Integrated Mixed-Signal Front End (MxFE)
Data Sheet
AD9993
Rev. B Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©20142017 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
Quad 14-bit 250 MSPS ADC
SFDR = 83 dBc at 87 MHz input
Dual 14-bit 500 MSPS DAC
SFDR = 75 dBc at 20 MHz output
On-chip PLL clock synthesizer
Low power
1536 mW, 1 GHz master clock, on-chip synthesizer
500 MHz double data rate (DDR)
LVDS interfaces for DACs and ADCs
Small 12 mm × 12 mm lead-free BGA package
APPLICATIONS
Point to point microwave backhaul radios
Wireless repeaters
GENERAL DESCRIPTION
The AD9993 is a mixed-signal front-end (MxFE®) device that
integrates four 14-bit ADCs and two 14-bit DACs. Figure 1
shows the block diagram of the MxFE. The MxFE is
programmable using registers accessed via a serial peripheral
interface (SPI). ADC and DAC datapaths include FIFO buffers
to absorb phase differences between LVDS lane clocks and the
data converter sampling clocks.
The MxFE DACs are part of the Analog Devices, Inc., high
speed CMOS DAC core family. These DACs are designed to be
used in wide bandwidth communication system transmitter
(Tx) signal chains.
The MxFE ADCs are multistage pipelined CMOS ADC cores
designed for use in communications receivers.
FUNCTIONAL BLOCK DIAGRAM
Figure 1.
ADC_A
ADC_B
DIGITAL
MxFE
AD9993
–ADC AND DAC
DATAPATHS
–CONTROLS
–SPI REGISTERS
–FIFO BUFFERS
CLOCK GENERATOR
PLL
DIV
ADC_C
ADC_D
DAC_A
DAC_B
214
DCO CLOCK
STROBE
DCI_x
STROBE_x
DCO_x
DOUT3D_x TO DOUT0D_x
DIN6A_x TO DIN0A_x
DIN6B_x TO DIN0B_x
DOUT3C_x TO DOUT0C_x
DOUT3B_x TO DOUT0B_x
DOUT3A_x TO DOUT0A_x
ALERT
RST
SPI_SCLK, SPI_CS, SPI_SDI, SPI_SDO
4
DCI CLOCK
14
4
14
214
214
214
214
214
500MHz
250MHz
500MHz
250MHz
LVDS
BUFFER
LVDS
BUFFER
0
1
31.25MHz
OR
62.5MHz 1GHz
12260-001
AD9993 Data Sheet
Rev. B | Page 2 of 56
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 3
Specifications ..................................................................................... 4
DC Specifications ......................................................................... 4
AC Specifications .......................................................................... 5
Digital Specifications ................................................................... 5
Absolute Maximum Ratings ............................................................ 7
Thermal Resistance ...................................................................... 7
ESD Caution .................................................................................. 7
Pin Configuration and Function Descriptions ............................. 8
Typical Performance Characteristics ........................................... 11
Receiver ADC Performance ...................................................... 11
Transmitter DAC Performance................................................. 13
Terminology .................................................................................... 15
Theory of Operation ...................................................................... 16
Product Description ................................................................... 16
SPI Port ........................................................................................ 16
SPI Configuration Programming ............................................. 17
Register Update Transfer Method ............................................ 17
ADC Register Update Indexing ................................................ 17
ADCs ............................................................................................ 17
ADC Architecture ...................................................................... 17
ADC Section Programming ...................................................... 17
Analog Input Considerations .................................................... 17
DACs ............................................................................................ 18
DAC Transfer Function ............................................................. 18
DAC Output Compliance Voltage Range and AC
Performance ................................................................................ 18
DAC Voltage Reference ............................................................. 19
DAC Gain Setting ....................................................................... 19
DAC Datapath Format Selection .............................................. 19
DAC Test Tone Generator DDS................................................ 19
Clocking ....................................................................................... 20
On-Chip PLL Clock Multiplier ................................................ 20
Selecting Clocking Options ....................................................... 21
ADC Datapath and DAC Datapath FIFOs ............................. 21
LVDS Interfaces .......................................................................... 21
LVDS Interface Timing.............................................................. 22
LVDS Lane Testing Using PRBS ............................................... 23
Power Mode Programming ....................................................... 23
Interrupt Request Operation .................................................... 23
Temperature Sensor ................................................................... 23
Start-Up Register Sequences ......................................................... 25
Power-Up Routine When Using the On-Chip Clock
Synthesizer .................................................................................. 25
Power-Up Routine When Using External Clock ................... 25
Applications Information .............................................................. 27
Direct Conversion Radio Application ..................................... 27
Register Map ................................................................................... 28
Register Descriptions ..................................................................... 30
SPI Configuration Register ....................................................... 30
Chip ID Register ......................................................................... 30
Chip Grade Register ................................................................... 31
Device Index Register ................................................................ 31
