
ter pair. The TMR1H, TMR1L register pair is not reset
until the next rising edge of the Timer1 clock. The
Special Event Trigger output starts an ADC conversion
(if the ADC module is enabled). This allows the
CCPRxH, CCPRxL register pair to effectively provide a
16-bit programmable period register for Timer1.
Refer to Section 16.2.5 “Special Event Trigger” for
more information.
20.2.5 COMPARE DURING SLEEP
The Compare mode is dependent upon the system
clock (FOSC) for proper operation. Since FOSC is shut
down during Sleep mode, the Compare mode will not
function properly during Sleep.
20.2.6 ALTERNATE PIN LOCATIONS
This module incorporates I/O pins that can be moved to
other locations with the use of the alternate pin function
register APFCON. To determine which pins can be
moved and what their default locations are upon a
Reset, see Section 12.1 “Alternate Pin Function”for
more information.
20.3 PWM Overview
Pulse-Width Modulation (PWM) is a scheme that
provides power to a load by switching quickly between
fully on and fully off states. The PWM signal resembles
a square wave where the high portion of the signal is
considered the on state and the low portion of the signal
is considered the off state. The high portion, also known
as the pulse width, can vary in time and is defined in
steps. A larger number of steps applied, which
lengthens the pulse width, also supplies more power to
the load. Lowering the number of steps applied, which
shortens the pulse width, supplies less power. The
PWM period is defined as the duration of one complete
cycle or the total amount of on and off time combined.
PWM resolution defines the maximum number of steps
that can be present in a single PWM period. A higher
resolution allows for more precise control of the pulse
width time and in turn the power that is applied to the
load.
The term duty cycle describes the proportion of the on
time to the off time and is expressed in percentages,
where 0% is fully off and 100% is fully on. A lower duty
cycle corresponds to less power applied and a higher
duty cycle corresponds to more power applied.
Figure 20-3 shows a typical waveform of the PWM
signal.
20.3.1 STANDARD PWM OPERATION
The standard PWM function described in this section is
available and identical for all CCP modules.
The standard PWM mode generates a Pulse-Width
Modulation (PWM) signal on the CCPx pin with up to 10
bits of resolution. The period, duty cycle, and resolution
are controlled by the following registers:
PR2 registers
T2CON registers
CCPRxL registers
CCPxCON registers
Figure 20-4 shows a simplified block diagram of PWM
operation.
TABLE 20-2: SPECIAL EVENT TRIGGER
Device CCPx
PIC16(L)F1516/7/8/9 CCP2
Note 1: The Special Event Trigger from the CCP
module does not set interrupt flag bit
TMR1IF of the PIR1 register.
2: Removing the match condition by
changing the contents of the CCPRxH
and CCPRxL register pair, between the
clock edge that generates the Special
Event Trigger and the clock edge that
generates the Timer1 Reset, will
preclude the Reset from occurring.
Note 1: The corresponding TRIS bit must be
cleared to enable the PWM output on the
CCPx pin.
2: Clearing the CCPxCON register will
relinquish control of the CCPx pin.
2010-2016 Microchip Technology Inc. DS40001452F-page 165
PIC16(L)F1516/7/8/9
FIGURE 20-3: CCP PWM OUTPUT SIGNAL
FIGURE 20-4: SIMPLIFIED PWM BLOCK
DIAGRAM
20.3.2 SETUP FOR PWM OPERATION
The following steps should be taken when configuring
the CCP module for standard PWM operation:
1. Disable the CCPx pin output driver by setting the
associated TRIS bit.
2. Load the PR2 register with the PWM period
value.
3. Configure the CCP module for the PWM mode
by loading the CCPxCON register with the
appropriate values.
4. Load the CCPRxL register and the DCxBx bits
of the CCPxCON register, with the PWM duty
cycle value.
5. Configure and start Timer2:
Clear the TMR2IF interrupt flag bit of the
PIRx register. See Note below.
Configure the T2CKPS bits of the T2CON
register with the Timer prescale value.
Enable the Timer by setting the TMR2ON
bit of the T2CON register.
6. Enable PWM output pin:
Wait until the Timer overflows and the
TMR2IF bit of the PIR1 register is set. See
Note below.
Enable the CCPx pin output driver by clear-
ing the associated TRIS bit.
20.3.3 TIMER2 TIMER RESOURCE
The PWM standard mode makes use of the 8-bit
Timer2 timer resources to specify the PWM period.
20.3.4 PWM PERIOD
The PWM period is specified by the PR2 register of
Timer2. The PWM period can be calculated using the
formula of Equation 20-1.
EQUATION 20-1: PWM PERIOD
When TMR2 is equal to PR2, the following three events
occur on the next increment cycle:
•TMR2 is cleared
The CCPx pin is set. (Exception: If the PWM duty
cycle = 0%, the pin will not be set.)
The PWM duty cycle is latched from CCPRxL into
CCPRxH.
20.3.5 PWM DUTY CYCLE
The PWM duty cycle is specified by writing a 10-bit
value to multiple registers: CCPRxL register and
DCxB<1:0> bits of the CCPxCON register. The
CCPRxL contains the eight MSbs and the DCxB<1:0>
bits of the CCPxCON register contain the two LSbs.
CCPRxL and DCxB<1:0> bits of the CCPxCON
register can be written to at any time. The duty cycle
value is not latched into CCPRxH until after the period
completes (i.e., a match between PR2 and TMR2
registers occurs). While using the PWM, the CCPRxH
register is read-only.
Period
Pulse Width
TMR2 = 0
TMR2 = CCPRxH:CCPxCON<5:4>
TMR2 = PR2
CCPRxL
CCPRxH(2) (Slave)
Comparator
TMR2
PR2
(1)
RQ
S
Duty Cycle Registers CCPxCON<5:4>
Clear Timer,
toggle CCPx pin and
latch duty cycle
Note 1: The 8-bit timer TMR2 register is concatenated
with the 2-bit internal system clock (FOSC), or
two bits of the prescaler, to create the 10-bit
time base.
2: In PWM mode, CCPRxH is a read-only register.
TRIS
CCPx
Comparator
Note: In order to send a complete duty cycle and
period on the first PWM output, the above
steps must be included in the setup
sequence. If it is not critical to start with a
complete PWM signal on the first output,
then step 6 may be ignored.
Note: The Timer postscaler (see Section 19.1
“Timer2 Operation”) is not used in the
determination of the PWM frequency.
PWM Pe riod PR21+4TOSC =
(TM R2 Prescale Valu e)
Note 1: TOSC = 1/FOSC
PIC16(L)F1516/7/8/9
DS40001452F-page 166 2010-2016 Microchip Technology Inc.
Equation 20-2 is used to calculate the PWM pulse
width.
Equation 20-3 is used to calculate the PWM duty cycle
ratio.
EQUATION 20-2: PULSE WIDTH
EQUATION 20-3: DUTY CYCLE RATIO
The CCPRxH register and a 2-bit internal latch are
used to double buffer the PWM duty cycle. This double
buffering is essential for glitchless PWM operation.
The 8-bit timer TMR2 register is concatenated with
either the 2-bit internal system clock (FOSC), or two bits
of the prescaler, to create the 10-bit time base. The
system clock is used if the Timer2 prescaler is set to 1:1.
When the 10-bit time base matches the CCPRxH and
2-bit latch, then the CCPx pin is cleared (see
Figure 20-4).
20.3.6 PWM RESOLUTION
The resolution determines the number of available duty
cycles for a given period. For example, a 10-bit resolution
will result in 1024 discrete duty cycles, whereas an 8-bit
resolution will result in 256 discrete duty cycles.
The maximum PWM resolution is 10 bits when PR2 is
255. The resolution is a function of the PR2 register
value as shown by Equation 20-4.
EQUATION 20-4: PWM RESOLUTION
Pulse Width CCPRxL:CCPxCON<5:4>
=
TOSC
(TMR2 Prescale Value)
Duty Cycle Ratio CCPRxL:CCPxCON<5:4>
4PR21+
-----------------------------------------------------------------------=
Note: If the pulse-width value is greater than the
period the assigned PWM pin(s) will
remain unchanged.
Resolution 4PR21+log 2log
------------------------------------------ bits=
TABLE 20-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz)
PWM Frequency 1.22 kHz 4.88 kHz 19.53 kHz 78.12 kHz 156.3 kHz 208.3 kHz
Timer Prescale (1, 4, 16) 16 4 1 1 1 1
PR2 Value 0xFF 0xFF 0xFF 0x3F 0x1F 0x17
Maximum Resolution (bits) 10 10 10 8 7 6.6
TABLE 20-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 8 MHz)
PWM Frequency 1.22 kHz 4.90 kHz 19.61 kHz 76.92 kHz 153.85 kHz 200.0 kHz
Timer Prescale (1, 4, 16) 16 4 1 1 1 1
PR2 Value 0x65 0x65 0x65 0x19 0x0C 0x09
Maximum Resolution (bits) 8 8 8 6 5 5
2010-2016 Microchip Technology Inc. DS40001452F-page 167
PIC16(L)F1516/7/8/9
20.3.7 OPERATION IN SLEEP MODE
In Sleep mode, the TMR2 register will not increment
and the state of the module will not change. If the CCPx
pin is driving a value, it will continue to drive that value.
When the device wakes up, TMR2 will continue from its
previous state.
20.3.8 CHANGES IN SYSTEM CLOCK
FREQUENCY
The PWM frequency is derived from the system clock
frequency. Any changes in the system clock frequency
will result in changes to the PWM frequency. See
Section 5.0 “Oscillator Module (with Fail-Safe
Clock Monitor)” for additional details.
20.3.9 EFFECTS OF RESET
Any Reset will force all ports to Input mode and the
CCP registers to their Reset states.
20.3.10 ALTERNATE PIN LOCATIONS
This module incorporates I/O pins that can be moved to
other locations with the use of the alternate pin function
register APFCON. To determine which pins can be
moved and what their default locations are upon a
Reset, see Section 12.1 “Alter nate Pin Fun ction” for
more information.
TABLE 20-5: SUMMARY OF REGISTERS ASSOCIATED WITH STANDARD PWM
Name Bit 7 Bit 6 B it 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
APFCON ——————SSSEL CCP2SEL 105
CCP1CON DC1B<1:0> CCP1M<3:0> 168
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 74
PIE1 TMR1GIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 75
PIE2 OSFIE ———BCLIE CCP2IE 76
PIR1 TMR1GIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 77
PIR2 OSFIF ———BCLIF —CCP2IF
78
PR2 Timer2 Period Register 158*
T2CON T2OUTPS<3:0> TMR2ON T2CKPS<1:0> 160
TMR2 Timer2 Module Register 158
TRISA TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 107
Legend: — = Unimplemented location, read as ‘0’. Shaded cells are not used by the PWM.
* Page provides register information.
PIC16(L)F1516/7/8/9
DS40001452F-page 168 2010-2016 Microchip Technology Inc.
20.4 Register Definitions: CCPx Control
REGISTER 20-1: CCPxCON: CCPx CONTROL REGISTER
U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
DCxB<1:0> CCPxM<3:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Reset
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-6 Unimplemented: Read as0
bit 5-4 DCxB<1:0>: PWM Duty Cycle Least Significant bits
Capture mode:
Unused
Compare mode:
Unused
PWM mode:
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.
bit 3-0 CCPxM<3:0>: CCPx Mode Select bits
0000 = Capture/Compare/PWM off (resets CCPx module)
0001 = Reserved
0010 = Compare mode: toggle output on match
0011 = Reserved
0100 = Capture mode: every falling edge
0101 = Capture mode: every rising edge
0110 = Capture mode: every 4th rising edge
0111 = Capture mode: every 16th rising edge
1000 = Compare mode: set output on compare match (set CCPxIF)
1001 = Compare mode: clear output on compare match (set CCPxIF)
1010 = Compare mode: generate software interrupt only
1011 = Compare mode: the CCPxIF bit is set, CCPx pin is unaffected, CCPx resets TMR1
[Special Event Trigger also starts an ADC conversion if the ADC module is enabled and the
CCP module in Table 20-2 is selected (see Section 20.2.4, Special Event Trigger)]
11xx =PWM mode
2010-2016 Microchip Technology Inc. DS40001452F-page 169
PIC16(L)F1516/7/8/9
21.0 MAS T ER SYNCHRONOUS
SERIAL PORT (MS SP)
MODULE
21.1 Master SSP (MSSP) Module
Overview
The Master Synchronous Serial Port (MSSP) module is
a serial interface useful for communicating with other
peripheral or microcontroller devices. These peripheral
devices may be serial EEPROMs, shift registers,
display drivers, A/D converters, etc. The MSSP module
can operate in one of two modes:
Serial Peripheral Interface (SPI)
Inter-Integrated Circuit (I2C)
The SPI interface supports the following modes and
features:
•Master mode
Slave mode
Clock Parity
Slave Select Synchronization (Slave mode only)
Daisy-chain connection of slave devices
Figure 21-1 is a block diagram of the SPI interface
module.
FIGURE 21-1: MSSP BLOCK DIAGRAM (SPI MODE)
( )
Read Write
Data Bus
SSPSR Reg
SSPM<3:0>
bit 0 Shift
Clock
SS Control
Enable
Edge
Select
Clock Select
TMR2 Output
2
Edge
Select
2 (CKP, CKE)
4
TRIS bit
SDO
SSPBUF Reg
SDI
SS
SCK TOSC
Prescaler
4, 16, 64
Baud Rate
Generator
(SSPADD)
SCK_out
SDO_out
PIC16(L)F1516/7/8/9
DS40001452F-page 170 2010-2016 Microchip Technology Inc.
The I2C interface supports the following modes and
features:
•Master mode
Slave mode
Byte NACKing (Slave mode)
Limited Multi-master support
7-bit and 10-bit addressing
Start and Stop interrupts
Interrupt masking
Clock stretching
Bus collision detection
General call address matching
•Address masking
Address Hold and Data Hold modes
Selectable SDA hold times
Figure 21-2 is a block diagram of the I2C interface
module in Master mode. Figure 21-3 is a diagram of the
I2C interface module in Slave mode.
FIGURE 21-2: MSSP BLOCK DIAGRAM (I2C MASTER MODE)
Read Write
SSPSR
Start bit, Stop bit,
Start bit detect,
SSPxBUF
Internal
data bus
Set/Reset: S, P, SSPSTAT, WCOL, SSPOV
Shift
Clock
MSb LSb
SDA
Acknowledge
Generate (SSPCON2)
Stop bit detect
Write collision detect
Clock arbitration
State counter for
end of XMIT/RCV
SCL
SCL in
Bus Collision
SDA in
Receive Enable (RCEN)
Clock Cntl
Clock arbitrate/BCOL detect
(Hold off clock source)
[SSPM<3:0>]
Baud rate
Reset SEN, PEN (SSPCON2)
generator
(SSPADD)
Address Match detect
Set SSPIF, BCLIF
2010-2016 Microchip Technology Inc. DS40001452F-page 171
PIC16(L)F1516/7/8/9
FIGURE 21-3: MSSP BLOCK DIAGRAM (I2C SLAV E MO DE)
21.2 SPI Mode Overview
The Serial Peripheral Interface (SPI) bus is a
synchronous serial data communication bus that
operates in Full-Duplex mode. Devices communicate
in a master/slave environment where the master device
initiates the communication. A slave device is
controlled through a Chip Select known as Slave
Select.
The SPI bus specifies four signal connections:
Serial Clock (SCK)
Serial Data Out (SDO)
Serial Data In (SDI)
Slave Select (SS)
Figure 21-1 shows the block diagram of the MSSP
module when operating in SPI mode.
The SPI bus operates with a single master device and
one or more slave devices. When multiple slave
devices are used, an independent Slave Select
connection is required from the master device to each
slave device.
Figure 21-4 shows a typical connection between a
master device and multiple slave devices.
The master selects only one slave at a time. Most slave
devices have tri-state outputs so their output signal
appears disconnected from the bus when they are not
selected.
Transmissions involve two shift registers, eight bits in
size, one in the master and one in the slave. With either
the master or the slave device, data is always shifted
out one bit at a time, with the Most Significant bit (MSb)
shifted out first. At the same time, a new Least
Significant bit (LSb) is shifted into the same register.
Figure 21-5 shows a typical connection between two
processors configured as master and slave devices.
Data is shifted out of both shift registers on the
programmed clock edge and latched on the opposite
edge of the clock.
The master device transmits information out on its SDO
output pin which is connected to, and received by, the
slave's SDI input pin. The slave device transmits infor-
mation out on its SDO output pin, which is connected
to, and received by, the master's SDI input pin.
To begin communication, the master device first sends
out the clock signal. Both the master and the slave
devices should be configured for the same clock polar-
ity.
The master device starts a transmission by sending out
the MSb from its shift register. The slave device reads
this bit from that same line and saves it into the LSb
position of its shift register.
Read Write
SSPSR Reg
Match Detect
SSPADD Reg
Start and
Stop bit Detect
SSPBUF Reg
Internal
Data Bus
Addr Match
Set, Reset
S, P bits
(SSPSTAT Reg)
SCL
SDA
Shift
Clock
MSb LSb
SSPMSK Reg
PIC16(L)F1516/7/8/9
DS40001452F-page 172 2010-2016 Microchip Technology Inc.
During each SPI clock cycle, a full-duplex data
transmission occurs. This means that while the master
device is sending out the MSb from its shift register (on
its SDO pin) and the slave device is reading this bit and
saving it as the LSb of its shift register, that the slave
device is also sending out the MSb from its shift
register (on its SDO pin) and the master device is
reading this bit and saving it as the LSb of its shift
register.
After eight bits have been shifted out, the master and
slave have exchanged register values.
If there is more data to exchange, the shift registers are
loaded with new data and the process repeats itself.
Whether the data is meaningful or not (dummy data),
depends on the application software. This leads to
three scenarios for data transmission:
Master sends useful data and slave sends
dummy data.
Master sends useful data and slave sends useful
data.
Master sends dummy data and slave sends use-
ful data.
Transmissions may involve any number of clock
cycles. When there is no more data to be transmitted,
the master stops sending the clock signal and it
deselects the slave.
Every slave device connected to the bus that has not
been selected through its slave select line must
disregard the clock and transmission signals and must
not transmit out any data of its own.
FIGURE 21-4: SPI MASTER AND MULTIPLE SLAVE CONNECTION
21.2.1 SPI MODE REGISTERS
The MSSP module has five registers for SPI mode
operation. These are:
MSSP STATUS register (SSPSTAT)
MSSP Control register 1 (SSPCON1)
MSSP Control register 3 (SSPCON3)
MSSP Data Buffer register (SSPBUF)
MSSP Address register (SSPADD)
MSSP Shift register (SSPSR)
(Not directly accessible)
SSPCON1 and SSPSTAT are the control and STA-
TUS registers in SPI mode operation. The SSPCON1
register is readable and writable. The lower six bits of
the SSPSTAT are read-only. The upper two bits of the
SSPSTAT are read/write.
In one SPI master mode, SSPADD can be loaded with
a value used in the Baud Rate Generator. More infor-
mation on the Baud Rate Generator is available in
Section 21.7 “Baud Rate Generator”.
SSPSR is the shift register used for shifting data in
and out. SSPBUF provides indirect access to the
SSPSR register. SSPBUF is the buffer register to
which data bytes are written, and from which data
bytes are read.
In receive operations, SSPSR and SSPBUF together
create a buffered receiver. When SSPSR receives a
complete byte, it is transferred to SSPBUF and the
SSPIF interrupt is set.
During transmission, the SSPBUF is not buffered. A
write to SSPBUF will write to both SSPBUF and
SSPSR.
SPI Master SCK
SDO
SDI
General I/O
General I/O
General I/O
SCK
SDI
SDO
SS
SPI Slave
#1
SCK
SDI
SDO
SS
SPI Slave
#2
SCK
SDI
SDO
SS
SPI Slave
#3
2010-2016 Microchip Technology Inc. DS40001452F-page 173
PIC16(L)F1516/7/8/9
21.2.2 SPI MODE OPERATION
When initializing the SPI, several options need to be
specified. This is done by programming the appropriate
control bits (SSPCON1<5:0> and SSPSTAT<7:6>).
These control bits allow the following to be specified:
Master mode (SCK is the clock output)
Slave mode (SCK is the clock input)
Clock Polarity (Idle state of SCK)
Data Input Sample Phase (middle or end of data
output time)
Clock Edge (output data on rising/falling edge of
SCK)
Clock Rate (Master mode only)
Slave Select mode (Slave mode only)
To enable the serial port, SSP Enable bit, SSPEN of
the SSPCON1 register, must be set. To reset or recon-
figure SPI mode, clear the SSPEN bit, re-initialize the
SSPCONx registers and then set the SSPEN bit. This
configures the SDI, SDO, SCK and SS pins as serial
port pins. For the pins to behave as the serial port func-
tion, some must have their data direction bits (in the
TRIS register) appropriately programmed as follows:
SDI must have corresponding TRIS bit set
SDO must have corresponding TRIS bit cleared
SCK (Master mode) must have corresponding
TRIS bit cleared
SCK (Slave mode) must have corresponding
TRIS bit set
•SS
must have corresponding TRIS bit set
Any serial port function that is not desired may be
overridden by programming the corresponding data
direction (TRIS) register to the opposite value.
The MSSP consists of a transmit/receive shift register
(SSPSR) and a buffer register (SSPBUF). The SSPSR
shifts the data in and out of the device, MSb first. The
SSPBUF holds the data that was written to the SSPSR
until the received data is ready. Once the eight bits of
data have been received, that byte is moved to the
SSPBUF register. Then, the Buffer Full Detect bit, BF
of the SSPSTAT register, and the interrupt flag bit,
SSPIF, are set. This double-buffering of the received
data (SSPBUF) allows the next byte to start reception
before reading the data that was just received. Any
write to the SSPBUF register during
transmission/reception of data will be ignored and the
write collision detect bit WCOL of the SSPCON1
register, will be set. User software must clear the
WCOL bit to allow the following write(s) to the SSPBUF
register to complete successfully.
When the application software is expecting to receive
valid data, the SSPBUF should be read before the next
byte of data to transfer is written to the SSPBUF. The
Buffer Full bit, BF of the SSPSTAT register, indicates
when SSPBUF has been loaded with the received data
(transmission is complete). When the SSPBUF is read,
the BF bit is cleared. This data may be irrelevant if the
SPI is only a transmitter. Generally, the MSSP interrupt
is used to determine when the transmission/reception
has completed. If the interrupt method is not going to
be used, then software polling can be done to ensure
FIGURE 21-5: SPI MASTER/SLAVE CONNECTION
Serial Input Buffer
(BUF)
Shift Register
(SSPSR)
MSb LSb
SDO
SDI
Processor 1
SCK
SPI Master SSPM<3:0> = 00xx
Serial Input Buffer
(SSPBUF)
Shift Register
(SSPSR)
LSb
MSb
SDI
SDO
Processor 2
SCK
SPI Slave SSPM<3:0> = 010x
Serial Clock
SS
Slave Select
General I/O (optional)
= 1010
PIC16(L)F1516/7/8/9
DS40001452F-page 174 2010-2016 Microchip Technology Inc.
21.2.3 SPI MASTER MODE
The master can initiate the data transfer at any time
because it controls the SCK line. The master
determines when the slave (Processor 2, Figure 21-5)
is to broadcast data by the software protocol.
In Master mode, the data is transmitted/received as
soon as the SSPBUF register is written to. If the SPI is
only going to receive, the SDO output could be dis-
abled (programmed as an input). The SSPSR register
will continue to shift in the signal present on the SDI pin
at the programmed clock rate. As each byte is
received, it will be loaded into the SSPBUF register as
if a normal received byte (interrupts and Status bits
appropriately set).
The clock polarity is selected by appropriately
programming the CKP bit of the SSPCON1 register
and the CKE bit of the SSPSTAT register. This then,
would give waveforms for SPI communication as
shown in Figure 21-6, Figure 21-8, Figure 21-9 and
Figure 21-10, where the MSB is transmitted first. In
Master mode, the SPI clock rate (bit rate) is user
programmable to be one of the following:
•F
OSC/4 (or TCY)
•F
OSC/16 (or 4 * TCY)
•F
OSC/64 (or 16 * TCY)
Timer2 output/2
Fosc/(4 * (SSPADD + 1))
Figure 21-6 shows the waveforms for Master mode.
When the CKE bit is set, the SDO data is valid before
there is a clock edge on SCK. The change of the input
sample is shown based on the state of the SMP bit. The
time when the SSPBUF is loaded with the received
data is shown.
FIGURE 21-6: SPI MODE WAVEFORM (MASTER MODE)
SCK
(CKP = 0
SCK
(CKP = 1
SCK
(CKP = 0
SCK
(CKP = 1
4 Clock
Modes
Input
Sample
Input
Sample
SDI
bit 7 bit 0
SDO bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
bit 7
SDI
SSPIF
(SMP = 1)
(SMP = 0)
(SMP = 1)
CKE = 1)
CKE = 0)
CKE = 1)
CKE = 0)
(SMP = 0)
Write to
SSPBUF
SSPSR to
SSPBUF
SDO bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
(CKE = 0)
(CKE = 1)
bit 0
2010-2016 Microchip Technology Inc. DS40001452F-page 175
PIC16(L)F1516/7/8/9
21.2.4 SPI SLAVE MODE
In Slave mode, the data is transmitted and received as
external clock pulses appear on SCK. When the last
bit is latched, the SSPIF interrupt flag bit is set.
Before enabling the module in SPI Slave mode, the clock
line must match the proper Idle state. The clock line can
be observed by reading the SCK pin. The Idle state is
determined by the CKP bit of the SSPCON1 register.
While in Slave mode, the external clock is supplied by
the external clock source on the SCK pin. This external
clock must meet the minimum high and low times as
specified in the electrical specifications.
While in Sleep mode, the slave can transmit/receive
data. The shift register is clocked from the SCK pin
input and when a byte is received, the device will gen-
erate an interrupt. If enabled, the device will wake-up
from Sleep.
21.2.4.1 Daisy-Chain Configuration
The SPI bus can sometimes be connected in a
daisy-chain configuration. The first slave output is con-
nected to the second slave input, the second slave
output is connected to the third slave input, and so on.
The final slave output is connected to the master input.
Each slave sends out, during a second group of clock
pulses, an exact copy of what was received during the
first group of clock pulses. The whole chain acts as
one large communication shift register. The
daisy-chain feature only requires a single Slave Select
line from the master device.
Figure 21-7 shows the block diagram of a typical
daisy-chain connection when operating in SPI mode.
In a daisy-chain configuration, only the most recent
byte on the bus is required by the slave. Setting the
BOEN bit of the SSPCON3 register will enable writes
to the SSPBUF register, even if the previous byte has
not been read. This allows the software to ignore data
that may not apply to it.
21.2.5 SLAVE SELECT
SYNCHRONIZATION
The Slave Select can also be used to synchronize com-
munication. The Slave Select line is held high until the
master device is ready to communicate. When the
Slave Select line is pulled low, the slave knows that a
new transmission is starting.
If the slave fails to receive the communication properly,
it will be reset at the end of the transmission, when the
Slave Select line returns to a high state. The slave is
then ready to receive a new transmission when the
Slave Select line is pulled low again. If the Slave Select
line is not used, there is a risk that the slave will even-
tually become out of sync with the master. If the slave
misses a bit, it will always be one bit off in future trans-
missions. Use of the Slave Select line allows the slave
and master to align themselves at the beginning of
each transmission.
The SS pin allows a Synchronous Slave mode. The
SPI must be in Slave mode with SS pin control enabled
(SSPCON1<3:0> = 0100).
When the SS pin is low, transmission and reception are
enabled and the SDO pin is driven.
When the SS pin goes high, the SDO pin is no longer
driven, even if in the middle of a transmitted byte and
becomes a floating output. External pull-up/pull-down
resistors may be desirable depending on the
application.
When the SPI module resets, the bit counter is forced
to ‘0’. This can be done by either forcing the SS pin to
a high level or clearing the SSPEN bit.
Note 1: When the SPI is in Slave mode with SS pin
control enabled (SSPCON1<3:0> =
0100), the SPI module will reset if the SS
pin is set to VDD.
2: When the SPI is used in Slave mode with
CKE set; the user must enable SS pin
control.
3: While operated in SPI Slave mode the
SMP bit of the SSPSTAT register must
remain clear.
PIC16(L)F1516/7/8/9
DS40001452F-page 176 2010-2016 Microchip Technology Inc.
FIGURE 21-7: SPI DAISY-CHAIN CONNECTION
FIGURE 21-8: SLAVE SE LECT SYNCHRONOUS WAVEFORM
SPI Master SCK
SDO
SDI
General I/O
SCK
SDI
SDO
SS
SPI Slave
#1
SCK
SDI
SDO
SS
SPI Slave
#2
SCK
SDI
SDO
SS
SPI Slave
#3
SCK
(CKP = 1
SCK
(CKP = 0
Input
Sample
SDI
bit 7
SDO bit 7 bit 6 bit 7
SSPIF
Interrupt
CKE = 0)
CKE = 0)
Write to
SSPBUF
SSPSR to
SSPBUF
SS
Flag
bit 0
bit 7
bit 0
bit 6
SSPBUF to
SSPSR
Shift register SSPSR
and bit count are reset
2010-2016 Microchip Technology Inc. DS40001452F-page 177
PIC16(L)F1516/7/8/9
FIGURE 21-9: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)
FIGURE 21-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)
SCK
(CKP = 1
SCK
(CKP = 0
Input
Sample
SDI
bit 7
SDO bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
SSPIF
Interrupt
CKE = 0)
CKE = 0)
Write to
SSPBUF
SSPSR to
SSPBUF
SS
Flag
Optional
bit 0
detection active
Write Collision
Valid
SCK
(CKP = 1
SCK
(CKP = 0
Input
Sample
SDI
bit 7 bit 0
SDO bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
SSPIF
Interrupt
CKE = 1)
CKE = 1)
Write to
SSPBUF
SSPSR to
SSPBUF
SS
Flag
Not Optional
Write Collision
detection active
Valid
PIC16(L)F1516/7/8/9
DS40001452F-page 178 2010-2016 Microchip Technology Inc.
21.2.6 SPI OPERATION IN SLEEP MODE
In SPI Master mode, module clocks may be operating
at a different speed than when in Full-Power mode; in
the case of the Sleep mode, all clocks are halted.
Special care must be taken by the user when the
MSSP clock is much faster than the system clock.
In Slave mode, when MSSP interrupts are enabled,
after the master completes sending data, an MSSP
interrupt will wake the controller from Sleep.
If an exit from Sleep mode is not desired, MSSP
interrupts should be disabled.
In SPI Master mode, when the Sleep mode is selected,
all module clocks are halted and the transmis-
sion/reception will remain in that state until the device
wakes. After the device returns to Run mode, the
module will resume transmitting and receiving data.
In SPI Slave mode, the SPI Transmit/Receive Shift
register operates asynchronously to the device. This
allows the device to be placed in Sleep mode and data
to be shifted into the SPI Transmit/Receive Shift
register. When all eight bits have been received, the
MSSP interrupt flag bit will be set and if enabled, will
wake the device.
TABLE 21-1: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
ANSELA —ANSA5ANSA3 ANSA2 ANSA1 ANSA0 108
ANSELC ANSC7 ANSC6 ANSC5 ANSC4 ANSC3 ANSC2 115
APFCON SSSEL CCP2SEL 105
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 74
PIE1 TMR1GIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 75
PIR1 TMR1GIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 77
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register 172*
SSPCON1 WCOL SSPOV SSPEN CKP SSPM<3:0> 216
SSPCON3 ACKTIM PCIE SCIE BOEN SDAHT SBCDE AHEN DHEN 218
SSPSTAT SMP CKE D/A P S R/W UA BF 215
TRISA TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 107
TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 114
Legend: — = Unimplemented location, read as ‘0’. Shaded cells are not used by the MSSP in SPI mode.
* Page provides register information.
2010-2016 Microchip Technology Inc. DS40001452F-page 179
PIC16(L)F1516/7/8/9
21.3 I2C MODE OVERVIEW
The Inter-Integrated Circuit Bus (I2C) is a multi-master
serial data communication bus. Devices communicate
in a master/slave environment where the master
devices initiate the communication. A Slave device is
controlled through addressing.
The I2C bus specifies two signal connections:
Serial Clock (SCL)
Serial Data (SDA)
Figure 21-1 shows the block diagram of the MSSP
module when operating in I2C mode.
Both the SCL and SDA connections are bidirectional
open-drain lines, each requiring pull-up resistors for the
supply voltage. Pulling the line to ground is considered
a logical zero and letting the line float is considered a
logical one.
Figure 21-11 shows a typical connection between two
processors configured as master and slave devices.
The I2C bus can operate with one or more master
devices and one or more slave devices.
There are four potential modes of operation for a given
device:
Master Transmit mode
(master is transmitting data to a slave)
Master Receive mode
(master is receiving data from a slave)
•Slave Transmit mode
(slave is transmitting data to a master)
Slave Receive mode
(slave is receiving data from the master)
To begin communication, a master device starts out in
Master Transmit mode. The master device sends out a
Start bit followed by the address byte of the slave it
intends to communicate with. This is followed by a sin-
gle Read/Write bit, which determines whether the mas-
ter intends to transmit to or receive data from the slave
device.
If the requested slave exists on the bus, it will respond
with an Acknowledge bit, otherwise known as an ACK.
The master then continues in either Transmit mode or
Receive mode and the slave continues in the comple-
ment, either in Receive mode or Transmit mode,
respectively.
A Start bit is indicated by a high-to-low transition of the
SDA line while the SCL line is held high. Address and
data bytes are sent out, Most Significant bit (MSb) first.
The Read/Write bit is sent out as a logical one when the
master intends to read data from the slave, and is sent
out as a logical zero when it intends to write data to the
slave.
FIGURE 21-11: I2C MASTER/
SLAVE CONNECTION
The Acknowledge bit (ACK) is an active-low signal,
which holds the SDA line low to indicate to the transmit-
ter that the slave device has received the transmitted
data and is ready to receive more.
The transition of a data bit is always performed while
the SCL line is held low. Transitions that occur while the
SCL line is held high are used to indicate Start and Stop
bits.
If the master intends to write to the slave, then it repeat-
edly sends out a byte of data, with the slave responding
after each byte with an ACK bit. In this example, the
master device is in Master Transmit mode and the
slave is in Slave Receive mode.
If the master intends to read from the slave, then it
repeatedly receives a byte of data from the slave, and
responds after each byte with an ACK bit. In this exam-
ple, the master device is in Master Receive mode and
the slave is Slave Transmit mode.
On the last byte of data communicated, the master
device may end the transmission by sending a Stop bit.
If the master device is in Receive mode, it sends the
Stop bit in place of the last ACK bit. A Stop bit is indi-
cated by a low-to-high transition of the SDA line while
the SCL line is held high.
In some cases, the master may want to maintain con-
trol of the bus and re-initiate another transmission. If
so, the master device may send another Start bit in
place of the Stop bit or last ACK bit when it is in receive
mode.
The I2C bus specifies three message protocols;
Single message where a master writes data to a
slave.
Single message where a master reads data from
a slave.
Combined message where a master initiates a
minimum of two writes, or two reads, or a
combination of writes and reads, to one or more
slaves.
Master
SCL
SDA
SCL
SDA
Slave
VDD
VDD
PIC16(L)F1516/7/8/9
DS40001452F-page 180 2010-2016 Microchip Technology Inc.
When one device is transmitting a logical one, or letting
the line float, and a second device is transmitting a log-
ical zero, or holding the line low, the first device can
detect that the line is not a logical one. This detection,
when used on the SCL line, is called clock stretching.
Clock stretching gives slave devices a mechanism to
control the flow of data. When this detection is used on
the SDA line, it is called arbitration. Arbitration ensures
that there is only one master device communicating at
any single time.
21.3.1 CLOCK STRETCHING
When a slave device has not completed processing
data, it can delay the transfer of more data through the
process of clock stretching. An addressed slave device
may hold the SCL clock line low after receiving or send-
ing a bit, indicating that it is not yet ready to continue.
The master that is communicating with the slave will
attempt to raise the SCL line in order to transfer the
next bit, but will detect that the clock line has not yet
been released. Because the SCL connection is
open-drain, the slave has the ability to hold that line low
until it is ready to continue communicating.
Clock stretching allows receivers that cannot keep up
with a transmitter to control the flow of incoming data.
21.3.2 ARBITRATION
Each master device must monitor the bus for Start and
Stop bits. If the device detects that the bus is busy, it
cannot begin a new message until the bus returns to an
Idle state.
However, two master devices may try to initiate a
transmission on or about the same time. When this
occurs, the process of arbitration begins. Each
transmitter checks the level of the SDA data line and
compares it to the level that it expects to find. The first
transmitter to observe that the two levels do not match,
loses arbitration, and must stop transmitting on the
SDA line.
For example, if one transmitter holds the SDA line to a
logical one (lets it float) and a second transmitter holds
it to a logical zero (pulls it low), the result is that the
SDA line will be low. The first transmitter then observes
that the level of the line is different than expected and
concludes that another transmitter is communicating.
The first transmitter to notice this difference is the one
that loses arbitration and must stop driving the SDA
line. If this transmitter is also a master device, it also
must stop driving the SCL line. It then can monitor the
lines for a Stop condition before trying to reissue its
transmission. In the meantime, the other device that
has not noticed any difference between the expected
and actual levels on the SDA line continues with its
original transmission. It can do so without any compli-
cations, because so far, the transmission appears
exactly as expected with no other transmitter disturbing
the message.
Slave Transmit mode can also be arbitrated, when a
master addresses multiple slaves, but this is less
common.
If two master devices are sending a message to two
different slave devices at the address stage, the master
sending the lower slave address always wins
arbitration. When two master devices send messages
to the same slave address, and addresses can
sometimes refer to multiple slaves, the arbitration
process must continue into the data stage.
Arbitration usually occurs very rarely, but it is a
necessary process for proper multi-master support.
21.4 I2C MODE OPERATION
All MSSP I2C communication is byte oriented and
shifted out MSb first. Six SFR registers and two inter-
rupt flags interface the module with the PIC® micro-
controller and user software. Two pins, SDA and SCL,
are exercised by the module to communicate with
other external I2C devices.
21.4.1 BYTE FORMAT
All communication in I2C is done in 9-bit segments. A
byte is sent from a master to a slave or vice-versa, fol-
lowed by an Acknowledge bit sent back. After the 8th
falling edge of the SCL line, the device outputting data
on the SDA changes that pin to an input and reads in
an acknowledge value on the next clock pulse.
The clock signal, SCL, is provided by the master. Data
is valid to change while the SCL signal is low, and
sampled on the rising edge of the clock. Changes on
the SDA line while the SCL line is high define special
conditions on the bus, explained below.
21.4.2 DEFINITION OF I2C TERMINOLOGY
There is language and terminology in the description
of I2C communication that have definitions specific to
I2C. That word usage is defined below and may be
used in the rest of this document without explanation.
This table was adapted from the Philips I2C
specification.
21.4.3 SDA AND SCL PINS
Selection of any I2C mode with the SSPEN bit set,
forces the SCL and SDA pins to be open-drain. These
pins should be set by the user to inputs by setting the
appropriate TRIS bits.
21.4.4 SDA HOLD TIME
The hold time of the SDA pin is selected by the SDAHT
bit of the SSPCON3 register. Hold time is the time SDA
is held valid after the falling edge of SCL. Setting the
SDAHT bit selects a longer 300 ns minimum hold time
and may help on buses with large capacitance.
Note: Data is tied to output zero when an I2C
mode is enabled.
2010-2016 Microchip Technology Inc. DS40001452F-page 181
PIC16(L)F1516/7/8/9
21.4.5 START CONDITION
The I2C specification defines a Start condition as a
transition of SDA from a high to a low state while SCL
line is high. A Start condition is always generated by
the master and signifies the transition of the bus from
an Idle to an Active state. Figure 21-12 shows wave
forms for Start and Stop conditions.
A bus collision can occur on a Start condition if the
module samples the SDA line low before asserting it
low. This does not conform to the I2C Specification
that states no bus collision can occur on a Start.
21.4.6 STOP CONDITION
A Stop condition is a transition of the SDA line from
low-to-high state while the SCL line is high.
21.4.7 RESTART CONDITION
A Restart is valid any time that a Stop would be valid.
A master can issue a Restart if it wishes to hold the
bus after terminating the current transfer. A Restart
has the same effect on the slave that a Start would,
resetting all slave logic and preparing it to clock in an
address. The master may want to address the same or
another slave. Figure 21-13 shows the wave form for a
Restart condition.
In 10-bit Addressing Slave mode a Restart is required
for the master to clock data out of the addressed
slave. Once a slave has been fully addressed, match-
ing both high and low address bytes, the master can
issue a Restart and the high address byte with the
R/W bit set. The slave logic will then hold the clock
and prepare to clock out data.
After a full match with R/W clear in 10-bit mode, a prior
match flag is set and maintained. Until a Stop condi-
tion, a high address with R/W clear, or high address
match fails.
21.4.8 START/STOP CONDITION
INTERRUPT MASKING
The SCIE and PCIE bits of the SSPCON3 register can
enable the generation of an interrupt in Slave modes
that do not typically support this function. Slave modes
where interrupt on Start and Stop detect are already
enabled, these bits will have no effect.
TABLE 21-1: I2C BUS TERMS
Term Description
Transmitter The device which shifts data out
onto the bus.
Receiver The device which shifts data in
from the bus.
Master The device that initiates a transfer,
generates clock signals and termi-
nates a transfer.
Slave The device addressed by the mas-
ter.
Multi-master A bus with more than one device
that can initiate data transfers.
Arbitration Procedure to ensure that only one
master at a time controls the bus.
Winning arbitration ensures that
the message is not corrupted.
Synchronization Procedure to synchronize the
clocks of two or more devices on
the bus.
Idle No master is controlling the bus,
and both SDA and SCL lines are
high.
Active Any time one or more master
devices are controlling the bus.
Addressed
Slave
Slave device that has received a
matching address and is actively
being clocked by a master.
Matching
Address
Address byte that is clocked into a
slave that matches the value
stored in SSPADD.
Write Request Slave receives a matching
address with R/W bit clear, and is
ready to clock in data.
Read Request Master sends an address byte with
the R/W bit set, indicating that it
wishes to clock data out of the
Slave. This data is the next and all
following bytes until a Restart or
Stop.
Clock Stretching When a device on the bus hold
SCL low to stall communication.
Bus Collision Any time the SDA line is sampled
low by the module while it is out-
putting and expected high state.
Note: At least one SCL low time must appear
before a Stop is valid, therefore, if the SDA
line goes low then high again while the SCL
line stays high, only the Start condition is