Power Mode Control Register .................................................. 32
Align ADC LVDS Clocks, ADC FIFO, DAC FIFO Register 32
Strobe Lane Control Register .................................................... 33
Output Mode Register ............................................................... 33
LVDS Tx Control Register ........................................................ 34
VREF Control Register ................................................................. 34
PRBS Generator Control Register ............................................ 35
8-Bit Seed MSB of PRBS Generator for Lane 0 Register ....... 35
8-Bit Seed MSB of PRBS Generator for Lane 1 Register ....... 36
8-Bit Seed MSB of PRBS Generator for Lane 2 Register ....... 36
8-Bit Seed MSB of PRBS Generator for Lane 3 Register ....... 36
Synthesizer Status Register ........................................................ 37
Loop Filter Control Signals Register........................................ 37
Loop Filter Control Signals Register........................................ 38
Loop Filter Control Signals Register........................................ 38
Integer Value of Synthesizer Divider Register ........................ 39
Synthesizer Control Register .................................................... 39
Clock Generator Control Register ........................................... 39
CLKGEN Control Register ....................................................... 40
DAC LVDS Rx Control Register .............................................. 40
DAC LVDS Current Bias Control Register ............................. 41
DAC Cores Control Register .................................................... 42
DAC Datapath Format Control Register ................................ 42
Data Sheet AD9993
Rev. B | Page 3 of 56
DAC IQ Calibration Control Register ...................................... 43
DAC IQ Calibration Status Register ......................................... 43
DAC Rx FIFO Status 1 Register ................................................ 43
PRBS Detector Control Register ............................................... 44
PRBS Detector Error Count 0 for DAC A Register ................ 44
PRBS Detector Error Count 1 for DAC A Register ................ 44
PRBS Detector Error Count 2 for DAC A Register ................ 45
PRBS Detector Error Count 3 for DAC A Register ................ 45
PRBS Detector Error Count 4 for DAC A Register ................ 45
PRBS Detector Error Count 5 for DAC A Register ................ 46
PRBS Detector Error Count 6 for DAC A Register ................ 46
PRBS Detector Error Count 0 for DAC B Register ................ 46
PRBS Detector Error Count 1 for DAC B Register ................ 47
PRBS Detector Error Count 2 for DAC B Register ................ 47
PRBS Detector Error Count 3 for DAC B Register ................ 47
PRBS Detector Error Count 4 for DAC B Register ................ 48
PRBS Detector Error Count 5 for DAC B Register ................ 48
PRBS Detector Error Count 6 for DAC B Register ................ 48
Bits[7:0] of Temperature Sensor Data Readback Register ..... 49
Bits[15:8] of Temperature Sensor Data Readback Register ... 49
Temperature Sensor Control Signals Register ........................ 49
Interrupt Pin Control Register .................................................. 50
DDS Control Register ................................................................. 50
DDS Tuning Word for Tone 1 R egis ter .................................... 51
DDS Tuning Word for Tone 1 R egis ter .................................... 51
DDS Tuning Word for Tone 1 R egis ter .................................... 52
DDS Tuning Word for Tone 1 R egis ter .................................... 52
Interrupt Status Register ............................................................ 53
Interrupt Enable Register ........................................................... 53
Interrupt Source Status Register ............................................... 54
Global Device Update Register ................................................. 55
Outline Dimensions ........................................................................ 56
Ordering Guide ........................................................................... 56
REVISION HISTORY
12/2017Rev. A to Rev. B
Changes to Figure 2 .......................................................................... 8
Changes to Table 6 .......................................................................... 10
5/2014Rev. 0 to Rev. A
Changes to Ordering Guide ........................................................... 56
5/2014Revision 0: Initial Version
AD9993 Data Sheet
Rev. B | Page 4 of 56
SPECIFICATIONS
DC SPECIFICATIONS
TMIN to TMAX, AVDD33 = 3.3 V, DVDD = AVDD = 1.8 V, unless otherwise noted.
Table 1.
Parameter Test Conditions/Comments Min Typ Max Unit
Tx DAC RESOLUTION 14 Bits
Tx DAC OUTPUT CHARACTERISTICS
Offset Error ±0.5 % FSR
Gain Error ±2.0 % FSR
Full-Scale Output Current (IOUTFS) 20.0 mA
Output Compliance Voltage Range CML_A, CML_B connected to AVSS, setting of
DAC_VCM_VREF_BIT[2:0] following reset
0.5 +0.5 V
Output Compliance Voltage Range CML_A, CML_B connected to a bypass capacitor,
DAC_VCM_VREF_BIT[2:0] set to 010
0.0 1.0 V
Output Resistance 10
Tx DAC TEMPERATURE DRIFT
Gain Gain using on-chip VREF_DAC ±85 ppm/°C
Reference Voltage (VREF_DAC) On-chip VREF_DAC ±215 ppm/°C
REFERENCE (VREF_DAC)
Internal Reference Voltage 0.95 1.0 1.05 V
Rx ADC RESOLUTION 14 Bits
Rx ADC CHARACTERISTICS
Gain Error ±1.0 % FSR
Peak-to-Peak Differential Input Voltage
Range
Setting of VREF_FS_ADJ[4:0] at reset 1.75 V p-p
Input Capacitance 2.5 pF
Rx ADC FULL-SCALE VREF ADJUSTMENT 1.383 1.75 2.087 V
COMMON-MODE VOLTAGE REFERENCE
(A_CML, B_CML, C_CML, D_CML)
ADC Common-Mode Voltage Output ADC inputs are not self biased 0.84 0.9 0.96 V
ANALOG SUPPLY VOLTAGES
AVDD33 3.14 3.3 3.47 V
AVDD 1.71 1.8 1.89 V
DIGITAL SUPPLY VOLTAGES
DVDD 1.62 1.8 1.98 V
POWER CONSUMPTION
Single Tone Input, Single Tone Output
mW
AVDD33 55 mA
AVDD 65 mA
DVDD 210 mA
Power-Down Mode 10.0 mA
OPERATING RANGE −40 +25 +85 °C
Data Sheet AD9993
Rev. B | Page 5 of 56
AC SPECIFICATIONS
TMIN to TMAX, AVDD33 = 3.3 V, DVDD = AVDD = 1.8 V, DAC sampling rate = 500 MSPS and ADC sampling rate = 250 MSPS, unless
otherwise specified.