detected.
PIC16(L)F1516/7/8/9
DS40001452F-page 182 2010-2016 Microchip Technology Inc.
FIGURE 21-12 : I2C START AND STOP CONDITIONS
FIGURE 21-13 : I2C RESTART CONDITION
21.4.9 ACKNOWLEDGE SEQUENCE
The 9th SCL pulse for any transferred byte in I2C is
dedicated as an Acknowledge. It allows receiving
devices to respond back to the transmitter by pulling
the SDA line low. The transmitter must release control
of the line during this time to shift in the response. The
Acknowledge (ACK) is an active-low signal, pulling the
SDA line low indicated to the transmitter that the
device has received the transmitted data and is ready
to receive more.
The result of an ACK is placed in the ACKSTAT bit of
the SSPCON2 register.
Slave software, when the AHEN and DHEN bits are
set, allow the user to set the ACK value sent back to
the transmitter. The ACKDT bit of the SSPCON2 regis-
ter is set/cleared to determine the response.
Slave hardware will generate an ACK response if the
AHEN and DHEN bits of the SSPCON3 register are
clear.
There are certain conditions where an ACK will not be
sent by the slave. If the BF bit of the SSPSTAT register
or the SSPOV bit of the SSPCON1 register are set
when a byte is received.
When the module is addressed, after the 8th falling
edge of SCL on the bus, the ACKTIM bit of the
SSPCON3 register is set. The ACKTIM bit indicates
the acknowledge time of the active bus. The ACKTIM
Status bit is only active when the AHEN bit or DHEN
bit is enabled.
SDA
SCL
P
Stop
Condition
S
Start
Condition
Change of
Data Allowed
Change of
Data Allowed
Restart
Condition
Sr
Change of
Data Allowed
Change of
Data Allowed
2010-2016 Microchip Technology Inc. DS40001452F-page 183
PIC16(L)F1516/7/8/9
21.5 I2C SLAVE MODE OPERATION
The MSSP Slave mode operates in one of four modes
selected in the SSPM bits of SSPCON1 register. The
modes can be divided into 7-bit and 10-bit Addressing
mode. 10-bit Addressing modes operate the same as
7-bit with some additional overhead for handling the
larger addresses.
Modes with Start and Stop bit interrupts operate the
same as the other modes with SSPIF additionally get-
ting set upon detection of a Start, Restart, or Stop
condition.
21.5.1 SLAVE MODE ADDRESSES
The SSPADD register (Register 21-8) contains the
Slave mode address. The first byte received after a
Start or Restart condition is compared against the
value stored in this register. If the byte matches, the
value is loaded into the SSPBUF register and an inter-
rupt is generated. If the value does not match, the
module goes idle and no indication is given to the soft-
ware that anything happened.
The SSP Mask register (Register 21-7) affects the
address matching process. See Section 21.5.9 “SSP
Mask Register for more information.
21.5.1.1 I2C Slave 7-bit Addressing Mode
In 7-bit Addressing mode, the LSb of the received data
byte is ignored when determining if there is an address
match.
21.5.1.2 I2C Slave 10-bit Addressing Mode
In 10-bit Addressing mode, the first received byte is
compared to the binary value of 1 1 1 1 0 A9 A8
0’. A9 and A8 are the two MSb of the 10-bit address
and stored in bits 2 and 1 of the SSPADD register.
After the acknowledge of the high byte the UA bit is set
and SCL is held low until the user updates SSPADD
with the low address. The low address byte is clocked
in and all eight bits are compared to the low address
value in SSPADD. Even if there is not an address
match; SSPIF and UA are set, and SCL is held low
until SSPADD is updated to receive a high byte again.
When SSPADD is updated the UA bit is cleared. This
ensures the module is ready to receive the high
address byte on the next communication.
A high and low address match as a write request is
required at the start of all 10-bit addressing communi-
cation. A transmission can be initiated by issuing a
Restart once the slave is addressed, and clocking in
the high address with the R/W bit set. The slave hard-
ware will then acknowledge the read request and pre-
pare to clock out data. This is only valid for a slave
after it has received a complete high and low address
byte match.
21.5.2 SLAVE RECEPTION
When the R/W bit of a matching received address byte
is clear, the R/W bit of the SSPSTAT register is cleared.
The received address is loaded into the SSPBUF
register and acknowledged.
When the overflow condition exists for a received
address, then not Acknowledge is given. An overflow
condition is defined as either bit BF of the SSPSTAT
register is set, or bit SSPOV of the SSPCON1 register
is set. The BOEN bit of the SSPCON3 register modifies
this operation. For more information see Register 21-6.
An MSSP interrupt is generated for each transferred
data byte. Flag bit, SSPIF, must be cleared by software.
When the SEN bit of the SSPCON2 register is set, SCL
will be held low (clock stretch) following each received
byte. The clock must be released by setting the CKP
bit of the SSPCON1 register, except sometimes in
10-bit mode. See Section 21.2.3 “SPI Master Mode”
for more detail.
21.5.2.1 7-bit Addressing Reception
This section describes a standard sequence of events
for the MSSP module configured as an I2C Slave in
7-bit Addressing mode. All decisions made by hard-
ware or software and their effect on reception.
Figure 21-14 and Figure 21-15 is used as a visual
reference for this description.
This is a step by step process of what typically must
be done to accomplish I2C communication.
1. Start bit detected.
2. S bit of SSPSTAT is set; SSPIF is set if interrupt
on Start detect is enabled.
3. Matching address with R/W bit clear is received.
4. The slave pulls SDA low sending an ACK to the
master, and sets SSPIF bit.
5. Software clears the SSPIF bit.
6. Software reads received address from SSPBUF
clearing the BF flag.
7. If SEN = 1; Slave software sets CKP bit to
release the SCL line.
8. The master clocks out a data byte.
9. Slave drives SDA low sending an ACK to the
master, and sets SSPIF bit.
10. Software clears SSPIF.
11. Software reads the received byte from SSPBUF
clearing BF.
12. Steps 8-12 are repeated for all received bytes
from the master.
13. Master sends Stop condition, setting P bit of
SSPSTAT, and the bus goes idle.
PIC16(L)F1516/7/8/9
DS40001452F-page 184 2010-2016 Microchip Technology Inc.
21.5.2.2 7-bit Reception with AHEN and
DHEN
Slave device reception with AHEN and DHEN set
operate the same as without these options with extra
interrupts and clock stretching added after the 8th fall-
ing edge of SCL. These additional interrupts allow the
slave software to decide whether it wants to ACK the
receive address or data byte, rather than the hard-
ware. This functionality adds support for PMBus™ that
was not present on previous versions of this module.
This list describes the steps that need to be taken by
slave software to use these options for I2C communi-
cation. Figure 21-16 displays a module using both
address and data holding. Figure 21-17 includes the
operation with the SEN bit of the SSPCON2 register
set.
1. S bit of SSPSTAT is set; SSPIF is set if interrupt
on Start detect is enabled.
2. Matching address with R/W bit clear is clocked
in. SSPIF is set and CKP cleared after the 8th
falling edge of SCL.
3. Slave clears the SSPIF.
4. Slave can look at the ACKTIM bit of the SSP-
CON3 register to determine if the SSPIF was
after or before the ACK.
5. Slave reads the address value from SSPBUF,
clearing the BF flag.
6. Slave sets ACK value clocked out to the master
by setting ACKDT.
7. Slave releases the clock by setting CKP.
8. SSPIF is set after an ACK, not after a NACK.
9. If SEN = 1 the slave hardware will stretch the
clock after the ACK.
10. Slave clears SSPIF.
11. SSPIF set and CKP cleared after 8th falling
edge of SCL for a received data byte.
12. Slave looks at ACKTIM bit of SSPCON3 to
determine the source of the interrupt.
13. Slave reads the received data from SSPBUF
clearing BF.
14. Steps 7-14 are the same for each received data
byte.
15. Communication is ended by either the slave
sending an ACK =1, or the master sending a
Stop condition. If a Stop is sent and Interrupt on
Stop Detect is disabled, the slave will only know
by polling the P bit of the SSTSTAT register.
Note: SSPIF is still set after the 9th falling edge of
SCL even if there is no clock stretching and
BF has been cleared. Only if NACK is sent
to Master is SSPIF not set
2010-2016 Microchip Technology Inc. DS40001452F-page 185
PIC16(L)F1516/7/8/9
FIGURE 21-14 : I2C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 0, DHEN = 0)
Receiving Address
ACK
Receiving Data
ACK
Receiving Data ACK =1
A7 A6 A5 A4 A3 A2 A1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
SDA
SCL
SSPIF
BF
SSPOV
12345678 12345678 12345678
999
ACK is not sent.
SSPOV set because
SSPBUF is still full.
Cleared by software
First byte
of data is
available
in SSPBUF
SSPBUF is read
SSPIF set on 9th
falling edge of
SCL
Cleared by software
P
Bus Master sends
Stop condition
S
From Slave to Master
PIC16(L)F1516/7/8/9
DS40001452F-page 186 2010-2016 Microchip Technology Inc.
FIGURE 21-15 : I2C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0)
SEN SEN
A7 A6 A5 A4 A3 A2 A1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0SDA
SCL 123456789 123456789 123456789 P
SSPIF set on 9th
SCL is not held
CKP is written to 1 in software,
CKP is written to 1’ in software,
ACK
low because
falling edge of SCL
releasing SCL
ACK is not sent.
Bus Master sends
CKP
SSPOV
BF
SSPIF
SSPOV set because
SSPBUF is still full.
Cleared by software
First byte
of data is
available
in SSPBUF
ACK=1
Cleared by software
SSPBUF is read
Clock is held low until CKP is set to ‘1
releasing SCL
Stop condition
S
ACK
ACK
Receive Address Receive Data Receive Data
R/W=0
2010-2016 Microchip Technology Inc. DS40001452F-page 187
PIC16(L)F1516/7/8/9
FIGURE 21-16 : I2C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 1)
Receiving Address Receiving Data Received Data
P
A7 A6 A5 A4 A3 A2 A1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
SDA
SCL
BF
CKP
S
P
12 3 456 7 8 912345678 9
12345678
Master sends
Stop condition
S
Data is read from SSPBUF
Cleared by software
SSPIF is set on
9th falling edge of
SCL, after ACK
CKP set by software,
SCL is released
Slave software
9
ACKTIM cleared by
hardware in 9th
rising edge of SCL
sets ACKDT to
not ACK
When DHEN=1:
CKP is cleared by
hardware on 8th falling
edge of SCL
Slave software
clears ACKDT to
ACK the received
byte
ACKTIM set by hardware
on 8th falling edge of SCL
When AHEN=1:
CKP is cleared by hardware
and SCL is stretched
Address is
read from
SSBUF
ACKTIM set by hardware
on 8th falling edge of SCL
ACK
Master Releases SDA
to slave for ACK sequence
No interrupt
after not ACK
from Slave
ACK=1
ACK
ACKDT
ACKTIM
SSPIF
If AHEN = 1:
SSPIF is set
PIC16(L)F1516/7/8/9
DS40001452F-page 188 2010-2016 Microchip Technology Inc.
FIGURE 21-17 : I2C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 1, DHEN = 1)
Receiving Address Receive Data Receive Data
A7 A6 A5 A4 A3 A2 A1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
SDA
SCL
SSPIF
BF
ACKDT
CKP
S
P
ACK
S12
345678 912
34567 8 9 1234567 8 9
ACK
ACK
Cleared by software
ACKTIM is cleared by hardware
SSPBUF can be
Set by software,
read any time before
next byte is loaded
release SCL
on 9th rising edge of SCL
Received
address is loaded into
SSPBUF
Slave software clears
ACKDT to ACK
R/W = 0Master releases
SDA to slave for ACK sequence
the received byte
When AHEN = 1;
on the 8th falling edge
of SCL of an address
byte, CKP is cleared
ACKTIM is set by hardware
on 8th falling edge of SCL
When DHEN = 1;
on the 8th falling edge
of SCL of a received
data byte, CKP is cleared
Received data is
available on SSPBUF
Slave sends
not ACK
CKP is not cleared
if not ACK
P
Master sends
Stop condition
No interrupt after
if not ACK
from Slave
ACKTIM
2010-2016 Microchip Technology Inc. DS40001452F-page 189
PIC16(L)F1516/7/8/9
21.5.3 SLAVE TRANSMISSION
When the R/W bit of the incoming address byte is set
and an address match occurs, the R/W bit of the
SSPSTAT register is set. The received address is
loaded into the SSPBUF register, and an ACK pulse is
sent by the slave on the 9th bit.
Following the ACK, slave hardware clears the CKP bit
and the SCL pin is held low (see Section 21.5.6
“Clock Stretching” for more detail). By stretching the
clock, the master will be unable to assert another clock
pulse until the slave is done preparing the transmit
data.
The transmit data must be loaded into the SSPBUF
register which also loads the SSPSR register. Then the
SCL pin should be released by setting the CKP bit of
the SSPCON1 register. The eight data bits are shifted
out on the falling edge of the SCL input. This ensures
that the SDA signal is valid during the SCL high time.
The ACK pulse from the master-receiver is latched on
the rising edge of the 9th SCL input pulse. This ACK
value is copied to the ACKSTAT bit of the SSPCON2
register. If ACKSTAT is set (not ACK), then the data
transfer is complete. In this case, when the not ACK is
latched by the slave, the slave goes idle and waits for
another occurrence of the Start bit. If the SDA line was
low (ACK), the next transmit data must be loaded into
the SSPBUF register. Again, the SCL pin must be
released by setting bit CKP.
An MSSP interrupt is generated for each data transfer
byte. The SSPIF bit must be cleared by software and
the SSPSTAT register is used to determine the status
of the byte. The SSPIF bit is set on the falling edge of
the 9th clock pulse.
21.5.3.1 Slave Mode Bus Collision
A slave receives a Read request and begins shifting
data out on the SDA line. If a bus collision is detected
and the SBCDE bit of the SSPCON3 register is set, the
BCLIF bit of the PIR register is set. Once a bus collision
is detected, the slave goes idle and waits to be
addressed again. User software can use the BCLIF bit
to handle a slave bus collision.
21.5.3.2 7-bit Transmission
A master device can transmit a read request to a
slave, and then clock data out of the slave. The list
below outlines what software for a slave will need to
do to accomplish a standard transmission.
Figure 21-18 can be used as a reference to this list.
1. Master sends a Start condition on SDA and
SCL.
2. S bit of SSPSTAT is set; SSPIF is set if interrupt
on Start detect is enabled.
3. Matching address with R/W bit set is received by
the Slave setting SSPIF bit.
4. Slave hardware generates an ACK and sets
SSPIF.
5. SSPIF bit is cleared by user.
6. Software reads the received address from SSP-
BUF, clearing BF.
7. R/W is set so CKP was automatically cleared
after the ACK.
8. The slave software loads the transmit data into
SSPBUF.
9. CKP bit is set releasing SCL, allowing the mas-
ter to clock the data out of the slave.
10. SSPIF is set after the ACK response from the
master is loaded into the ACKSTAT register.
11. SSPIF bit is cleared.
12. The slave software checks the ACKSTAT bit to
see if the master wants to clock out more data.
13. Steps 9-13 are repeated for each transmitted
byte.
14. If the master sends a not ACK; the clock is not
held, but SSPIF is still set.
15. The master sends a Restart condition or a Stop.
16. The slave is no longer addressed.
Note 1: If the master ACKs the clock will be
stretched.
2: ACKSTAT is the only bit updated on the
rising edge of SCL (9th) rather than the
falling.
PIC16(L)F1516/7/8/9
DS40001452F-page 190 2010-2016 Microchip Technology Inc.
FIGURE 21-18 : I2C SLAVE, 7-BIT ADDRESS, TRANSMISSION (AHEN = 0)
Receiving Address Automatic Transmitting Data Automatic Transmitting Data
A7 A6 A5 A4 A3 A2 A1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
SDA
SCL
SSPIF
BF
CKP
ACKSTAT
R/W
D/A
S
P
Received address
When R/W is set
R/W is copied from the
Indicates an address
is read from SSPBUF
SCL is always
held low after 9th SCL
falling edge
matching address byte
has been received
Masters not ACK
is copied to
ACKSTAT
CKP is not
held for not
ACK
BF is automatically
cleared after 8th falling
edge of SCL
Data to transmit is
loaded into SSPBUF
Set by software
Cleared by software
ACK
ACK
ACK
R/W = 1
SP
Master sends
Stop condition
2010-2016 Microchip Technology Inc. DS40001452F-page 191
PIC16(L)F1516/7/8/9
21.5.3.3 7-bit Transmission with Address
Hold Enabled
Setting the AHEN bit of the SSPCON3 register
enables additional clock stretching and interrupt gen-
eration after the 8th falling edge of a received match-
ing address. Once a matching address has been
clocked in, CKP is cleared and the SSPIF interrupt is
set.
Figure 21-19 displays a standard waveform of a 7-bit
Address Slave Transmission with AHEN enabled.
1. Bus starts Idle.
2. Master sends Start condition; the S bit of
SSPSTAT is set; SSPIF is set if interrupt on
Start detect is enabled.
3. Master sends matching address with R/W bit
set. After the 8th falling edge of the SCL line the
CKP bit is cleared and SSPIF interrupt is gener-
ated.
4. Slave software clears SSPIF.
5. Slave software reads ACKTIM bit of SSPCON3
register, and R/W and D/A of the SSPSTAT reg-
ister to determine the source of the interrupt.
6. Slave reads the address value from the
SSPBUF register clearing the BF bit.
7. Slave software decides from this information if it
wishes to ACK or not ACK and sets the ACKDT
bit of the SSPCON2 register accordingly.
8. Slave sets the CKP bit releasing SCL.
9. Master clocks in the ACK value from the slave.
10. Slave hardware automatically clears the CKP bit
and sets SSPIF after the ACK if the R/W bit is
set.
11. Slave software clears SSPIF.
12. Slave loads value to transmit to the master into
SSPBUF setting the BF bit.
13. Slave sets the CKP bit, releasing the clock.
14. Master clocks out the data from the slave and
sends an ACK value on the 9th SCL pulse.
15. Slave hardware copies the ACK value into the
ACKSTAT bit of the SSPCON2 register.
16. Steps 10-15 are repeated for each byte trans-
mitted to the master from the slave.
17. If the master sends a not ACK the slave
releases the bus allowing the master to send a
Stop and end the communication.
Note: SSPBUF cannot be loaded until after the
ACK.
Note: Master must send a not ACK on the last byte
to ensure that the slave releases the SCL
line to receive a Stop.
PIC16(L)F1516/7/8/9
DS40001452F-page 192 2010-2016 Microchip Technology Inc.
FIGURE 21-19 : I2C SLAVE, 7-BIT ADDRESS, TRANSMISSION (AHEN = 1)
Receiving Address Automatic Transmitting Data Automatic Transmitting Data
A7 A6 A5 A4 A3 A2 A1 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
SDA
SCL
SSPIF
BF
ACKDT
ACKSTAT
CKP
R/W
D/A
Received address
is read from SSPBUF
BF is automatically
cleared after 8th falling
edge of SCL
Data to transmit is
loaded into SSPBUF
Cleared by software
Slave clears
ACKDT to ACK
address
Master’s ACK
response is copied
to SSPSTAT
CKP not cleared
after not ACK
Set by software,
releases SCL
ACKTIM is cleared
on 9th rising edge of SCL
ACKTIM is set on 8th falling
edge of SCL
When AHEN = 1;
CKP is cleared by hardware
after receiving matching
address.
When R/W = 1;
CKP is always
cleared after ACK
SP
Master sends
Stop condition
ACK
R/W = 1
Master releases SDA
to slave for ACK sequence
ACK
ACK
ACKTIM
2010-2016 Microchip Technology Inc. DS40001452F-page 193
PIC16(L)F1516/7/8/9
21.5.4 SLAVE MODE 10-BIT ADDRESS
RECEPTION
This section describes a standard sequence of events
for the MSSP module configured as an I2C slave in
10-bit Addressing mode.
Figure 21-20 is used as a visual reference for this
description.
This is a step by step process of what must be done by
slave software to accomplish I2C communication.
1. Bus starts Idle.
2. Master sends Start condition; S bit of SSPSTAT
is set; SSPIF is set if interrupt on Start detect is
enabled.
3. Master sends matching high address with R/W
bit clear; UA bit of the SSPSTAT register is set.
4. Slave sends ACK and SSPIF is set.
5. Software clears the SSPIF bit.
6. Software reads received address from SSPBUF
clearing the BF flag.
7. Slave loads low address into SSPADD,
releasing SCL.
8. Master sends matching low address byte to the
slave; UA bit is set.
9. Slave sends ACK and SSPIF is set.
10. Slave clears SSPIF.
11. Slave reads the received matching address
from SSPBUF clearing BF.
12. Slave loads high address into SSPADD.
13. Master clocks a data byte to the slave and
clocks out the slaves ACK on the 9th SCL pulse;
SSPIF is set.
14. If SEN bit of SSPCON2 is set, CKP is cleared by
hardware and the clock is stretched.
15. Slave clears SSPIF.
16. Slave reads the received byte from SSPBUF
clearing BF.
17. If SEN is set the slave sets CKP to release the
SCL.
18. Steps 13-17 repeat for each received byte.
19. Master sends Stop to end the transmission.
21.5.5 10-BIT ADDRESSING WITH
ADDRESS OR DATA HOLD
Reception using 10-bit addressing with AHEN or
DHEN set is the same as with 7-bit modes. The only
difference is the need to update the SSPADD register
using the UA bit. All functionality, specifically when the
CKP bit is cleared and SCL line is held low are the
same. Figure 21-21 can be used as a reference of a
slave in 10-bit addressing with AHEN set.
Figure 21-22 shows a standard waveform for a slave
transmitter in 10-bit Addressing mode.
Note: Updates to the SSPADD register are not
allowed until after the ACK sequence.
Note: If the low address does not match, SSPIF
and UA are still set so that the slave soft-
ware can set SSPADD back to the high
address. BF is not set because there is no
match. CKP is unaffected.
PIC16(L)F1516/7/8/9
DS40001452F-page 194 2010-2016 Microchip Technology Inc.
FIGURE 21-20 : I2C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0)
SSPIF
Receive First Address Byte
ACK
Receive Second Address Byte
ACK
Receive Data
ACK
Receive Data
ACK
1 1 1 1 0
A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
SDA
SCL
UA
CKP
12345678912345678
912345678
9123456789P
Master sends
Stop condition
Cleared by software
Receive address is
Software updates SSPADD
Data is read
SCL is held low
Set by software,
while CKP =
0
from SSPBUF
releasing SCL
When SEN =
1
;
CKP is cleared after
9th falling edge of received byte
read from SSPBUF
and releases SCL
When UA =
1
;
If address matches
Set by hardware
on 9th falling edge
SSPADD it is loaded into
SSPBUF
SCL is held low
S
BF
2010-2016 Microchip Technology Inc. DS40001452F-page 195
PIC16(L)F1516/7/8/9
FIGURE 21-21 : I2C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 0)
Receive First Address Byte
UA
Receive Second Address Byte
UA
Receive Data
ACK
Receive Data
1 1 1 1 0
A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5SDA
SCL
SSPIF
BF
ACKDT
UA
CKP
ACKTIM
12345678 9
S
ACK
ACK
12345678 91234567891
2
SSPBUF
is read from
Received data
SSPBUF can be
read anytime before
the next received byte
Cleared by software
falling edge of SCL
not allowed until 9th
Update to SSPADD is
Set CKP with software
releases SCL
SCL
clears UA and releases
Update of SSPADD,
Set by hardware
on 9th falling edge
Slave software clears
ACKDT to ACK
the received byte
If when AHEN = 1;
on the 8th falling edge
of SCL of an address
byte, CKP is cleared
ACKTIM is set by hardware
on 8th falling edge of SCL
Cleared by software
R/W = 0
PIC16(L)F1516/7/8/9
DS40001452F-page 196 2010-2016 Microchip Technology Inc.
FIGURE 21-22 : I2C SLAVE, 10-BIT ADDRESS, TRANSMISSION (SEN = 0, AHEN = 0, DHEN = 0)
Receiving Address
ACK
Receiving Second Address Byte
Sr
Receive First Address Byte
ACK
Transmitting Data Byte
1 1 1 1 0
A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
1 1 1 1 0
A9 A8 D7 D6 D5 D4 D3 D2 D1 D0SDA
SCL
SSPIF
BF
UA
CKP
R/W
D/A
123456789 123456789 1234 56789 123456789
ACK = 1
P
Master sends
Stop condition
Master sends
not ACK
Master sends
Restart event
ACK
R/W = 0
S
Cleared by software
After SSPADD is
updated, UA is cleared
and SCL is released
High address is loaded
Received address is Data to transmit is
Set by software
Indicates an address
When R/W = 1;
R/W is copied from the
Set by hardware
UA indicates SSPADD
SSPBUF loaded
with received address
must be updated
has been received
loaded into SSPBUF
releases SCL
Masters not ACK
is copied
matching address byte
CKP is cleared on
9th falling edge of SCL
read from SSPBUF
back into SSPADD
ACKSTAT
Set by hardware
2010-2016 Microchip Technology Inc. DS40001452F-page 197
PIC16(L)F1516/7/8/9
21.5.6 CLOCK STRETCHING
Clock stretching occurs when a device on the bus
holds the SCL line low effectively pausing communica-
tion. The slave may stretch the clock to allow more
time to handle data or prepare a response for the mas-
ter device. A master device is not concerned with
stretching as anytime it is active on the bus and not
transferring data it is stretching. Any stretching done
by a slave is invisible to the master software and han-
dled by the hardware that generates SCL.
The CKP bit of the SSPCON1 register is used to con-
trol stretching in software. Any time the CKP bit is
cleared, the module will wait for the SCL line to go low
and then hold it. Setting CKP will release SCL and
allow more communication.
21.5.6.1 Normal Clock Stretching
Following an ACK if the R/W bit of SSPSTAT is set, a
read request, the slave hardware will clear CKP. This
allows the slave time to update SSPBUF with data to
transfer to the master. If the SEN bit of SSPCON2 is
set, the slave hardware will always stretch the clock
after the ACK sequence. Once the slave is ready; CKP
is set by software and communication resumes.
21.5.6.2 10-bit Addressing Mode
In 10-bit Addressing mode, when the UA bit is set the
clock is always stretched. This is the only time the SCL
is stretched without CKP being cleared. SCL is
released immediately after a write to SSPADD.
21.5.6.3 Byte NACKing
When AHEN bit of SSPCON3 is set; CKP is cleared by
hardware after the 8th falling edge of SCL for a
received matching address byte. When DHEN bit of
SSPCON3 is set; CKP is cleared after the 8th falling
edge of SCL for received data.
Stretching after the 8th falling edge of SCL allows the
slave to look at the received address or data and
decide if it wants to ACK the received data.
21.5.7 CLOCK SYNCHRONIZATION AND
THE CKP BIT
Any time the CKP bit is cleared, the module will wait
for the SCL line to go low and then hold it. However,
clearing the CKP bit will not assert the SCL output low
until the SCL output is already sampled low. There-
fore, the CKP bit will not assert the SCL line until an
external I2C master device has already asserted the
SCL line. The SCL output will remain low until the CKP
bit is set and all other devices on the I2C bus have
released SCL. This ensures that a write to the CKP bit
will not violate the minimum high time requirement for
SCL (see Figure 21-23).
FIGURE 21-23: CLOCK SYNCHRONIZATION TIMING
Note 1: The BF bit has no effect on if the clock will
be stretched or not. This is different than
previous versions of the module that
would not stretch the clock, clear CKP, if
SSPBUF was read before the 9th falling
edge of SCL.
2: Previous versions of the module did not
stretch the clock for a transmission if SSP-
BUF was loaded before the 9th falling
edge of SCL. It is now always cleared for
read requests.
Note: Previous versions of the module did not
stretch the clock if the second address byte
did not match.
SDA
SCL
DX ‚1DX
WR
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
SSPCON1
CKP
Master device
releases clock
Master device
asserts clock
PIC16(L)F1516/7/8/9
DS40001452F-page 198 2010-2016 Microchip Technology Inc.
21.5.8 GENERAL CALL ADDRESS
SUPPORT
The addressing procedure for the I2C bus is such that
the first byte after the Start condition usually deter-
mines which device will be the slave addressed by the
master device. The exception is the general call
address which can address all devices. When this
address is used, all devices should, in theory, respond
with an acknowledge.
The general call address is a reserved address in the
I2C protocol, defined as address 0x00. When the
GCEN bit of the SSPCON2 register is set, the slave
module will automatically ACK the reception of this
address regardless of the value stored in SSPADD.
After the slave clocks in an address of all zeros with
the R/W bit clear, an interrupt is generated and slave
software can read SSPBUF and respond.
Figure 21-24 shows a General Call reception
sequence.
In 10-bit Address mode, the UA bit will not be set on
the reception of the general call address. The slave
will prepare to receive the second byte as data, just as
it would in 7-bit mode.
If the AHEN bit of the SSPCON3 register is set, just as
with any other address reception, the slave hardware
will stretch the clock after the 8th falling edge of SCL.
The slave must then set its ACKDT value and release
the clock with communication progressing as it would
normally.
FIGURE 21-24: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE
21.5.9 SSP MASK REGISTER
An SSP Mask (SSPMSK) register (Register 21-7) is
available in I2C Slave mode as a mask for the value
held in the SSPSR register during an address
comparison operation. A zero (‘0’) bit in the SSPMSK
register has the effect of making the corresponding bit
of the received address a “don’t care”.
This register is reset to all ‘1s upon any Reset
condition and, therefore, has no effect on standard
SSP operation until written with a mask value.
The SSP Mask register is active during:
7-bit Address mode: address compare of A<7:1>.
10-bit Address mode: address compare of A<7:0>
only. The SSP mask has no effect during the
reception of the first (high) byte of the address.
SDA
SCL
S
SSPIF
BF (SSPSTAT<0>)
Cleared by software
SSPBUF is read
R/W = 0
ACK
General Call Address
Address is compared to General Call Address
Receiving Data ACK
123456789123456789
D7 D6 D5 D4 D3 D2 D1 D0
after ACK, set interrupt
GCEN (SSPCON2<7>)
’1’
2010-2016 Microchip Technology Inc. DS40001452F-page 199
PIC16(L)F1516/7/8/9
21.6 I2C MASTER MODE
Master mode is enabled by setting and clearing the
appropriate SSPM bits in the SSPCON1 register and
by setting the SSPEN bit. In Master mode, the SDA and
SCK pins must be configured as inputs. The MSSP
peripheral hardware will override the output driver TRIS
controls when necessary to drive the pins low.
Master mode of operation is supported by interrupt
generation on the detection of the Start and Stop con-
ditions. The Stop (P) and Start (S) bits are cleared from
a Reset or when the MSSP module is disabled. Control
of the I2C bus may be taken when the P bit is set, or the
bus is Idle.
In Firmware Controlled Master mode, user code
conducts all I2C bus operations based on Start and
Stop bit condition detection. Start and Stop condition
detection is the only active circuitry in this mode. All
other communication is done by the user software
directly manipulating the SDA and SCL lines.
The following events will cause the SSP Interrupt Flag
bit, SSPIF, to be set (SSP interrupt, if enabled):
Start condition detected
Stop condition detected
Data transfer byte transmitted/received
Acknowledge transmitted/received
Repeated Start generated
21.6.1 I2C MASTER MODE OPERATION
The master device generates all of the serial clock
pulses and the Start and Stop conditions. A transfer is
ended with a Stop condition or with a Repeated Start
condition. Since the Repeated Start condition is also
the beginning of the next serial transfer, the I2C bus will
not be released.
In Master Transmitter mode, serial data is output
through SDA, while SCL outputs the serial clock. The
first byte transmitted contains the slave address of the
receiving device (7 bits) and the Read/Write (R/W) bit.
In this case, the R/W bit will be logic 0’. Serial data is
transmitted eight bits at a time. After each byte is trans-
mitted, an Acknowledge bit is received. Start and Stop
conditions are output to indicate the beginning and the
end of a serial transfer.
In Master Receive mode, the first byte transmitted
contains the slave address of the transmitting device
(7 bits) and the R/W bit. In this case, the R/W bit will be
logic ‘1’. Thus, the first byte transmitted is a 7-bit slave
address followed by a ‘1’ to indicate the receive bit.
Serial data is received via SDA, while SCL outputs the
serial clock. Serial data is received eight bits at a time.
After each byte is received, an Acknowledge bit is
transmitted. Start and Stop conditions indicate the
beginning and end of transmission.
A Baud Rate Generator is used to set the clock
frequency output on SCL. See Section 21.7 “Baud
Rate Generator” for more detail.
Note 1: The MSSP module, when configured in
I2C Master mode, does not allow queue-
ing of events. For instance, the user is not
allowed to initiate a Start condition and
immediately write the SSPBUF register to
initiate transmission before the Start con-
dition is complete. In this case, the SSP-
BUF will not be written to and the WCOL
bit will be set, indicating that a write to the
SSPBUF did not occur
2: When in Master mode, Start/Stop
detection is masked and an interrupt is
generated when the SEN/PEN bit is
cleared and the generation is complete.
PIC16(L)F1516/7/8/9
DS40001452F-page 200 2010-2016 Microchip Technology Inc.
21.6.2 CLOCK ARBITRATION
Clock arbitration occurs when the master, during any
receive, transmit or Repeated Start/Stop condition,
releases the SCL pin (SCL allowed to float high). When
the SCL pin is allowed to float high, the Baud Rate Gen-
erator (BRG) is suspended from counting until the SCL
pin is actually sampled high. When the SCL pin is sam-
pled high, the Baud Rate Generator is reloaded with
the contents of SSPADD<7:0> and begins counting.
This ensures that the SCL high time will always be at
least one BRG rollover count in the event that the clock
is held low by an external device (Figure 21-25).
FIGURE 21-25: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION
21.6.3 WCOL STATUS FLAG
If the user writes the SSPBUF when a Start, Restart,
Stop, Receive or Transmit sequence is in progress, the
WCOL is set and the contents of the buffer are
unchanged (the write does not occur). Any time the
WCOL bit is set it indicates that an action on SSPBUF
was attempted while the module was not idle.
SDA
SCL
SCL deasserted but slave holds
DX ‚1DX
BRG
SCL is sampled high, reload takes
place and BRG starts its count
03h 02h 01h 00h (hold off) 03h 02h
Reload
BRG
Value
SCL low (clock arbitration)
SCL allowed to transition high
BRG decrements on
Q2 and Q4 cycles
Note: Because queuing of events is not allowed,
writing to the lower five bits of SSPCON2
is disabled until the Start condition is
complete.
2010-2016 Microchip Technology Inc. DS40001452F-page 201
PIC16(L)F1516/7/8/9
21.6.4 I2C MASTER MODE START
CONDITION TIMING
To initiate a Start condition (Figure 21-26), the user
sets the Start Enable bit, SEN bit of the SSPCON2
register. If the SDA and SCL pins are sampled high,
the Baud Rate Generator is reloaded with the contents
of SSPADD<7:0> and starts its count. If SCL and SDA
are both sampled high when the Baud Rate Generator
times out (TBRG), the SDA pin is driven low. The action
of the SDA being driven low while SCL is high is the
Start condition and causes the S bit of the SSPSTAT
register to be set. Following this, the Baud Rate Gen-
erator is reloaded with the contents of SSPADD<7:0>
and resumes its count. When the Baud Rate Genera-
tor times out (TBRG), the SEN bit of the SSPCON2 reg-
ister will be automatically cleared by hardware; the
Baud Rate Generator is suspended, leaving the SDA
line held low and the Start condition is complete.
FIGURE 21-26: FIRST START BIT TIMING
Note 1: If at the beginning of the Start condition,
the SDA and SCL pins are already sam-
pled low, or if during the Start condition,
the SCL line is sampled low before the
SDA line is driven low, a bus collision
occurs, the Bus Collision Interrupt Flag,
BCLIF, is set, the Start condition is
aborted and the I2C module is reset into
its Idle state.
2: The Philips I2C Specification states that a
bus collision cannot occur on a Start.
SDA
SCL
S
TBRG
1st bit 2nd bit
TBRG
SDA = 1, At completion of Start bit,
SCL = 1
Write to SSPBUF occurs here
TBRG
hardware clears SEN bit
TBRG
Write to SEN bit occurs here Set S bit (SSPSTAT<3>)
and sets SSPIF bit
PIC16(L)F1516/7/8/9
DS40001452F-page 202 2010-2016 Microchip Technology Inc.
21.6.5 I2C MASTER MODE REPEATED
START CONDITION TIMING
A Repeated Start condition (Figure 21-27) occurs when
the RSEN bit of the SSPCON2 register is programmed
high and the master state machine is no longer active.
When the RSEN bit is set, the SCL pin is asserted low.
When the SCL pin is sampled low, the Baud Rate Gen-
erator is loaded and begins counting. The SDA pin is
released (brought high) for one Baud Rate Generator
count (TBRG). When the Baud Rate Generator times
out, if SDA is sampled high, the SCL pin will be deas-
serted (brought high). When SCL is sampled high, the
Baud Rate Generator is reloaded and begins counting.
SDA and SCL must be sampled high for one TBRG.
This action is then followed by assertion of the SDA pin
(SDA = 0) for one TBRG while SCL is high. SCL is
asserted low. Following this, the RSEN bit of the SSP-
CON2 register will be automatically cleared and the
Baud Rate Generator will not be reloaded, leaving the
SDA pin held low. As soon as a Start condition is
detected on the SDA and SCL pins, the S bit of the
SSPSTAT register will be set. The SSPIF bit will not be
set until the Baud Rate Generator has timed out.
FIGURE 21-27: REPEAT START CONDITION WAVEFORM
Note 1: If RSEN is programmed while any other
event is in progress, it will not take effect.
2: A bus collision during the Repeated Start
condition occurs if:
SDA is sampled low when SCL
goes from low-to-high.
SCL goes low before SDA is
asserted low. This may indicate
that another master is attempting to
transmit a data ‘1’.
SDA
SCL
Repeated Start
Write to SSPCON2
Write to SSPBUF occurs here
At completion of Start bit,
hardware clears RSEN bit
1st bit
S bit set by hardware
TBRG
TBRG
SDA = 1,SDA = 1,
SCL (no change) SCL = 1
occurs here
TBRG TBRG TBRG
and sets SSPIF
Sr
2010-2016 Microchip Technology Inc. DS40001452F-page 203
PIC16(L)F1516/7/8/9
21.6.6 I2C MASTER MODE
TRANSMISSION
Transmission of a data byte, a 7-bit address or the
other half of a 10-bit address is accomplished by simply
writing a value to the SSPBUF register. This action will
set the Buffer Full flag bit, BF and allow the Baud Rate
Generator to begin counting and start the next trans-
mission. Each bit of address/data will be shifted out
onto the SDA pin after the falling edge of SCL is
asserted. SCL is held low for one Baud Rate Generator
rollover count (TBRG). Data should be valid before SCL
is released high. When the SCL pin is released high, it
is held that way for TBRG. The data on the SDA pin
must remain stable for that duration and some hold
time after the next falling edge of SCL. After the 8th bit
is shifted out (the falling edge of the 8th clock), the BF
flag is cleared and the master releases SDA. This
allows the slave device being addressed to respond
with an ACK bit during the 9th bit time if an address
match occurred, or if data was received properly. The
status of ACK is written into the ACKSTAT bit on the ris-
ing edge of the 9th clock. If the master receives an
Acknowledge, the Acknowledge Status bit, ACKSTAT,
is cleared. If not, the bit is set. After the 9th clock, the
SSPIF bit is set and the master clock (Baud Rate Gen-
erator) is suspended until the next data byte is loaded
into the SSPBUF, leaving SCL low and SDA
unchanged (Figure 21-28).
After the write to the SSPBUF, each bit of the address
will be shifted out on the falling edge of SCL until all
seven address bits and the R/W bit are completed. On
the falling edge of the 8th clock, the master will release
the SDA pin, allowing the slave to respond with an
Acknowledge. On the falling edge of the 9th clock, the
master will sample the SDA pin to see if the address
was recognized by a slave. The status of the ACK bit is
loaded into the ACKSTAT Status bit of the SSPCON2
register. Following the falling edge of the 9th clock
transmission of the address, the SSPIF is set, the BF
flag is cleared and the Baud Rate Generator is turned
off until another write to the SSPBUF takes place, hold-
ing SCL low and allowing SDA to float.
21.6.6.1 BF Status Flag
In Transmit mode, the BF bit of the SSPSTAT register
is set when the CPU writes to SSPBUF and is cleared
when all eight bits are shifted out.
21.6.6.2 WCOL Status Flag
If the user writes the SSPBUF when a transmit is
already in progress (i.e., SSPSR is still shifting out a
data byte), the WCOL bit is set and the contents of the
buffer are unchanged (the write does not occur).
WCOL must be cleared by software before the next
transmission.
21.6.6.3 ACKSTAT Status Flag
In Transmit mode, the ACKSTAT bit of the SSPCON2
register is cleared when the slave has sent an Acknowl-
edge (ACK =0) and is set when the slave does not
Acknowledge (ACK =1). A slave sends an Acknowl-
edge when it has recognized its address (including a
general call), or when the slave has properly received
its data.
21.6.6.4 Typical transmit sequence:
1. The user generates a Start condition by setting
the SEN bit of the SSPCON2 register.
2. SSPIF is set by hardware on completion of the
Start.
3. SSPIF is cleared by software.
4. The MSSP module will wait the required start
time before any other operation takes place.
5. The user loads the SSPBUF with the slave
address to transmit.
6. Address is shifted out the SDA pin until all 8 bits
are transmitted. Transmission begins as soon
as SSPBUF is written to.
7. The MSSP module shifts in the ACK bit from the
slave device and writes its value into the
ACKSTAT bit of the SSPCON2 register.
8. The MSSP module generates an interrupt at the
end of the 9th clock cycle by setting the SSPIF
bit.
9. The user loads the SSPBUF with eight bits of
data.
10. Data is shifted out the SDA pin until all eight bits
are transmitted.
11. The MSSP module shifts in the ACK bit from the
slave device and writes its value into the
ACKSTAT bit of the SSPCON2 register.
12. Steps 8-11 are repeated for all transmitted data
bytes.
13. The user generates a Stop or Restart condition
by setting the PEN or RSEN bits of the
SSPCON2 register. Interrupt is generated once
the Stop/Restart condition is complete.
PIC16(L)F1516/7/8/9
DS40001452F-page 204 2010-2016 Microchip Technology Inc.
FIGURE 21-28 : I2C MASTER MODE W AVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS)
SDA
SCL
SSPIF
BF (SSPSTAT<0>)
SEN
A7 A6 A5 A4 A3 A2 A1 ACK = 0D7 D6 D5 D4 D3 D2 D1 D0
ACK
Transmitting Data or Second Half
R/W = 0Transmit Address to Slave
123456789 123456789 P
Cleared by software service routine
SSPBUF is written by software
from SSP interrupt
After Start condition, SEN cleared by hardware
S
SSPBUF written with 7-bit address and R/W
start transmit
SCL held low
while CPU
responds to SSPIF
SEN = 0
of 10-bit Address
Write SSPCON2<0> SEN = 1
Start condition begins From slave, clear ACKSTAT bit SSPCON2<6>
ACKSTAT in
SSPCON2 = 1
Cleared by software
SSPBUF written
PEN
R/W
Cleared by software
2010-2016 Microchip Technology Inc. DS40001452F-page 205
PIC16(L)F1516/7/8/9
21.6.7 I2C MASTER MODE RECEPTION
Master mode reception (Figure 21-29) is enabled by
programming the Receive Enable bit, RCEN bit of the
SSPCON2 register.
The Baud Rate Generator begins counting and on each
rollover, the state of the SCL pin changes
(high-to-low/low-to-high) and data is shifted into the
SSPSR. After the falling edge of the 8th clock, the
receive enable flag is automatically cleared, the con-
tents of the SSPSR are loaded into the SSPBUF, the
BF flag bit is set, the SSPIF flag bit is set and the Baud
Rate Generator is suspended from counting, holding
SCL low. The MSSP is now in Idle state awaiting the
next command. When the buffer is read by the CPU,