Table 2.
Parameter Test Conditions/Comments Min Typ Max Unit
DAC OUTPUT
Spurious-Free Dynamic Range
(SFDR)
fOUT = 20 MHz 75 dBc
Two Tone Intermodulation
Distortion (IMD3)
fOUT = 80 MHz 65 dBc
Noise Spectral Density (NSD),
Single Tone
fOUT = 80 MHz 160 dBm/Hz
256-QAM Adjacent Channel
Power (ACP)
fCENTER = 50 MHz, single carrier, 3.375 MHz offset frequency 76 dBc
ADC INPUT
Signal to Noise Ratio (SNR) Measured with −1.0 dBFS sine wave input
fIN = 87 MHz 70 dBc
Spurious-Free Dynamic Range
(SFDR)
Measured with −1.0 dBFS sine wave input
fIN = 10 MHz 86 dBc
fIN = 87 MHz 83 dBc
Two-Tone IMD3 fIN1 = 89 MHz, fIN2 = 92 MHz, AIN = −12 dBFS 90 dBc
Full Power Bandwidth Bandwidth of operation in which proper ADC performance can be
achieved
1000 MHz
DIGITAL SPECIFICATIONS
TMIN to TMAX, AVDD33 = 3.3 V, DVDD = AVDD = 1.8 V, unless otherwise noted.
Table 3.
Parameter Test Conditions/Comments Min Typ Max Unit
CMOS INPUT LOGIC LEVEL
Input VIN Logic High 1.8 V
Input VIN Logic Low 0.0 V
CMOS OUTPUT LOGIC LEVEL
Output VOUT Logic High 1.2 V
Output VOUT Logic Low 0.8 V
ADC AND DAC LVDS DATA INTERFACES
ADC LVDS Transmitter Outputs
DCO_P/DCO_N to Data Skew (tSKEW) Data to DDR DCO_P/DCO_N transition delay 350 ps
Output Voltage High, VOH, Single
Ended
Applies to output voltage, positive and negative, VOUTP
and VOUTN
1375 mV
Output Voltage Low, VOL, Single
Ended
Applies to VOUTP and VOUTN 1025 mV
Output Differential Voltage 200 mV
Output Offset Voltage 1200 mV
DAC LVDS Receiver Inputs Specifications apply to DAC data inputs and DCI_P/DCI_N
Input Voltage Range, Single Ended Applies to input voltage, positive and negative, VINP and
VINN
825 1575 mV
Input Differential Threshold 100 +100 mV
Input Differential Hysteresis 25 mV
Receiver Differential Input
Impedance
85 115 Ω
AD9993 Data Sheet
Rev. B | Page 6 of 56
Parameter Test Conditions/Comments Min Typ Max Unit
CLOCK INPUT (CLKP, CLKN)
Differential Peak to Peak Voltage 350 mV
Common Mode Voltage 1.2 V
Master Clock Frequency 200 1000 MHz
REFCLK Input (REFCLK)
Input VIN Logic High 1.8 V
Input VIN Logic Low 0.0 V
REFCLK Frequency 31.25 or
62.5
MHz
SERIAL PERIPHERAL INTERFACE (SPI)
SPI_SCLK Frequency 25 MHz
SPI_SCLK Pulse Width High 10 ns
SPI_SCLK Pulse Width Low 10 ns
Setup Time, SPI_SDI to SPI_SCLK Rising
Edge
2 ns
Hold Time, SPI_SCLK Rising Edge to
SPI_SDI
2 ns
Setup Time, SPI_CS to SPI_SCLK Rising
Edge
2 ns
Hold Time, SPI_SCLK Rising Edge
to SPI_CS
2 ns
Data Valid, SPI_SCLK Falling Edge to
SPI_SDO
2
ns
Data Sheet AD9993
Rev. B | Page 7 of 56
ABSOLUTE MAXIMUM RATINGS
Table 4.
Parameter Rating
AVSS to DVSS 0.3 V to +0.3 V
AVDD33 to AVSS, DVSS 0.3 V to +3.9 V
AVDD to AVSS, DVSS 0.3 V to +2.2 V
DVDD to DVSS, AVSS 0.3 V to +2.2 V
CP, A_VINP, A_VINN, B_VINP, B_VINN,
C_VINP, C_VINN, D_VINP, D_VINN,
IBIAS_TEST to AVSS
0.3 V to AVDD + 0.3 V
VREF_DAC, FSAJ_A, FSAJ_B, CML_A,
CML_B, A_CML, B_CML, B_CML,
D_CML to AVSS
0.3 V to AVDD + 0.3 V
IOUTA_P, IOUTA_N, IOUTB_P,
IOUTB_N to AVSS
0.3 V to AVDD + 0.3 V
CLKP, CLKN, REFCLK to AVSS 0.3 V to AVDD + 0.3 V
PDWN, ALERT, RST, MODE,
SPI_SCLK, SPI_CS, SPI_SDI,
SPI_SDO to DVSS
0.3 V to DVDD + 0.3 V
LVDS Data Inputs to DVSS 0.3 V to DVDD + 0.3 V
LVDS Data Outputs to DVSS 0.3 V to DVDD + 0.3 V
S T R O B E _ P, STROBE_N to DVSS 0.3 V to DVDD + 0.3 V
DCI_N, DCI_P, DCO_N, DCO_P 0.3 V to DVDD + 0.3 V
Junction Temperature 125°C
Storage Temperature Range 65°C to +160°C
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
THERMAL RESISTANCE
Table 5. Thermal Resistances and Characterization Parameters
Package Type θJA θJB θJC ψJT ψJB Unit
196-Ball CSP_BGA 27.0 15.4 5.38 0.11 15.0 ºC/W
ESD CAUTION
AD9993 Data Sheet
Rev. B | Page 8 of 56
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
Figure 2. Pin Configuration
Table 6. Pin Function Descriptions
Pin No. Mnemonic Description
A1, A3, A7, A8, A12, A14, B3, B7, B8, B12, C1, C2,
C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, D3, D4,
D5, D6, D7, D8, D9, D10, D11, D12, F6, F7, F8, F9,
F10, F11, G6, G7, G8, G9, G10, G11
AVSS Analog Ground.
A2 CLKP External Master Clock Input Positive.
A4 D_VINP ADC D Input Voltage Positive.
A5 C_CML Common-Mode Level Bias Voltage Output ADC C.
A6 C_VINP ADC C Input Voltage Positive.
A9 B_VINP ADC B Voltage Input Positive.
1234567891011121314
AAVSS CLKP AVSS D_VINP C_CML C_VINP AVSS AVSS B_VINP B_CML A_VINP AVSS IBIAS_
TEST AVS S
BCLKN REFCLK AVSS D_VINN D_CML C_VINN AVSS AVSS B_VINN A_CML A_VINN AVSS IOUTA_N IOUTA_P
CAVSS AVSS AVSS AVSS AVSS AVSS AVSS AVSS AVSS AVSS AVSS AVSS AVDD33 AVDD33
DLDO15 CP AVSS AVSS AVSS AVSS AVSS AVSS AVSS AVSS AVSS AVSS IOUTB_N IOUTB_P
EAVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDD AVDD
FPDWN ALERT RST MODE AVDD33 AVSS AVSS AVSS AVSS AVSS AVSS
VREF_DAC
FSAJ_B FSAJ_A
GSPI_SCLK SPI_CS SPI_SDI SPI_SDO DVDD AVSS AVSS AVSS AVSS AVSS AVSS AVDD CML_B CML_A
HDVSS DVSS DVSS DVSS DVSS DVSS DVSS DVSS DVSS DVSS DVSS DVSS DVSS DVSS
JDVDD DVDD DVDD DVDD DVDD DVDD DVDD DVDD DVDD DVDD DVDD DVDD DVDD DVDD
KDIN6B_N DIN4B_N DIN1B_N
DOUT3D_ P DOUT3D_N DOUT3C_P
DCO_N DCO_P
DOUT3B_P DOUT3A_N DOUT3A_P
DIN1A_N DIN4A_N DIN6A_N
LDIN6B_P DIN4B_ P DIN1B_P
DOUT1D_N DOUT2D_N DOUT1C_N DOUT3C_N DOUT3B_N DOUT1B_N DOUT2A_N DOUT1A_N
DIN1A_P DIN4A_P DIN6A_P
MDIN5B_N DIN3B_P DIN3B_N
DOUT1D_P DOUT2D_P DOUT1C_P STROBE_N STROBE_ P DOUT1B_P DOUT2A_P DOUT1A_P
DIN3A_N DIN3A_P DIN5A_N
NDIN5B_P DIN2B_N DIN0B_N
DOUT0D_N DOUT0C_N DOUT2C_N
DVSS DVSS
DOUT2B_N DOUT0B_N DOUT0A_N
DIN0A_N DIN2A_N DIN5A_P
PDVSS DIN2B_P DIN0B_P
DOUT0D_ P DOUT0C_P DOUT2C_P
DCI_N DCI_P
DOUT2B_P DOUT0B_P DOUT0A_P
DIN0A_P DIN2A_P DVSS
12260-002
Data Sheet AD9993
Rev. B | Page 9 of 56
Pin No. Mnemonic Description
A10 B_CML Common-Mode Level Bias Voltage Output for ADC B.
A11 A_VINP ADC A Voltage Input Positive.
A13 IBIAS_TEST Test. Connect to ground.
B1 CLKN External Master Clock Input Negative
B2
REFCLK
On-Chip PLL Synthesizer Reference Clock Input.