the BF flag bit is automatically cleared. The user can
then send an Acknowledge bit at the end of reception
by setting the Acknowledge Sequence Enable, ACKEN
bit of the SSPCON2 register.
21.6.7.1 BF Status Flag
In receive operation, the BF bit is set when an address
or data byte is loaded into SSPBUF from SSPSR. It is
cleared when the SSPBUF register is read.
21.6.7.2 SSPOV Status Flag
In receive operation, the SSPOV bit is set when eight
bits are received into the SSPSR and the BF flag bit is
already set from a previous reception.
21.6.7.3 WCOL Status Flag
If the user writes the SSPBUF when a receive is
already in progress (i.e., SSPSR is still shifting in a data
byte), the WCOL bit is set and the contents of the buffer
are unchanged (the write does not occur).
21.6.7.4 Typical Receive Sequence:
1. The user generates a Start condition by setting
the SEN bit of the SSPCON2 register.
2. SSPIF is set by hardware on completion of the
Start.
3. SSPIF is cleared by software.
4. User writes SSPBUF with the slave address to
transmit and the R/W bit set.
5. Address is shifted out the SDA pin until all 8 bits
are transmitted. Transmission begins as soon
as SSPBUF is written to.
6. The MSSP module shifts in the ACK bit from the
slave device and writes its value into the
ACKSTAT bit of the SSPCON2 register.
7. The MSSP module generates an interrupt at the
end of the 9th clock cycle by setting the SSPIF
bit.
8. User sets the RCEN bit of the SSPCON2 register
and the master clocks in a byte from the slave.
9. After the 8th falling edge of SCL, SSPIF and BF
are set.
10. Master clears SSPIF and reads the received
byte from SSPUF, clears BF.
11. Master sets ACK value sent to slave in ACKDT
bit of the SSPCON2 register and initiates the
ACK by setting the ACKEN bit.
12. Masters ACK is clocked out to the slave and
SSPIF is set.
13. User clears SSPIF.
14. Steps 8-13 are repeated for each received byte
from the slave.
15. Master sends a not ACK or Stop to end
communication.
Note: The MSSP module must be in an Idle
state before the RCEN bit is set or the
RCEN bit will be disregarded.
PIC16(L)F1516/7/8/9
DS40001452F-page 206 2010-2016 Microchip Technology Inc.
FIGURE 21-29 : I2C MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)
P
9
87
6
5
D0
D1
D2
D3D4
D5
D6D7
S
A7 A6 A5 A4 A3 A2 A1
SDA
SCL 12345678912345678 9 1234
Bus master
terminates
transfer
ACK
Receiving Data from Slave
Receiving Data from Slave
D0
D1
D2
D3D4
D5
D6D7
ACK
R/W
Transmit Address to Slave
SSPIF
BF
ACK is not sent
Write to SSPCON2<0> (SEN = 1),
Write to SSPBUF occurs here, ACK from Slave
Master configured as a receiver
by programming SSPCON2<3> (RCEN = 1)
PEN bit = 1
written here
Data shifted in on falling edge of CLK
Cleared by software
start XMIT
SEN = 0
SSPOV
SDA = 0, SCL = 1
while CPU
(SSPSTAT<0>)
ACK
Cleared by software
Cleared by software
Set SSPIF interrupt
at end of receive
Set P bit
(SSPSTAT<4>)
and SSPIF
Cleared in
software
ACK from Master
Set SSPIF at end
Set SSPIF interrupt
at end of Acknowledge
sequence
Set SSPIF interrupt
at end of Acknow-
ledge sequence
of receive
Set ACKEN, start Acknowledge sequence
SSPOV is set because
SSPBUF is still full
SDA = ACKDT = 1
RCEN cleared
automatically
RCEN = 1, start
next receive
Write to SSPCON2<4>
to start Acknowledge sequence
SDA = ACKDT (SSPCON2<5>) = 0
RCEN cleared
automatically
responds to SSPIF
ACKEN
begin Start condition
Cleared by software
SDA = ACKDT = 0
Last bit is shifted into SSPSR and
contents are unloaded into SSPBUF
RCEN
Master configured as a receiver
by programming SSPCON2<3> (RCEN = 1)
RCEN cleared
automatically
ACK from Master
SDA = ACKDT = 0 RCEN cleared
automatically
2010-2016 Microchip Technology Inc. DS40001452F-page 207
PIC16(L)F1516/7/8/9
21.6.8 ACKNOWLEDGE SEQUENCE
TIMING
An Acknowledge sequence is enabled by setting the
Acknowledge Sequence Enable bit, ACKEN bit of the
SSPCON2 register. When this bit is set, the SCL pin is
pulled low and the contents of the Acknowledge data bit
are presented on the SDA pin. If the user wishes to gen-
erate an Acknowledge, then the ACKDT bit should be
cleared. If not, the user should set the ACKDT bit before
starting an Acknowledge sequence. The Baud Rate
Generator then counts for one rollover period (TBRG)
and the SCL pin is deasserted (pulled high). When the
SCL pin is sampled high (clock arbitration), the Baud
Rate Generator counts for TBRG. The SCL pin is then
pulled low. Following this, the ACKEN bit is automatically
cleared, the Baud Rate Generator is turned off and the
MSSP module then goes into Idle mode (Figure 21-30).
21.6.8.1 WCOL Status Flag
If the user writes the SSPBUF when an Acknowledge
sequence is in progress, then WCOL bit is set and the
contents of the buffer are unchanged (the write does
not occur).
21.6.9 STOP CONDITION TIMING
A Stop bit is asserted on the SDA pin at the end of a
receive/transmit by setting the Stop Sequence Enable
bit, PEN bit of the SSPCON2 register. At the end of a
receive/transmit, the SCL line is held low after the
falling edge of the 9th clock. When the PEN bit is set,
the master will assert the SDA line low. When the SDA
line is sampled low, the Baud Rate Generator is
reloaded and counts down to ‘0’. When the Baud Rate
Generator times out, the SCL pin will be brought high
and one TBRG (Baud Rate Generator rollover count)
later, the SDA pin will be deasserted. When the SDA
pin is sampled high while SCL is high, the P bit of the
SSPSTAT register is set. A TBRG later, the PEN bit is
cleared and the SSPIF bit is set (Figure 21-31).
21.6.9.1 WCOL Status Flag
If the user writes the SSPBUF when a Stop sequence
is in progress, then the WCOL bit is set and the
contents of the buffer are unchanged (the write does
not occur).
FIGURE 21-30: ACKNOWLEDGE SEQUEN CE WAVEFORM
FIGURE 21-31: STOP CONDITION RECEIVE OR TRANSMIT MODE
Note: TBRG = one Baud Rate Generator period.
SDA
SCL
SSPIF set at
Acknowledge sequence starts here,
write to SSPCON2 ACKEN automatically cleared
Cleared in
TBRG TBRG
the end of receive
8
ACKEN = 1, ACKDT = 0
D0
9
SSPIF
software SSPIF set at the end
of Acknowledge sequence
Cleared in
software
ACK
SCL
SDA
SDA asserted low before rising edge of clock
Write to SSPCON2,
set PEN
Falling edge of
SCL = 1 for TBRG, followed by SDA = 1 for TBRG
9th clock
SCL brought high after TBRG
Note: TBRG = one Baud Rate Generator period.
TBRG TBRG
after SDA sampled high. P bit (SSPSTAT<4>) is set.
TBRG
to setup Stop condition
ACK
P
TBRG
PEN bit (SSPCON2<2>) is cleared by
hardware and the SSPIF bit is set
PIC16(L)F1516/7/8/9
DS40001452F-page 208 2010-2016 Microchip Technology Inc.
21.6.10 SLEEP OPERATION
While in Sleep mode, the I2C slave module can receive
addresses or data and when an address match or
complete byte transfer occurs, wake the processor
from Sleep (if the MSSP interrupt is enabled).
21.6.11 EFFECTS OF A RESET
A Reset disables the MSSP module and terminates the
current transfer.
21.6.12 MULTI-MASTER MODE
In Multi-Master mode, the interrupt generation on the
detection of the Start and Stop conditions allows the
determination of when the bus is free. The Stop (P) and
Start (S) bits are cleared from a Reset or when the
MSSP module is disabled. Control of the I2C bus may
be taken when the P bit of the SSPSTAT register is set,
or the bus is Idle, with both the S and P bits clear. When
the bus is busy, enabling the SSP interrupt will gener-
ate the interrupt when the Stop condition occurs.
In multi-master operation, the SDA line must be
monitored for arbitration to see if the signal level is the
expected output level. This check is performed by
hardware with the result placed in the BCLIF bit.
The states where arbitration can be lost are:
Address Transfer
Data Transfer
A Start Condition
A Repeated Start Condition
An Acknowledge Condition
21.6.13 MULTI -MASTER COMMUNICATION,
BUS COLLISION AND BUS
ARBITRATION
Multi-Master mode support is achieved by bus arbitra-
tion. When the master outputs address/data bits onto
the SDA pin, arbitration takes place when the master
outputs a ‘1’ on SDA, by letting SDA float high and
another master asserts a ‘0’. When the SCL pin floats
high, data should be stable. If the expected data on
SDA is a ‘1’ and the data sampled on the SDA pin is ‘0’,
then a bus collision has taken place. The master will set
the Bus Collision Interrupt Flag, BCLIF and reset the
I2C port to its Idle state (Figure 21-32).
If a transmit was in progress when the bus collision
occurred, the transmission is halted, the BF flag is
cleared, the SDA and SCL lines are deasserted and the
SSPBUF can be written to. When the user services the
bus collision Interrupt Service Routine and if the I2C
bus is free, the user can resume communication by
asserting a Start condition.
If a Start, Repeated Start, Stop or Acknowledge condi-
tion was in progress when the bus collision occurred, the
condition is aborted, the SDA and SCL lines are deas-
serted and the respective control bits in the SSPCON2
register are cleared. When the user services the bus col-
lision Interrupt Service Routine and if the I2C bus is free,
the user can resume communication by asserting a Start
condition.
The master will continue to monitor the SDA and SCL
pins. If a Stop condition occurs, the SSPIF bit will be set.
A write to the SSPBUF will start the transmission of
data at the first data bit, regardless of where the
transmitter left off when the bus collision occurred.
In Multi-Master mode, the interrupt generation on the
detection of Start and Stop conditions allows the deter-
mination of when the bus is free. Control of the I2C bus
can be taken when the P bit is set in the SSPSTAT
register, or the bus is Idle and the S and P bits are
cleared.
FIGURE 21-32: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE
SDA
SCL
BCLIF
SDA released
SDA line pulled low
by another source
Sample SDA. While SCL is high,
data does not match what is driven
Bus collision has occurred.
Set bus collision
interrupt (BCLIF)
by the master.
by master
Data changes
while SCL = 0
2010-2016 Microchip Technology Inc. DS40001452F-page 209
PIC16(L)F1516/7/8/9
21.6.13.1 Bus Collision During a Start
Condition
During a Start condition, a bus collision occurs if:
a) SDA or SCL are sampled low at the beginning of
the Start condition (Figure 21-33).
b) SCL is sampled low before SDA is asserted low
(Figure 21-34).
During a Start condition, both the SDA and the SCL
pins are monitored.
If the SDA pin is already low, or the SCL pin is already
low, then all of the following occur:
the Start condition is aborted,
the BCLIF flag is set and
the MSSP module is reset to its Idle state
(Figure 21-33).
The Start condition begins with the SDA and SCL pins
deasserted. When the SDA pin is sampled high, the
Baud Rate Generator is loaded and counts down. If the
SCL pin is sampled low while SDA is high, a bus colli-
sion occurs because it is assumed that another master
is attempting to drive a data ‘1’ during the Start
condition.
If the SDA pin is sampled low during this count, the
BRG is reset and the SDA line is asserted early
(Figure 21-35). If, however, a ‘1’ is sampled on the SDA
pin, the SDA pin is asserted low at the end of the BRG
count. The Baud Rate Generator is then reloaded and
counts down to zero; if the SCL pin is sampled as ‘0
during this time, a bus collision does not occur. At the
end of the BRG count, the SCL pin is asserted low.
FIGURE 21-33: BUS COLLISION DURING START CONDITION (SDA ONLY)
Note: The reason that bus collision is not a fac-
tor during a Start condition is that no two
bus masters can assert a Start condition
at the exact same time. Therefore, one
master will always assert SDA before the
other. This condition does not cause a bus
collision because the two masters must be
allowed to arbitrate the first address fol-
lowing the Start condition. If the address is
the same, arbitration must be allowed to
continue into the data portion, Repeated
Start or Stop conditions.
SDA
SCL
SEN
SDA sampled low before
SDA goes low before the SEN bit is set.
S bit and SSPIF set because
SSP module reset into Idle state.
SEN cleared automatically because of bus collision.
S bit and SSPIF set because
Set SEN, enable Start
condition if SDA = 1, SCL = 1
SDA = 0, SCL = 1.
BCLIF
S
SSPIF
SDA = 0, SCL = 1.
SSPIF and BCLIF are
cleared by software
SSPIF and BCLIF are
cleared by software
Set BCLIF,
Start condition. Set BCLIF.
PIC16(L)F1516/7/8/9
DS40001452F-page 210 2010-2016 Microchip Technology Inc.
FIGURE 21-34: BUS COLLISION DURING START CONDITION (SCL = 0)
FIGURE 21-35: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION
SDA
SCL
SEN bus collision occurs. Set BCLIF.
SCL = 0 before SDA = 0,
Set SEN, enable Start
sequence if SDA = 1, SCL = 1
TBRG TBRG
SDA = 0, SCL = 1
BCLIF
S
SSPIF
Interrupt cleared
by software
bus collision occurs. Set BCLIF.
SCL = 0 before BRG time-out,
0’’0
00
SDA
SCL
SEN
Set S
Less than TBRG TBRG
SDA = 0, SCL = 1
BCLIF
S
SSPIF
S
Interrupts cleared
by software
set SSPIF
SDA = 0, SCL = 1,
SCL pulled low after BRG
time-out
Set SSPIF
0
SDA pulled low by other master.
Reset BRG and assert SDA.
Set SEN, enable Start
sequence if SDA = 1, SCL = 1
2010-2016 Microchip Technology Inc. DS40001452F-page 211
PIC16(L)F1516/7/8/9
21.6.13.2 Bus Collision During a Repeated
Start Condition
During a Repeated Start condition, a bus collision
occurs if:
a) A low level is sampled on SDA when SCL goes
from low level to high level (Case 1).
b) SCL goes low before SDA is asserted low,
indicating that another master is attempting to
transmit a data ‘1 (Case 2).
When the user releases SDA and the pin is allowed to
float high, the BRG is loaded with SSPADD and counts
down to zero. The SCL pin is then deasserted and
when sampled high, the SDA pin is sampled.
If SDA is low, a bus collision has occurred (i.e., another
master is attempting to transmit a data ‘0’, Figure 21-36.
If SDA is sampled high, the BRG is reloaded and begins
counting. If SDA goes from high-to-low before the BRG
times out, no bus collision occurs because no two
masters can assert SDA at exactly the same time.
If SCL goes from high-to-low before the BRG times out
and SDA has not already been asserted, a bus collision
occurs. In this case, another master is attempting to
transmit a data ‘1’ during the Repeated Start condition,
see Figure 21-37.
If, at the end of the BRG time-out, both SCL and SDA
are still high, the SDA pin is driven low and the BRG is
reloaded and begins counting. At the end of the count,
regardless of the status of the SCL pin, the SCL pin is
driven low and the Repeated Start condition is
complete.
FIGURE 21-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)
FIGURE 21-37: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)
SDA
SCL
RSEN
BCLIF
S
SSPIF
Sample SDA when SCL goes high.
If SDA = 0, set BCLIF and release SDA and SCL.
Cleared by software
0
0
SDA
SCL
BCLIF
RSEN
S
SSPIF
Interrupt cleared
by software
SCL goes low before SDA,
set BCLIF. Release SDA and SCL.
TBRG TBRG
0
PIC16(L)F1516/7/8/9
DS40001452F-page 212 2010-2016 Microchip Technology Inc.
21.6.13.3 Bus Collision During a Stop
Condition
Bus collision occurs during a Stop condition if:
a) After the SDA pin has been deasserted and
allowed to float high, SDA is sampled low after
the BRG has timed out (Case 1).
b) After the SCL pin is deasserted, SCL is sampled
low before SDA goes high (Case 2).
The Stop condition begins with SDA asserted low.
When SDA is sampled low, the SCL pin is allowed to
float. When the pin is sampled high (clock arbitration),
the Baud Rate Generator is loaded with SSPADD and
counts down to 0. After the BRG times out, SDA is
sampled. If SDA is sampled low, a bus collision has
occurred. This is due to another master attempting to
drive a data ‘0’ (Figure 21-38). If the SCL pin is
sampled low before SDA is allowed to float high, a bus
collision occurs. This is another case of another master
attempting to drive a data ‘0’ (Figure 21-39).
FIGURE 21-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)
FIGURE 21-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)
SDA
SCL
BCLIF
PEN
P
SSPIF
TBRG TBRG TBRG
SDA asserted low
SDA sampled
low after TBRG,
set BCLIF
0
0
SDA
SCL
BCLIF
PEN
P
SSPIF
TBRG TBRG TBRG
Assert SDA SCL goes low before SDA goes high,
set BCLIF
0
0
2010-2016 Microchip Technology Inc. DS40001452F-page 213
PIC16(L)F1516/7/8/9
TABLE 21-2: SUMMARY OF REGISTERS ASSOCIATED WITH I2C OPERATION
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset
Values
on Page
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 74
PIE1 TMR1GIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 75
PIE2 OSFIE —BCLIECCP2IE 76
PIR1 TMR1GIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 77
PIR2 OSFIF BCLIF CCP2IF 78
SSPADD ADD<7:0> 219
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register 172*
SSPCON1 WCOL SSPOV SSPEN CKP SSPM<3:0> 216
SSPCON2 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN 217
SSPCON3 ACKTIM PCIE SCIE BOEN SDAHT SBCDE AHEN DHEN 218
SSPMSK MSK7 MSK6 MSK5 MSK4 MSK3 MSK2 MSK1 MSK0 219
SSPSTAT SMP CKE D/A P S R/W UA BF 215
TRISA TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 107
Legend: = unimplemented location, read as ‘0’. Shaded cells are not used by the MSSP module in I2C mode.
* Page provides register information.
PIC16(L)F1516/7/8/9
DS40001452F-page 214 2010-2016 Microchip Technology Inc.
21.7 BAUD RATE GENERATOR
The MSSP module has a Baud Rate Generator
available for clock generation in both I2C and SPI
Master modes. The Baud Rate Generator (BRG)
reload value is placed in the SSPADD register
(Register 21-8). When a write occurs to SSPBUF, the
Baud Rate Generator will automatically begin counting
down.
Once the given operation is complete, the internal clock
will automatically stop counting and the clock pin will
remain in its last state.
An internal signal “Reload” in Figure 21-40 triggers the
value from SSPADD to be loaded into the BRG counter.
This occurs twice for each oscillation of the module
clock line. The logic dictating when the reload signal is
asserted depends on the mode the MSSP is being
operated in.
Table 21-2 demonstrates clock rates based on
instruction cycles and the BRG value loaded into
SSPADD.
EQUATION 21-1: BRG CLOCK FREQUENCY
FIGURE 21-40: BAUD RATE GENERATOR BLOCK DIAGRAM
FCLOCK FOSC
SSPxADD 1+4
-------------------------------------------------=
Note: Values of 0x00, 0x01 and 0x02 are not valid
for SSPADD when used as a Baud Rate
Generator for I2C. This is an implementation
limitation.
SSPM<3:0>
BRG Down Counter
SSPCLK FOSC/2
SSPADD<7:0>
SSPM<3:0>
SCL
Reload
Control
Reload
TABLE 21-2: MSSP CLOCK RATE W/BRG
FOSC FCY BRG Va lue FCLOCK
(2 Rollovers of BRG)
16 MHz 4 MHz 09h 400 kHz(1)
16 MHz 4 MHz 0Ch 308 kHz
16 MHz 4 MHz 27h 100 kHz
4 MHz 1 MHz 09h 100 kHz
Note 1: The I2C interface does not conform to the 400 kHz I2C specification (which applies to rates greater than
100 kHz) in all details, but may be used with care where higher rates are required by the application.
2010-2016 Microchip Technology Inc. DS40001452F-page 215
PIC16(L)F1516/7/8/9
21.8 Register Definitions: MSSP Control
REGISTER 21-3: SSPSTAT: SSP STATUS REGISTER
R/W-0/0 R/W-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0
SMP CKE D/A PSR/WUA BF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 SMP: SPI Data Input Sample bit
SPI Master mode:
1 = Input data sampled at end of data output time
0 = Input data sampled at middle of data output time
SPI Slave mode:
SMP must be cleared when SPI is used in Slave mode
In I2 C Master or Slave mode:
1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)
0 = Slew rate control enabled for high speed mode (400 kHz)
bit 6 CKE: SPI Clock Edge Select bit (SPI mode only)
In SPI Master or Slave mode:
1 = Transmit occurs on transition from active to Idle clock state
0 = Transmit occurs on transition from Idle to active clock state
In I2 C mode only:
1 = Enable input logic so that thresholds are compliant with SMBus specification
0 = Disable SMBus specific inputs
bit 5 D/A: Data/Address bit (I2C mode only)
1 = Indicates that the last byte received or transmitted was data
0 = Indicates that the last byte received or transmitted was address
bit 4 P: Stop bit
(I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)
1 = Indicates that a Stop bit has been detected last (this bit is ‘0’ on Reset)
0 = Stop bit was not detected last
bit 3 S: Start bit
(I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)
1 = Indicates that a Start bit has been detected last (this bit is ‘0’ on Reset)
0 = Start bit was not detected last
bit 2 R/W: Read/Write bit information (I2C mode only)
This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the
next Start bit, Stop bit, or not ACK bit.
In I2 C Slave mode:
1 =Read
0 = Write
In I2 C Master mode:
1 = Transmit is in progress
0 = Transmit is not in progress
OR-ing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in Idle mode.
bit 1 UA: Update Address bit (10-bit I2C mode only)
1 = Indicates that the user needs to update the address in the SSPADD register
0 = Address does not need to be updated
bit 0 BF: Buffer Full Status bit
Receive (SPI and I2 C modes):
1 = Receive complete, SSPBUF is full
0 = Receive not complete, SSPBUF is empty
Transmit (I2 C mode only):
1 = Data transmit in progress (does not include the ACK and Stop bits), SSPBUF is full
0 = Data transmit complete (does not include the ACK and Stop bits), SSPBUF is empty
PIC16(L)F1516/7/8/9
DS40001452F-page 216 2010-2016 Microchip Technology Inc.
REGISTER 21-4: SSPCON1: SSP CONTROL REGISTER 1
R/C/HS-0/0 R/C/HS-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
WCOL SSPOV SSPEN CKP SSPM<3:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared HS = Bit is set by hardware C = User cleared
bit 7 WCOL: Write Collision Detect bit
Master mode:
1 = A write to the SSPBUF register was attempted while the I2C conditions were not valid for a transmission to be started
0 = No collision
Slave mode:
1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)
0 = No collision
bit 6 SSPOV: Receive Overflow Indicator bit(1)
In SPI mode:
1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost.
Overflow can only occur in Slave mode. In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid
setting overflow. In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the
SSPBUF register (must be cleared in software).
0 = No overflow
In I2 C mode:
1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a “don’t care” in Transmit mode
(must be cleared in software).
0 = No overflow
bit 5 SSPEN: Synchronous Serial Port Enable bit
In both modes, when enabled, these pins must be properly configured as input or output
In SPI mode:
1 = Enables serial port and configures SCK, SDO, SDI and SS as the source of the serial port pins(2)
0 = Disables serial port and configures these pins as I/O port pins
In I2 C mode:
1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins(3)
0 = Disables serial port and configures these pins as I/O port pins
bit 4 CKP: Clock Polarity Select bit
In SPI mode:
1 = Idle state for clock is a high level
0 = Idle state for clock is a low level
In I2 C Slave mode:
SCL release control
1 = Enable clock
0 = Holds clock low (clock stretch). (Used to ensure data setup time.)
In I2 C Master mode:
Unused in this mode
bit 3-0 SSPM<3:0>: Synchronous Serial Port Mode Select bits
1111 = I2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled
1110 = I2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled
1101 = Reserved
1100 = Reserved
1011 = I2C firmware controlled Master mode (slave idle)
1010 = SPI Master mode, clock = FOSC/(4 * (SSPADD+1))(5)
1001 = Reserved
1000 = I2C Master mode, clock = FOSC / (4 * (SSPADD+1))(4)
0111 = I2C Slave mode, 10-bit address
0110 = I2C Slave mode, 7-bit address
0101 = SPI Slave mode, clock = SCK pin, SS pin control disabled, SS can be used as I/O pin
0100 = SPI Slave mode, clock = SCK pin, SS pin control enabled
0011 = SPI Master mode, clock = TMR2 output/2
0010 = SPI Master mode, clock = FOSC/64
0001 = SPI Master mode, clock = FOSC/16
0000 = SPI Master mode, clock = FOSC/4
Note 1: In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register.
2: When enabled, these pins must be properly configured as input or output.
3: When enabled, the SDA and SCL pins must be configured as inputs.
4: SSPADD values of 0, 1 or 2 are not supported for I2C mode.
5: SSPADD value of ‘0’ is not supported. Use SSPM = 0000 instead.
2010-2016 Microchip Technology Inc. DS40001452F-page 217
PIC16(L)F1516/7/8/9
REGISTER 21-5: SSPCON2: SSP CONTROL REGISTER 2
R/W-0/0 R-0/0 R/W-0/0 R/S/HS-0/0 R/S/HS-0/0 R/S/HS-0/0 R/S/HS-0/0 R/W/HS-0/0
GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared HC = Cleared by hardware S = User set
bit 7 GCEN: General Call Enable bit (in I2C Slave mode only)
1 = Enable interrupt when a general call address (0x00 or 00h) is received in the SSPSR
0 = General call address disabled
bit 6 ACKSTAT: Acknowledge Status bit (in I2C mode only)
1 = Acknowledge was not received
0 = Acknowledge was received
bit 5 ACKDT: Acknowledge Data bit (in I2C mode only)
In Receive mode:
Value transmitted when the user initiates an Acknowledge sequence at the end of a receive
1 = Not Acknowledge
0 = Acknowledge
bit 4 ACKEN: Acknowledge Sequence Enable bit (in I2C Master mode only)
In Master Receive mode:
1 = Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit.
Automatically cleared by hardware.
0 = Acknowledge sequence idle
bit 3 RCEN: Receive Enable bit (in I2C Master mode only)
1 = Enables Receive mode for I2C
0 = Receive idle
bit 2 PEN: Stop Condition Enable bit (in I2C Master mode only)
SCKMSSP Release Control:
1 = Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware.
0 = Stop condition Idle
bit 1 RSEN: Repeated Start Condition Enable bit (in I2C Master mode only)
1 = Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware.
0 = Repeated Start condition Idle
bit 0 SEN: Start Condition Enable/Stretch Enable bit
In Master mode:
1 = Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware.
0 = Start condition Idle
In Slave mode:
1 = Clock stretching is enabled for both slave transmit and slave receive (stretch enabled)
0 = Clock stretching is disabled
Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the Idle mode, this bit may not be
set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).
PIC16(L)F1516/7/8/9
DS40001452F-page 218 2010-2016 Microchip Technology Inc.
REGISTER 21-6: SSPCON3: SSP CONTROL REGISTER 3
R-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
ACKTIM PCIE SCIE BOEN SDAHT SBCDE AHEN DHEN
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 ACKTIM: Acknowledge Time Status bit (I2C mode only)(3)
1 = Indicates the I2C bus is in an Acknowledge sequence, set on 8TH falling edge of SCL clock
0 = Not an Acknowledge sequence, cleared on 9TH rising edge of SCL clock
bit 6 PCIE: Stop Condition Interrupt Enable bit (I2C mode only)
1 = Enable interrupt on detection of Stop condition
0 = Stop detection interrupts are disabled(2)
bit 5 SCIE: Start Condition Interrupt Enable bit (I2C mode only)
1 = Enable interrupt on detection of Start or Restart conditions
0 = Start detection interrupts are disabled(2)
bit 4 BOEN: Buffer Overwrite Enable bit
In SPI Slave mode:(1)
1 = SSPBUF updates every time that a new data byte is shifted in ignoring the BF bit
0 = If new byte is received with BF bit of the SSPSTAT register already set, SSPOV bit of the
SSPCON1 register is set, and the buffer is not updated
In I2C Master mode and SPI Master mode:
This bit is ignored.
In I2C Slave mode:
1 = SSPBUF is updated and ACK is generated for a received address/data byte, ignoring the state
of the SSPOV bit only if the BF bit = 0.
0 = SSPBUF is only updated when SSPOV is clear
bit 3 SDAHT: SDA Hold Time Selection bit (I2C mode only)
1 = Minimum of 300 ns hold time on SDA after the falling edge of SCL
0 = Minimum of 100 ns hold time on SDA after the falling edge of SCL
bit 2 SBCDE: Slave Mode Bus Collision Detect Enable bit (I2C Slave mode only)
If on the rising edge of SCL, SDA is sampled low when the module is outputting a high state, the BCLIF
bit of the PIR2 register is set, and bus goes idle
1 = Enable slave bus collision interrupts
0 = Slave bus collision interrupts are disabled
bit 1 AHEN: Address Hold Enable bit (I2C Slave mode only)
1 = Following the 8th falling edge of SCL for a matching received address byte; CKP bit of the SSP-
CON1 register will be cleared and the SCL will be held low.
0 = Address holding is disabled
bit 0 DHEN: Data Hold Enable bit (I2C Slave mode only)
1 = Following the 8th falling edge of SCL for a received data byte; slave hardware clears the CKP bit
of the SSPCON1 register and SCL is held low.
0 = Data holding is disabled
Note 1: For daisy-chained SPI operation; allows the user to ignore all but the last received byte. SSPOV is still set
when a new byte is received and BF = 1, but hardware continues to write the most recent byte to SSPBUF.
2: This bit has no effect in Slave modes that Start and Stop condition detection is explicitly listed as enabled.
3: The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is set.
2010-2016 Microchip Technology Inc. DS40001452F-page 219
PIC16(L)F1516/7/8/9
REGISTER 21-7: SSPMSK: SSP MASK REGISTER
R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1
MSK<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-1 MSK<7:1>: Mask bits
1 = The received address bit n is compared to SSPADD<n> to detect I2C address match
0 = The received address bit n is not used to detect I2C address match
bit 0 MSK<0>: Mask bit for I2C Slave mode, 10-bit Address
I2C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):
1 = The received address bit 0 is compared to SSPADD<0> to detect I2C address match
0 = The received address bit 0 is not used to detect I2C address match
I2C Slave mode, 7-bit address, the bit is ignored
REGISTER 21-8: SSPADD: MSSP ADDRESS AND BAUD RATE REGISTER (I2C MODE)
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
ADD<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
Master mode:
bit 7-0 ADD<7:0>: Baud Rate Clock Divider bits
SCL pin clock period = ((ADD<7:0> + 1) *4)/FOSC
10-Bit Slave mode — Most Significant Address Byte:
bit 7-3 Not used: Unused for Most Significant Address byte. Bit state of this register is a “don’t care”. Bit pat-
tern sent by master is fixed by I2C specification and must be equal to11110’. However, those bits are
compared by hardware and are not affected by the value in this register.
bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
bit 0 Not used: Unused in this mode. Bit state is a “don’t care”.
10-Bit Slave mode — Least Significant Address Byte:
bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address
7-Bi t Slave mode:
bit 7-1 ADD<7:1>: 7-bit address
bit 0 Not used: Unused in this mode. Bit state is a “don’t care”.
PIC16(L)F1516/7/8/9
DS40001452F-page 220 2010-2016 Microchip Technology Inc.
22.0 ENHANCED UNIVERSAL
SYNCHRONOUS
ASYNCHRONOUS RECEIVER
TRANSMITTER (EUSART)
The Enhanced Universal Synchronous Asynchronous
Receiver Transmitter (EUSART) module is a serial I/O
communications peripheral. It contains all the clock
generators, shift registers and data buffers necessary
to perform an input or output serial data transfer
independent of device program execution. The
EUSART, also known as a Serial Communications
Interface (SCI), can be configured as a full-duplex
asynchronous system or half-duplex synchronous
system. Full-Duplex mode is useful for
communications with peripheral systems, such as CRT
terminals and personal computers. Half-Duplex
Synchronous mode is intended for communications
with peripheral devices, such as A/D or D/A integrated
circuits, serial EEPROMs or other microcontrollers.
These devices typically do not have internal clocks for
baud rate generation and require the external clock
signal provided by a master synchronous device.
The EUSART module includes the following capabilities:
Full-duplex asynchronous transmit and receive
Two-character input buffer
One-character output buffer
Programmable 8-bit or 9-bit character length
Address detection in 9-bit mode
Input buffer overrun error detection
Received character framing error detection
Half-duplex synchronous master
Half-duplex synchronous slave
Programmable clock polarity in synchronous
modes
Sleep operation
The EUSART module implements the following
additional features, making it ideally suited for use in
Local Interconnect Network (LIN) bus systems:
Automatic detection and calibration of the baud rate
Wake-up on Break reception
13-bit Break character transmit
Block diagrams of the EUSART transmitter and
receiver are shown in Figure 22-1 and Figure 22-2.
FIGURE 22-1: EUSART TRANSMIT BLOCK DIAGRAM
TXIF
TXIE
Interrupt
TXEN
TX9D
MSb LSb
Data Bus
TXREG Register
Transmit Shift Register (TSR)
(8) 0
TX9
TRMT SPEN
TX/CK pin
Pin Buffer
and Control
8
SPBRGL
SPBRGH
BRG16
FOSC ÷ n
n
+ 1 Multiplier x4 x16 x64
SYNC 1X00 0
BRGH X110 0
BRG16 X101 0
Baud Rate Generator
••
2010-2016 Microchip Technology Inc. DS40001452F-page 221
PIC16(L)F1516/7/8/9
FIGURE 22-2: EUSART RECEIVE BLOCK DIAGRAM
The operation of the EUSART module is controlled
through three registers:
Transmit Status and Control (TXSTA)
Receive Status and Control (RCSTA)
Baud Rate Control (BAUDCON)
These registers are detailed in Register 22-1,
Register 22-2 and Register 22-3, respectively.
When the receiver or transmitter section is not enabled
then the corresponding RX or TX pin may be used for
general purpose input and output.
RX/DT pin
Pin Buffer
and Control
SPEN
Data
Recovery
CREN OERR
FERR
RSR Register
MSb LSb
RX9D RCREG Register FIFO
Interrupt
RCIF
RCIE
Data Bus
8
Stop Start
(8) 7 1 0
RX9
• • •
SPBRGLSPBRGH
BRG16
RCIDL
FOSC ÷ n
n
+ 1 Multiplier x4 x16 x64
SYNC 1X00 0
BRGH X110 0
BRG16 X101 0
Baud Rate Generator
PIC16(L)F1516/7/8/9
DS40001452F-page 222 2010-2016 Microchip Technology Inc.
22.1 EUSART Asynchronous Mode
The EUSART transmits and receives data using the
standard non-return-to-zero (NRZ) format. NRZ is
implemented with two levels: a VOH Mark state which
represents a ‘1’ data bit, and a VOL Space state which
represents a ‘0’ data bit. NRZ refers to the fact that
consecutively transmitted data bits of the same value
stay at the output level of that bit without returning to a
neutral level between each bit transmission. An NRZ
transmission port idles in the mark state. Each character
transmission consists of one Start bit followed by eight
or nine data bits and is always terminated by one or
more Stop bits. The Start bit is always a space and the
Stop bits are always marks. The most common data
format is eight bits. Each transmitted bit persists for a
period of 1/(Baud Rate). An on-chip dedicated
8-bit/16-bit Baud Rate Generator is used to derive
standard baud rate frequencies from the system
oscillator. See Tabl e 2 2-4 for examples of baud rate
configurations.
The EUSART transmits and receives the LSb first. The
EUSART’s transmitter and receiver are functionally
independent, but share the same data format and baud
rate. Parity is not supported by the hardware, but can
be implemented in software and stored as the 9th data
bit.
22.1.1 EUSART ASYNCHRONOUS
TRANSMITTER
The EUSART transmitter block diagram is shown in
Figure 22-1. The heart of the transmitter is the serial
Transmit Shift Register (TSR), which is not directly
accessible by software. The TSR obtains its data from
the transmit buffer, which is the TXREG register.
22.1.1.1 Enabling the Transmitter
The EUSART transmitter is enabled for asynchronous
operations by configuring the following three control
bits:
•TXEN = 1
SYNC = 0
SPEN = 1
All other EUSART control bits are assumed to be in
their default state.
Setting the TXEN bit of the TXSTA register enables the
transmitter circuitry of the EUSART. Clearing the SYNC
bit of the TXSTA register configures the EUSART for
asynchronous operation. Setting the SPEN bit of the
RCSTA register enables the EUSART and
automatically configures the TX/CK I/O pin as an output.
If the TX/CK pin is shared with an analog peripheral, the
analog I/O function must be disabled by clearing the
corresponding ANSEL bit.
22.1.1.2 Transmitting Data
A transmission is initiated by writing a character to the
TXREG register. If this is the first character, or the
previous character has been completely flushed from
the TSR, the data in the TXREG is immediately
transferred to the TSR register. If the TSR still contains
all or part of a previous character, the new character
data is held in the TXREG until the Stop bit of the
previous character has been transmitted. The pending
character in the TXREG is then transferred to the TSR
in one TCY immediately following the Stop bit
transmission. The transmission of the Start bit, data bits
and Stop bit sequence commences immediately
following the transfer of the data to the TSR from the
TXREG.
22.1.1.3 Transmit Data Polarity
The polarity of the transmit data can be controlled with
the SCKP bit of the BAUDCON register. The default
state of this bit is ‘0’ which selects high true transmit Idle
and data bits. Setting the SCKP bit to ‘1’ will invert the
transmit data resulting in low true Idle and data bits. The
SCKP bit controls transmit data polarity in
Asynchronous mode only. In Synchronous mode, the
SCKP bit has a different function. See Section 22.5.1.2
“Clock Polarity.
22.1.1.4 Transmit Interrupt Flag
The TXIF interrupt flag bit of the PIR1 register is set
whenever the EUSART transmitter is enabled and no
character is being held for transmission in the TXREG.
In other words, the TXIF bit is only clear when the TSR
is busy with a character and a new character has been
queued for transmission in the TXREG. The TXIF flag
bit is not cleared immediately upon writing TXREG.
TXIF becomes valid in the second instruction cycle
following the write execution. Polling TXIF immediately
following the TXREG write will return invalid results. The
TXIF bit is read-only, it cannot be set or cleared by
software.
The TXIF interrupt can be enabled by setting the TXIE
interrupt enable bit of the PIE1 register. However, the
TXIF flag bit will be set whenever the TXREG is empty,
regardless of the state of TXIE enable bit.
To use interrupts when transmitting data, set the TXIE
bit only when there is more data to send. Clear the
TXIE interrupt enable bit upon writing the last character
of the transmission to the TXREG.
Note 1: The TXIF Transmitter Interrupt flag is set
when the TXEN enable bit is set.
2010-2016 Microchip Technology Inc. DS40001452F-page 223
PIC16(L)F1516/7/8/9
22.1.1.5 TSR Status
The TRMT bit of the TXSTA register indicates the
status of the TSR register. This is a read-only bit. The
TRMT bit is set when the TSR register is empty and is
cleared when a character is transferred to the TSR
register from the TXREG. The TRMT bit remains clear
until all bits have been shifted out of the TSR register.
No interrupt logic is tied to this bit, so the user has to
poll this bit to determine the TSR status.
22.1.1.6 Transmitting 9-Bit Characters
The EUSART supports 9-bit character transmissions.
When the TX9 bit of the TXSTA register is set, the
EUSART will shift nine bits out for each character trans-
mitted. The TX9D bit of the TXSTA register is the 9th,
and Most Significant, data bit. When transmitting 9-bit
data, the TX9D data bit must be written before writing
the eight Least Significant bits into the TXREG. All nine
bits of data will be transferred to the TSR shift register
immediately after the TXREG is written.
A special 9-bit Address mode is available for use with
multiple receivers. See Section 22.1.2.7 “Address
Detection” for more information on the address mode.
22.1.1.7 Asynchronous Transmission Setup:
1. Initialize the SPBRGH, SPBRGL register pair and
the BRGH and BRG16 bits to achieve the desired
baud rate (see Section 22.4 “EUSART Baud
Rate Generator (BRG)”).
2. Enable the asynchronous serial port by clearing
the SYNC bit and setting the SPEN bit.
3. If 9-bit transmission is desired, set the TX9 con-
trol bit. A set 9th data bit will indicate that the
eight Least Significant data bits are an address
when the receiver is set for address detection.
4. Set SCKP bit if inverted transmit is desired.
5. Enable the transmission by setting the TXEN
control bit. This will cause the TXIF interrupt bit
to be set.
6. If interrupts are desired, set the TXIE interrupt
enable bit of the PIE1 register. An interrupt will
occur immediately provided that the GIE and
PEIE bits of the INTCON register are also set.
7. If 9-bit transmission is selected, the 9th bit
should be loaded into the TX9D data bit.
8. Load 8-bit data into the TXREG register. This
will start the transmission.
FIGURE 22-3: ASYNCHRONOUS TRANSMISSION
FIGURE 22-4: ASYNCHR ON OUS TR ANSM IS SION (BACK-TO-BACK)
Note: The TSR register is not mapped in data
memory, so it is not available to the user.
Word 1
Stop bit
Word 1
Transmit Shift Reg.
Start bit bit 0 bit 1 bit 7/8
Write to TXREG
Word 1
BRG Output
(Shift Clock)
TX/CK
TXIF bit
(Transmit Buffer
Reg. Empty Flag)
TRMT bit
(Transmit Shift
Reg. Empty Flag)
1 TCY
pin
Transmit Shift Reg.
Write to TXREG
BRG Output
(Shift Clock)
TX/CK
TRMT bit
(Transmit Shift
Reg. Empty Flag)
Word 1 Word 2
Word 1 Word 2
Start bit Stop bit Start bit
Transmit Shift Reg.
Word 1 Word 2
bit 0 bit 1 bit 7/8 bit 0
Note: This timing diagram shows two consecutive transmissions.
1 TCY
1 TCY
pin
TXIF bit
(Transmit Buffer
Reg. Empty Flag)
PIC16(L)F1516/7/8/9
DS40001452F-page 224 2010-2016 Microchip Technology Inc.
TABLE 22-1: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
BAUDCON ABDOVF RCIDL SCKP BRG16 WUE ABDEN 232
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 74
PIE1 TMR1GIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 75
PIR1 TMR1GIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 77
RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 231
SPBRGL BRG<7:0> 233*
SPBRGH BRG<15:8> 233*
TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 114
TXREG EUSART Transmit Data Register 222*
TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 230
Legend: — = unimplemented, read as 0’. Shaded cells are not used for asynchronous transmission.
* Page provides register information.
2010-2016 Microchip Technology Inc. DS40001452F-page 225
PIC16(L)F1516/7/8/9
22.1.2 EUSART ASYNCHRONOUS
RECEIVER
The Asynchronous mode is typically used in RS-232
systems. The receiver block diagram is shown in
Figure 22-2. The data is received on the RX/DT pin and
drives the data recovery block. The data recovery block
is actually a high-speed shifter operating at 16 times
the baud rate, whereas the serial Receive Shift
Register (RSR) operates at the bit rate. When all eight
or nine bits of the character have been shifted in, they
are immediately transferred to a two character
First-In-First-Out (FIFO) memory. The FIFO buffering
allows reception of two complete characters and the
start of a third character before software must start
servicing the EUSART receiver. The FIFO and RSR
registers are not directly accessible by software.
Access to the received data is via the RCREG register.
22.1.2.1 Enabling the Receiver
The EUSART receiver is enabled for asynchronous
operation by configuring the following three control bits:
CREN = 1
SYNC = 0
SPEN = 1
All other EUSART control bits are assumed to be in
their default state.
Setting the CREN bit of the RCSTA register enables the
receiver circuitry of the EUSART. Clearing the SYNC bit
of the TXSTA register configures the EUSART for
asynchronous operation. Setting the SPEN bit of the
RCSTA register enables the EUSART. The programmer
must set the corresponding TRIS bit to configure the
RX/DT I/O pin as an input.
22.1.2.2 Receiving Data
The receiver data recovery circuit initiates character