B4 D_VINN ADC D Input Voltage Negative.
B5 D_CML Common-Mode Level Bias Voltage Output ADC D.
B6 C_VINN ADC C Input Voltage Negative.
B9 B_VINN ADC B Voltage Input Negative.
B10 A_CML Common-Mode Level Bias Voltage Output for ADC A.
B11 A_VINN ADC A Voltage Input Negative.
B13 IOUTA_N DAC A Output Current Negative.
B14 IOUTA_P DAC A Output Current Positive.
C13, C14, F5 AVDD33 3.3 V Analog Power Supply.
D1 LDO15 On-Chip Regulator Output. Bypass with 4.7 µF capacitor to ground.
D2 CP Connection for On-Chip PLL Optional External Portion of Loop Filter.
D13 IOUTB_N DAC B Output Current Negative.
D14 IOUTB_P DAC B Output Current Positive.
E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13,
E14, G12
AVDD 1.8 V Analog Power Supply.
F1 PDWN Power-Down. Set to 1 to place the device in low power mode.
F2 ALERT Active Low Alarm Indicator Output, Open Drain.
F3 RST Reset Input, Active Low.
F4 MODE Connect to ground.
F12 VREF_DAC DAC A and DAC B Reference Voltage Input/Output.
F13 FSAJ_B DAC B Full-Scale Current Output Adjust.
F14 FSAJ_A DAC A Full-Scale Current Output Adjust.
G1 SPI_SCLK SPI Clock.
G2 SPI_CS SPI Chip Select, Active Low.
G3 SPI_SDI SPI Serial Data Input.
G4 SPI_SDO SPI Serial Data Output.
G5, J1, J2, J3, J4, J5, J6, J7, J8, J9, J10, J11, J12, J13,
J14
DVDD 1.8 V Digital Supply.
G13 CML_B DAC B Common-Mode Control. Connect to ground for DAC bias < 0.5 V.
Connect a 0.1 µF capacitor between CML_B and ground for other DAC
bias values ≥ 0.5 V.
G14 CML_A DAC A Common-Mode Control. Connect to ground for DAC bias < 0.5 V.
Connect a 0.1 µF capacitor between CML_A and ground for other DAC
bias values ≥ 0.5 V.
H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12,
H13, H14, N7, N8, P1, P14
DVSS Digital Ground.
K1 DIN6B_N DAC B Data Input Lane 6 Negative.
K2 DIN4B_N DAC B Data Input Lane 4 Negative.
K3 DIN1B_N DAC B Data Input Lane 1 Negative.
K4 DOUT3D_P ADC D Data Output Lane 3 Positive.
K5 DOUT3D_N ADC D Data Output Lane 3 Negative.
K6 DOUT3C_P ADC C Data Output Lane 3 Positive.
K7 DCO_N LVDS Data Clock Output Negative.
K8
DCO_P
LVDS Data Clock Output Positive.
K9 DOUT3B_P ADC B Data Output Lane 3 Positive.
K10 DOUT3A_N ADC A Data Output Lane 3 Negative.
K11 DOUT3A_P ADC A Data Output Lane 3 Positive.
K12 DIN1A_N DAC A Data Input Lane 1 Negative.
K13 DIN4A_N DAC A Data Input Lane 4 Negative.
AD9993 Data Sheet
Rev. B | Page 10 of 56
Pin No. Mnemonic Description
K14 DIN6A_N DAC A Data Input Lane 6 Negative.
L1 DIN6B_P DAC B Data Input Lane 6 Positive.
L2 DIN4B_P DAC B Data Input Lane 4 Positive.
L3 DIN1B_P DAC B Data Input Lane 1 Positive.
L4
DOUT1D_N
ADC D Data Output Lane 1 Negative.
L5 DOUT2D_N ADC D Data Output Lane 2 Negative.
L6 DOUT1C_N ADC C Data Output Lane 1 Negative.
L7 DOUT3C_N ADC C Data Output Lane 3 Negative.
L8 DOUT3B_N ADC B Data Output Lane 3 Negative.
L9 DOUT1B_N ADC B Data Output Lane 1 Negative.
L10 DOUT2A_N ADC A Data Output Lane 2 Negative.
L11 DOUT1A_N ADC A Data Output Lane 1 Negative.
L12 DIN1A_P DAC A Data Input Lane 1 Positive.
L13 DIN4A_P DAC A Data Input Lane 4 Positive.
L14 DIN6A_P DAC A Data Input Lane 6 Positive.
M1 DIN5B_N DAC B Data Input Lane 5 Negative.
M2 DIN3B_P DAC B Data Input Lane 3 Positive.
M3 DIN3B_N DAC B Data Input Lane 3 Negative.
M4 DOUT1D_P ADC D Data Output Lane 1 Positive.
M5 DOUT2D_P ADC D Data Output Lane 2 Positive.
M6 DOUT1C_P ADC C Data Output Lane 1 Positive.
M7
STROBE_N
LVDS Data Output Strobe Negative.
M8 STROBE_P LVDS Data Output Strobe Positive.
M9 DOUT1B_P ADC B Data Output Lane 1 Positive.
M10 DOUT2A_P ADC A Data Output Lane 2 Positive.