reception on the falling edge of the first bit. The first bit,
also known as the Start bit, is always a zero. The data
recovery circuit counts one-half bit time to the center of
the Start bit and verifies that the bit is still a zero. If it is
not a zero then the data recovery circuit aborts
character reception, without generating an error, and
resumes looking for the falling edge of the Start bit. If
the Start bit zero verification succeeds then the data
recovery circuit counts a full bit time to the center of the
next bit. The bit is then sampled by a majority detect
circuit and the resulting ‘0’ or ‘1 is shifted into the RSR.
This repeats until all data bits have been sampled and
shifted into the RSR. One final bit time is measured and
the level sampled. This is the Stop bit, which is always
a ‘1’. If the data recovery circuit samples a ‘0’ in the
Stop bit position then a framing error is set for this
character, otherwise the framing error is cleared for this
character. See Section 22.1.2.4 “Receive Framing
Error” for more information on framing errors.
Immediately after all data bits and the Stop bit have
been received, the character in the RSR is transferred
to the EUSART receive FIFO and the RCIF interrupt
flag bit of the PIR1 register is set. The top character in
the FIFO is transferred out of the FIFO by reading the
RCREG register.
22.1.2.3 Receive Interrupts
The RCIF interrupt flag bit of the PIR1 register is set
whenever the EUSART receiver is enabled and there is
an unread character in the receive FIFO. The RCIF
interrupt flag bit is read-only, it cannot be set or cleared
by software.
RCIF interrupts are enabled by setting all of the
following bits:
RCIE, Interrupt Enable bit of the PIE1 register
PEIE, Peripheral Interrupt Enable bit of the
INTCON register
GIE, Global Interrupt Enable bit of the INTCON
register
The RCIF interrupt flag bit will be set when there is an
unread character in the FIFO, regardless of the state of
interrupt enable bits.
Note 1: If the RX/DT function is on an analog pin,
the corresponding ANSEL bit must be
cleared for the receiver to function.
Note: If the receive FIFO is overrun, no additional
characters will be received until the overrun
condition is cleared. See Section 22.1.2.5
“Receive Overrun Error” for more
information on overrun errors.
PIC16(L)F1516/7/8/9
DS40001452F-page 226 2010-2016 Microchip Technology Inc.
22.1.2.4 Receive Framing Error
Each character in the receive FIFO buffer has a
corresponding framing error Status bit. A framing error
indicates that a Stop bit was not seen at the expected
time. The framing error status is accessed via the
FERR bit of the RCSTA register. The FERR bit
represents the status of the top unread character in the
receive FIFO. Therefore, the FERR bit must be read
before reading the RCREG.
The FERR bit is read-only and only applies to the top
unread character in the receive FIFO. A framing error
(FERR = 1) does not preclude reception of additional
characters. It is not necessary to clear the FERR bit.
Reading the next character from the FIFO buffer will
advance the FIFO to the next character and the next
corresponding framing error.
The FERR bit can be forced clear by clearing the SPEN
bit of the RCSTA register which resets the EUSART.
Clearing the CREN bit of the RCSTA register does not
affect the FERR bit. A framing error by itself does not
generate an interrupt.
22.1.2.5 Receive Overrun Error
The receive FIFO buffer can hold two characters. An
overrun error will be generated if a third character, in its
entirety, is received before the FIFO is accessed. When
this happens the OERR bit of the RCSTA register is
set. The characters already in the FIFO buffer can be
read but no additional characters will be received until
the error is cleared. The error must be cleared by either
clearing the CREN bit of the RCSTA register or by
resetting the EUSART by clearing the SPEN bit of the
RCSTA register.
22.1.2.6 Receiving 9-bit Characters
The EUSART supports 9-bit character reception. When
the RX9 bit of the RCSTA register is set the EUSART
will shift nine bits into the RSR for each character
received. The RX9D bit of the RCSTA register is the
9th and Most Significant data bit of the top unread char-
acter in the receive FIFO. When reading 9-bit data from
the receive FIFO buffer, the RX9D data bit must be
read before reading the eight Least Significant bits from
the RCREG.
22.1.2.7 Address Detection
A special Address Detection mode is available for use
when multiple receivers share the same transmission
line, such as in RS-485 systems. Address detection is
enabled by setting the ADDEN bit of the RCSTA
register.
Address detection requires 9-bit character reception.
When address detection is enabled, only characters
with the 9th data bit set will be transferred to the receive
FIFO buffer, thereby setting the RCIF interrupt bit. All
other characters will be ignored.
Upon receiving an address character, user software
determines if the address matches its own. Upon
address match, user software must disable address
detection by clearing the ADDEN bit before the next
Stop bit occurs. When user software detects the end of
the message, determined by the message protocol
used, software places the receiver back into the
Address Detection mode by setting the ADDEN bit.
Note: If all receive characters in the receive
FIFO have framing errors, repeated reads
of the RCREG will not clear the FERR bit.
2010-2016 Microchip Technology Inc. DS40001452F-page 227
PIC16(L)F1516/7/8/9
22.1.2.8 Asynchronous Reception Setup:
1. Initialize the SPBRGH, SPBRGL register pair
and the BRGH and BRG16 bits to achieve the
desired baud rate (see Section 22.4 “EUSART
Baud Rate Generator (BRG)”).
2. Clear the ANSEL bit for the RX pin (if applicable).
3. Enable the serial port by setting the SPEN bit.
The SYNC bit must be clear for asynchronous
operation.
4. If interrupts are desired, set the RCIE bit of the
PIE1 register and the GIE and PEIE bits of the
INTCON register.
5. If 9-bit reception is desired, set the RX9 bit.
6. Enable reception by setting the CREN bit.
7. The RCIF interrupt flag bit will be set when a
character is transferred from the RSR to the
receive buffer. An interrupt will be generated if
the RCIE interrupt enable bit was also set.
8. Read the RCSTA register to get the error flags
and, if 9-bit data reception is enabled, the 9th
data bit.
9. Get the received eight Least Significant data bits
from the receive buffer by reading the RCREG
register.
10. If an overrun occurred, clear the OERR flag by
clearing the CREN receiver enable bit.
22.1.2.9 9-bit Address Detection Mode Setup
This mode would typically be used in RS-485 systems.
To set up an Asynchronous Reception with Address
Detect Enable:
1. Initialize the SPBRGH, SPBRGL register pair
and the BRGH and BRG16 bits to achieve the
desired baud rate (see Sec tion 22.4 “EUSART
Baud Rate Generator (BRG)”).
2. Clear the ANSEL bit for the RX pin (if applicable).
3. Enable the serial port by setting the SPEN bit.
The SYNC bit must be clear for asynchronous
operation.
4. If interrupts are desired, set the RCIE bit of the
PIE1 register and the GIE and PEIE bits of the
INTCON register.
5. Enable 9-bit reception by setting the RX9 bit.
6. Enable address detection by setting the ADDEN
bit.
7. Enable reception by setting the CREN bit.
8. The RCIF interrupt flag bit will be set when a
character with the 9th bit set is transferred from
the RSR to the receive buffer. An interrupt will be
generated if the RCIE interrupt enable bit was
also set.
9. Read the RCSTA register to get the error flags.
The 9th data bit will always be set.
10. Get the received eight Least Significant data bits
from the receive buffer by reading the RCREG
register. Software determines if this is the
device’s address.
11. If an overrun occurred, clear the OERR flag by
clearing the CREN receiver enable bit.
12. If the device has been addressed, clear the
ADDEN bit to allow all received data into the
receive buffer and generate interrupts.
FIGURE 22-5: ASYNCHRONOUS RECEPTION
Start
bit bit 7/8
bit 1bit 0 bit 7/8 bit 0Stop
bit
Start
bit
Start
bit
bit 7/8 Stop
bit
RX/DT pin
Reg
Rcv Buffer Reg.
Rcv Shift
Read Rcv
Buffer Reg.
RCREG
RCIF
(Interrupt Flag)
OERR bit
CREN
Word 1
RCREG
Word 2
RCREG
Stop
bit
Note: This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,
causing the OERR (overrun) bit to be set.
RCIDL
PIC16(L)F1516/7/8/9
DS40001452F-page 228 2010-2016 Microchip Technology Inc.
TABLE 22-2: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
BAUDCON ABDOVF RCIDL SCKP BRG16 —WUEABDEN 232
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 74
PIE1 TMR1GIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 75
PIR1 TMR1GIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 77
RCREG EUSART Receive Data Register 225*
RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 231
SPBRGL BRG<7:0> 233*
SPBRGH BRG<15:8> 233*
TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 114
TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 230
Legend: — = unimplemented, read as 0’. Shaded cells are not used for asynchronous reception.
* Page provides register information.
2010-2016 Microchip Technology Inc. DS40001452F-page 229
PIC16(L)F1516/7/8/9
22.2 Clock Accuracy with
Asynchronous Operation
The factory calibrates the internal oscillator block
output (INTOSC). However, the INTOSC frequency
may drift as VDD or temperature changes, and this
directly affects the asynchronous baud rate.
The Auto-Baud Detect feature (see Section 22.4.1,
Auto-Baud Detect) can be used to compensate for
changes in the INTOSC frequency.
There may not be fine enough resolution when
adjusting the Baud Rate Generator to compensate for
a gradual change in the peripheral clock frequency.
PIC16(L)F1516/7/8/9
DS40001452F-page 230 2010-2016 Microchip Technology Inc.
22.3 Regis t er D e fi nitio n s : E U S A R T C ontrol
REGISTER 22-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER
R/W-/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R-1/1 R/W-0/0
CSRC TX9 TXEN(1) SYNC SENDB BRGH TRMT TX9D
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 CSRC: Clock Source Select bit
Asynchronous mode:
Don’t care
Synchronous mode:
1 = Master mode (clock generated internally from BRG)
0 = Slave mode (clock from external source)
bit 6 TX9: 9-bit Transmit Enable bit
1 = Selects 9-bit transmission
0 = Selects 8-bit transmission
bit 5 TXEN: Transmit Enable bit(1)
1 = Transmit enabled
0 = Transmit disabled
bit 4 SYNC: EUSART Mode Select bit
1 = Synchronous mode
0 = Asynchronous mode
bit 3 SENDB: Send Break Character bit
Asynchronous mode:
1 = Send Sync Break on next transmission (cleared by hardware upon completion)
0 = Sync Break transmission completed
Synchronous mode:
Don’t care
bit 2 BRGH: High Baud Rate Select bit
Asynchronous mode:
1 = High speed
0 = Low speed
Synchronous mode:
Unused in this mode
bit 1 TRMT: Transmit Shift Register Status bit
1 = TSR empty
0 = TSR full
bit 0 TX9D: Ninth bit of Transmit Data
Can be address/data bit or a parity bit.
Note 1: SREN/CREN overrides TXEN in Sync mode.
2010-2016 Microchip Technology Inc. DS40001452F-page 231
PIC16(L)F1516/7/8/9
REGISTER 22-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R-0/0 R-0/0 R-0/0
SPEN RX9 SREN CREN ADDEN FERR OERR RX9D
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 SPEN: Serial Port Enable bit
1 = Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)
0 = Serial port disabled (held in Reset)
bit 6 RX9: 9-bit Receive Enable bit
1 = Selects 9-bit reception
0 = Selects 8-bit reception
bit 5 SREN: Single Receive Enable bit
Asynchronous mode:
Don’t care
Synchronous mode – Master:
1 = Enables single receive
0 = Disables single receive
This bit is cleared after reception is complete.
Synchronous mode – Slave
Don’t care
bit 4 CREN: Continuous Receive Enable bit
Asynchronous mode:
1 = Enables receiver
0 = Disables receiver
Synchronous mode:
1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)
0 = Disables continuous receive
bit 3 ADDEN: Address Detect Enable bit
Asynchronous mode 9-bit (RX9 = 1):
1 = Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set
0 = Disables address detection, all bytes are received and 9th bit can be used as parity bit
Asynchronous mode 8-bit (RX9 = 0):
Don’t care
bit 2 FERR: Framing Error bit
1 = Framing error (can be updated by reading RCREG register and receive next valid byte)
0 = No framing error
bit 1 OERR: Overrun Error bit
1 = Overrun error (can be cleared by clearing bit CREN)
0 = No overrun error
bit 0 RX9D: Ninth bit of Received Data
This can be address/data bit or a parity bit and must be calculated by user firmware.
PIC16(L)F1516/7/8/9
DS40001452F-page 232 2010-2016 Microchip Technology Inc.
REGISTER 22-3: BAUDCON: BAUD RATE CONTROL REGISTER
R-0/0 R-1/1 U-0 R/W-0/0 R/W-0/0 U-0 R/W-0/0 R/W-0/0
ABDOVF RCIDL SCKP BRG16 WUE ABDEN
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 ABDOVF: Auto-Baud Detect Overflow bit
Asynchronous mode:
1 = Auto-baud timer overflowed
0 = Auto-baud timer did not overflow
Synchronous mode:
Don’t care
bit 6 RCIDL: Receive Idle Flag bit
Asynchronous mode:
1 = Receiver is Idle
0 = Start bit has been received and the receiver is receiving
Synchronous mode:
Don’t care
bit 5 Unimplemented: Read as ‘0
bit 4 SCKP: Synchronous Clock Polarity Select bit
Asynchronous mode:
1 = Transmit inverted data to the TX/CK pin
0 = Transmit non-inverted data to the TX/CK pin
Synchronous mode:
1 = Transmit data changes on the falling edge of the clock. Received data is sampled on the rising
edge of the clock.
0 = Transmit data changes on the rising edge of the clock. Received data is sampled on the falling
edge of the clock.
bit 3 BRG16: 16-bit Baud Rate Generator bit
1 = 16-bit Baud Rate Generator is used
0 = 8-bit Baud Rate Generator is used
bit 2 Unimplemented: Read as ‘0
bit 1 WUE: Wake-up Enable bit
Asynchronous mode:
1 = Receiver is waiting for a falling edge. No character will be received, RCIF bit will be set. WUE will
automatically clear after RCIF is set.
0 = Receiver is operating normally
Synchronous mode:
Don’t care
bit 0 ABDEN: Auto-Baud Detect Enable bit
Asynchronous mode:
1 = Auto-Baud Detect mode is enabled (clears when auto-baud is complete)
0 = Auto-Baud Detect mode is disabled
Synchronous mode:
Don’t care
2010-2016 Microchip Technology Inc. DS40001452F-page 233
PIC16(L)F1516/7/8/9
22.4 EUSART Baud Rate Generator
(BRG)
The Baud Rate Generator (BRG) is an 8-bit or 16-bit
timer that is dedicated to the support of both the
asynchronous and synchronous EUSART operation.
By default, the BRG operates in 8-bit mode. Setting the
BRG16 bit of the BAUDCON register selects 16-bit
mode.
The SPBRGH, SPBRGL register pair determines the
period of the free running baud rate timer. In
Asynchronous mode the multiplier of the baud rate
period is determined by both the BRGH bit of the TXSTA
register and the BRG16 bit of the BAUDCON register. In
Synchronous mode, the BRGH bit is ignored.
Table 22-4 contains the formulas for determining the
baud rate. Example 22-1 provides a sample calculation
for determining the baud rate and baud rate error.
Typical baud rates and error values for various
asynchronous modes have been computed for user’s
convenience and are shown in Table 22-4. It may be
advantageous to use the high baud rate (BRGH = 1),
or the 16-bit BRG (BRG16 = 1) to reduce the baud rate
error. The 16-bit BRG mode is used to achieve slow
baud rates for fast oscillator frequencies.
Writing a new value to the SPBRGH, SPBRGL register
pair causes the BRG timer to be reset (or cleared). This
ensures that the BRG does not wait for a timer overflow
before outputting the new baud rate.
If the system clock is changed during an active receive
operation, a receive error or data loss may result. To
avoid this problem, check the status of the RCIDL bit to
make sure that the receive operation is idle before
changing the system clock.
EXAMPLE 22-1: CALCULATIN G BAUD
RATE ERROR
For a device with FOSC of 16 MHz, desired baud rate
of 9600, Asynchronous mode, 8-bit BRG:
Solving for SPBRGH:SPBRGL:
X
FOSC
Desired Ba ud R at e
---------------------------------------------
64
--------------------------------------------- 1=
Desired Baud Rate FOSC
64 [SPBRGH:SPBRGL] 1+
------------------------------------------------------------------------=
16000000
9600
------------------------
64
------------------------1=
25.04225==
Calculated Baud Rate 16000000
64 25 1+
---------------------------=
9615=
Error Calc. Bau d Rate Desired Baud Rate
Desired Baud Rate
--------------------------------------------------------------------------------------------=
9615 9600
9600
---------------------------------- 0. 1 6 %==
PIC16(L)F1516/7/8/9
DS40001452F-page 234 2010-2016 Microchip Technology Inc.
TABLE 22-4: BAUD RATE FORMULAS
Configuration Bits BRG/EUSART Mode Baud Rate Formula
SYNC BRG16 BRGH
000 8-bit/Asynchronous FOSC/[64 (n+1)]
001 8-bit/Asynchronous FOSC/[16 (n+1)]
010 16-bit/Asynchronous
011 16-bit/Asynchronous
FOSC/[4 (n+1)]10x 8-bit/Synchronous
11x 16-bit/Synchronous
Legend: x = Don’t care, n = value of SPBRGH, SPBRGL register pair.
TABLE 22-3: SUMMARY OF REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
BAUDCON ABDOVF RCIDL SCKP BRG16 WUE ABDEN 232
RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 231
SPBRGL BRG<7:0> 233*
SPBRGH BRG<15:8> 233*
TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 230
Legend: — = unimplemented, read as 0. Shaded cells are not used for the Baud Rate Generator.
* Page provides register information.
2010-2016 Microchip Technology Inc. DS40001452F-page 235
PIC16(L)F1516/7/8/9
TABLE 22-4: BAUD RATES FOR ASYNCHRONOUS MODES
BAUD
RATE
SYNC = 0, BRGH = 0, BRG16 = 0
FOSC = 20.000 MHz FOSC = 18.432 MHz FOSC = 16.000 MHz FOSC = 11.0592 MHz
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
300—— —— —— ——
1200 1221 1.73 255 1200 0.00 239 1202 0.16 207 1200 0.00 143
2400 2404 0.16 129 2400 0.00 119 2404 0.16 103 2400 0.00 71
9600 9470 -1.36 32 9600 0.00 29 9615 0.16 25 9600 0.00 17
10417 10417 0.00 29 10286 -1.26 27 10417 0.00 23 10165 -2.42 16
19.2k 19.53k 1.73 15 19.20k 0.00 14 19.23k 0.16 12 19.20k 0.00 8
57.6k 57.60k 0.00 7—
57.60k 0.00 2
115.2k
BAUD
RATE
SYNC = 0, BRGH = 0, BRG16 = 0
FOSC = 8.000 MHz FOSC = 4.000 MHz FOSC = 3.6864 MHz FOSC = 1.000 MHz
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
300 300 0.16 207 300 0.00 191 300 0.16 51
1200 1202 0.16 103 1202 0.16 51 1200 0.00 47 1202 0.16 12
2400 2404 0.16 51 2404 0.16 25 2400 0.00 23
9600 9615 0.16 12 9600 0.00 5
10417 10417 0.00 11 10417 0.00 5
19.2k 19.20k 0.00 2
57.6k 57.60k 0.00 0
115.2k
BAUD
RATE
SYNC = 0, BRGH = 1, BRG16 = 0
FOSC = 20.000 MHz FOSC = 18.432 MHz FOSC = 16.000 MHz FOSC = 11.0592 MHz
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
300 —— —— —— ——
1200
2400 ——
9600 9615 0.16 129 9600 0.00 119 9615 0.16 103 9600 0.00 71
10417 10417 0.00 119 10378 -0.37 110 10417 0.00 95 10473 0.53 65
19.2k 19.23k 0.16 64 19.20k 0.00 59 19.23k 0.16 51 19.20k 0.00 35
57.6k 56.82k -1.36 21 57.60k 0.00 19 58.82k 2.12 16 57.60k 0.00 11
115.2k 113.64k -1.36 10 115.2k 0.00 9 111.1k -3.55 8 115.2k 0.00 5
PIC16(L)F1516/7/8/9
DS40001452F-page 236 2010-2016 Microchip Technology Inc.
BAUD
RATE
SYNC = 0, BRGH = 1, BRG16 = 0
FOSC = 8.000 MHz FOSC = 4.000 MHz FOSC = 3.6864 MHz FOSC = 1.000 MHz
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
300 —— 300 0.16 207
1200 1202 0.16 207 1200 0.00 191 1202 0.16 51
2400 2404 0.16 207 2404 0.16 103 2400 0.00 95 2404 0.16 25
9600 9615 0.16 51 9615 0.16 25 9600 0.00 23
10417 10417 0.00 47 10417 0.00 23 10473 0.53 21 10417 0.00 5
19.2k 19231 0.16 25 19.23k 0.16 12 19.2k 0.00 11
57.6k 55556 -3.55 8 57.60k 0.00 3
115.2k 115.2k 0.00 1
BAUD
RATE
SYNC = 0, BRGH = 0, BRG16 = 1
FOSC = 20.000 MHz FOSC = 18.432 MHz FOSC = 16.000 MHz FOSC = 11.0592 MHz
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
300 300.0 -0.01 4166 300.0 0.00 3839 300.03 0.01 3332 300.0 0.00 2303
1200 1200 -0.03 1041 1200 0.00 959 1200.5 0.04 832 1200 0.00 575
2400 2399 -0.03 520 2400 0.00 479 2398 -0.08 416 2400 0.00 287
9600 9615 0.16 129 9600 0.00 119 9615 0.16 103 9600 0.00 71
10417 10417 0.00 119 10378 -0.37 110 10417 0.00 95 10473 0.53 65
19.2k 19.23k 0.16 64 19.20k 0.00 59 19.23k 0.16 51 19.20k 0.00 35
57.6k 56.818 -1.36 21 57.60k 0.00 19 58.82k 2.12 16 57.60k 0.00 11
115.2k 113.636 -1.36 10 115.2k 0.00 9 111.11k -3.55 8 115.2k 0.00 5
BAUD
RATE
SYNC = 0, BRGH = 0, BRG16 = 1
FOSC = 8.000 MHz FOSC = 4.000 MHz FOSC = 3.6864 MHz FOSC = 1.000 MHz
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
300 299.9 -0.02 1666 300.1 0.04 832 300.0 0.00 767 300.5 0.16 207
1200 1199 -0.08 416 1202 0.16 207 1200 0.00 191 1202 0.16 51
2400 2404 0.16 207 2404 0.16 103 2400 0.00 95 2404 0.16 25
9600 9615 0.16 51 9615 0.16 25 9600 0.00 23
10417 10417 0.00 47 10417 0.00 23 10473 0.53 21 10417 0.00 5
19.2k 19.23k 0.16 25 19.23k 0.16 12 19.20k 0.00 11
57.6k 55556 -3.55 8 57.60k 0.00 3
115.2k 115.2k 0.00 1
TABLE 22-4: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)
2010-2016 Microchip Technology Inc. DS40001452F-page 237
PIC16(L)F1516/7/8/9
BAUD
RATE
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1
FOSC = 20.000 MHz FOSC = 18.432 MHz FOSC = 16.000 MHz FOSC = 11.0592 MHz
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
300 300.0 0.00 16665 300.0 0.00 15359 300.0 0.00 13332 300.0 0.00 9215
1200 1200 -0.01 4166 1200 0.00 3839 1200.1 0.01 3332 1200 0.00 2303
2400 2400 0.02 2082 2400 0.00 1919 2399.5 -0.02 1666 2400 0.00 1151
9600 9597 -0.03 520 9600 0.00 479 9592 -0.08 416 9600 0.00 287
10417 10417 0.00 479 10425 0.08 441 10417 0.00 383 10433 0.16 264
19.2k 19.23k 0.16 259 19.20k 0.00 239 19.23k 0.16 207 19.20k 0.00 143
57.6k 57.47k -0.22 86 57.60k 0.00 79 57.97k 0.64 68 57.60k 0.00 47
115.2k 116.3k 0.94 42 115.2k 0.00 39 114.29k -0.79 34 115.2k 0.00 23
BAUD
RATE
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1
FOSC = 8.000 MHz FOSC = 4.000 MHz FOSC = 3.6864 MHz FOSC = 1.000 MHz
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
Actual
Rate %
Error
SPBRG
value
(decimal)
300 300.0 0.00 6666 300.0 0.01 3332 300.0 0.00 3071 300.1 0.04 832
1200 1200 -0.02 1666 1200 0.04 832 1200 0.00 767 1202 0.16 207
2400 2401 0.04 832 2398 0.08 416 2400 0.00 383 2404 0.16 103
9600 9615 0.16 207 9615 0.16 103 9600 0.00 95 9615 0.16 25
10417 10417 0 191 10417 0.00 95 10473 0.53 87 10417 0.00 23
19.2k 19.23k 0.16 103 19.23k 0.16 51 19.20k 0.00 47 19.23k 0.16 12
57.6k 57.14k -0.79 34 58.82k 2.12 16 57.60k 0.00 15
115.2k 117.6k 2.12 16 111.1k -3.55 8 115.2k 0.00 7
TABLE 22-4: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)
PIC16(L)F1516/7/8/9
DS40001452F-page 238 2010-2016 Microchip Technology Inc.
22.4.1 AUTO-BAUD DETECT
The EUSART module supports automatic detection
and calibration of the baud rate.
In the Auto-Baud Detect (ABD) mode, the clock to the
BRG is reversed. Rather than the BRG clocking the
incoming RX signal, the RX signal is timing the BRG.
The Baud Rate Generator is used to time the period of
a received 55h (ASCII “U”) which is the Sync character
for the LIN bus. The unique feature of this character is
that it has five rising edges including the Stop bit edge.
Setting the ABDEN bit of the BAUDCON register starts
the auto-baud calibration sequence (Figure 22-6).
While the ABD sequence takes place, the EUSART
state machine is held in Idle. On the first rising edge of
the receive line, after the Start bit, the SPBRG begins
counting up using the BRG counter clock as shown in
Table . The fifth rising edge will occur on the RX pin at
the end of the 8th bit period. At that time, an
accumulated value totaling the proper BRG period is
left in the SPBRGH, SPBRGL register pair, the ABDEN
bit is automatically cleared and the RCIF interrupt flag
is set. The value in the RCREG needs to be read to
clear the RCIF interrupt. RCREG content should be
discarded. When calibrating for modes that do not use
the SPBRGH register the user can verify that the
SPBRGL register did not overflow by checking for 00h
in the SPBRGH register.
The BRG auto-baud clock is determined by the BRG16
and BRGH bits as shown in Tab le . During ABD, both
the SPBRGH and SPBRGL registers are used as a
16-bit counter, independent of the BRG16 bit setting.
While calibrating the baud rate period, the SPBRGH
and SPBRGL registers are clocked at 1/8th the BRG
base clock rate. The resulting byte measurement is the
average bit time when clocked at full speed.
FIGURE 22-6: AUTOMATIC BAUD RATE CALIBRATION
Note 1: If the WUE bit is set with the ABDEN bit,
auto-baud detection will occur on the byte
following the Break character (see
Section 22.4.3 “Auto-Wake-up on
Break”).
2: It is up to the user to determine that the
incoming character baud rate is within the
range of the selected BRG clock source.
Some combinations of oscillator frequency
and EUSART baud rates are not possible.
3: During the auto-baud process, the
auto-baud counter starts counting at 1.
Upon completion of the auto-baud
sequence, to achieve maximum accuracy,
subtract 1 from the SPBRGH:SPBRGL
register pair.
T ABLE 22-5: BRG COUNTER CLOCK RATES
BRG16 BRGH BRG Base
Clock BRG ABD
Clock
00FOSC/64 FOSC/512
01FOSC/16 FOSC/128
10FOSC/16 FOSC/128
11 FOSC/4 FOSC/32
Note: During the ABD sequence, SPBRGL and
SPBRGH registers are both used as a
16-bit counter, independent of BRG16
setting.
BRG Value
RX pin
ABDEN bit
RCIF bit
bit 0 bit 1
(Interrupt)
Read
RCREG
BRG Clock
Start
Auto-Cleared
Set by User
XXXXh 0000h
Edge #1
bit 2 bit 3
Edge #2
bit 4 bit 5
Edge #3
bit 6 bit 7
Edge #4
Stop bit
Edge #5
001Ch
Note 1: The ABD sequence requires the EUSART module to be configured in Asynchronous mode.
SPBRGL XXh 1Ch
SPBRGH XXh 00h
RCIDL
2010-2016 Microchip Technology Inc. DS40001452F-page 239
PIC16(L)F1516/7/8/9
22.4.2 AUTO-BAUD OVERFLOW
During the course of automatic baud detection, the
ABDOVF bit of the BAUDxCON register will be set if the
baud rate counter overflows before the fifth rising edge
is detected on the RX pin. The ABDOVF bit indicates
that the counter has exceeded the maximum count that
can fit in the 16 bits of the SPxBRGH:SPxBRGL
register pair. The overflow condition will set the RCIF
flag. The counter continues to count until the fifth rising
edge is detected on the RX pin. The RCIDL bit will
remain false ('0') until the fifth rising edge at which time
the RCIDL bit will be set. If the RCREG is read after the
overflow occurs but before the fifth rising edge then the
fifth rising edge will set the RCIF again.
Terminating the auto-baud process early to clear an
overflow condition will prevent proper detection of the
sync character fifth rising edge. If any falling edges of
the sync character have not yet occurred when the
ABDEN bit is cleared then those will be falsely detected
as Start bits. The following steps are recommended to
clear the overflow condition:
1. Read RCREG to clear RCIF
2. If RCIDL is zero then wait for RCIF and repeat
step 1.
3. Clear the ABDOVF bit.
22.4.3 AUTO-WAKE-UP ON BREAK
During Sleep mode, all clocks to the EUSART are
suspended. Because of this, the baud rate generator is
inactive and a proper character reception cannot be
performed. The Auto-Wake-up feature allows the
controller to wake-up due to activity on the RX/DT line.
This feature is available only in Asynchronous mode.
The Auto-Wake-up feature is enabled by setting the
WUE bit of the BAUDCON register. Once set, the normal
receive sequence on RX/DT is disabled, and the
EUSART remains in an Idle state, monitoring for a
wake-up event independent of the CPU mode. A
wake-up event consists of a high-to-low transition on the
RX/DT line. (This coincides with the start of a Sync Break
or a wake-up signal character for the LIN protocol.)
The EUSART module generates an RCIF interrupt
coincident with the wake-up event. The interrupt is
generated synchronously to the Q clocks in normal CPU
operating modes (Figure 22-7), and asynchronously if
the device is in Sleep mode (Figure 22-8). The interrupt
condition is cleared by reading the RCREG register.
The WUE bit is automatically cleared by the low-to-high
transition on the RX line at the end of the Break. This
signals to the user that the Break event is over. At this
point, the EUSART module is in Idle mode waiting to
receive the next character.
22.4.3.1 Special Considerations
Break Character
To avoid character errors or character fragments
during a wake-up event, the wake-up character must
be all zeros.
When the wake-up is enabled the function works
independent of the low time on the data stream. If the
WUE bit is set and a valid non-zero character is
received, the low time from the Start bit to the first rising
edge will be interpreted as the wake-up event. The
remaining bits in the character will be received as a
fragmented character and subsequent characters can
result in framing or overrun errors.
Therefore, the initial character in the transmission must
be all0’s. This must be ten or more bit times, 13-bit
times recommended for LIN bus, or any number of bit
times for standard RS-232 devices.
Oscillator Start-up Time
Oscillator start-up time must be considered, especially
in applications using oscillators with longer start-up
intervals (i.e., LP, XT or HS mode). The Sync Break (or
wake-up signal) character must be of sufficient length,
and be followed by a sufficient interval, to allow enough
time for the selected oscillator to start and provide
proper initialization of the EUSART.
WUE Bit
The wake-up event causes a receive interrupt by
setting the RCIF bit. The WUE bit is cleared in
hardware by a rising edge on RX/DT. The interrupt
condition is then cleared in software by reading the
RCREG register and discarding its contents.
To ensure that no actual data is lost, check the RCIDL
bit to verify that a receive operation is not in process
before setting the WUE bit. If a receive operation is not
occurring, the WUE bit may then be set just prior to
entering the Sleep mode.
PIC16(L)F1516/7/8/9
DS40001452F-page 240 2010-2016 Microchip Technology Inc.
FIGURE 22-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION
FIGURE 22-8: AUTO-WAKE-UP B IT (WUE) TIMINGS DURING SLEEP
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
OSC1
WUE bit
RX/DT Line
RCIF
Bit set by user Auto-Cleared
Cleared due to User Read of RCREG
Note 1: The EUSART remains in Idle while the WUE bit is set.
Q1Q2Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4
OSC1
WUE bit
RX/DT Line
RCIF
Bit Set by User Auto-Cleared
Cleared due to User Read of RCREG
Sleep Command Executed
Note 1
Note 1: If the wake-up event requires long oscillator warm-up time, the automatic clearing of the WUE bit can occur while the stposc signal is
still active. This sequence should not depend on the presence of Q clocks.
2: The EUSART remains in Idle while the WUE bit is set.
Sleep Ends
2010-2016 Microchip Technology Inc. DS40001452F-page 241
PIC16(L)F1516/7/8/9
22.4.4 BREAK CHARACTER SEQUENCE
The EUSART module has the capability of sending the
special Break character sequences that are required by
the LIN bus standard. A Break character consists of a
Start bit, followed by 12 ‘0bits and a Stop bit.
To send a Break character, set the SENDB and TXEN
bits of the TXSTA register. The Break character trans-
mission is then initiated by a write to the TXREG. The
value of data written to TXREG will be ignored and all
0’s will be transmitted.
The SENDB bit is automatically reset by hardware after
the corresponding Stop bit is sent. This allows the user
to preload the transmit FIFO with the next transmit byte
following the Break character (typically, the Sync
character in the LIN specification).
The TRMT bit of the TXSTA register indicates when the
transmit operation is active or idle, just as it does during
normal transmission. See Figure 22-9 for the timing of
the Break character sequence.
22.4.4.1 Break and Sync Transmit Sequence
The following sequence will start a message frame
header made up of a Break, followed by an auto-baud
Sync byte. This sequence is typical of a LIN bus
master.
1. Configure the EUSART for the desired mode.
2. Set the TXEN and SENDB bits to enable the
Break sequence.
3. Load the TXREG with a dummy character to
initiate transmission (the value is ignored).
4. Write ‘55h’ to TXREG to load the Sync character
into the transmit FIFO buffer.
5. After the Break has been sent, the SENDB bit is
reset by hardware and the Sync character is
then transmitted.
When the TXREG becomes empty, as indicated by the
TXIF, the next data byte can be written to TXREG.
22.4.5 RECEIVING A BREAK CHARACTER
The Enhanced EUSART module can receive a Break
character in two ways.
The first method to detect a Break character uses the
FERR bit of the RCSTA register and the Received data
as indicated by RCREG. The Baud Rate Generator is
assumed to have been initialized to the expected baud
rate.
A Break character has been received when;
RCIF bit is set
FERR bit is set
RCREG = 00h
The second method uses the Auto-Wake-up feature
described in Section 22.4.3 “Auto-Wake-up on
Break”. By enabling this feature, the EUSART will
sample the next two transitions on RX/DT, cause an
RCIF interrupt, and receive the next data byte followed
by another interrupt.
Note that following a Break character, the user will
typically want to enable the Auto-Baud Detect feature.
For both methods, the user can set the ABDEN bit of
the BAUDCON register before placing the EUSART in
Sleep mode.
FIGURE 22-9: SEND BREAK CHARACTER SEQUENCE
Write to TXREG Dummy Write
BRG Output
(Shift Clock)
Start bit bit 0 bit 1 bit 11 Stop bit
Break
TXIF bit
(Transmit
Interrupt Flag)
TX (pin)
TRMT bit
(Transmit Shift
Empty Flag)
SENDB
(send Break
control bit)
SENDB Sampled Here Auto Cleared
PIC16(L)F1516/7/8/9
DS40001452F-page 242 2010-2016 Microchip Technology Inc.
22.5 EUSART Synchronous Mode
Synchronous serial communications are typically used
in systems with a single master and one or more
slaves. The master device contains the necessary cir-
cuitry for baud rate generation and supplies the clock
for all devices in the system. Slave devices can take
advantage of the master clock by eliminating the inter-
nal clock generation circuitry.
There are two signal lines in Synchronous mode: a
bidirectional data line and a clock line. Slaves use the
external clock supplied by the master to shift the serial
data into and out of their respective receive and
transmit shift registers. Since the data line is
bidirectional, synchronous operation is half-duplex
only. Half-duplex refers to the fact that master and
slave devices can receive and transmit data but not
both simultaneously. The EUSART can operate as
either a master or slave device.
Start and Stop bits are not used in synchronous
transmissions.
22.5.1 SYNCHRONOUS MASTER MODE
The following bits are used to configure the EUSART
for synchronous master operation:
SYNC = 1
CSRC = 1
SREN = 0 (for transmit); SREN = 1 (for receive)
CREN = 0 (for transmit); CREN = 1 (for receive)
SPEN = 1
Setting the SYNC bit of the TXSTA register configures
the device for synchronous operation. Setting the CSRC
bit of the TXSTA register configures the device as a
master. Clearing the SREN and CREN bits of the RCSTA
register ensures that the device is in the Transmit mode,
otherwise the device will be configured to receive. Setting
the SPEN bit of the RCSTA register enables the
EUSART.
22.5.1.1 Master Clock
Synchronous data transfers use a separate clock line,
which is synchronous with the data. A device
configured as a master transmits the clock on the
TX/CK line. The TX/CK pin output driver is
automatically enabled when the EUSART is configured
for synchronous transmit or receive operation. Serial
data bits change on the leading edge to ensure they
are valid at the trailing edge of each clock. One clock
cycle is generated for each data bit. Only as many
clock cycles are generated as there are data bits.
22.5.1.2 Clock Polarity
A clock polarity option is provided for Microwire
compatibility. Clock polarity is selected with the SCKP
bit of the BAUDCON register. Setting the SCKP bit sets
the clock Idle state as high. When the SCKP bit is set,
the data changes on the falling edge of each clock.
Clearing the SCKP bit sets the Idle state as low. When
the SCKP bit is cleared, the data changes on the rising
edge of each clock.
22.5.1.3 Synchronous Master Transmission
Data is transferred out of the device on the RX/DT pin.
The RX/DT and TX/CK pin output drivers are automat-
ically enabled when the EUSART is configured for syn-
chronous master transmit operation.
A transmission is initiated by writing a character to the
TXREG register. If the TSR still contains all or part of a
previous character the new character data is held in the
TXREG until the last bit of the previous character has
been transmitted. If this is the first character, or the pre-
vious character has been completely flushed from the
TSR, the data in the TXREG is immediately transferred
to the TSR. The transmission of the character com-
mences immediately following the transfer of the data
to the TSR from the TXREG.
Each data bit changes on the leading edge of the
master clock and remains valid until the subsequent
leading clock edge.
22.5.1.4 Synchronous Master Transmission
Setup:
1. Initialize the SPBRGH, SPBRGL register pair
and the BRGH and BRG16 bits to achieve the
desired baud rate (see Sec tion 22.4 “EUSART
Baud Rate Generator (BRG)”).
2. Enable the synchronous master serial port by
setting bits SYNC, SPEN and CSRC.
3. Disable Receive mode by clearing bits SREN
and CREN.
4. Enable Transmit mode by setting the TXEN bit.
5. If 9-bit transmission is desired, set the TX9 bit.
6. If interrupts are desired, set the TXIE bit of the
PIE1 register and the GIE and PEIE bits of the
INTCON register.
7. If 9-bit transmission is selected, the 9th bit
should be loaded in the TX9D bit.
8. Start transmission by loading data to the
TXREG register.
Note: The TSR register is not mapped in data
memory, so it is not available to the user.
2010-2016 Microchip Technology Inc. DS40001452F-page 243
PIC16(L)F1516/7/8/9
FIGURE 22-10: SYNCHRONOUS TRANSMISSION
FIGURE 22-11: SYNCHRONOUS TRA NSM ISSION (THROUGH TXEN)
TABLE 22-5: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
TRANSMISSION
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
BAUDCON ABDOVF RCIDL SCKP BRG16 WUE ABDEN 232
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 74
PIE1 TMR1GIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 75
PIR1 TMR1GIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 77
RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 231
SPBRGL BRG<7:0> 233*
SPBRGH BRG<15:8> 233*
TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 114
TXREG EUSART Transmit Data Register 222*
TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 230
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master transmission.
* Page provides register information.
bit 0 bit 1 bit 7
Word 1
bit 2 bit 0 bit 1 bit 7
RX/DT
Write to
TXREG Reg
TXIF bit
(Interrupt Flag)
TXEN bit 1 1
Word 2
TRMT bit
Write Word 1 Write Word 2
Note: Sync Master mode, SPBRGL = 0, continuous transmission of two 8-bit words.
pin
TX/CK pin
TX/CK pin
(SCKP = 0)
(SCKP = 1)
RX/DT pin
TX/CK pin
Write to
TXREG reg
TXIF bit
TRMT bit
bit 0 bit 1 bit 2 bit 6 bit 7
TXEN bit
PIC16(L)F1516/7/8/9
DS40001452F-page 244 2010-2016 Microchip Technology Inc.
22.5.1.5 Synchronous Master Reception
Data is received at the RX/DT pin. The RX/DT pin
output driver is automatically disabled when the
EUSART is configured for synchronous master receive
operation.
In Synchronous mode, reception is enabled by setting
either the Single Receive Enable bit (SREN of the
RCSTA register) or the Continuous Receive Enable bit
(CREN of the RCSTA register).
When SREN is set and CREN is clear, only as many
clock cycles are generated as there are data bits in a
single character. The SREN bit is automatically cleared
at the completion of one character. When CREN is set,
clocks are continuously generated until CREN is
cleared. If CREN is cleared in the middle of a character
the CK clock stops immediately and the partial charac-
ter is discarded. If SREN and CREN are both set, then
SREN is cleared at the completion of the first character
and CREN takes precedence.
To initiate reception, set either SREN or CREN. Data is
sampled at the RX/DT pin on the trailing edge of the
TX/CK clock pin and is shifted into the Receive Shift
Register (RSR). When a complete character is
received into the RSR, the RCIF bit is set and the char-
acter is automatically transferred to the two character
receive FIFO. The Least Significant eight bits of the top
character in the receive FIFO are available in RCREG.
The RCIF bit remains set as long as there are unread
characters in the receive FIFO.
22.5.1.6 Slave Clock
Synchronous data transfers use a separate clock line,
which is synchronous with the data. A device configured
as a slave receives the clock on the TX/CK line. The
TX/CK pin output driver is automatically disabled when
the device is configured for synchronous slave transmit
or receive operation. Serial data bits change on the
leading edge to ensure they are valid at the trailing edge
of each clock. One data bit is transferred for each clock
cycle. Only as many clock cycles should be received as
there are data bits.
22.5.1.7 Receive Overrun Error
The receive FIFO buffer can hold two characters. An
overrun error will be generated if a third character, in its
entirety, is received before RCREG is read to access
the FIFO. When this happens the OERR bit of the
RCSTA register is set. Previous data in the FIFO will
not be overwritten. The two characters in the FIFO
buffer can be read, however, no additional characters
will be received until the error is cleared. The OERR bit
can only be cleared by clearing the overrun condition.
If the overrun error occurred when the SREN bit is set
and CREN is clear then the error is cleared by reading
RCREG. If the overrun occurred when the CREN bit is
set then the error condition is cleared by either clearing
the CREN bit of the RCSTA register or by clearing the
SPEN bit which resets the EUSART.
22.5.1.8 Receiving 9-Bit Characters
The EUSART supports 9-bit character reception. When
the RX9 bit of the RCSTA register is set the EUSART
will shift 9-bits into the RSR for each character
received. The RX9D bit of the RCSTA register is the
9th, and Most Significant, data bit of the top unread
character in the receive FIFO. When reading 9-bit data
from the receive FIFO buffer, the RX9D data bit must
be read before reading the eight Least Significant bits
from the RCREG.
22.5.1.9 Synchronous Master Reception
Setup:
1. Initialize the SPBRGH, SPBRGL register pair for
the appropriate baud rate. Set or clear the
BRGH and BRG16 bits, as required, to achieve
the desired baud rate.
2. Clear the ANSEL bit for the RX pin (if applicable).
3. Enable the synchronous master serial port by
setting bits SYNC, SPEN and CSRC.
4. Ensure bits CREN and SREN are clear.
5. If interrupts are desired, set the RCIE bit of the
PIE1 register and the GIE and PEIE bits of the
INTCON register.
6. If 9-bit reception is desired, set bit RX9.
7. Start reception by setting the SREN bit or for
continuous reception, set the CREN bit.
8. Interrupt flag bit RCIF will be set when reception
of a character is complete. An interrupt will be
generated if the enable bit RCIE was set.
9. Read the RCSTA register to get the 9th bit (if
enabled) and determine if any error occurred
during reception.
10. Read the 8-bit received data by reading the
RCREG register.
11. If an overrun error occurs, clear the error by
either clearing the CREN bit of the RCSTA
register or by clearing the SPEN bit which resets