M11 DOUT1A_P ADC A Data Output Lane 1 Positive.
M12 DIN3A_N DAC A Data Input Lane 3 Negative.
M13 DIN3A_P DAC A Data Input Lane 3 Positive.
M14 DIN5A_N DAC A Data Input Lane 5 Negative.
N1 DIN5B_P DAC B Data Input Lane 5 Positive.
N2 DIN2B_N DAC B Data Input Lane 2 Negative.
N3 DIN0B_N DAC B Data Input Lane 0 Negative.
N4
DOUT0D_N
ADC D Data Output Lane 0 Negative.
N5 DOUT0C_N ADC C Data Output Lane 0 Negative.
N6 DOUT2C_N ADC C Data Output Lane 2 Negative.
N9 DOUT2B_N ADC B Data Output Lane 2 Negative.
N10 DOUT0B_N ADC B Data Output Lane 0 Negative.
N11 DOUT0A_N ADC A Data Output Lane 0 Negative.
N12 DIN0A_N DAC A Data Input Lane 0 Negative.
N13 DIN2A_N DAC A Data Input Lane 2 Negative.
N14 DIN5A_P DAC A Data Input Lane 5 Positive.
P2 DIN2B_P DAC B Data Input Lane 2 Positive.
P3 DIN0B_P DAC B Data Input Lane 0 Positive.
P4 DOUT0D_P ADC D Data Output Lane 0 Positive.
P5 DOUT0C_P ADC C Data Output Lane 0 Positive.
P6 DOUT2C_P ADC C Data Output Lane 2 Positive.
P7 DCI_N LVDS Data Clock Input Negative.
P8 DCI_P LVDS Data Clock Input Positive.
P9 DOUT2B_P ADC B Data Output Lane 2 Positive.
P10
DOUT0B_P
ADC B Data Output Lane 0 Positive.
P11 DOUT0A_P ADC A Data Output Lane 0 Positive.
P12 DIN0A_P DAC A Data Input Lane 0 Positive.
P13 DIN2A_P DAC A Data Input Lane 2 Positive.
Data Sheet AD9993
Rev. B | Page 11 of 56
TYPICAL PERFORMANCE CHARACTERISTICS
RECEIVER ADC PERFORMANCE
fADC = 250 MHz, unless otherwise specified.
Figure 3. Single Tone FFT, fIN = 87 MHz
Figure 4. Single Tone SNR and SFDR vs. Input Amplitude (AIN), fIN = 87 MHz
Figure 5. Two Tone SFDR vs. Input Amplitude (AIN), fIN1 = 89.12 MHz,
fIN2 = 92.12 MHz
Figure 6. Two Tone IMD3 vs. Input Amplitude (AIN), fIN1 = 89.12 MHz, fIN2 =
92.12 MHz
Figure 7. Single Tone SNR vs. Input Frequency (fIN)
Figure 8. Single Tone SNR vs. Input Frequency (fIN)
12206-003
0
15 30 45
3
65
2
4
60 75
FREQUENCY (MHz)
AMPLITUDE (dBFS)
90 105 120
–15
–30
–45
–60
–75
–90
–105
–120
–135
120
–90 –80 –70 –60 –50
INPUT AMPLITUDE (dBFS)
–40 –30 –20 –10 0
100
80
SNR, SNRFS, SFDR (dBc), SFDR (dBFS)
60
40
20
0
SNR (dBc)
SNR (dBFS)
SFDR (dBc)
SFDR (dBFS)
12260-007
0
–20
–40
–60
–80
–100
–120
SFDR (dBc AND dBFS)
–90 –80 –70 –60 –50
INPUT AMPLITUDE (dBFS)
–40 –30 –20 –10
SFDR (dBc)
SFDR (dBFS)
12260-004
–20
–40
–60
–80
–100
–120
IMD3 (dBc AND dBFS)
–90 –80 –70 –60 –50
INPUT AMPLITUDE (dBFS)
–40 –30 –20 –10
IMD3 (dBc)
IMD3 (dBFS)
12260-005
65
70
75
80
85
90
95
20 40 60 80
f
IN
(MHz)
100 120
SNR (dBFS)
12206-010
65
70
75
80
85
90
95
20 40 60 80
f
IN
(MHz)
100 120
SNR (dBc)
12206-011
AD9993 Data Sheet
Rev. B | Page 12 of 56
fADC = 250 MHz, unless otherwise specified.
Figure 9. Two Tone FFT, fIN1 = 89.12 MHz, fIN2 = 92.12 MHz
Figure 10. Single Tone SNR vs. ADC Sampling Freqency (fADC), fIN = 90.0 MHz,
All Four ADCs
Figure 11. Single Tone SFDR vs. ADC Sampling Freqency (fADC), fIN = 90.0 MHz,
All Four ADCs
0
15 30 45 60 75
FREQUENCY (MHz)
AMPLITUDE (dBFS)
90 105 120
–15
–30
–45
–60
–75
–90
–105
–120
–135
F2 – F1
F1 + F2
2F2 – F1
2F1 + F2 2F2 + F1
2F1 – F2
12206-012
100
90
95
85
80
75
70
65
60
SNR (dBc)
100 120 140 160 180
ADC SAMPLING FREQUENCY (MSPS)
200 220 240
ADC A
ADC B
ADC C
ADC D
12260-008
100
90
95
85
80
75
70
65
60
SFDR (dBFS)
100 120 140 160 180
ADC SAMPLING FREQUENCY (MSPS)
200 220 240
ADC A
ADC B
ADC C
ADC D
12260-009
Data Sheet AD9993
Rev. B | Page 13 of 56
TRANSMITTER DAC PERFORMANCE
fDAC = 500 MHz, unless otherwise specified.