the EUSART.
Note: If the RX/DT function is on an analog pin,
the corresponding ANSEL bit must be
cleared for the receiver to function.
Note: If the device is configured as a slave and
the TX/CK function is on an analog pin, the
corresponding ANSEL bit must be
cleared.
2010-2016 Microchip Technology Inc. DS40001452F-page 245
PIC16(L)F1516/7/8/9
FIGURE 22-12: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
CREN bit
RX/DT
Write to
bit SREN
SREN bit
RCIF bit
(Interrupt)
Read
RCREG
0
bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
0
Note: Timing diagram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.
TX/CK pin
TX/CK pin
pin
(SCKP = 0)
(SCKP = 1)
TABLE 22-6: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
RECEPTION
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
BAUDCON ABDOVF RCIDL SCKP BRG16 WUE ABDEN 232
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 74
PIE1 TMR1GIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 75
PIR1 TMR1GIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 77
RCREG EUSART Receive Data Register 225*
RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 231
SPBRGL BRG<7:0> 233*
SPBRGH BRG<15:8> 233*
TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 114
TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 230
Legend: — = unimplemented, read as 0’. Shaded cells are not used for synchronous master reception.
* Page provides register information.
PIC16(L)F1516/7/8/9
DS40001452F-page 246 2010-2016 Microchip Technology Inc.
22.5.2 SYNCHRONOUS SLAVE MODE
The following bits are used to configure the EUSART
for Synchronous slave operation:
SYNC = 1
CSRC = 0
SREN = 0 (for transmit); SREN = 1 (for receive)
CREN = 0 (for transmit); CREN = 1 (for receive)
SPEN = 1
Setting the SYNC bit of the TXSTA register configures
the device for synchronous operation. Clearing the
CSRC bit of the TXSTA register configures the device as
a slave. Clearing the SREN and CREN bits of the RCSTA
register ensures that the device is in the Transmit mode,
otherwise the device will be configured to receive. Setting
the SPEN bit of the RCSTA register enables the
EUSART.
22.5.2.1 EUSART Synchronous Slave
Transmit
The operation of the Synchronous Master and Slave
modes are identical (see Section 22.5.1.3
“Synchronous Master Transmission), except in the
case of the Sleep mode.
If two words are written to the TXREG and then the
SLEEP instruction is executed, the following will occur:
1. The first character will immediately transfer to
the TSR register and transmit.
2. The second word will remain in TXREG register.
3. The TXIF bit will not be set.
4. After the first character has been shifted out of
TSR, the TXREG register will transfer the second
character to the TSR and the TXIF bit will now be
set.
5. If the PEIE and TXIE bits are set, the interrupt
will wake the device from Sleep and execute the
next instruction. If the GIE bit is also set, the
program will call the Interrupt Service Routine.
22.5.2.2 Synchronous Slave Transmission
Setup:
1. Set the SYNC and SPEN bits and clear the
CSRC bit.
2. Clear the ANSEL bit for the CK pin (if applicable).
3. Clear the CREN and SREN bits.
4. If interrupts are desired, set the TXIE bit of the
PIE1 register and the GIE and PEIE bits of the
INTCON register.
5. If 9-bit transmission is desired, set the TX9 bit.
6. Enable transmission by setting the TXEN bit.
7. If 9-bit transmission is selected, insert the Most
Significant bit into the TX9D bit.
8. Start transmission by writing the Least
Significant 8 bits to the TXREG register.
TABLE 22-7: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE
TRANSMISSION
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
BAUDCON ABDOVF RCIDL —SCKPBRG16 WUE ABDEN 232
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 74
PIE1 TMR1GIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 75
PIR1 TMR1GIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 77
RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 231
TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 114
TXREG EUSART Transmit Data Register 222*
TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 230
Legend: — = unimplemented, read as 0’. Shaded cells are not used for synchronous slave transmission.
* Page provides register information.
2010-2016 Microchip Technology Inc. DS40001452F-page 247
PIC16(L)F1516/7/8/9
22.5.2.3 EUSART Synchronous Slave
Reception
The operation of the Synchronous Master and Slave
modes is identical (Section 22.5.1.5 “Synchronous
Master Reception”), with the following exceptions:
Sleep
CREN bit is always set, therefore the receiver is
never idle
SREN bit, which is a “don’t care” in Slave mode
A character may be received while in Sleep mode by
setting the CREN bit prior to entering Sleep. Once the
word is received, the RSR register will transfer the data
to the RCREG register. If the RCIE enable bit is set, the
interrupt generated will wake the device from Sleep
and execute the next instruction. If the GIE bit is also
set, the program will branch to the interrupt vector.
22.5.2.4 Synchronous Slave Reception
Setup:
1. Set the SYNC and SPEN bits and clear the
CSRC bit.
2. Clear the ANSEL bit for both the CK and DT pins
(if applicable).
3. If interrupts are desired, set the RCIE bit of the
PIE1 register and the GIE and PEIE bits of the
INTCON register.
4. If 9-bit reception is desired, set the RX9 bit.
5. Set the CREN bit to enable reception.
6. The RCIF bit will be set when reception is
complete. An interrupt will be generated if the
RCIE bit was set.
7. If 9-bit mode is enabled, retrieve the Most
Significant bit from the RX9D bit of the RCSTA
register.
8. Retrieve the eight Least Significant bits from the
receive FIFO by reading the RCREG register.
9. If an overrun error occurs, clear the error by
either clearing the CREN bit of the RCSTA
register or by clearing the SPEN bit which resets
the EUSART.
TABLE 22-8: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE
RECEPTION
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register
on Page
BAUDCON ABDOVF RCIDL —SCKPBRG16 WUE ABDEN 232
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 74
PIE1 TMR1GIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 75
PIR1 TMR1GIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 77
RCREG EUSART Receive Data Register 225*
RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 231
TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 114
TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 230
Legend: — = unimplemented, read as 0. Shaded cells are not used for synchronous slave reception.
* Page provides register information.
PIC16(L)F1516/7/8/9
DS40001452F-page 248 2010-2016 Microchip Technology Inc.
22.6 EUSART Operation During Sleep
The EUSART will remain active during Sleep only in the
Synchronous Slave mode. All other modes require the
system clock and therefore cannot generate the
necessary signals to run the Transmit or Receive Shift
registers during Sleep.
Synchronous Slave mode uses an externally generated
clock to run the Transmit and Receive Shift registers.
22.6.1 SYNCHRONOUS RECEIVE DURING
SLEEP
To receive during Sleep, all the following conditions
must be met before entering Sleep mode:
RCSTA and TXSTA Control registers must be
configured for Synchronous Slave Reception (see
Section 22.5.2.4 “Synchronous Slave
Reception Setup:”).
If interrupts are desired, set the RCIE bit of the
PIE1 register and the GIE and PEIE bits of the
INTCON register.
The RCIF interrupt flag must be cleared by
reading RCREG to unload any pending
characters in the receive buffer.
Upon entering Sleep mode, the device will be ready to
accept data and clocks on the RX/DT and TX/CK pins,
respectively. When the data word has been completely
clocked in by the external device, the RCIF interrupt
flag bit of the PIR1 register will be set. Thereby, waking
the processor from Sleep.
Upon waking from Sleep, the instruction following the
SLEEP instruction will be executed. If the Global Inter-
rupt Enable (GIE) bit of the INTCON register is also set,
then the Interrupt Service Routine at address 004h will
be called.
22.6.2 SYNCHRONOUS TRANSMIT
DURING SLEEP
To transmit during Sleep, all the following conditions
must be met before entering Sleep mode:
RCSTA and TXSTA Control registers must be
configured for synchronous slave transmission
(see Section 22.5.2.2 “Synchronous Slave
Transmission Setup:”).
The TXIF interrupt flag must be cleared by writing
the output data to the TXREG, thereby filling the
TSR and transmit buffer.
If interrupts are desired, set the TXIE bit of the
PIE1 register and the PEIE bit of the INTCON reg-
ister.
Interrupt enable bits TXIE of the PIE1 register and
PEIE of the INTCON register must set.
Upon entering Sleep mode, the device will be ready to
accept clocks on TX/CK pin and transmit data on the
RX/DT pin. When the data word in the TSR has been
completely clocked out by the external device, the
pending byte in the TXREG will transfer to the TSR and
the TXIF flag will be set. Thereby, waking the processor
from Sleep. At this point, the TXREG is available to
accept another character for transmission, which will
clear the TXIF flag.
Upon waking from Sleep, the instruction following the
SLEEP instruction will be executed. If the Global
Interrupt Enable (GIE) bit is also set then the Interrupt
Service Routine at address 0004h will be called.
2010-2016 Microchip Technology Inc. DS40001452F-page 249
PIC16(L)F1516/7/8/9
23.0 IN-CIRCUIT SER IA L
PROGRAMMING™ (ICSP™)
ICSP™ programming allows customers to manufacture
circuit boards with unprogrammed devices. Programming
can be done after the assembly process, allowing the
device to be programmed with the most recent firmware
or a custom firmware. Five pins are needed for ICSP™
programming:
ICSPCLK
ICSPDAT
•MCLR
/VPP
•VDD
•VSS
In Program/Verify mode the program memory, user IDs
and the Configuration Words are programmed through
serial communications. The ICSPDAT pin is a bidirec-
tional I/O used for transferring the serial data and the
ICSPCLK pin is the clock input. For more information on
ICSP™ refer to the “PIC16(L)F151X/152X Memory
Programming Specification”, (DS41442).
23.1 High-Voltage Programming Entry
Mode
The device is placed into High-Voltage Programming
Entry mode by holding the ICSPCLK and ICSPDAT
pins low then raising the voltage on MCLR/VPP to VIHH.
23.2 Low-Voltage Programming Entry
Mode
The Low-Voltage Programming Entry mode allows the
PIC® Flash MCUs to be programmed using VDD only,
without high voltage. When the LVP bit of Configuration
Words is set to ‘1’, the low-voltage ICSP programming
entry is enabled. To disable the Low-Voltage ICSP
mode, the LVP bit must be programmed to ‘0’.
Entry into the Low-Voltage Programming Entry mode
requires the following steps:
1. MCLR is brought to VIL.
2. A 32-bit key sequence is presented on
ICSPDAT, while clocking ICSPCLK.
Once the key sequence is complete, MCLR must be
held at VIL for as long as Program/Verify mode is to be
maintained.
If low-voltage programming is enabled (LVP = 1), the
MCLR Reset function is automatically enabled and
cannot be disabled. See Section 6.5 “MCLR for more
information.
The LVP bit can only be reprogrammed to ‘0’ by using
the High-Voltage Programming mode.
23.3 Common Programming Interfaces
Connection to a target device is typically done through
an ICSP™ header. A commonly found connector on
development tools is the RJ-11 in the 6P6C (6-pin,
6-connector) configuration. See Figure 23-1.
FIGURE 23-1: ICD RJ-11 STYLE
CONNECTOR INTERFACE
Another connector often found in use with the PICkit™
programmers is a standard 6-pin header with 0.1 inch
spacing. Refer to Figure 23-2.
For additional interface recommendations, refer to the
specific device programmer manual prior to PCB
design.
It is recommended that isolation devices be used to
separate the programming pins from other circuitry.
The type of isolation is highly dependent on the specific
application and may include devices such as resistors,
diodes, or even jumpers. See Figure 23-3 for more
information.
1
2
3
4
5
6
Target
Bottom Side
PC Board
VPP/MCLR VSS
ICSPCLK
VDD
ICSPDAT
NC
Pin Description*
1 = VPP/MCLR
2 = VDD Target
3 = VSS (ground)
4 = ICSPDAT
5 = ICSPCLK
6 = No Connect
PIC16(L)F1516/7/8/9
DS40001452F-page 250 2010-2016 Microchip Technology Inc.
FIGURE 23-2: PICkit™ PROGRAMMER STYLE CONNECTOR INTERFACE
FIGURE 23-3: TYPICAL CONNECTION FOR ICSP™ PROGRAMMING
1
2
3
4
5
6
* The 6-pin header (0.100" spacing) accepts 0.025" square pins.
Pin Description*
1 = VPP/MCLR
2 = VDD Target
3 = VSS (ground)
4 = ICSPDAT
5 = ICSPCLK
6 = No Connect
Pin 1 Indicator
VDD
VPP
VSS
External
Device to be
Data
Clock
VDD
MCLR/VPP
VSS
ICSPDAT
ICSPCLK
**
*
To Normal Connections
*Isolation devices (as required).
Programming
Signals Programmed
VDD
2010-2016 Microchip Technology Inc. DS40001452F-page 251
PIC16(L)F1516/7/8/9
24.0 INSTRUCTION SET SUMMARY
Each instruction is a 14-bit word containing the opera-
tion code (opcode) and all required operands. The
opcodes are broken into three broad categories.
Byte Oriented
Bit Oriented
Literal and Control
The literal and control category contains the most
varied instruction word format.
Table lists the instructions recognized by the
MPASMTM assembler.
All instructions are executed within a single instruction
cycle, with the following exceptions, which may take
two or three cycles:
Subroutine takes two cycles (CALL, CALLW)
Returns from interrupts or subroutines take two
cycles (RETURN, RETLW, RETFIE)
Program branching takes two cycles (GOTO, BRA,
BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
One additional instruction cycle will be used when
any instruction references an indirect file register
and the file select register is pointing to program
memory.
One instruction cycle consists of four oscillator cycles;
for an oscillator frequency of 4 MHz, this gives a
nominal instruction execution rate of 1 MHz.
All instruction examples use the format ‘0xhh’ to
represent a hexadecimal number, where ‘h’ signifies a
hexadecimal digit.
24.1 Read-Modify-Write Operations
Any instruction that specifies a file register as part of
the instruction performs a Read-Modify-Write (R-M-W)
operation. The register is read, the data is modified,
and the result is stored according to either the instruc-
tion, or the destination designator ‘d’. A read operation
is performed on a register even if the instruction writes
to that register.
TABLE 24-1: OPCODE FIELD
DESCRIPTIONS
Field Description
fRegister file address (0x00 to 0x7F)
WWorking register (accumulator)
bBit address within an 8-bit file register
kLiteral field, constant data or label
xDon’t care location (= 0 or 1).
The assembler will generate code with x = 0.
It is the recommended form of use for
compatibility with all Microchip software tools.
dDestination select; d = 0: store result in W,
d = 1: store result in file register f.
Default is d = 1.
nFSR or INDF number. (0-1)
mm Pre-post increment-decrement mode
selection
TABLE 24-2: ABBREVIATION
DESCRIPTIONS
Field Description
PC Program Counter
TO Time-out bit
CCarry bit
DC Digit carry bit
ZZero bit
PD Power-down bit
PIC16(L)F1516/7/8/9
DS40001452F-page 252 2010-2016 Microchip Technology Inc.
FIGURE 24-1: GENERAL FORMAT FOR
INSTRUCTIONS
Byte-oriented f ile r e gister operations
13 8 7 6 0
d = 0 for destination W
OPCODE d f (FILE #)
d = 1 for destination f
f = 7-bit file register address
Bit-oriente d file register operations
13 10 9 7 6 0
OPCODE b (BIT #) f (FILE #)
b = 3-bit bit address
f = 7-bit file register address
Literal and control operations
13 8 7 0
OPCODE k (literal)
k = 8-bit immediate value
13 11 10 0
OPCODE k (literal)
k = 11-bit immediate value
General
CALL and GOTO instructions only
MOVLP instruction only
13 5 4 0
OPCODE k (literal)
k = 5-bit immediate value
MOVLB instruction only
13 9 8 0
OPCODE k (literal)
k = 9-bit immediate value
BRA instruction only
FSR Offset instructions
13 7 6 5 0
OPCODE n k (literal)
n = appropriate FSR
FSR Increment instructions
13 7 6 0
OPCODE k (literal)
k = 7-bit immediate value
13 3 2 1 0
OPCODE n m (mode)
n = appropriate FSR
m = 2-bit mode value
k = 6-bit immediate value
13 0
OPCODE
OPCODE only
2010-2016 Microchip Technology Inc. DS40001452F-page 253
PIC16(L)F1516/7/8/9
TABLE 24-3: INSTRUCTION SET
Mnemonic,
Operands Description Cycles 14-Bit Opcode Status
Affected Notes
MSb LSb
BYTE-ORIENTED FILE REGISTER OPERATIONS
ADDWF
ADDWFC
ANDWF
ASRF
LSLF
LSRF
CLRF
CLRW
COMF
DECF
INCF
IORWF
MOVF
MOVWF
RLF
RRF
SUBWF
SUBWFB
SWAPF
XORWF
f, d
f, d
f, d
f, d
f, d
f, d
f
f, d
f, d
f, d
f, d
f, d
f
f, d
f, d
f, d
f, d
f, d
f, d
Add W and f
Add with Carry W and f
AND W with f
Arithmetic Right Shift
Logical Left Shift
Logical Right Shift
Clear f
Clear W
Complement f
Decrement f
Increment f
Inclusive OR W with f
Move f
Move W to f
Rotate Left f through Carry
Rotate Right f through Carry
Subtract W from f
Subtract with Borrow W from f
Swap nibbles in f
Exclusive OR W with f
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
00
11
00
11
11
11
00
00
00
00
00
00
00
00
00
00
00
11
00
00
0111
1101
0101
0111
0101
0110
0001
0001
1001
0011
1010
0100
1000
0000
1101
1100
0010
1011
1110
0110
dfff
dfff
dfff
dfff
dfff
dfff
lfff
0000
dfff
dfff
dfff
dfff
dfff
1fff
dfff
dfff
dfff
dfff
dfff
dfff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
00xx
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
ffff
C, DC, Z
C, DC, Z
Z
C, Z
C, Z
C, Z
Z
Z
Z
Z
Z
Z
Z
C
C
C, DC, Z
C, DC, Z
Z
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
BYTE-ORIENTED SKIP OPERATIONS
DECFSZ
INCFSZ
f, d
f, d
Decrement f, Skip if 0
Increment f, Skip if 0
1(2)
1(2)
00
00 1011
1111 dfff
dfff ffff
ffff 1, 2
1, 2
BIT-ORIENTED FILE REGISTER OPERATIONS
BCF
BSF
f, b
f, b
Bit Clear f
Bit Set f
1
1
01
01 00bb
01bb bfff
bfff ffff
ffff 2
2
BIT-ORIENTED SKIP OPERATIONS
BTFSC
BTFSS
f, b
f, b
Bit Test f, Skip if Clear
Bit Test f, Skip if Set
1 (2)
1 (2)
01
01 10bb
11bb bfff
bfff ffff
ffff 1, 2
1, 2
LITERAL OPERATIONS
ADDLW
ANDLW
IORLW
MOVLB
MOVLP
MOVLW
SUBLW
XORLW
k
k
k
k
k
k
k
k
Add literal and W
AND literal with W
Inclusive OR literal with W
Move literal to BSR
Move literal to PCLATH
Move literal to W
Subtract W from literal
Exclusive OR literal with W
1
1
1
1
1
1
1
1
11
11
11
00
11
11
11
11
1110
1001
1000
0000
0001
0000
1100
1010
kkkk
kkkk
kkkk
001k
1kkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
C, DC, Z
Z
Z
C, DC, Z
Z
Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle
is executed as a NOP.
2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one
additional instruction cycle.
PIC16(L)F1516/7/8/9
DS40001452F-page 254 2010-2016 Microchip Technology Inc.
TABLE 24-3: INSTRUCTION SET (CONTINUED)
Mnemonic,
Operands Description Cycles 14-Bit Opcode Status
Affected Notes
MSb LSb
CONTROL OPERATIONS
BRA
BRW
CALL
CALLW
GOTO
RETFIE
RETLW
RETURN
k
k
k
k
k
Relative Branch
Relative Branch with W
Call Subroutine
Call Subroutine with W
Go to address
Return from interrupt
Return with literal in W
Return from Subroutine
2
2
2
2
2
2
2
2
11
00
10
00
10
00
11
00
001k
0000
0kkk
0000
1kkk
0000
0100
0000
kkkk
0000
kkkk
0000
kkkk
0000
kkkk
0000
kkkk
1011
kkkk
1010
kkkk
1001
kkkk
1000
INHERENT OPERATIONS
CLRWDT
NOP
OPTION
RESET
SLEEP
TRIS
f
Clear Watchdog Timer
No Operation
Load OPTION_REG register with W
Software device Reset
Go into Standby mode
Load TRIS register with W
1
1
1
1
1
1
00
00
00
00
00
00
0000
0000
0000
0000
0000
0000
0110
0000
0110
0000
0110
0110
0100
0000
0010
0001
0011
0fff
TO, PD
TO, PD
C-COMPILER OPTIMIZED
ADDFSR
MOVIW
MOVWI
n, k
n mm
k[n]
n mm
k[n]
Add Literal k to FSRn
Move Indirect FSRn to W with pre/post inc/dec
modifier, mm
Move INDFn to W, Indexed Indirect.
Move W to Indirect FSRn with pre/post inc/dec
modifier, mm
Move W to INDFn, Indexed Indirect.
1
1
1
1
1
11
00
11
00
11
0001
0000
1111
0000
1111
0nkk
0001
0nkk
0001
1nkk
kkkk
0nmm
kkkk
1nmm
kkkk
Z
Z
2, 3
2
2, 3
2
Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle
is executed as a NOP.
2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require
one additional instruction cycle.
3: See Table in the MOVIW and MOVWI instruction descriptions.
2010-2016 Microchip Technology Inc. DS40001452F-page 255
PIC16(L)F1516/7/8/9
24.2 Instruction Descriptions
ADDFSR Add Literal to FSRn
Syntax: [ label ] ADDFSR FSRn, k
Operands: -32 k 31
n [ 0, 1]
Operation: FSR(n) + k FSR(n)
Status Affected: None
Description: The signed 6-bit literal ‘k’ is added to
the contents of the FSRnH:FSRnL
register pair.
FSRn is limited to the range 0000h -
FFFFh. Moving beyond these bounds
will cause the FSR to wrap-around.
ADDLW Add literal and W
Syntax: [ label ] ADDLW k
Operands: 0 k 255
Operation: (W) + k (W)
Status Affected: C, DC, Z
Description: The contents of the W register are
added to the 8-bit literal ‘k’ and the
result is placed in the W register.
ADDWF Add W and f
Syntax: [ label ] ADDWF f,d
Operands: 0 f 127
d 0,1
Operation: (W) + (f) (destination)
Status Affected: C, DC, Z
Description: Add the contents of the W register
with register ‘f’. If ‘d’ is ‘0’, the result is
stored in the W register. If ‘d’ is ‘1’, the
result is stored back in register ‘f’.
ADDWFC ADD W and CARRY bit to f
Syntax: [ label ] ADDWFC f {,d}
Operands: 0 f 127
d [0,1]
Operation: (W) + (f) + (C) dest
Status Affected: C, DC, Z
Description: Add W, the Carry flag and data mem-
ory location ‘f’. If ‘d’ is0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed in data memory location ‘f’.
ANDLW AND literal with W
Syntax: [ label ] ANDLW k
Operands: 0 k 255
Operation: (W) .AND. (k) (W)
Status Affected: Z
Description: The contents of W register are
AND’ed with the 8-bit literal ‘k’. The
result is placed in the W register.
ANDWF AND W with f
Syntax: [ label ] ANDWF f,d
Operands: 0 f 127
d 0,1
Operation: (W) .AND. (f) (destination)
Status Affected: Z
Description: AND the W register with register ‘f’. If
‘d’ is 0’, the result is stored in the W
register. If ‘d’ is ‘1’, the result is stored
back in register ‘f’.
ASRF Arithmetic Right Shift
Syntax: [ label ] ASRF f {,d}
Operands: 0 f 127
d [0,1]
Operation: (f<7>) dest<7>
(f<7:1>) dest<6:0>,
(f<0>) C,
Status Affected: C, Z
Description: The contents of register ‘f’ are shifted
one bit to the right through the Carry
flag. The MSb remains unchanged. If
‘d’ is ‘0’, the result is placed in W. If ‘d
is ‘1’, the result is stored back in reg-
ister ‘f’.
register f C
PIC16(L)F1516/7/8/9
DS40001452F-page 256 2010-2016 Microchip Technology Inc.
BCF Bit Clear f
Syntax: [ label ] BCF f,b
Operands: 0 f 127
0 b 7
Operation: 0 (f<b>)
Status Affected: None
Description: Bit ‘b’ in register ‘f’ is cleared.
BRA Relative Branch
Syntax: [ label ] BRA label
[ label ] BRA $+k
Operands: -256 label - PC + 1 255
-256 k 255
Operation: (PC) + 1 + k PC
Status Affected: None
Description: Add the signed 9-bit literal ‘k’ to the
PC. Since the PC will have incre-
mented to fetch the next instruction,
the new address will be PC + 1 + k.
This instruction is a 2-cycle instruc-
tion. This branch has a limited range.
BRW Relative Branch with W
Syntax: [ label ] BRW
Operands: None
Operation: (PC) + (W) PC
Status Affected: None
Description: Add the contents of W (unsigned) to
the PC. Since the PC will have incre-
mented to fetch the next instruction,
the new address will be PC + 1 + (W).
This instruction is a 2-cycle instruc-
tion.
BSF Bit Set f
Syntax: [ label ] BSF f,b
Operands: 0 f 127
0 b 7
Operation: 1 (f<b>)
Status Affected: None
Description: Bit ‘b’ in register ‘f’ is set.
BTFSC Bit Test f, Skip if Clear
Syntax: [ label ] BTFSC f,b
Operands: 0 f 127
0 b 7
Operation: skip if (f<b>) = 0
Status Affected: None
Description: If bit ‘b’ in register ‘f’ is ‘1’, the next
instruction is executed.
If bit ‘b’, in register ‘f’, is ‘0’, the next
instruction is discarded, and a NOP is
executed instead, making this a
2-cycle instruction.
BTFSS Bit Test f, Skip if Set
Syntax: [ label ] BTFSS f,b
Operands: 0 f 127
0 b < 7
Operation: skip if (f<b>) = 1
Status Affected: None
Description: If bit ‘b’ in register ‘f’ is ‘0’, the next
instruction is executed.
If bit ‘b’ is ‘1’, then the next
instruction is discarded and a NOP is
executed instead, making this a
2-cycle instruction.
2010-2016 Microchip Technology Inc. DS40001452F-page 257
PIC16(L)F1516/7/8/9
CALL Call S ubr outine
Syntax: [ label ] CALL k
Operands: 0 k 2047
Operation: (PC)+ 1 TOS,
k PC<10:0>,
(PCLATH<6:3>) PC<14:11>
Status Affected: None
Description: Call Subroutine. First, return address
(PC + 1) is pushed onto the stack.
The 11-bit immediate address is
loaded into PC bits <10:0>. The upper
bits of the PC are loaded from
PCLATH. CALL is a 2-cycle instruc-
tion.
CALLW Subroutine Call With W
Syntax: [ label ] CALLW
Operands: None
Operation: (PC) +1 TOS,
(W) PC<7:0>,
(PCLATH<6:0>) PC<14:8>
Status Affected: None
Description: Subroutine call with W. First, the
return address (PC + 1) is pushed
onto the return stack. Then, the con-
tents of W is loaded into PC<7:0>,
and the contents of PCLATH into
PC<14:8>. CALLW is a 2-cycle
instruction.
CLRF Clear f
Syntax: [ lab e l ] CLRF f
Operands: 0 f 127
Operation: 00h (f)
1 Z
Status Affected: Z
Description: The contents of register ‘f’ are cleared
and the Z bit is set.
CLRW Clear W
Syntax: [ label ] CLRW
Operands: None
Operation: 00h (W)
1 Z
Status Affected: Z
Description: W register is cleared. Zero bit (Z) is
set.
CLRWDT Clear Watchdog Timer
Syntax: [ label ] CLRWDT
Operands: None
Operation: 00h WDT
0 WDT prescaler,
1 TO
1 PD
Status Affected: TO, PD
Description: CLRWDT instruction resets the Watch-
dog Timer. It also resets the prescaler
of the WDT.
Status bits TO and PD are set.
COMF Complement f
Syntax: [ label ] COMF f,d
Operands: 0 f 127
d [0,1]
Operation: (f) (destination)
Status Affected: Z
Description: The contents of register ‘f’ are com-
plemented. If ‘d’ is 0’, the result is
stored in W. If ‘d’ is ‘1’, the result is
stored back in register ‘f’.
DECF Decrement f
Syntax: [ label ] DECF f,d
Operands: 0 f 127
d [0,1]
Operation: (f) - 1 (destination)
Status Affected: Z
Description: Decrement register ‘f’. If ‘d’ is ‘0’, the
result is stored in the W
register. If ‘d’ is 1’, the result is stored
back in register ‘f’.
PIC16(L)F1516/7/8/9
DS40001452F-page 258 2010-2016 Microchip Technology Inc.
DECFSZ Decrement f, Skip if 0
Syntax: [ label ] DECFSZ f,d
Operands: 0 f 127
d [0,1]
Operation: (f) - 1 (destination);
skip if result = 0
Status Affected: None
Description: The contents of register ‘f’ are decre-
mented. If ‘d’ is ‘0’, the result is placed
in the W register. If ‘d’ is ‘1’, the result
is placed back in register ‘f’.
If the result is ‘1’, the next instruction is
executed. If the result is ‘0’, then a
NOP is executed instead, making it a
2-cycle instruction.
GOTO Unconditional Branch
Syntax: [ label ] GOTO k
Operands: 0 k 2047
Operation: k PC<10:0>
PCLATH<6:3> PC<14:11>
Status Affected: None
Description: GOTO is an unconditional branch. The
11-bit immediate value is loaded into
PC bits <10:0>. The upper bits of PC
are loaded from PCLATH<4:3>. GOTO
is a 2-cycle instruction.
INCF Increment f
Syntax: [ label ] INCF f,d
Operands: 0 f 127
d [0,1]
Operation: (f) + 1 (destination)
Status Affected: Z
Description: The contents of register ‘f’ are incre-
mented. If ‘d’ is ‘0’, the result is placed
in the W register. If ‘d’ is ‘1’, the result
is placed back in register ‘f’.
INCFSZ Increment f, Skip if 0
Syntax: [ label ] INCFSZ f,d
Operands: 0 f 127
d [0,1]
Operation: (f) + 1 (destination),
skip if result = 0
Status Affected: None
Description: The contents of register ‘f’ are incre-
mented. If ‘d’ is ‘0’, the result is placed
in the W register. If ‘d’ is ‘1’, the result
is placed back in register ‘f’.
If the result is 1’, the next instruction is
executed. If the result is ‘0’, a NOP is
executed instead, making it a 2-cycle
instruction.
IORLW Inclusive OR literal with W
Syntax: [ label ] IORLW k
Operands: 0 k 255
Operation: (W) .OR. k (W)
Status Affected: Z
Description: The contents of the W register are
OR’ed with the 8-bit literal ‘k’. The
result is placed in the W register.
IORWF Inclusive OR W with f
Syntax: [ label ] IORWF f,d
Operands: 0 f 127
d [0,1]
Operation: (W) .OR. (f) (destination)
Status Affected: Z
Description: Inclusive OR the W register with regis-
ter ‘f’. If ‘d’ is ‘0’, the result is placed in
the W register. If ‘d’ is ‘1’, the result is
placed back in register ‘f’.
2010-2016 Microchip Technology Inc. DS40001452F-page 259
PIC16(L)F1516/7/8/9
LSLF Logical Left Shift
Syntax: [ label ] LSLF f {,d}
Operands: 0 f 127
d [0,1]
Operation: (f<7>) C
(f<6:0>) dest<7:1>
0 dest<0>
Status Affected: C, Z
Description: The contents of register ‘f’ are shifted
one bit to the left through the Carry flag.
A ‘0’ is shifted into the LSb. If ‘d’ is ‘0’,
the result is placed in W. If ‘d’ is ‘1’, the
result is stored back in register ‘f’.
LSRF Logical Right Shift
Syntax: [ label ] LSRF f {,d}
Operands: 0 f 127
d [0,1]
Operation: 0 dest<7>
(f<7:1>) dest<6:0>,
(f<0>) C,
Status Affected: C, Z
Description: The contents of register ‘f’ are shifted
one bit to the right through the Carry
flag. A ‘0’ is shifted into the MSb. If ‘d’ is
0’, the result is placed in W. If ‘d’ is ‘1’,
the result is stored back in register ‘f’.
register f 0
C
register f C0
MOVF Move f
Syntax: [ label ] MOVF f,d
Operands: 0 f 127
d [0,1]
Operation: (f) (dest)
Status Affected: Z
Description: The contents of register f is moved to
a destination dependent upon the
status of d. If d = 0,
destination is W register. If d = 1, the
destination is file register f itself. d = 1
is useful to test a file register since
status flag Z is affected.
Words: 1
Cycles: 1
Example: MOVF FSR, 0
After Instruction
W = value in FSR register
Z=
1
PIC16(L)F1516/7/8/9
DS40001452F-page 260 2010-2016 Microchip Technology Inc.
MOVIW Move INDFn to W
Syntax: [ label ] MOVIW ++FSRn
[ label ] MOVIW --FSRn
[ label ] MOVIW FSRn++
[ label ] MOVIW FSRn--
[ label ] MOVIW k[FSRn]
Operands: n [0,1]
mm [00,01, 10, 11]
-32 k 31
Operation: INDFn W
Effective address is determined by
FSR + 1 (preincrement)
FSR - 1 (predecrement)
FSR + k (relative offset)
After the Move, the FSR value will be
either:
FSR + 1 (all increments)
FSR - 1 (all decrements)
Unchanged
Status Affected: Z
Mode Syntax mm
Preincrement ++FSRn 00
Predecrement --FSRn 01
Postincrement FSRn++ 10
Postdecrement FSRn-- 11
Description: This instruction is used to move data
between W and one of the indirect
registers (INDFn). Before/after this
move, the pointer (FSRn) is updated by
pre/post incrementing/decrementing it.
Note: The INDFn registers are not
physical registers. Any instruction that
accesses an INDFn register actually
accesses the register at the address
specified by the FSRn.
FSRn is limited to the range 0000h -
FFFFh. Incrementing/decrementing it
beyond these bounds will cause it to wrap
around.
MOVLB Move literal to BSR
Syntax: [ label ] MOVLB k
Operands: 0 k 31
Operation: k BSR
Status Affected: None
Description: The 5-bit literal ‘k’ is loaded into the
Bank Select Register (BSR).
MOVLP Move literal to PCLATH
Syntax: [ label ] MOVLP k
Operands: 0 k 127
Operation: k PCLATH
Status Affected: None
Description: The 7-bit literal ‘k’ is loaded into the
PCLATH register.
MOVLW Move literal to W
Syntax: [ label ] MOVLW k
Operands: 0 k 255
Operation: k (W)
Status Affected: None
Description: The 8-bit literal ‘k’ is loaded into W reg-
ister. The “don’t cares” will assemble as
0’s.
Words: 1
Cycles: 1
Example: MOVLW 0x5A
After Instruction
W = 0x5A
MOVWF Move W to f
Syntax: [ label ] MOVWF f
Operands: 0 f 127
Operation: (W) (f)
Status Affected: None
Description: Move data from W register to register
‘f’.
Words: 1
Cycles: 1
Example: MOVWF OPTION_REG
Before Instruction
OPTION_REG = 0xFF
W = 0x4F
After Instruction
OPTION_REG = 0x4F
W = 0x4F
2010-2016 Microchip Technology Inc. DS40001452F-page 261
PIC16(L)F1516/7/8/9
MOVWI Move W to INDFn
Syntax: [ label ] MOVWI ++FSRn
[ label ] MOVWI --FSRn
[ label ] MOVWI FSRn++
[ label ] MOVWI FSRn--
[ label ] MOVWI k[FSRn]
Operands: n [0,1]
mm [00,01, 10, 11]
-32 k 31
Operation: W INDFn
Effective address is determined by
FSR + 1 (preincrement)
FSR - 1 (predecrement)
FSR + k (relative offset)
After the Move, the FSR value will be
either:
FSR + 1 (all increments)
FSR - 1 (all decrements)
Unchanged
Status Affected: None
Mode Syntax mm
Preincrement ++FSRn 00
Predecrement --FSRn 01
Postincrement FSRn++ 10
Postdecrement FSRn-- 11
Description: This instruction is used to move data
between W and one of the indirect
registers (INDFn). Before/after this
move, the pointer (FSRn) is updated by
pre/post incrementing/decrementing it.
Note: The INDFn registers are not
physical registers. Any instruction that
accesses an INDFn register actually
accesses the register at the address
specified by the FSRn.
FSRn is limited to the range 0000h -
FFFFh. Incrementing/decrementing it
beyond these bounds will cause it to
wrap-around.
The increment/decrement operation on
FSRn WILL NOT affect any Status bits.
NOP No Operation
Syntax: [ label ] NOP
Operands: None
Operation: No operation
Status Affected: None
Description: No operation.
Words: 1
Cycles: 1
Example: NOP
OPTION Load OPTION_REG Register
with W
Syntax: [ label ] OPTION
Operands: None
Operation: (W) OPTION_REG
Status Affected: None
Description: Move data from W register to
OPTION_REG register.
Words: 1
Cycles: 1
Example: OPTION
Before Instruction
OPTION_REG = 0xFF
W = 0x4F
After Instruction
OPTION_REG = 0x4F
W = 0x4F
RESET Software Reset
Syntax: [ label ] RESET
Operands: None
Operation: Execute a device Reset. Resets the
RI flag of the PCON register.
Status Affected: None
Description: This instruction provides a way to
execute a hardware Reset by soft-
ware.
PIC16(L)F1516/7/8/9
DS40001452F-page 262 2010-2016 Microchip Technology Inc.
RETFIE Return from Interrupt
Syntax: [ label ] RETFIE
Operands: None
Operation: TOS PC,
1 GIE
Status Affected: None
Description: Return from Interrupt. Stack is POPed
and Top-of-Stack (TOS) is loaded in
the PC. Interrupts are enabled by
setting Global Interrupt Enable bit,
GIE (INTCON<7>). This is a 2-cycle
instruction.
Words: 1
Cycles: 2
Example: RETFIE
After Interrupt
PC = TOS
GIE = 1
RETLW Return with literal in W
Syntax: [ label ] RETLW k
Operands: 0 k 255
Operation: k (W);
TOS PC
Status Affected: None
Description: The W register is loaded with the eight
bit literal ‘k’. The program counter is
loaded from the top of the stack (the
return address). This is a 2-cycle
instruction.
Words: 1
Cycles: 2
Example:
TABLE
CALL TABLE;W contains table
;offset value
;W now has table value
ADDWF PC ;W = offset
RETLW k1 ;Begin table
RETLW k2 ;
RETLW kn ; End of table
Before Instruction
W = 0x07
After Instruction
W = value of k8
RETURN Return from Subroutine
Syntax: [ label ] RETURN
Operands: None
Operation: TOS PC
Status Affected: None
Description: Return from subroutine. The stack is
POPed and the top of the stack (TOS)
is loaded into the program counter.
This is a 2-cycle instruction.
RLF Rotate Left f through Carry
Syntax: [ label ] RLF f,d
Operands: 0 f 127
d [0,1]
Operation: See description below
Status Affected: C
Description: The contents of register ‘f’ are rotated
one bit to the left through the Carry
flag. If ‘d’ is ‘0’, the result is placed in
the W register. If ‘d’ is ‘1’, the result is
stored back in register ‘f’.
Words: 1
Cycles: 1
Example: RLF REG1,0
Before Instruction
REG1 = 1110 0110
C=0
After Instruction
REG1 = 1110 0110
W = 1100 1100
C=1
Register fC
2010-2016 Microchip Technology Inc. DS40001452F-page 263
PIC16(L)F1516/7/8/9
RRF Rotate Right f through Carry
Syntax: [ label ] RRF f,d
Operands: 0 f 127
d [0,1]
Operation: See description below
Status Affected: C
Description: The contents of register ‘f’ are rotated
one bit to the right through the Carry
flag. If ‘d’ is ‘0’, the result is placed in
the W register. If ‘d’ is1’, the result is
placed back in register ‘f’.
SLEEP Enter Sleep mode
Syntax: [ label ]SLEEP
Operands: None
Operation: 00h WDT,
0 WDT prescaler,
1 TO,
0 PD
Status Affected: TO, PD
Description: The power-down Status bit, PD is
cleared. Time-out Status bit, TO is
set. Watchdog Timer and its pres-
caler are cleared.
The processor is put into Sleep mode
with the oscillator stopped.
Register fC
SUBLW Subtract W from literal
Syntax: [ label ]SUBLW k
Operands: 0 k 255
Operation: k - (W) W)
Status Affected: C, DC, Z
Description: The W register is subtracted (2’s com-
plement method) from the 8-bit literal
‘k’. The result is placed in the W regis-
ter.
SUBWF Subtract W from f
Syntax: [ label ] SUBWF f,d
Operands: 0 f 127
d [0,1]
Operation: (f) - (W) destination)
Status Affected: C, DC, Z
Description: Subtract (2’s complement method) W
register from register ‘f’. If ‘d’ is ‘0’, the
result is stored in the W
register. If ‘d’ is1’, the result is stored
back in register ‘f.
SUBWFB Subtract W from f with Borrow
Syntax: SUBWFB f {,d}
Operands: 0 f 127
d [0,1]
Operation: (f) – (W) – (B) dest
Status Affected: C, DC, Z
Description: Subtract W and the BORROW flag
(CARRY) from register ‘f’ (2’s comple-
ment method). If ‘d’ is ‘0’, the result is
stored in W. If ‘d’ is ‘1’, the result is
stored back in register ‘f’.
C = 0W k
C = 1W k
DC = 0W<3:0> k<3:0>
DC = 1W<3:0> k<3:0>
C = 0W f
C = 1W f
DC = 0W<3:0> f<3:0>
DC = 1W<3:0> f<3:0>
PIC16(L)F1516/7/8/9
DS40001452F-page 264 2010-2016 Microchip Technology Inc.
SWAPF Swap Nibbles in f
Syntax: [ label ] SWAPF f,d
Operands: 0 f 127
d [0,1]
Operation: (f<3:0>) (destination<7:4>),
(f<7:4>) (destination<3:0>)
Status Affected: None
Description: The upper and lower nibbles of regis-
ter ‘f’ are exchanged. If ‘d’ is ‘0’, the
result is placed in the W register. If ‘d’
is ‘1’, the result is placed in register ‘f’.
TRIS Load TRIS Register with W
Syntax: [ label ] TRIS f
Operands: 5 f 7
Operation: (W) TRIS register ‘f’
Status Affected: None
Description: Move data from W register to TRIS
register.
When ‘f’ = 5, TRISA is loaded.
When ‘f’ = 6, TRISB is loaded.
When ‘f’ = 7, TRISC is loaded.
XORLW Exclusive OR literal with W
Syntax: [ label ]XORLW k
Operands: 0 k 255
Operation: (W) .XOR. k W)
Status Affected: Z
Description: The contents of the W register are
XOR’ed with the 8-bit literal ‘k’. The
result is placed in the W register.
XORWF Exclusive OR W with f
Syntax: [ label ] XORWF f,d
Operands: 0 f 127
d [0,1]
Operation: (W) .XOR. (f) destination)
Status Affected: Z
Description: Exclusive OR the contents of the W
register with register ‘f’. If ‘d’ is ‘0’, the
result is stored in the W register. If ‘d’
is ‘1’, the result is stored back in regis-
ter ‘f’.
2010-2016 Microchip Technology Inc. DS40001452F-page 265
PIC16(L)F1516/7/8/9
25.0 ELECTRICAL SPECIFICATIONS
25.1 Absolute Maximum Ratings(†)
Ambient temperature under bias....................................................................................................... -40°C to +125°C
Storage temperature ........................................................................................................................ -65°C to +150°C
Voltage on VDD with respect to VSS, PIC16F1516/7/8/9 .................................................................... -0.3V to +6.5V
Voltage on VDD with respect to VSS, PIC16LF1516/7/8/9 .................................................................. -0.3V to +4.0V
Voltage on MCLR with respect to Vss ................................................................................................. -0.3V to +9.0V
Voltage on all other pins with respect to VSS ........................................................................... -0.3V to (VDD + 0.3V)
Total power dissipation(2) ............................................................................................................................... 800 mW
Maximum current
on VSS pin for 28-Pin devices(1)
-40°C TA +85°C .......................................................................................................................... 350 mA
+85°C TA +125°C........................................................................................................................ 120 mA
on VDD pin for 28-Pin devices(1)
-40°C TA +85°C ........................................................................................................................ 250 mA
+85°C TA +125°C........................................................................................................................ 85 mA
on VSS pin for 40/44-Pin devices(1)
-40°C TA +85°C ........................................................................................................................ 350 mA
+85°C TA +125°C...................................................................................................................... 120 mA
on VDD pin for 40/44-Pin devices(1)
-40°C TA +85°C ........................................................................................................................ 350 mA
+85°C TA +125°C...................................................................................................................... 120 mA
Clamp current, IK (VPIN < 0 or VPIN > VDD)20 mA
Maximum output current sunk by any I/O pin.................................................................................................... 50 mA
Maximum output current sourced by any I/O pin .............................................................................................. 50 mA
Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be
limited by the device package power dissipation characterizations, see Table 25-5 to calculate device
specifications.
2: Power dissipation is calculated as follows: PDIS = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOl x
IOL)
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for
extended periods may affect device reliability.
PIC16(L)F1516/7/8/9
DS40001452F-page 266 2010-2016 Microchip Technology Inc.
25.2 St a ndard Operating Conditions
The standard operating conditions for any device are defined as:
Operating Voltage: VDDMIN VDD VDDMAX
Operating Temperature: TA_MIN TA TA_MAX
VDD — Operating Supply Voltage(1)
PIC16LF1516/7/8/9
VDDMIN (FOSC 16 MHz)......................................................................................................... +1.8V
VDDMIN (16 MHz FOSC 20 MHz).......................................................................................... +2.5V
VDDMAX .................................................................................................................................... +3.6V
PIC16F1516/7/8/9
VDDMIN (FOSC 16 MHz)......................................................................................................... +2.3V
VDDMIN (16 MHz FOSC 20 MHz).......................................................................................... +2.5V
VDDMAX .................................................................................................................................... +5.5V
TA — Operating Ambient Temperature Range
Industrial Temperature
TA_MIN ...................................................................................................................................... -40°C
TA_MAX .................................................................................................................................... +85°C
Extended Temperature
TA_MIN ...................................................................................................................................... -40°C
TA_MAX .................................................................................................................................. +125°C
Note 1: See Parameter D001, DC Characteristics: Supply Voltage.
2010-2016 Microchip Technology Inc. DS40001452F-page 267
PIC16(L)F1516/7/8/9
FIGURE 25-1: PIC16F1516/7/8/9 VOLTAGE FREQUENCY GRAPH, -40°C
TA