Figure 12. 5 MHz Bandwidth 256-QAM Adjacent Channel Power
Figure 13. SFDR, 2nd and 3rd Harmonics vs. fOUT, Maximum IOUTFS (DAC Gain)
Figure 14. SFDR at Three Temperatures vs. fOUT
Figure 15. 1st Nyquist Zone Output Spectrum, fOUT = 48 MHz
Figure 16. SFDR at Three DAC Sampling Frequencies (fDAC) vs. fOUT
Figure 17. IMD3 vs. fOUT, Both DACs
–76.4dBc
–76.2dBc
–75.5dBc
–75.9dBc
11.2dBm
–75.9dBc
–76.3dBc
–76.2dBc
–75.9dBc
–30
–40
–50
–60
–70
–80
–90
–100
–110
OFFSET FREQ
3.375MHz
6.375MHz
12MHz
18MHz
24MHz
INTEG BW
750kHz
5.25MHz
6MHz
6MHz
6MHz
dBc
–80.81
–75.93
–75.49
–76.23
–76.42
dBm
–92.04
–87.16
–86.72
–87.46
–87.65
dBc
–29.72
–75.95
–76.30
–76.17
–75.93
UPPERLOWER
dBm
–40.95
–87.18
–87.53
–87.41
–87.16
Filter
OFF
OFF
OFF
OFF
OFF
CENTER 50MHz
#RES BW 30kHz
SPAN 54MHz
SWEEP 175.1ms
#VBW 300kHz
12206-017
0
–40
–50
–60
–70
–80
–90
–100
50 100 150
fOUT
(MHz)
SFDR AND SECOND/THIRD HARMONIC (dBc)
200 250
SECOND HARMONIC (dBc)
THIRD HARMONIC (dBc)
SFDR (dBc)
12206-018
0
–40
–50
–45
–55
–60
–65
–75
–70
–80
50 100 150
f
OUT
(MHz)
SFDR (dBc)
200 250
DAC: b, TEMP: +25°C
DAC: b, TEMP: +85°C
DAC: b, TEMP:40°C
DAC B, +25°C
DAC B, +85°C
DAC B, –40°C
12206-019
MARKER
1R
1
2R
2
START 1MHz
#RES BW 1kHz
STOP 250MHz
SWEEP 300.2s (601pts)VBW 1kHz
TRACE
1
1
1
1
TYPE
FREQ
FREQ
FREQ
FREQ
XAXIS
47.9MHz
48.0MHz
47.9MHz
96.4MHz
AMPLITUDE
–0.56dBm
–83.28dB
–0.56dBm
–71.74dB
2R
2
1
12206-021
AMPLITUDE (dBFS) 10dB/DIV
0
–40
–50
–45
–55
–60
–65
–75
–70
–80
50 100 150
fOUT
(MHz)
SFDR (dBc)
200 250
fDAC = 250MHz, DAC B
fDAC = 350MHz, DAC B
fDAC = 500MHz, DAC B
12206-020
0
–45
–85
–80
–50
–55
–60
–65
–75
–70
–90
50 100 150
f
OUT
(MHz)
IMD3 (dBc)
200 250
12260-022
DACA
DACB
AD9993 Data Sheet
Rev. B | Page 14 of 56
fDAC = 500 MHz, unless otherwise specified.
Figure 18. IMD3 at Three DAC Sampling Frequencies (fDAC) vs. fOUT
Figure 19. NSD at Three Temperatures vs. fOUT
0
–45
–85
–80
–50
–55
–60
–65
–75
–70
–90
50 100 150
fOUT
(MHz)
IMD3 (dBc)
200 250
12206-023
f
DAC
= 300MHz, DAC B, EXTERNA L CLOCK
f
DAC
= 400MHz, DAC B, EXTERNA L CLOCK
f
DAC
= 500MHz, DAC B, EXTERNA L CLOCK
0
–135
–145
–140
–150
–160
–155
–165
50 100 150
f
OUT
(MHz)
NSD (dBm/Hz)
200 250
fDAC
= 500MHz, DAC A, +25°C, EXTERNAL CLOCK
fDAC
= 500MHz, DAC A, +85°C, EXTERNAL CLOCK
fDAC
= 500MHz, DAC A, –40°C, EXTERNA L CLOCK
12206-024
Data Sheet AD9993
Rev. B | Page 15 of 56
TERMINOLOGY
Linearity Error (Integral Nonlinearity or INL)
INL is defined as the maximum deviation of the actual analog
output from the ideal output, determined by a straight line
drawn from zero to full scale.
Differential Nonlinearity (DNL)
DNL is the measure of the variation in analog value, normalized
to full scale, associated with a 1 LSB change in digital input code.