+125°C
FIGURE 25-2: PIC16LF1516/7/8/9 VOLTAGE FREQUENCY GRAPH, -40°C
TA

+125°C
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.
2: Refer to Table 25-1 for each Oscillator mode’s supported frequencies.
0
2.3
Frequency (MHz)
VDD (V)
42010 16
5.5
2.5
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.
2: Refer to Table 25-1 for each Oscillator mode’s supported frequencies.
1.8
0
2.5
Frequency (MHz )
VDD (V)
420
10 16
3.6
PIC16(L)F1516/7/8/9
DS40001452F-page 268 2010-2016 Microchip Technology Inc.
FIGURE 25-3: HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE
125
25
2.0
0
60
85
VDD (V)
4.0 5.04.5
Temperature (°C)
2.5 3.0 3.5 5.5
1.8
-40
-20
-15% to +12.5%
-15% to +12.5%
± 8%
± 6.5%
2010-2016 Microchip Technology Inc. DS40001452F-page 269
PIC16(L)F1516/7/8/9
25.3 DC Characteristics: Supply Voltage
PIC16LF1516/7/8/9 Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
PIC16F1516/7/8/9 Standard Operating Condition s (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
Param.
No. Sym. Characteristic Min. Typ† Max. Units Conditions
D001 VDD Supply Voltage (VDDMIN, VDDMAX)
1.8
2.5
3.6
3.6
V
V
FOSC 16 MHz:
FOSC 20 MHz
D001 2.3
2.5
5.5
5.5
V
V
FOSC 16 MHz:
FOSC 20 MHz
D002* VDR RAM Data Retention Voltage(1)
1.5 V Device in Sleep mode
D002* 1.7 V Device in Sleep mode
D002A* VPOR Power-on Reset Release Voltage —1.6— V
D002B* VPORR Power-on Reset Rearm V oltage
—0.8 V
D002B* 1.42 V
D003 VADFVR Fixed Voltage Reference Voltage for
ADC -8 6 % 1.024V, VDD 2.5V
2.048V, VDD 2.5V
4.096V, VDD 4.75V
D004* SVDD VDD Rise Rate to ensure internal
Power-on Reset signal 0.05 V/ms See Section 6.1 “Power-On Reset
(POR) for details.
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.
PIC16(L)F1516/7/8/9
DS40001452F-page 270 2010-2016 Microchip Technology Inc.
FIGURE 25-4: POR AND POR REARM WITH SLOW RISING VDD
VDD
VPOR
VPORR
VSS
VSS
NPOR
TPOR(3)
POR REARM
Note 1: When NPOR is low, the device is held in Reset.
2: TPOR 1 s typical.
3: TVLOW 2.7 s typical.
TVLOW(2)
2010-2016 Microchip Technology Inc. DS40001452F-page 271
PIC16(L)F1516/7/8/9
25.4 DC Characteristics: Supply Current (IDD)
PIC16LF1516/7/8/9 Standard Operating C onditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
PIC16F1516/7/8/9 Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
Param
No. Device
Characteristics Min. Typ† Max. Units Conditions
VDD Note
Supply Current (IDD)(1, 2, 3)
D010 8.0 14 A1.8
FOSC = 32 kHz
LP Oscillator
-40°C TA +85°C
12.0 31 A3.0
D010 11 28 A2.3 FOSC = 32 kHz
LP Oscillator
-40°C TA +85°C
13 38 A3.0
14 45 A5.0
D011 60 95 A1.8FOSC = 1 MHz
XT Oscillator
—110
180 A3.0
D011 92 170 A2.3 FOSC = 1 MHz
XT Oscillator
140 230 A3.0
170 350 A5.0
D012 150 240 A1.8FOSC = 4 MHz
XT Oscillator
260 430 A3.0
D012 190 450 A2.3 FOSC = 4 MHz
XT Oscillator
310 500 A3.0
370 650 A5.0
D013 25 31 A1.8FOSC = 500 kHz
EC Oscillator
Low-Power mode
—35 50 A3.0
D013 25 40 A2.3 FOSC = 500 kHz
EC Oscillator
Low-Power mode
35 55 A3.0
40 60 A5.0
D014 120 210 A1.8FOSC = 4 MHz
EC Oscillator
Medium-Power mode
210 380 A3.0
D014 160 250 A2.3 FOSC = 4 MHz
EC Oscillator
Medium-Power mode
260 380 A3.0
330 480 A5.0
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are
not tested.
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current
consumption.
3: 0.1 F capacitor on VCAP pin, PIC16F1516/7/8/9 only.
4: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended
by the formula IR = VDD/2REXT (mA) with REXT in k.
PIC16(L)F1516/7/8/9
DS40001452F-page 272 2010-2016 Microchip Technology Inc.
Supply Current (IDD)(1, 2, 3)
D014A 1.0 1.5 mA 3.0 FOSC = 20 MHz
EC Oscillator
High-Power mode
—1.22.0 mA 3.6
D014A 1.4 1.5 mA 3.0 FOSC = 20 MHz
EC Oscillator
High-Power mode
1.7 2.0 mA 5.0
D015 5.0 12 A1.8FOSC = 31 kHz
LFINTOSC
-40°C TA +85°C
—10 31 A3.0
D015 18 25 A2.3 FOSC = 31 kHz
LFINTOSC
-40°C TA +85°C
24 35 A3.0
25 40 A5.0
D016 110 380 A1.8FOSC = 500 kHz
HFINTOSC
150 400 A3.0
D016 150 330 A2.3 FOSC = 500 kHz
HFINTOSC
210 360 A3.0
335 400 A5.0
D017 0.41 0.90 mA 1.8 FOSC = 8 MHz
HFINTOSC
—0.70
1.00 mA 3.0
D017 0.35 0.75 mA 2.3 FOSC = 8 MHz
HFINTOSC
0.69 1.00 mA 3.0
0.75 1.10 mA 5.0
D018 0.65 1.30 mA 1.8 FOSC = 16 MHz
HFINTOSC
—1.10
1.50 mA 3.0
D018 0.70 1.30 mA 2.3 FOSC = 16 MHz
HFINTOSC
1.00 1.50 mA 3.0
1.20 1.70 mA 5.0
25.4 DC Characteristics: Supply Current (IDD) (Continued)
PIC16LF1516/7/8/9 Standard Operating C onditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
PIC16F1516/7/8/9 Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
Param
No. Device
Characteristics Min. Typ† Max. Units Conditions
VDD Note
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are
not tested.
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current
consumption.
3: 0.1 F capacitor on VCAP pin, PIC16F1516/7/8/9 only.
4: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended
by the formula IR = VDD/2REXT (mA) with REXT in k.
2010-2016 Microchip Technology Inc. DS40001452F-page 273
PIC16(L)F1516/7/8/9
Supply Current (IDD)(1, 2, 3)
D020 1.0 1.80 mA 3.0 FOSC = 20 MHz
HS Oscillator
—1.2
2.10 mA 3.6
D020 1.4 1.70 mA 3.0 FOSC = 20 MHz
HS Oscillator
1.7 2.10 mA 5.0
D021 150 220 A1.8FOSC = 4 MHz
EXTRC (Note 4)
250 380 A3.0
D021 165 330 A2.3 FOSC = 4 MHz
EXTRC (Note 4)
280 420 A3.0
350 500 A5.0
25.4 DC Characteristics: Supply Current (IDD) (Continued)
PIC16LF1516/7/8/9 Standard Operating C onditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
PIC16F1516/7/8/9 Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
Param
No. Device
Characteristics Min. Typ† Max. Units Conditions
VDD Note
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are
not tested.
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current
consumption.
3: 0.1 F capacitor on VCAP pin, PIC16F1516/7/8/9 only.
4: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended
by the formula IR = VDD/2REXT (mA) with REXT in k.
PIC16(L)F1516/7/8/9
DS40001452F-page 274 2010-2016 Microchip Technology Inc.
25.5 DC Characteristics: Power-Down Currents (IPD)
PIC16LF1516/7/8/9 Stand ard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
PIC16F1516/7/8/9 Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
Param
No. Device Characteristics Min. Typ† Max.
+85°C Max.
+125°C Units Conditions
VDD Note
Power-down Current s (IPD)(2, 4)
D022 Base IPD 0.02 1.0 8.0 A 1.8 WDT, BOR, FVR, and SOSC
disabled, all Peripherals Inactive
0.03 2.0 9.0 A3.0
D022 Base IPD 0.20 3.0 10 A2.3 WDT, BOR, FVR, and SOSC
disabled, all Peripherals Inactive,
Low-power regulator active
0.30 4.0 12 A3.0
0.47 6.0 15 A5.0
D023 0.50 6.0 14 A 1.8 LPWDT Current (Note 1)
0.80 7.0 17 A3.0
D023 0.50 6.0 15 A2.3 LPWDT Current (Note 1)
0.77 7.0 20 A3.0
0.85 8.0 22 A5.0
D023A 8.5 23 25 A 1.8 FVR current (Note 1)
8.5 24 27 A3.0
D023A 18 26 30 A2.3 FVR current (Note 1)
19 27 37 A3.0
20 29 45 A5.0
D024 8.0 17 20 A 3.0 BOR Current (Note 1)
D024 8.0 17 30 A3.0 BOR Current (Note 1)
9.0 20 40 A5.0
D024A 0.30 4.0 8.0 A 3.0 LPBOR Current
D024A 0.30 4.0 14 A3.0 LPBOR Current (Note 1)
0.45 8.0 17 A5.0
D025 0.3 5.0 9.0 A 1.8 SOSC Current (Note 1)
—0.58.5 12 A3.0
D025 1.1 6.0 10 A2.3 SOSC Current (Note 1)
1.3 8.5 20 A3.0
1.4 10 25 A5.0
D026 0.10 1.0 9.0 A 1.8 ADC Current (Note 1, 3),
no conversion in progress
0.10 2.0 10 A3.0
D026 0.16 3.0 10 A2.3 ADC Current (Note 1, 3),
no conversion in progress
0.40 4.0 11 A3.0
0.50 6.0 16 A5.0
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are
not tested.
Note 1: The peripheral current can be determined by subtracting the base IPD current from this limit. Max values should be
used when calculating total current consumption.
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.
3: ADC clock source is FRC.
4: VREGPM = 1, PIC16F1516/7/8/9 only.
2010-2016 Microchip Technology Inc. DS40001452F-page 275
PIC16(L)F1516/7/8/9
Power-down Current s (IPD)(2, 4)
D026A* 250 A 1.8 ADC Current (No te 1, 3),
conversion in progress
—250 A3.0
D026A* 280 A2.3 ADC Current (Note 1, 3),
conversion in progress
280 A3.0
280 A5.0
25.5 DC Characteristics: Power-Down Currents (IPD) (Continued)
PIC16LF1516/7/8/9 Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
PIC16F1516/7/8/9 Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
Param
No. Device Characteristics Min. Typ† Max.
+85°C Max.
+125°C Units Conditions
VDD Note
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are
not tested.
Note 1: The peripheral current can be determined by subtracting the base IPD current from this limit. Max values should be
used when calculating total current consumption.
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.
3: ADC clock source is FRC.
4: VREGPM = 1, PIC16F1516/7/8/9 only.
PIC16(L)F1516/7/8/9
DS40001452F-page 276 2010-2016 Microchip Technology Inc.
25.6 DC Characteristics: I/O Ports
DC CHARACTERISTICS St a ndard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
VIL Input Low Voltage
I/O PORT:
D030 with TTL buffer 0.8 V 4.5V VDD 5.5V
D030A 0.15 VDD V1.8V VDD 4.5V
D031 with Schmitt Trigger buffer 0.2 VDD V2.0V VDD 5.5V
with I2C levels 0.3 VDD V
with SMBus levels 0.8 V 2.7V VDD 5.5V
D032 MCLR, OSC1 (RC mode)(1) ——0.2VDD V(Note 1)
D033 OSC1 (HS mode) 0.3 VDD V
VIH Input H igh Voltage
I/O ports:
D040 with TTL buffer 2.0 V 4.5V VDD 5.5V
D040A 0.25 VDD +
0.8
——V1.8V VDD 4.5V
D041 with Schmitt Trigger buffer 0.8 VDD ——V2.0V VDD 5.5V
with I2C levels 0.7 VDD ——V
with SMBus levels 2.1 V 2.7V VDD 5.5V
D042 MCLR 0.8 VDD ——V
D043A OSC1 (HS mode) 0.7 VDD ——V
D043B OSC1 (RC mode) 0.9 VDD ——VVDD > 2.0V (Note 1)
IIL Input Leakage Current(2)
D060 I/O ports ± 5
± 5
± 125
± 1000
nA
nA
VSS VPIN VDD, Pin at high-
impedance at 85°C
125°C
D061 MCLR(3) —± 50± 200nAVSS VPIN VDD at 85°C
IPUR Weak Pull-up Current
D070* 25
25
100
140
200
300
A
A
VDD = 3.3V, VPIN = VSS
VDD = 5.0V, VPIN = VSS
VOL Output Low Volt a ge(4)
D080 I/O ports
——0.6V
IOL = 8 mA, VDD = 5V
IOL = 6 mA, VDD = 3.3V
IOL = 1.8 mA, VDD = 1.8V
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are
not tested.
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external
clock in RC mode.
2: Negative current is defined as current sourced by the pin.
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent
normal operating conditions. Higher leakage current may be measured at different input voltages.
4: Including OSC2 in CLKOUT mode.
2010-2016 Microchip Technology Inc. DS40001452F-page 277
PIC16(L)F1516/7/8/9
VOH Output High Voltage(4)
D090 I/O ports
VDD - 0.7 V
IOH = 3.5 mA, VDD = 5V
IOH = 3 mA, VDD = 3.3V
IOH = 1 mA, VDD = 1.8V
Capacitive Lo ading Specs on Output Pins
D101* COSC2 OSC2 pin 15 pF In XT, HS and LP modes when
external clock is used to drive
OSC1
D101A* CIO All I/O pins 50 pF
VCAP Capacitor Charging
D102* Charging current 200 A
D102A* Source/Sink capability when
charging complete
——0.0mA
25.6 DC Characteristics: I/O Ports (Continued)
DC CHARACTERISTICS St a ndard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial
-40°C TA +125°C for extended
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are
not tested.
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external
clock in RC mode.
2: Negative current is defined as current sourced by the pin.
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent
normal operating conditions. Higher leakage current may be measured at different input voltages.
4: Including OSC2 in CLKOUT mode.
PIC16(L)F1516/7/8/9
DS40001452F-page 278 2010-2016 Microchip Technology Inc.
25.7 Memory Programming Requirements
DC CHARACTERISTICS Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +125°C
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
Program Memory Programming
Specifications
D110 VIHH Voltage on MCLR/VPP pin 8.0 9.0 V (Note 2)
D111 IDDP Supply Current during Programming 10 mA
D112 VBE VDD for Bulk Erase 2.7 VDDMAX V
D113 VPEW VDD for Write or Row Erase VDDMIN VDDMAX V
D114 IPPPGM Current on MCLR/VPP during Erase/
Write
—1.0mA
D115 IDDPGM Current on VDD during Erase/Write 5.0 mA
Program Flash Memory
D121 EPCell Endurance 10K E/W -40C to +85C (Note 1)
D122 VPRW VDD for Read/Write VDDMIN VDDMAX V
D123 TIW Self-timed Write Cycle Time 2 2.5 ms
D124 TRETD Characteristic Retention 40 Year Provided no other
specifications are violated
D125 EHEFC High-Endurance Flash Cell 100K E/W 0C to +60C lower byte, last
128 addresses
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are
not tested.
Note 1: Self-write and Block Erase.
2: Required only if single-supply programming is disabled.
2010-2016 Microchip Technology Inc. DS40001452F-page 279
PIC16(L)F1516/7/8/9
25.8 Thermal Considerations
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +125°C
Param
No. Sym. Characteristic Typ. Units Conditions
TH01 JA Thermal Resistance Junction to Ambient 69.7 C/W 28-pin SOIC package
60.0 C/W 28-pin SPDIP package
71.0 C/W 28-pin SSOP package
27.5 C/W 28-pin UQFN (4x4mm) package
27.5 C/W 28-pin QFN (6x6mm) package
47.2 C/W 40-pin PDIP package
41.0 C/W 40-pin UQFN (5x5mm) package
49.8 C/W 44-pin TQFP package
TH02 JC Thermal Resistance Junction to Case 18.9 C/W 28-pin SOIC package
29.0 C/W 28-pin SPDIP package
24.0 C/W 28-pin SSOP package
24.0 C/W 28-pin UQFN (4x4mm) package
24.0 C/W 28-pin QFN (6x6mm) package
24.7 C/W 40-pin PDIP package
5.5 C/W 40-pin UQFN (5x5mm) package
26.7 C/W 44-pin TQFP package
TH03 TJMAX Maximum Junction Temperature 150 C
TH04 PD Power Dissipation W PD = PINTERNAL + PI/O
TH05 PINTERNAL Internal Power Dissipation W PINTERNAL = IDD x VDD(1)
TH06 PI/OI/O Power Dissipation W PI/O = (IOL * VOL) + (IOH * (VDD - VOH))
TH07 PDER Derated Power W PDER = PDMAX (TJ - TA)/JA(2)
Note 1: IDD is current to run the chip alone without driving any load on the output pins.
2: TA = Ambient Temperature; TJ = Junction Temperature.
PIC16(L)F1516/7/8/9
DS40001452F-page 280 2010-2016 Microchip Technology Inc.
25.9 Timing Parameter Symbology
The timing parameter symbols have been created with
one of the following formats:
FIGURE 25-5: LOAD CONDITIONS
1. TppS2ppS
2. TppS
T
F Frequency T Time
Lowercase letters (pp) and their meanings:
pp
cc CCP1 osc OSC1
ck CLKOUT rd RD
cs CS rw RD or WR
di SDIx sc SCKx
do SDO ss SS
dt Data in t0 T0CKI
io I/O PORT t1 T1CKI
mc MCLR wr WR
Uppercase letters and their meanings:
S
FFall PPeriod
HHigh RRise
I Invalid (High-impedance) V Valid
L Low Z High-impedance
V
SS
C
L
Legend: CL = 50 pF for all pins, 15 pF for
OSC2 output
Load Condition
Pin
2010-2016 Microchip Technology Inc. DS40001452F-page 281
PIC16(L)F1516/7/8/9
25.10 AC Characteristics
FIGURE 25-6: CLOCK TIMING
TABLE 25-1: CLOCK OSCILLATOR TIMING REQUIREMENTS
OSC1/CLKIN
OSC2/CLKOUT
Q4 Q1 Q2 Q3 Q4 Q1
OS02
OS03
OS04 OS04
OSC2/CLKOUT
(LP,XT,HS Modes)
(CLKOUT Mode)
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +125°C
Param
No. Sym. Characteristic Min. Typ Max. Units Conditions
OS01 FOSC External CLKIN Frequency(1) DC 0.5 MHz EC Oscillator mode (low)
DC 4 MHz EC Oscillator mode (medium)
DC 20 MHz EC Oscillator mode (high)
Oscillator Frequency(1) 32.768 kHz LP Oscillator mode
0.1 4 MHz XT Oscillator mode
1 4 MHz HS Oscillator mode
1 20 MHz HS Oscillator mode, VDD > 2.7V
DC 4 MHz RC Oscillator mode, VDD > 2.0V
OS02 TOSC External CLKIN Period(1) 27 s LP Oscillator mode
250 ns XT Oscillator mode
50 ns HS Oscillator mode
50 ns EC Oscillator mode
Oscillator Period(1) 30.5 s LP Oscillator mode
250 10,000 ns XT Oscillator mode
50 1,000 ns HS Oscillator mode
250 ns RC Oscillator mode
OS03 TCY Instruction Cycle Time(1) 200 TCY DC ns TCY = FOSC/4
OS04* TosH,
TosL
External CLKIN High,
External CLKIN Low
2—
s LP oscillator
100 ns XT oscillator
20 ns HS oscillator
OS05* TosR,
TosF
External CLKIN Rise,
External CLKIN Fall
0—ns LP oscillator
0—ns XT oscillator
0—ns HS oscillator
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on
characterization data for that particular oscillator type under standard operating conditions with the device executing code.
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-
sumption. All devices are tested to operate at “min” values with an external clock applied to OSC1 pin. When an external
clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.
PIC16(L)F1516/7/8/9
DS40001452F-page 282 2010-2016 Microchip Technology Inc.
TABLE 25-2: OSCILLATOR PARAMETERS
FIGURE 25-7: CLKOUT AND I/O TIMING
Standard Operating Conditions (unless othe rwis e stated)
Operating Temperature -40°C TA +125°C
Param
No. Sym. Characteristic Freq.
Tolerance Min. Typ† Max. Units Conditions
OS08 HFOSC Internal-Calibrated HFINTOSC
Frequency(1) 6.5% 16.0 MHz VDD = 3.0V at +25°C
(Note 2)
OS09 LFOSC Internal LFINTOSC Frequency 31 kHz (Note 3)
OS10* TIOSC ST HFINTOSC
Wake-up from Sleep Start-up Time 5 15 s
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are
not tested.
Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as
possible. 0.1 F and 0.01 F values in parallel are recommended.
2: See Figure 25-3.
3: See Figures 26-60 and 26-61.
FOSC
CLKOUT
I/O pin
(Input)
I/O pin
(Output)
Q4 Q1 Q2 Q3
OS11
OS19
OS13
OS15
OS18, OS19
OS20
OS21
OS17
OS16
OS14
OS12
OS18
Old Value New Value
Write Fetch Read ExecuteCycle
2010-2016 Microchip Technology Inc. DS40001452F-page 283
PIC16(L)F1516/7/8/9
TABLE 25-3: CLKOUT AND I/O TIMING PARAMETERS
FIGURE 25-8: RESET , WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER TIMI NG
Standard Operating Conditions (unless othe rwis e stated)
Operating Temperature -40°C TA +125°C
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
OS11 TosH2ckL FOSC to CLKOUT (1) ——70nsVDD = 3.3-5.0V
OS12 TosH2ckH FOSC to CLKOUT (1) ——72nsVDD = 3.3-5.0V
OS13 TckL2ioV CLKOUT to Port out valid(1) ——20ns
OS14 TioV2ckH Port input valid before CLKOUT(1) TOSC + 200 ns ns
OS15 TosH2ioV Fosc (Q1 cycle) to Port out valid 50 70* ns VDD = 3.3-5.0V
OS16 TosH2ioI Fosc (Q2 cycle) to Port input invalid
(I/O in hold time)
50 ns VDD = 3.3-5.0V
OS17 TioV2osH Port input valid to Fosc(Q2 cycle)
(I/O in setup time)
20 ns
OS18 TioR Port output rise time
40
15
72
32
ns VDD = 1.8V
VDD = 3.3-5.0V
OS19 TioF Port output fall time
28
15
55
30
ns VDD = 1.8V
VDD = 3.3-5.0V
OS20* Tinp INT pin input high or low time 25 ns
OS21* Tioc Interrupt-on-change new input level
time
25 ns
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25C unless otherwise stated.
Note1: Measurements are taken in RC mode where CLKOUT output is 4 x TOSC.
VDD
MCLR
Internal
POR
PWRT
Time-out
OSC
Start-Up Time
Internal Reset(1)
Watchdog Timer
33
32
30
31
34
I/O pins
34
Note 1: Asserted low.
Reset(1)
PIC16(L)F1516/7/8/9
DS40001452F-page 284 2010-2016 Microchip Technology Inc.
FIGURE 25-9: BROWN-OUT RESET TIMING AND CHARACTERISTICS
VBOR
VDD
(Device in Brown-out Reset) (Device not in Brown-out Reset)
33
Reset
(due to BOR)
VBOR and VHYST
37
2010-2016 Microchip Technology Inc. DS40001452F-page 285
PIC16(L)F1516/7/8/9
TABLE 25-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET PARAMETERS
FIGURE 25-10: TIMER0 AND TIMER1 EX TERNA L CLOCK TIMINGS
Standard Operating Conditions (unless otherwise stated)
Operating Temperature -40°C TA +125°C
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
30 TMCLMCLR Pulse Width (low) 2 s
31 TWDTLP Low-Power Watchdog Timer
Time-out Period
10 16 27 ms VDD = 3.3V-5V,
1:512 Prescaler used
32 TOST Oscillator Start-up Timer Period(1) 1024 Tosc
33* TPWRT Power-up Timer Period, PWRTE =040 65 140 ms
34* TIOZ I/O high-impedance from MCLR Low
or Watchdog Timer Reset
——2.0s
35 VBOR Brown-out Reset Voltage(2) 2.55
2.35
1.80
2.70
2.45
1.90
2.85
2.58
2.00
V
V
V
BORV = 0
BORV = 1 (PIC16F1516/7/8/9)
BORV = 1 (PIC16LF1516/7/8/9)
36* VHYST Brown-out Reset Hysteresis 0 25 60 mV -40°C to +85°C
37* TBORDC Brown-out Reset DC Response
Time
1335sVDD VBOR
38 VLPBOR Low-Power Brown-out Reset
Voltage
1.8 2.1 2.5 V LPBOR = 0
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance
only and are not tested.
Note1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.
2: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as
possible. 0.1 F and 0.01 F values in parallel are recommended.
T0CKI
T1CKI
40 41
42
45 46
47 49
TMR0 or
TMR1
PIC16(L)F1516/7/8/9
DS40001452F-page 286 2010-2016 Microchip Technology Inc.
TABLE 25-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
Standard Operating Conditions (unless otherwise stated)
Operating Temperature -40°C TA +125°C
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
40* TT0H T0CKI High Pulse Width No Prescaler 0.5 TCY + 20 ns
With Prescaler 10 ns
41* TT0L T0CKI Low Pulse Width No Prescaler 0.5 TCY + 20 ns
With Prescaler 10 ns
42* TT0P T0CKI Period Greater of:
20 or TCY + 40
N
ns N = prescale value
(2, 4, ..., 256)
45* TT1H T1CKI High
Time
Synchronous, No Prescaler 0.5 TCY + 20 ns
Synchronous,
with Prescaler
15 ns
Asynchronous 30 ns
46* TT1L T1CKI Low
Time
Synchronous, No Prescaler 0.5 TCY + 20 ns
Synchronous, with Prescaler 15 ns
Asynchronous 30 ns
47* TT1P T1CKI Input
Period
Synchronous Greater of:
30 or TCY + 40
N
ns N = prescale value
(1, 2, 4, 8)
Asynchronous 60 ns
48 FT1 Secondary Oscillator Input Frequency Range
(oscillator enabled by setting bit T1OSCEN)
32.4 32.768 33.1 kHz
49* TCKEZTMR1 Delay from External Clock Edge to Timer
Increment
2 TOSC —7 TOSC Timers in Sync
mode
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
2010-2016 Microchip Technology Inc. DS40001452F-page 287
PIC16(L)F1516/7/8/9
FIGURE 25-11: CAPTURE/ COM PARE/PWM TIMINGS (CCP)
TABLE 25-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)
Standard Operating Conditions (unless otherwise stated)
Operating Temperature -40°C TA +125°C
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
CC01* TccL CCP Input Low Time No Prescaler 0.5TCY + 20 ns
With Prescaler 20 ns
CC02* TccH CCP Input High Time No Prescaler 0.5TCY + 20 ns
With Prescaler 20 ns
CC03* TccP CCP Input Period 3TCY + 40
N
ns N = prescale value (1, 4 or 16)
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note: Refer to Figure 25-5 for load conditions.
(Capture mode)
CC01 CC02
CC03
CCP
PIC16(L)F1516/7/8/9
DS40001452F-page 288 2010-2016 Microchip Technology Inc.
TABLE 25-7: ANALOG-TO-DIGITAL CONVERTER (ADC) CHARACTERISTICS:(1,2,3)
TABLE 25-8: ADC CONVERSION REQUIREMENTS
Standard Operating Conditions (unless otherwise stated)
Operating temperature Tested at +25°C
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
AD01 NRResolution 10 bit
AD02 EIL Integral Error ±1 ±1.7 LSb VREF = 3.0V
AD03 EDL Differential Error ±1 ±1 LSb No missing codes
VREF = 3.0V
AD04 EOFF Offset Error ±1 ±2.5 LSb VREF = 3.0V
AD05 EGN Gain Error ±1 ±2.0 LSb VREF = 3.0V
AD06 VREF Reference Voltage(4) 1.8 VDD VVREF = (VREF+ minus VREF-)
AD07 VAIN Full-Scale Range VSS —VREF V
AD08 ZAIN Recommended Impedance of
Analog Voltage Source
—— 10kCan go higher if external 0.01F capacitor is
present on input pin.
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: Total Absolute Error includes integral, differential, offset and gain errors.
2: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes.
3: ADC VREF is from external VREF, VDD pin or FVR, whichever is selected as reference input.
4: ADC Reference Voltage (Ref+) is the selected reference input, VREF+ pin, VDD pin or the FVR selected as the reference
input, the FVR Buffer1 output selection must be 2.048V or 4.096V, (ADFVR<1:0> = 1x).
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +125°C
Param
No. Sym. Characteristic Min. Typ Max. Units Conditions
AD130* TAD ADC Clock Period 1.0 9.0 sFOSC-based
FRC Oscillator Period 1.0 2.5 6.0 s ADCS<1:0> = 11
(FRC Oscillator mode)
AD131 TCNV Conversion Time (not including
Acquisition Time)(1) —11—TAD Set GO/DONE bit to conversion
complete
AD132* TACQ Acquisition Time 5.0 s
AD133* THCD Holding Capacitor Disconnect
0.5*TAD + 40 ns
(0.5*TAD + 40 ns)
to
(0.5*TAD + 40 ns)
ADCS<2:0> = X11 (FOSC-based)
ADCS<2:0> = X11 (ADC FRC mode)
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: The ADRES register may be read on the following TCY cycle.
2010-2016 Microchip Technology Inc. DS40001452F-page 289
PIC16(L)F1516/7/8/9
FIGURE 25-12: ADC CONVERSION TIMING (NORMAL MODE)
FIGURE 25-13: ADC CONVERSION TIMING (SLEEP MODE)
AD131
AD130
BSF ADCON0, GO
Q4
ADC CLK
ADC Data
ADRES
ADIF
GO
Sample
OLD_DATA
Sampling Stopped
DONE
NEW_DATA
765 3210
Note 1: If the ADC clock source is selected as FRC oscillator, a time of TCY is added before the ADC clock starts. This
allows the SLEEP instruction to be executed.
1 TCY
4
AD134 (TOSC/2(1))
1 TCY
AD132
AD132
AD131
AD130
BSF ADCON0, GO
Q4
ADC CLK
ADC Data
ADRES
ADIF
GO
Sample
OLD_DATA
Sampling Stopped
DONE
NEW_DATA
7 5 3210
Note 1: If the ADC clock source is selected as FRC oscillator, a time of TCY is added before the ADC clock starts. This
allows the SLEEP instruction to be executed.
AD134
4
6
1 TCY
(TOSC/2 + TCY(1))
1 TCY
PIC16(L)F1516/7/8/9
DS40001452F-page 290 2010-2016 Microchip Technology Inc.
TABLE 25-9: LOW DROPOUT (LDO) REGULATOR CHARACTERISTICS
FIGURE 25-14: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING
TABLE 25-10: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +125°C
Param
No. Sym. Characteristic Min. Typ† Max. Units Conditions
LDO01 LDO Regulation Voltage 3.0 V
LDO02 LDO External Capacitor 0.1 1 F
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Standard Operating Conditions (unless otherwise stated)
Operating Temperature -40°C TA +125°C
Param.
No. Symbol Characteristic Min. Max. Units Conditions
US120 TCKH2DTV SYNC XMIT (Master and Slave)
Clock high to data-out valid
3.0-5.5V 80 ns
1.8-5.5V 100 ns
US121 TCKRF Clock out rise time and fall time
(Master mode)
3.0-5.5V 45 ns
1.8-5.5V 50 ns
US122 TDTRF Data-out rise time and fall time 3.0-5.5V 45 ns
1.8-5.5V 50 ns
Note: Refer to Figure 25-5 for load conditions.
US121 US121
US120 US122
CK
DT
2010-2016 Microchip Technology Inc. DS40001452F-page 291
PIC16(L)F1516/7/8/9
FIGURE 25-15: USART SYNCHRONO US RECEIVE (MASTER/SLAVE) TIMING
TABLE 25-11: USART SYNCHRONOUS RECEIVE REQUIREMENTS
Standard Operatin g Conditions (unless otherwise stated)
Operating Temperature -40°C TA +125°C
Param.
No. Symbol Characteristic Min. Max. Units Conditions
US125 TDTV2CKL SYNC RCV (Master and Slave)
Data-hold before CK (DT hold time) 10 ns
US126 T
CKL2DTL Data-hold after CK (DT hold time) 15 ns
Note: Refer to Figure 25-5 for load conditions.
US125
US126
CK
DT
PIC16(L)F1516/7/8/9
DS40001452F-page 292 2010-2016 Microchip Technology Inc.
FIGURE 25-16 : SPI MA STE R MODE TIMING (CKE = 0, SMP = 0)
FIGURE 25-17 : SPI MA STE R MODE TIMING (CKE = 1, SMP = 1)
SSx
SCKx
(CKP = 0)
SCKx
(CKP = 1)
SDOx
SDIx
SP70
SP71 SP72
SP73
SP74
SP75, SP76
SP78
SP79
SP80
SP79
SP78
MSb LSb
bit 6 - - - - - -1
MSb In LSb In
bit 6 - - - -1
Note: Refer to Figure 25-5 for load conditions.
SSx
SCKx
(CKP = 0)
SCKx
(CKP = 1)
SDOx
SDIx
SP81
SP71 SP72
SP74
SP75, SP76
SP78
SP80
MSb
SP79
SP73
MSb In
bit 6 - - - - - -1
LSb In
bit 6 - - - -1
LSb
Note: Refer to Figure 25-5 for load conditions.
2010-2016 Microchip Technology Inc. DS40001452F-page 293
PIC16(L)F1516/7/8/9
FIGURE 25-18 : SPI SLAVE MODE TIMING (CKE = 0)
FIGURE 25-19 : SPI SLAVE MODE TIMING (CKE = 1)
SSx
SCKx
(CKP = 0)
SCKx
(CKP = 1)
SDOx
SDIx
SP70
SP71 SP72
SP73
SP74
SP75, SP76 SP77
SP78
SP79
SP80
SP79
SP78
MSb LSb
bit 6 - - - - - -1
MSb In bit 6 - - - -1 LSb In
SP83
Note: Refer to Figure 25-5 for load conditions.
SSx
SCKx
(CKP = 0)
SCKx
(CKP = 1)
SDOx
SDIx
SP70
SP71 SP72
SP82
SP74
SP75, SP76
MSb bit 6 - - - - - -1 LSb
SP77
MSb In bit 6 - - - -1 LSb In
SP80
SP83
Note: Refer to Figure 25-5 for load conditions.
PIC16(L)F1516/7/8/9
DS40001452F-page 294 2010-2016 Microchip Technology Inc.
TABLE 25-12: SPI MODE REQUIREMENTS
Param
No. Symbol Characteristic Min. Typ† Max. Unit
sConditions
SP70* TSSL2SCH,
TSSL2SCL
SSx to SCKx or SCKx input 2.25 TCY ——ns
SP71* TSCH SCKx input high time (Slave mode) TCY + 20 ns
SP72* TSCL SCKx input low time (Slave mode) TCY + 20 ns
SP73* TDIV2SCH,
TDIV2SCL
Setup time of SDIx data input to SCKx edge 100 ns
SP74* TSCH2DIL,
TSCL2DIL
Hold time of SDIx data input to SCKx edge 100 ns
SP75* TDOR SDO data output rise time 3.0-5.5V 10 25 ns
1.8-5.5V 25 50 ns
SP76* TDOF SDOx data output fall time 10 25 ns
SP77* TSSH2DOZ SSx to SDOx output high-impedance 10 50 ns
SP78* TSCR SCKx output rise time
(Master mode)
3.0-5.5V 10 25 ns
1.8-5.5V 25 50 ns
SP79* TSCF SCKx output fall time (Master mode) 10 25 ns
SP80* TSCH2DOV,
TSCL2DOV
SDOx data output valid after
SCKx edge
3.0-5.5V 50 ns
1.8-5.5V 145 ns
SP81* TDOV2SCH
,
TDOV2SCL
SDOx data output setup to SCKx edge Tcy ns
SP82* TSSL2DOV SDOx data output valid after SS edge 50 ns
SP83* TSCH2SSH,
TSCL2SSH
SSx after SCKx edge 1.5TCY +
40
——ns
* These parameters are characterized but not tested.
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance
only and are not tested.
2010-2016 Microchip Technology Inc. DS40001452F-page 295
PIC16(L)F1516/7/8/9
FIGURE 25-20 : I2C BUS START/STOP BITS TIMING
Note: Refer to Figure 25-5 for load conditions.
SP91
SP92
SP93
SCLx
SDAx
Start
Condition
Stop
Condition
SP90
TABLE 25-13: I2C BUS START/STOP BITS REQUIREMENTS
Param
No. Symbol Characteristic Min. Typ Max. Unit
sConditions
SP90* TSU:STA Start condition 100 kHz mode 4700 ns Only relevant for Repeated
Start condition
Setup time 400 kHz mode 600
SP91* THD:STA Start condition 100 kHz mode 4000 ns After this period, the first
clock pulse is generated
Hold time 400 kHz mode 600
SP92* TSU:STO Stop condition 100 kHz mode 4700 ns
Setup time 400 kHz mode 600
SP93 THD:STO Stop condition 100 kHz mode 4000 ns
Hold time 400 kHz mode 600
* These parameters are characterized but not tested.
PIC16(L)F1516/7/8/9
DS40001452F-page 296 2010-2016 Microchip Technology Inc.
FIGURE 25-21 : I2C BUS DATA TIMING
Note: Refer to Figure 25-5 for load conditions.
SP90
SP91 SP92
SP100
SP101
SP103
SP106 SP107
SP109 SP109
SP110
SP102
SCLx
SDAx
In
SDAx
Out
TABLE 25-14: I2C BUS DATA REQUIREMENTS
Param.
No. Symbol Characteristic Min. Max. Units Conditions
SP100* THIGH Clock high time 100 kHz mode 4.0 s Device must operate at a
minimum of 1.5 MHz
400 kHz mode 0.6 s Device must operate at a
minimum of 10 MHz
SSP module 1.5TCY ——
SP101* TLOW Clock low time 100 kHz mode 4.7 s Device must operate at a
minimum of 1.5 MHz
400 kHz mode 1.3 s Device must operate at a
minimum of 10 MHz
SSP module 1.5TCY ——
SP102* TRSDAx and SCLx rise
time
100 kHz mode 1000 ns
400 kHz mode 20 + 0.1CB300 ns CB is specified to be from
10-400 pF
SP103* TFSDAx and SCLx fall
time
100 kHz mode 250 ns
400 kHz mode 20 + 0.1CB250 ns CB is specified to be from
10-400 pF
SP106* THD:DAT Data input hold time 100 kHz mode 0 ns
400 kHz mode 0 0.9 s
SP107* TSU:DAT Data input setup time 100 kHz mode 250 ns (Note 2)
400 kHz mode 100 ns
SP109* TAA Output valid from
clock
100 kHz mode 3500 ns (Note 1)
400 kHz mode ns
SP110* TBUF Bus free time 100 kHz mode 4.7 s Time the bus must be free
before a new transmission
can start
400 kHz mode 1.3 s
SP111 CBBus capacitive loading 400 pF
* These parameters are characterized but not tested.
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns)
of the falling edge of SCLx to avoid unintended generation of Start or Stop conditions.
2: A Fast mode (400 kHz) I2C bus device can be used in a Standard mode (100 kHz) I2C bus system, but the requirement
TSU:DAT 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of
the SCLx signal. If such a device does stretch the low period of the SCLx signal, it must output the next data bit to the
SDAx line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification), before
the SCLx line is released.
2010-2016 Microchip Technology Inc. DS40001452F-page 297
PIC16(L)F1516/7/8/9
26.0 DC AND AC
CHARACTERISTICS GRAPHS
AND CHARTS
The graphs and tables provided in this section are for design guidance and are not tested.
In some graphs or tables, the data presented are outside specified operating range (i.e., outside specified VDD
range). This is for information only and devices are ensured to operate properly only within the specified range.
“Typical” represents the mean of the distribution at 25C. “MAXIMUM”, “Max.”, “MINIMUM” or “Min.”
represents (mean + 3) or (mean - 3) respectively, where is a standard deviation, over each
temp er atu r e ra ng e.
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.
PIC16(L)F1516/7/8/9
DS40001452F-page 298 2010-2016 Microchip Technology Inc.
FIGURE 26-1: IDD, LP OSCILLATOR MODE, FOSC = 32 kHz, PIC16LF1516/7/8/9 ONLY
FIGURE 26-2: IDD, LP OSCILLATOR MODE, FOSC = 32 kHz, PIC16F1516/7/8/9 ONLY
Typical
Max.
0
5
10
15
20
25
30
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
I
DD
(
μ
A)
V
DD
(V)
Max: 85°C + 3ı
Typical: 25°C
Typical
Max.
0
5
10
15
20
25
30
35
40
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
I
DD
(
μ
A)
V
DD
(V)
Max: 85°C + 3ı
Typical: 25°C
2010-2016 Microchip Technology Inc. DS40001452F-page 299
PIC16(L)F1516/7/8/9
FIGURE 26-3: IDD TYPICAL, XT AND EXTRC OSCILLATOR, PIC16LF1516/7/8/9 ONLY
FIGURE 26-4: IDD MAXIMUM, XT AND EXTRC OSCILLATOR, PIC16LF1516/7/8/9 ONLY
4 MHz XT
1 MHz EXTRC
1 MHz XT
0
50
100
150
200
250
300
350
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
I
DD
(
μ
A)
V
DD
(V)
Typical: 25°C
4 MHz XT
1 MHz EXTRC
1 MHz XT
0
50
100
150
200
250
300
350
400
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
I
DD
(
μ
A)
V
DD
(V)
Max: 85°C + 3ı
PIC16(L)F1516/7/8/9
DS40001452F-page 300 2010-2016 Microchip Technology Inc.
FIGURE 26-5: IDD TYPICAL, XT AND EXTRC OSCILLATOR, PIC16F1516/7/8/9 ONLY
FIGURE 26-6: IDD MAXIMUM, XT AND EXTRC OSCILLATOR, PIC16F1516/7/8/9 ONLY
4 MHz EXTRC
4 MHz XT
1 MHz EXTRC
1 MHz XT
0
50
100
150
200
250
300
350
400
450
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
I
DD
(
μ
A)
V
DD
(V)
Typical: 25°C
4 MHz EXTRC
4 MHz XT
1 MHz EXTRC
1 MHz XT
0
50
100
150
200
250
300
350
400
450
500
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
I
DD
(
μ
A)
V
DD
(V)
Max: 85°C + 3ı
2010-2016 Microchip Technology Inc. DS40001452F-page 301
PIC16(L)F1516/7/8/9
FIGURE 26-7: IDD, EC OSCILLATOR, LOW-POWER MODE, FOSC = 32 kHz,
PIC16LF1516/7/8/9 ONLY
FIGURE 26-8: IDD, EC OSCILLATOR, LOW-POWER MODE, FOSC = 32 kHz,
PIC16F1516/7/8/9 ONLY
Typical
Max.
0
5
10
15
20
25
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
I
DD
(
μ
A)
V
DD
(V)
Max: 85°C + 3ı
Typical: 25°C
Typical
Max.
0
5
10
15
20
25
30
35
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
I
DD
(μA)
V
DD
(V)
Max: 85°C + 3ı
Typical: 25°C
PIC16(L)F1516/7/8/9
DS40001452F-page 302 2010-2016 Microchip Technology Inc.
FIGURE 26-9: IDD, EC OSCILLATOR, LOW-POWER MODE, FOSC = 500 kHz,
PIC16LF1516/7/8/9 ONLY
FIGURE 26-10 : IDD, EC OSCILLATOR, LOW-POWER MODE, FOSC = 500 kHz,
PIC16F1516/7/8/9 ONLY
Max.
Typical
0
10
20
30
40
50
60
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
I
DD
(
μ
A)
V
DD
(V)
Max: 85°C + 3ı
Typical: 25°C
Typical
Max.
0
10
20
30
40
50
60
70
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
I
DD
(
μ
A)
V
DD
(V)
Max: 85°C + 3ı
Typical: 25°C
2010-2016 Microchip Technology Inc. DS40001452F-page 303
PIC16(L)F1516/7/8/9
FIGURE 26-11: IDD TYPICAL, EC OSCILLATOR , MEDIUM-POWER MODE, PIC16LF1516/7/8/9 ONLY
FIGURE 26-12 : IDD MAXIMUM, EC OSCILLATOR, MEDIUM-POWER MODE,
PIC16LF1516/7/8/9 ONLY
4 MHz
1 MHz
0
50
100
150
200
250
300
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
I
DD
(
μ
A)
V
DD
(V)
Typical: 25°C
4 MHz
1 MHz
0
50
100
150
200
250
300
350
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
I
DD
(
μ
A)
V
DD
(V)
Max: 85°C + 3ı
PIC16(L)F1516/7/8/9
DS40001452F-page 304 2010-2016 Microchip Technology Inc.
FIGURE 26 - 13: IDD TYPICAL, EC OSCILLATOR , MEDIUM-POWER MODE, PIC16F1516/7/8/9 ONLY
FIGURE 26 - 14: IDD MAXIMU M, EC OSC ILL ATOR, MEDIU M-POWER M ODE, PI C16F 151 6/ 7/8/9 ON LY
4 MHz
1 MHz
0
50
100
150
200
250
300
350
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
I
DD
(
μ
A)
V
DD
(V)
Typical: 25°C
4 MHz
1 MHz
0
50
100
150
200
250
300
350
400
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
I
DD
(
μ
A)
V
DD
(V)
Max: 85°C + 3ı
2010-2016 Microchip Technology Inc. DS40001452F-page 305
PIC16(L)F1516/7/8/9
FIGURE 26-15 : IDD TYPICAL, EC OSCILLATOR, HIGH-POWER MODE, PIC16LF1516/7/8/9 ONLY
FIGURE 26 - 16: IDD MAXIMUM, EC OSCILLATOR, HIGH-POWER MODE, PIC1 6LF1516/ 7/8 /9 ON LY
20 MHz
16 MHz
8 MHz
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
I
DD
(mA)
V
DD
(V)
Typical: 25°C
20 MHz
16 MHz
8 MHz
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
I
DD
(mA)
V
DD
(V)
Max: 85°C + 3ı
PIC16(L)F1516/7/8/9
DS40001452F-page 306 2010-2016 Microchip Technology Inc.
FIGURE 26-17 : IDD TYPICAL, EC OSCILLATOR, HIGH-POWER MODE, PIC16F1516/7/8/9 ONLY
FIGURE 26-18 : IDD MAXIMUM, EC OSCILLATOR, HIGH-POWER MODE, PIC16F1516/7/8/9 ONLY
20 MHz
16 MHz
8 MHz
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
I
DD
(mA)
V
DD
(V)
Typical: 25°C
20 MHz
16 MHz
8 MHz
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
I
DD
(mA)
V
DD
(V)
Max: 85°C + 3ı
2010-2016 Microchip Technology Inc. DS40001452F-page 307
PIC16(L)F1516/7/8/9
FIGURE 26-19 : IDD, LFINTOSC MODE, FOSC = 31 kHz, PIC16LF1516/7/8/9 ONLY
FIGURE 26-20 : IDD, LFINTOSC MODE, FOSC = 31 kHz, PIC16F1516/7/8/9 ONLY
Typical
Max.
0
5
10
15
20
25
30
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
I
DD
(μA)
V
DD
(V)
Max: 85°C + 3ı
Typical: 25°C
Typical
Max.
0
5
10
15
20
25
30
35
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
I
DD
(
μ
A)
V
DD
(V)
Max: 85°C + 3ı
Typical: 25°C
PIC16(L)F1516/7/8/9
DS40001452F-page 308 2010-2016 Microchip Technology Inc.
FIGURE 26-21 : IDD, MFINTOSC MODE, FOSC = 500 kHz, PIC16LF1516/7/8/9 ONLY
FIGURE 26-22 : IDD, MFINTOSC MODE, FOSC = 500 kHz, PIC16F1516/7/8/9 ONLY
Typical
Max.
100
150
200
250
300
350
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
I
DD
(
μ
A)
V
DD
(V)
Max: 85°C + 3ı
Typical: 25°C
Typical
Max.
100
150
200
250
300
350
400
450
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
I
DD
(
μ
A)
V
DD
(V)
Max: 85°C + 3ı
Typical: 25°C
2010-2016 Microchip Technology Inc. DS40001452F-page 309
PIC16(L)F1516/7/8/9
FIGURE 26-23 : IDD TYPICAL, HFINTOSC MODE, PIC16LF1516/7/8/9 ONLY
FIGURE 26-24 : IDD MAXIMUM, HFINTOSC MODE, PIC16LF1516/7/8/9 ONLY
16 MHz
8 MHz
4 MHz
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
I
DD
(mA)
V
DD
(V)
Typical: 25°C
16 MHz
8 MHz
4 MHz
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
I
DD
(mA)
V
DD
(V)
Max: 85°C + 3ı
PIC16(L)F1516/7/8/9
DS40001452F-page 310 2010-2016 Microchip Technology Inc.
FIGURE 26-25 : IDD TYPICAL, HFINTOSC MODE, PIC16F1516/7/8/9 ONLY
FIGURE 26-26 : IDD MAXIMUM, HFINTOSC MODE, PIC16F1516/7/8/9 ONLY
16 MHz
8 MHz
4 MHz
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
I
DD
(mA)
V
DD
(V)
Typical: 25°C
16 MHz
8 MHz
4 MHz
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
I
DD
(mA)
V
DD
(V)
Max: 85°C + 3ı
2010-2016 Microchip Technology Inc. DS40001452F-page 311
PIC16(L)F1516/7/8/9
FIGURE 26-27 : IDD TYPICAL, HS OSCILLATOR, PIC16LF1516/7/8/9 ONLY
FIGURE 26-28 : IDD MAXIMUM, HS OSCILLATOR, PIC16LF1516/7/8/9 ONLY
20 MHz
8 MHz
4 MHz
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
I
DD
(mA)
V
DD
(V)
Typical: 25°C
20 MHz
8 MHz
4 MHz
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
I
DD
(mA)
V
DD
(V)
Max: 85°C + 3ı
PIC16(L)F1516/7/8/9
DS40001452F-page 312 2010-2016 Microchip Technology Inc.
FIGURE 26-29 : IDD TYPICAL, HS OSCILLATOR, PIC16F1516/7/8/9 ONLY
FIGURE 26-30 : IDD MAXIMUM, HS OSCILLATOR, PIC16F1516/7/8/9 ONLY
20 MHz
8 MHz
4 MHz
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
I
DD
(mA)
V
DD
(V)
Typical: 25°C
20 MHz
8 MHz
4 MHz
0.0
0.5
1.0
1.5
2.0
2.5
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
I
DD
(mA)
V
DD
(V)
Max: 85°C + 3ı
2010-2016 Microchip Technology Inc. DS40001452F-page 313
PIC16(L)F1516/7/8/9
FIGURE 26-31 : IPD BASE, SLEEP MODE, PIC16LF1516/7/8/9 ONLY
FIGURE 26-32 : IPD BASE, LOW-POWER SLEEP MODE (VREGPM = 1), PIC16F1516/7/8/9 ONLY
450
M85
°
C3
Max.
250
300
350
400
450
D
(nA)
Max: 85°C + 3ı
Typical: 25°C
Typical
0
50
100
150
200
250
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
I
PD
(nA)
0
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
V
DD
(V)
Max.
600
Max.
300
400
500
600
P
D
(nA)
Max: 85°C + 3ı
Typical: 25°C
Typical
0
100
200
300
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
I
PD
(nA)
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
V
DD
(V)
PIC16(L)F1516/7/8/9
DS40001452F-page 314 2010-2016 Microchip Technology Inc.
FIGURE 26-33 : IPD, WATCHDOG TIMER (WDT), PIC16LF1516/7/8/9 ONLY
FIGURE 26-34 : IPD, WATCHDOG TIMER (WDT), PIC16F1516/7/8/9 ONLY
1.4
Typical
Max.
0.6
0.8
1.0
1.2
1.4
I
PD
A)
Max: 85°C + 3ı
Typical: 25°C
Typical
0.0
0.2
0.4
0.6
08
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
I
PD
A
0.0
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
V
DD
(V)
1.2
Typical
Max.
0.6
0.8
1.0
1.2
I
PD
(
μ
A)
Max: 85°C + 3ı
Typical: 25°C
Typical
0.0
0.2
0.4
0.6
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
I
PD
(
μ
A
0.0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
V
DD
(V)
2010-2016 Microchip Technology Inc. DS40001452F-page 315
PIC16(L)F1516/7/8/9
FIGURE 26-35 : IPD, FIXED VOLTAGE REFERENCE (FVR), PIC16LF1516/7/8/9 ONLY
FIGURE 26-36 : IPD, FIXED VOLTAGE REFERENCE (FVR), PIC16F1516/7/8/9 ONLY
Max.
25
Typical
Max.
10
15
20
25
I
PD
(
μ
A)
0
5
10
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
I
PD
(
μ
A
Max: 85°C + 3ı
Typical: 25°C
0
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
V
DD
(V)
30
Typical
Max.
15
20
25
30
I
PD
(
μ
A)
0
5
10
15
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
I
PD
(
μ
Max: 85°C + 3ı
Typical: 25°C
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
V
DD
(V)
PIC16(L)F1516/7/8/9
DS40001452F-page 316 2010-2016 Microchip Technology Inc.
FIGURE 26-37 : IPD, BROWN-OUT RESET (BOR), BORV = 1, PIC16LF1516/7/8/9 ONLY
FIGURE 26-38 : IPD, BROWN-OUT RESET (BOR), BORV = 1, PIC16F1516/7/8/9 ONLY
12
Typical
Max.
6
8
10
12
D
(
μ
A)
Max: 85°C + 3ı
Typical: 25°C
0
2
4
6
16
18
20
22
24
26
28
30
32
34
36
38
I
PD
(
μ
A)
0
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
V
DD
(V)
Max
14
Ma 85
°
C+3
ı
Typical
Max.
6
8
10
12
14
I
PD
(
μ
A)
Max: 85°C + 3ı
Typical: 25°C
0
2
4
6
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
I
PD
(
μ
A
)
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
V
DD
(V)
2010-2016 Microchip Technology Inc. DS40001452F-page 317
PIC16(L)F1516/7/8/9
FIGURE 26-39 : IPD, SECONDARY OSCILLATOR, FOSC = 32 kHz, PIC16LF1516/7/8/9 ONLY
FIGURE 26-40 : IPD, SECONDARY OSCILLATOR, FOSC = 32 kHz, PIC16F1516/7/8/9 ONLY
6.0
T
yp
ical
Max.
3.0
4.0
5.0
6.0
I
PD
(
μ
A)
Max: 85°C + 3ı
Typical: 25°C
Typical
0.0
1.0
2.0
3.0
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
I
PD
(
μ
A
0.0
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
V
DD
(V)
12
Typical
Max.
6
8
10
12
I
PD
(
μ
A)
Max: 85°C + 3ı
Typical: 25°C
Typical
0
2
4
6
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
I
PD
(
μ
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
V
DD
(V)
PIC16(L)F1516/7/8/9
DS40001452F-page 318 2010-2016 Microchip Technology Inc.
FIGURE 26-41 : VOH VS. IOH OVER TEMPERATURE, VDD = 5.5V, PIC16F1516/7/8/9 ONLY
FIGURE 26-42 : VOL VS. IOL OVER TEMPERATURE, VDD = 5.5V, PIC16F1516/7/8/9 ONLY
Min. (-40°C)
Typical (25°C)
Max. (125°C)
0
1
2
3
4
5
6
-45 -40 -35 -30 -25 -20 -15 -10 -5 0
V
OH
(V)
I
OH
(mA)
Max: 125°C + 3ı
Typical: 25°C
Min: -40°C - 3ı
Min. (-40°C)
Typical (25°C)
Max. (125°C)
0
1
2
3
4
5
0 102030405060708090100
V
OL
(V)
I
OL
(mA)
Max: 125°C + 3ı
Typical: 25°C
Min: -40°C - 3ı
2010-2016 Microchip Technology Inc. DS40001452F-page 319
PIC16(L)F1516/7/8/9
FIGURE 26-43 : VOH VS. IOH OVER TEMPERATURE, VDD = 3.0V
FIGURE 26-44 : VOL VS. IOL OVER TEMPERATURE, VDD = 3.0V
Min. (-40°C) Typical (25°C) Max. (125°C)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
-15-13-11-9-7-5-3-1
V
OH
(V)
I
OH
(mA)
Max: 125°C + 3ı
Typical: 25°C
Min: -40°C - 3ı
Min. (-40°C)
Typical (25°C)
Max. (125°C)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0 5 10 15 20 25 30 35 40
V
OL
(V)
I
OL
(mA)
Max: 125°C + 3ı
Typical: 25°C
Min: -40°C - 3ı
PIC16(L)F1516/7/8/9
DS40001452F-page 320 2010-2016 Microchip Technology Inc.
FIGURE 26-45 : VOH VS. IOH OVER TEMPERATURE, VDD = 1.8V, PIC16LF1516/7/8/9 ONLY
FIGURE 26-46 : VOL VS. IOL OVER TEMPERATURE, VDD = 1.8V, PIC16LF1516/7/8/9 ONLY
Min. (-40°C) Typical (25°C) Max. (125°C)
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
-4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0
V
OH
(V)
I
OH
(mA)
Max: 125°C + 3ı
Typical: 25°C
Min: -40°C - 3ı
Min. (-40°C)
Typical (25°C)
Max. (125°C)
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
012345678910
V
OL
(V)
I
OL
(mA)
Max: 125°C + 3ı
Typical: 25°C
Min: -40°C - 3ı
2010-2016 Microchip Technology Inc. DS40001452F-page 321
PIC16(L)F1516/7/8/9
FIGURE 26-47: POR RELEASE VOLTAGE
FIGURE 26-48 : POR REARM VOLTAGE, PIC16F151 6/7/ 8/9 ONL Y
Typical
Max.
Min.
1.50
1.52
1.54
1.56
1.58
1.60
1.62
1.64
1.66
1.68
1.70
-60 -40 -20 0 20 40 60 80 100 120 140
Voltage (V)
Temperature (°C)
Max: Typical + 3ı
Typical: 25°C
Min: Typical - 3ı
Typical
Max.
Min.
1.34
1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50
1.52
1.54
-60 -40 -20 0 20 40 60 80 100 120 140
Voltage (V)
Temperature (°C)
Max: Typical + 3ı
Typical: 25°C
Min: Typical - 3ı
PIC16(L)F1516/7/8/9
DS40001452F-page 322 2010-2016 Microchip Technology Inc.
FIGURE 26-49: BROWN-OUT RESET VOLTAGE, BORV = 1, PIC16LF1516/7/8/9 ONLY
FIGURE 26-50: BROWN-OUT RESET HYSTERESIS, BORV = 1, PIC16LF1516/7/8/9 ONLY
Typical
Max.
Min.
1.80
1.85
1.90
1.95
2.00
-60 -40 -20 0 20 40 60 80 100 120 140
Voltage (V)
Temperature (°C)
Max: Typical + 3ı
Min: Typical - 3ı
Typical
Max.
Min.
0
10
20
30
40
50
60
-60 -40 -20 0 20 40 60 80 100 120 140
Voltage (mV)
Temperature (°C)
Max: Typical + 3ı
Typical: 25°C
Min: Typical - 3ı
2010-2016 Microchip Technology Inc. DS40001452F-page 323
PIC16(L)F1516/7/8/9
FIGURE 26-51: BROWN-OUT RESET VOLTAGE, BORV = 1, PIC16F1516/7/8/9 ONLY
FIGURE 26-52: BROWN-OUT RESET HYSTERESIS, BORV = 1, PIC16F1516/7 /8/9 ONL Y
Typical
Max.
Min.
2.30
2.35
2.40
2.45
2.50
2.55
2.60
-60 -40 -20 0 20 40 60 80 100 120 140
Voltage (V)
Temperature (°C)
Max: Typical + 3ı
Min: Typical - 3ı
Typical
Max.
Min.
0
10
20
30
40
50
60
70
-60 -40 -20 0 20 40 60 80 100 120 140
Voltage (mV)
Temperature (°C)
Max: Typical + 3ı
Typical: 25°C
Min: Typical - 3ı
PIC16(L)F1516/7/8/9
DS40001452F-page 324 2010-2016 Microchip Technology Inc.
FIGURE 26-53: BROWN-OUT RESET VOLTAGE, BORV = 0
FIGURE 26-54: BROWN-OUT RESET HYSTERESIS, BORV = 0
Typical
Max.
Min.
2.55
2.60
2.65
2.70
2.75
2.80
-60 -40 -20 0 20 40 60 80 100 120 140
Voltage (V)
Temperature (°C)
Max: Typical + 3ı
Min: Typical - 3ı
Typical
Max.
Min.
0
10
20
30
40
50
60
70
80
90
-60 -40 -20 0 20 40 60 80 100 120 140
Voltage (mV)
Temperature (°C)
Max: Typical + 3ı
Typical: 25°C
Min: Typical - 3ı
2010-2016 Microchip Technology Inc. DS40001452F-page 325
PIC16(L)F1516/7/8/9
FIGURE 26-55: LOW-POWER BROWN-OUT RESET VOLTAGE, LPBOR = 0
FIGURE 26-56: LOW-POWER BROWN-OUT RESET HYSTERESIS, LPBOR = 0
Typical
Max.
Min.
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
-60 -40 -20 0 20 40 60 80 100 120 140
Voltage (V)
Temperature (°C)
Max: Typical + 3ı
Min: Typical - 3ı
Typical
Max.
Min.
0
5
10
15
20
25
30
35
40
45
-60 -40 -20 0 20 40 60 80 100 120 140
Voltage (mV)
Temperature (°C)
Max: Typical + 3ı
Typical: 25°C
Min: Typical - 3ı
PIC16(L)F1516/7/8/9
DS40001452F-page 326 2010-2016 Microchip Technology Inc.
FIGURE 26-57: WDT TIME-OUT PERIOD
FIGURE 26-58 : PWR T PERI OD
Typical
Max.
Min.
10
12
14
16
18
20
22
24
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Time (ms)
V
DD
(V)
Max: Typical + 3ı(-40°C to +125°C)
Typical: statistical mean @ 25°C
Min: Typical - 3ı(-40°C to +125°C)
Typical
Max.
Min.
40
50
60
70
80
90
100
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Time (ms)
V
DD
(V)
Max: Typical + 3ı(-40°C to +125°C)
Typical: statistical mean @ 25°C
Min: Typical - 3ı(-40°C to +125°C)
2010-2016 Microchip Technology Inc. DS40001452F-page 327
PIC16(L)F1516/7/8/9
FIGURE 26-59 : FVR STABILIZATION PERIOD
Typical
Max.
0
5
10
15
20
25
30
35
40
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
Time (us)
V
DD
(V)
Max: Typical + 3ı
Typical: statistical mean @ 25°C
Note:
The FVR Stabilization Period applies when:
1) coming out of Reset or exiting Sleep mode for PIC12/16LFxxxx devices.
2) when exiting Sleep mode with VREGPM = 1for PIC12/16Fxxxx devices
In all other cases, the FVR is stable when released from Reset.
PIC16(L)F1516/7/8/9
DS40001452F-page 328 2010-2016 Microchip Technology Inc.
FIGURE 26-60: LFINTOSC FREQUENCY OVER VDD AND TEMPERATURE,
PIC16LF1516/7/8/9 ONLY
FIGURE 26-61: LFINTOSC FREQUENCY OVER VDD AND TEMPERATURE,
PIC16F1516/7/8/9 ONLY
Typical
Max.
Min.
20
22
24
26
28
30
32
34
36
1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
Frequency (kHz)
V
DD
(V)
Max: Typical + 3ı(-40°C to +125°C)
Typical: statistical mean @ 25°C
Min: Typical - 3ı(-40°C to +125°C)
Typical
Max.
Min.
20
22
24
26
28
30
32
34
36
22.533.544.555.56
Frequency (kHz)
V
DD
(V)
Max: Typical + 3ı(-40°C to +125°C)
Typical: statistical mean @ 25°C
Min: Typical - 3ı(-40°C to +125°C)
2010-2016 Microchip Technology Inc. DS40001452F-page 329
PIC16(L)F1516/7/8/9
27.0 DEVELOPMENT SUPPORT
The PIC® microcontrollers (MCU) and dsPIC® digital
signal controllers (DSC) are supported with a full range
of software and hardware development tools:
Integrated Development Environment
- MPLAB® X IDE Software
Compilers/Assemblers/Linkers
- MPLAB XC Compiler
- MPASMTM Assembler
-MPLINK
TM Object Linker/
MPLIBTM Object Librarian
- MPLAB Assembler/Linker/Librarian for
Various Device Families
Simulators
- MPLAB X SIM Software Simulator
•Emulators
- MPLAB REAL ICE™ In-Circuit Emulator
In-Circuit Debuggers/Programmers
- MPLAB ICD 3
- PICkit™ 3
Device Programmers
- MPLAB PM3 Device Programmer
Low-Cost Demonstration/Development Boards,
Evaluation Kits and Starter Kits
Third-party development tools
27.1 MPLAB X Integrated Development
Environment Software
The MPLAB X IDE is a single, unified graphical user
interface for Microchip and third-party software, and
hardware development tool that runs on Windows®,
Linux and Mac OS® X. Based on the NetBeans IDE,
MPLAB X IDE is an entirely new IDE with a host of free
software components and plug-ins for high-
performance application development and debugging.
Moving between tools and upgrading from software
simulators to hardware debugging and programming
tools is simple with the seamless user interface.
With complete project management, visual call graphs,
a configurable watch window and a feature-rich editor
that includes code completion and context menus,
MPLAB X IDE is flexible and friendly enough for new
users. With the ability to support multiple tools on
multiple projects with simultaneous debugging, MPLAB
X IDE is also suitable for the needs of experienced
users.
Feature-Rich Editor:
Color syntax highlighting
Smart code completion makes suggestions and
provides hints as you type
Automatic code formatting based on user-defined
rules
Live parsing
User-Friendly, Customizable Interface:
Fully customizable interface: toolbars, toolbar
buttons, windows, window placement, etc.
Call graph window
Project-Based Workspaces:
Multiple projects
Multiple tools
Multiple configurations
Simultaneous debugging sessions
File History and Bug Tracking:
Local file history feature
Built-in support for Bugzilla issue tracker
PIC16(L)F1516/7/8/9
DS40001452F-page 330 2010-2016 Microchip Technology Inc.
27.2 MPLAB XC Compilers
The MPLAB XC Compilers are complete ANSI C
compilers for all of Microchip’s 8, 16, and 32-bit MCU
and DSC devices. These compilers provide powerful
integration capabilities, superior code optimization and
ease of use. MPLAB XC Compilers run on Windows,
Linux or MAC OS X.
For easy source level debugging, the compilers provide
debug information that is optimized to the MPLAB X
IDE.
The free MPLAB XC Compiler editions support all
devices and commands, with no time or memory
restrictions, and offer sufficient code optimization for
most applications.
MPLAB XC Compilers include an assembler, linker and
utilities. The assembler generates relocatable object
files that can then be archived or linked with other relo-
catable object files and archives to create an execut-
able file. MPLAB XC Compiler uses the assembler to
produce its object file. Notable features of the assem-
bler include:
Support for the entire device instruction set
Support for fixed-point and floating-point data
Command-line interface
Rich directive set
Flexible macro language
MPLAB X IDE compatibility
27.3 MPASM Assembler
The MPASM Assembler is a full-featured, universal
macro assembler for PIC10/12/16/18 MCUs.
The MPASM Assembler generates relocatable object
files for the MPLINK Object Linker, Intel® standard HEX
files, MAP files to detail memory usage and symbol
reference, absolute LST files that contain source lines
and generated machine code, and COFF files for
debugging.
The MPASM Assembler features include:
Integration into MPLAB X IDE projects
User-defined macros to streamline
assembly code
Conditional assembly for multipurpose
source files
Directives that allow complete control over the
assembly process
27.4 MPLINK Object Linker/
MPLIB Object Librarian
The MPLINK Object Linker combines relocatable
objects created by the MPASM Assembler. It can link
relocatable objects from precompiled libraries, using
directives from a linker script.
The MPLIB Object Librarian manages the creation and
modification of library files of precompiled code. When
a routine from a library is called from a source file, only
the modules that contain that routine will be linked in
with the application. This allows large libraries to be
used efficiently in many different applications.
The object linker/library features include:
Efficient linking of single libraries instead of many
smaller files
Enhanced code maintainability by grouping
related modules together
Flexible creation of libraries with easy module
listing, replacement, deletion and extraction
27.5 MPLAB Assembler, Linker and
Librarian for Various Device
Families
MPLAB Assembler produces relocatable machine
code from symbolic assembly language for PIC24,
PIC32 and dsPIC DSC devices. MPLAB XC Compiler
uses the assembler to produce its object file. The
assembler generates relocatable object files that can
then be archived or linked with other relocatable object
files and archives to create an executable file. Notable
features of the assembler include:
Support for the entire device instruction set
Support for fixed-point and floating-point data
Command-line interface
Rich directive set
Flexible macro language
MPLAB X IDE compatibility
2010-2016 Microchip Technology Inc. DS40001452F-page 331
PIC16(L)F1516/7/8/9
27.6 MPLAB X SIM Software Simulator
The MPLAB X SIM Software Simulator allows code
development in a PC-hosted environment by simulat-
ing the PIC MCUs and dsPIC DSCs on an instruction
level. On any given instruction, the data areas can be
examined or modified and stimuli can be applied from
a comprehensive stimulus controller. Registers can be
logged to files for further run-time analysis. The trace
buffer and logic analyzer display extend the power of
the simulator to record and track program execution,
actions on I/O, most peripherals and internal registers.
The MPLAB X SIM Software Simulator fully supports
symbolic debugging using the MPLAB XC Compilers,
and the MPASM and MPLAB Assemblers. The soft-
ware simulator offers the flexibility to develop and
debug code outside of the hardware laboratory envi-
ronment, making it an excellent, economical software
development tool.
27.7 MPLAB REAL ICE In-Circuit
Emulator System
The MPLAB REAL ICE In-Circuit Emulator System is
Microchip’s next generation high-speed emulator for
Microchip Flash DSC and MCU devices. It debugs and
programs all 8, 16 and 32-bit MCU, and DSC devices
with the easy-to-use, powerful graphical user interface of
the MPLAB X IDE.
The emulator is connected to the design engineer’s
PC using a high-speed USB 2.0 interface and is
connected to the target with either a connector
compatible with in-circuit debugger systems (RJ-11)
or with the new high-speed, noise tolerant, Low-
Voltage Differential Signal (LVDS) interconnection
(CAT5).
The emulator is field upgradable through future firmware
downloads in MPLAB X IDE. MPLAB REAL ICE offers
significant advantages over competitive emulators
including full-speed emulation, run-time variable
watches, trace analysis, complex breakpoints, logic
probes, a ruggedized probe interface and long (up to
three meters) interconnection cables.
27.8 MPLAB ICD 3 In-Circuit Debugger
System
The MPLAB ICD 3 In-Circuit Debugger System is
Microchip’s most cost-effective, high-speed hardware
debugger/programmer for Microchip Flash DSC and
MCU devices. It debugs and programs PIC Flash
microcontrollers and dsPIC DSCs with the powerful,
yet easy-to-use graphical user interface of the MPLAB
IDE.
The MPLAB ICD 3 In-Circuit Debugger probe is
connected to the design engineer’s PC using a high-
speed USB 2.0 interface and is connected to the target
with a connector compatible with the MPLAB ICD 2 or
MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3
supports all MPLAB ICD 2 headers.
27.9 PICkit 3 In-Circuit Debugger/
Programmer
The MPLAB PICkit 3 allows debugging and program-
ming of PIC and dsPIC Flash microcontrollers at a most
affordable price point using the powerful graphical user
interface of the MPLAB IDE. The MPLAB PICkit 3 is
connected to the design engineer’s PC using a full-
speed USB interface and can be connected to the tar-
get via a Microchip debug (RJ-11) connector (compati-
ble with MPLAB ICD 3 and MPLAB REAL ICE). The
connector uses two device I/O pins and the Reset line
to implement in-circuit debugging and In-Circuit Serial
Programming™ (ICSP™).
27.10 MPLAB PM3 Device Program mer
The MPLAB PM3 Device Programmer is a universal,
CE compliant device programmer with programmable
voltage verification at VDDMIN and VDDMAX for
maximum reliability. It features a large LCD display
(128 x 64) for menus and error messages, and a mod-
ular, detachable socket assembly to support various
package types. The ICSP cable assembly is included
as a standard item. In Stand-Alone mode, the MPLAB
PM3 Device Programmer can read, verify and program
PIC devices without a PC connection. It can also set
code protection in this mode. The MPLAB PM3
connects to the host PC via an RS-232 or USB cable.
The MPLAB PM3 has high-speed communications and
optimized algorithms for quick programming of large
memory devices, and incorporates an MMC card for file
storage and data applications.
PIC16(L)F1516/7/8/9
DS40001452F-page 332 2010-2016 Microchip Technology Inc.
27.11 Demonstration/Developm ent
Boards, Evaluation Kits, and
Starter Kits
A wide variety of demonstration, development and
evaluation boards for various PIC MCUs and dsPIC
DSCs allows quick application development on fully
functional systems. Most boards include prototyping
areas for adding custom circuitry and provide applica-
tion firmware and source code for examination and
modification.
The boards support a variety of features, including LEDs,
temperature sensors, switches, speakers, RS-232
interfaces, LCD displays, potentiometers and additional
EEPROM memory.
The demonstration and development boards can be
used in teaching environments, for prototyping custom
circuits and for learning about various microcontroller
applications.
In addition to the PICDEM™ and dsPICDEM™
demonstration/development board series of circuits,
Microchip has a line of evaluation kits and demonstra-
tion software for analog filter design, KEELOQ® security
ICs, CAN, IrDA®, PowerSmart battery management,
SEEVAL® evaluation system, Sigma-Delta ADC, flow
rate sensing, plus many more.
Also available are starter kits that contain everything
needed to experience the specified device. This usually
includes a single application and debug capability, all
on one board.
Check the Microchip web page (www.microchip.com)
for the complete list of demonstration, development
and evaluation kits.
27.12 Third-Party Development Tools
Microchip also offers a great collection of tools from
third-party vendors. These tools are carefully selected
to offer good value and unique functionality.
Device Programmers and Gang Programmers
from companies, such as SoftLog and CCS
Software Tools from companies, such as Gimpel
and Trace Systems
Protocol Analyzers from companies, such as
Saleae and Total Phase
Demonstration Boards from companies, such as
MikroElektronika, Digilent® and Olimex
Embedded Ethernet Solutions from companies,
such as EZ Web Lynx, WIZnet and IPLogika®
2010-2016 Microchip Technology Inc. DS40001452F-page 333
PIC16(L)F1516/7/8/9
28.0 PACKAGING INFORMATION
28.1 Package Marking Information
Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
Pb-free JEDEC® designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
3
e
3
e
28-Lead SOIC (7.50 mm) Example
YYWWNNN
XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX
28-Lead SPDIP (.300”) Example
PIC16F1516-E/SO
3
e
1248017
PIC16F1516-E/SP
1248017
3
e
28-Lead SSOP (5.30 mm) Example
PIC16F1516
-E/SS
3
e
1248017
PIC16(L)F1516/7/8/9
DS40001452F-page 334 2010-2016 Microchip Technology Inc.
Package Marking Information (Continued)
28-Lead UQFN (4x4x0.5 mm) Example
PIN 1 PIN 1
40-Lead PDIP (600 mil) Example
XXXXXXXXXXXXXXXXXX
YYWWNNN
XXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXX
PIC16
F1516
E/MV
248017
3
e
PIC16F1517-E/P
1248107
28-Lead QFN (6x6x0.9 mm) Example
XXXXXXXX
XXXXXXXX
YYWWNNN
PIN 1 PIN 1
3
e
16F1518
-I/ML
1248107
Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
Pb-free JEDEC® designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
3
e
3
e
2010-2016 Microchip Technology Inc. DS40001452F-page 335
PIC16(L)F1516/7/8/9
Package Marking Information (Continued)
44-Lead TQFP (10x10x1 mm) Example
XXXXXXXXXX
YYWWNNN
XXXXXXXXXX
XXXXXXXXXX
PIC16F1517
-E/PT
1248017
3
e
40-Lead UQFN (5x5x0.5 mm) Example
PIN 1 PIN 1
PIC16
LF1517
-E/MV
1248017
3
e
Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanumeric traceability code
Pb-free JEDEC® designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
3
e
3
e
PIC16(L)F1516/7/8/9
DS40001452F-page 336 2010-2016 Microchip Technology Inc.
28.2 Package Details
The following sections give the technical details of the packages.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2010-2016 Microchip Technology Inc. DS40001452F-page 337
PIC16(L)F1516/7/8/9
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
PIC16(L)F1516/7/8/9
DS40001452F-page 338 2010-2016 Microchip Technology Inc.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2010-2016 Microchip Technology Inc. DS40001452F-page 339
PIC16(L)F1516/7/8/9

!"
 
 
 
 
 
!" 

 
   
 
 
 
    
  
   
    
   
   
   
    
   
  
NOTE 1
N
12
D
E1
eB
c
E
L
A2
eb
b1
A1
A
3
   
PIC16(L)F1516/7/8/9
DS40001452F-page 340 2010-2016 Microchip Technology Inc.
#$%&'%
!"
 
 
 
 
 
!" 

 
   
 
 
 
    
  
   
    
   
   
  
  
   
  
L
L1
c
A2
A1
A
E
E1
D
N
12
NOTE 1 b
e
φ
   
2010-2016 Microchip Technology Inc. DS40001452F-page 341
PIC16(L)F1516/7/8/9
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
PIC16(L)F1516/7/8/9
DS40001452F-page 342 2010-2016 Microchip Technology Inc.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2010-2016 Microchip Technology Inc. DS40001452F-page 343
PIC16(L)F1516/7/8/9
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
PIC16(L)F1516/7/8/9
DS40001452F-page 344 2010-2016 Microchip Technology Inc.
2010-2016 Microchip Technology Inc. DS40001452F-page 345
PIC16(L)F1516/7/8/9
PIC16(L)F1516/7/8/9
DS40001452F-page 346 2010-2016 Microchip Technology Inc.
2010-2016 Microchip Technology Inc. DS40001452F-page 347
PIC16(L)F1516/7/8/9
()*!+,-.-()!
/#'&&0+#
!" 

PIC16(L)F1516/7/8/9
DS40001452F-page 348 2010-2016 Microchip Technology Inc.
1-
!"
 
 
 
 
 
!" 

 
   
 
 
 
   
  
  
   
  
  
  
   
  
  
N
NOTE 1
E1
D
123
A
A1 b1
be
c
eB
E
L
A2
   
2010-2016 Microchip Technology Inc. DS40001452F-page 349
PIC16(L)F1516/7/8/9
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
PIC16(L)F1516/7/8/9
DS40001452F-page 350 2010-2016 Microchip Technology Inc.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2010-2016 Microchip Technology Inc. DS40001452F-page 351
PIC16(L)F1516/7/8/9
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
PIC16(L)F1516/7/8/9
DS40001452F-page 352 2010-2016 Microchip Technology Inc.
B
A
0.20 H A B
0.20 H A B
44 X b
0.20 C A B
(DATUM B)
(DATUM A)
C
SEATING PLANE
2X
TOP VIEW
SIDE VIEW
BOTTOM VIEW
Microchip Technology Drawing C04-076C Sheet 1 of 2
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
Note:
e
NOTE 1
12
N
D
D1
EE1
2X
A2
A1
A
0.10 C
3
N
AA
0.20 C A B
4X 11 TIPS
123
44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]
NOTE 1
NOTE 2
2010-2016 Microchip Technology Inc. DS40001452F-page 353
PIC16(L)F1516/7/8/9
Microchip Technology Drawing C04-076C Sheet 2 of 2
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
Note:
L
(L1)
c
θ
SECTION A-A
H
Number of Leads
Overall Height
Lead Width
Overall Width
Overall Length
Lead Length
Molded Package Width
Molded Package Length
Molded Package Thickness
Lead Pitch
Standoff
Units
Dimension Limits
A1
A
b
D
E1
D1
A2
e
L
E
N
0.80 BSC
0.45
0.30
-
0.05
0.37
12.00 BSC
0.60
10.00 BSC
10.00 BSC
-
-
12.00 BSC
MILLIMETERS
MIN NOM
44
0.75
0.45
1.20
0.15
MAX
0.95 1.00 1.05
REF: Reference Dimension, usually without tolerance, for information purposes only.
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
1.
2.
3.
Notes:
Pin 1 visual index feature may vary, but must be located within the hatched area.
Exact shape of each corner is optional.
Dimensioning and tolerancing per ASME Y14.5M
Footprint L1 1.00 REF
θ3.5° Foot Angle
Lead Thickness c0.09 - 0.20
44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]
PIC16(L)F1516/7/8/9
DS40001452F-page 354 2010-2016 Microchip Technology Inc.
RECOMMENDED LAND PATTERN
44-Lead Plastic Thin Quad Flatpack (PT) - 10X10X1 mm Body, 2.00 mm Footprint [TQFP]
SILK SCREEN
1
2
44
C1
E
G
Y1
X1
C2
Contact Pad Width (X44)
0.25
Contact Pad Length (X44)
Distance Between Pads
X1
Y1
G
1.50
Contact Pad Spacing
Contact Pitch
C1
E
Units
Dimension Limits
11.40
0.55
0.80 BSC
MILLIMETERS
MAXMIN NOM
11.40C2Contact Pad Spacing
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
1. Dimensioning and tolerancing per ASME Y14.5M
Notes:
Microchip Technology Drawing No. C04-2076B
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
Note:
2010-2016 Microchip Technology Inc. DS40001452F-page 355
PIC16(L)F1516/7/8/9
APPENDIX A: DATA SHE ET
REVISION HISTORY
Revision A (12/2010)
Original release.
Revision B (05/2011)
Initial public release of device family.
Revision C (09/2012)
Update to Electrical Specifications and release of
Characterization Data.
Revision D (07/2013)
Updated the Notes in Figures 2 and 4; Updated Table
5-1, Register 14-1, Register 20-1 and Table 21-4;
Updated Section 22.2; Updated Figure 25-9 and Table
25-7; Updated Section 26, DC and AC Characteristics
Graphs and Charts; Updated the Packaging section;
Other minor corrections.
Revision E (05/2015)
Added 28-pin QFN (6x6) packaging. Updated Product
Identification section.
Added Figure 2 and Section 3.2.
Updated Example 3-2. Updated Register 22-3.
Updated Sections 22.4.2, 25.0, 25.6, and 28.1.
Updated Table 1 and 25-12.
Revision F (06/2016)
Updated the ‘High-Performance RISC CPU’ section
and added the Memory section; Updated Figures 5-7
and 8-1 and Table 25-4; Other minor corrections.
PIC16(L)F1516/7/8/9
DS40001452F-page 356 2010-2016 Microchip Technology Inc.
THE MICROCHIP WEBSITE
Microchip provides online support via our website at
www.microchip.com. This website is used as a means
to make files and information easily available to
customers. Accessible by using your favorite Internet
browser, the website contains the following information:
Product Support – Data sheets and errata,
application notes and sample programs, design
resources, user’s guides and hardware support
documents, latest software releases and archived
software
General Technical Support – Frequently Asked
Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant
program member listing
Business of Microchip – Product selector and
ordering guides, latest Microchip press releases,
listing of seminars and events, listings of
Microchip sales offices, distributors and factory
representatives
CUSTOMER CHANGE NOTIFICATION
SERVICE
Microchip’s customer notification service helps keep
customers current on Microchip products. Subscribers
will receive e-mail notification whenever there are
changes, updates, revisions or errata related to a
specified product family or development tool of interest.
To register, access the Microchip website at
www.microchip.com. Under “Support”, click on
“Customer Change Notification” and follow the
registration instructions.
CUSTOMER SUPP ORT
Users of Microchip products can receive assistance
through several channels:
Distributor or Representative
Local Sales Office
Field Application Engineer (FAE)
Technical Support
Customers should contact their distributor,
representative or Field Application Engineer (FAE) for
support. Local sales offices are also available to help
customers. A listing of sales offices and locations is
included in the back of this document.
Technical support is available through the website
at: http://www.microchip.com/support
2010-2016 Microchip Technology Inc. DS40001452F-page 357
PIC16(L)F1516/7/8/9
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
PART NO. X/XX XXX
PatternPackageTemperature
Range
Device
Device: PIC16F1516, PIC16LF1516
PIC16F1517, PIC16LF1517
PIC16F1518, PIC16LF1518
PIC16F1519, PIC16LF1519
Tape and Reel
Option: Blank = Standard packaging (tube or tray)
T = Tape and Reel(1)
Temperature
Range: I= -40C to +85C(Industrial)
E= -40
C to +125C (Extended)
Package:(2) ML = Thin Quad Flat, no lead (QFN)
MV = Ultra Thin Quad Flat, no lead (UQFN)
P = Plastic DIP (PDIP)
PT = TQFP
SO = SOIC
SP = Skinny Plastic DIP (SPDIP)
SS = SSOP
Pattern: QTP, SQTP, Code or Special Requirements
(blank otherwise)
Examples:
a) PIC16F1516T - I/MV 301
Tape and Reel,
Industrial temperature,
UQFN package,
QTP pattern #301
b) PIC16F1519 - I/P
Industrial temperature
PDIP package
c) PIC16F1518 - E/SS
Extended temperature,
SSOP package
Note 1: Tape and Reel identifier only appears in the
catalog part number description. This
identifier is used for ordering purposes and is
not printed on the device package. Check
with your Microchip Sales Office for package
availability with the Tape and Reel option.
2: For other small form-factor package
availability and marking information, please
visit www.microchip.com/packaging or
contact your local sales office.
[X](1)
Tape and Reel
Option
-
DS40001452F-page 358 2010-2016 Microchip Technology Inc.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
Trademarks
The Microchip name and logo, the Microchip logo, AnyRate,
dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq,
KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST,
MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo,
RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O
are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.
ClockWorks, The Embedded Control Solutions Company,
ETHERSYNCH, Hyper Speed Control, HyperLight Load,
IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.
Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut,
BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN,
EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip
Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,
MPLINK, MultiTRAK, NetDetach, Omniscient Code
Generation, PICDEM, PICDEM.net, PICkit, PICtail,
PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker,
Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,
WiperLock, Wireless DNA, and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
Silicon Storage Technology is a registered trademark of
Microchip Technology Inc. in other countries.
GestIC is a registered trademarks of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.
All other trademarks mentioned herein are property of their
respective companies.
© 2010-2016, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.
ISBN: 978-1-5224-0681-5
Note the following details of the code protection feature on Microchip devices:
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
QUALITY MANAGEMENT S
YSTEM
CERTIFIED BY DNV
== ISO/TS 16949 ==
2010-2016 Microchip Technology Inc. DS40001452F-page 359
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los A n ge les
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509
ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Dongguan
Tel: 86-769-8702-9880
China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
ASIA/PACIFIC
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-3019-1500
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7828
Taiwan - T aipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Cop e nha gen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Dusseldorf
Tel: 49-2129-3766400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Venice
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Poland - Warsaw
Tel: 48-22-3325737
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820
Worldwide Sales and Service
07/14/15