Monotonicity
A digital-to-analog converter is monotonic if the output either
increases or remains constant as the digital input increases.
Offset Error
Offset error is the deviation of the output current from the ideal
of zero. For IOUTx_P, 0 mA output is expected when the inputs
are all 0s. For IOUTx_N, 0 mA output is expected when all
inputs are set to 1.
Gain Error
Gain error is the difference between the actual and ideal output
span. The actual span is determined by the output when all inputs
are set to 1, minus the output when all inputs are set to 0. The
ideal gain is calculated using the measured VREF. Therefore,
the gain error does not include effects of the reference.
Output Compliance Voltage
Output compliance voltage is the range of allowable voltage
at the output of a current output DAC. Operation beyond the
maximum compliance limits can cause either output stage
saturation or breakdown, resulting in nonlinear performance.
Temperature Drift
Temperature drift is specified as the maximum change from
the ambient (25°C) value to the value at either TMIN or TMAX.
For offset and gain drift, the drift is reported in ppm of full-
scale range (FSR) per °C. For reference drift, the drift is
reported in ppm per °C.
Settling Time
Settling time is the time required for the output to reach and
remain within a specified error band about its final value,
measured from the start of the output transition.
Spurious-Free Dynamic Range (SFDR)
SFDR is the difference, in decibels (dB), between the rms
amplitude of the output signal and the peak spurious signal
over the specified bandwidth.
Noise Spectral Density (NSD)
Noise spectral density is the average noise power normalized to
a 1 Hz bandwidth, with the DAC converting and producing an
output tone.
Signal-to-Noise Ratio (SNR)
SNR is the ratio of the rms value of the measured output signal
to the rms sum of all other spectral components below the
Nyquist frequency, excluding the first six harmonics and dc.
The value for SNR is expressed in decibels.
Signal to Noise and Distortion (SINAD)
The ratio of the total signal power level (wanted signal + noise +
distortion or SND) to unwanted signal power (noise +
distortion or ND).
AD9993 Data Sheet
Rev. B | Page 16 of 56
THEORY OF OPERATION
PRODUCT DESCRIPTION
Figure 1 shows a block diagram of the MxFE. This product
integrates four 14-bit ADCs and two 14-bit DACs. The DAC
data interface consists of six DDR LVDS data lanes for each
DAC and a shared DCI_P/DCI_N clock (hereafter referred to
as DCI). The ADC data interface consists of four DDR LVDS
data lanes for each ADC with a shared DCO_P/DCO_N clock
(hereafter referred to as DCO) and a shared STROBE output.
The MxFE control and status registers are written/read via an
SPI interface. ADC and DAC datapaths include FIFO buffers to
absorb phase differences between LVDS lane timing and the
data converter sampling clocks. Internal AD9993 clock signals
can be developed from an external clock signal or from the
output of an on-chip PLL frequency multiplier driven by an
external reference oscillator.
SPI PORT
The AD9993 provides a 4-wire synchronous serial communica-
tions SPI port that allows easy interfacing to ASICs, FPGAs, and
industry-standard microcontrollers. The interface facilitates
read/write access to all registers that configure the AD9993. Its
data rate can be up to 25 MHz.
SPI Port Signals
SPI_SCLK (serial clock) is the serial shift clock. The serial clock
pin synchronizes data to and from the device and runs the
internal state machines. All address and input data bits are
sampled on the rising edge of SPI_SCLK. All output data is
driven out on the falling edge of SPI_SCLK.
SPI_CS (chip select) is an active low control signal used by the
SPI master to select the AD9993 SPI port. When SPI_CS is
high, SPI_SDO is in a high impedance state. During the
communication cycle, chip select must remain low.
SPI_SDI (serial data input) is the address and data input,
sampled on the rising edge of SPI_SCLK.
SPI_SDO (serial data output) is the data output pin. Data is
shifted out on the falling edge of SCLK
Figure 20 shows a timing diagram for a single byte MSB first
AD9993 SPI write operation. Each AD9993 register address is
an 8-bit value. During the first SPI_SCLK cycle, SPI_SDI = 0,
indicating that the operation is a data write. SPI_SDI is always
held low for the next two clock cycles. The next 13 clock cycles
are the first register address. The next eight clock cycles contain
data to be written. The write operation ends when SPI_CS goes
high. In this example, data for one 8-bit register is written.
Multiple registers can be written in a single write operation by
keeping SPI_CS low for multiple byte periods. The register
address is automatically updated using an address counter as
bytes are written while SPI_CS remains low.
Figure 21 depicts an MSB first register read operation. Register
data from the AD9993 appears on SPI_SDO starting on the
SPI_SCLK cycle following the last bit of the 16-bit instruction
header on SPI_SDI. Multiple registers can be read in a single
read operation by keeping SPI_CS low for multiple byte
periods.
Figure 20. 4-Wire SPI Interface Timing, MSB First Write
Figure 21. 4-Wire SPI Interface Timing, MSB First Read
SPI_CS
S
PI_SCLK
A12 A11 A11 A9 A8
16-BIT INSTRUCTION HEADER REGISTER DATA
A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0
W0
W1
DON’T CARE
DON’T CARE
DON’T CARE
DON’T CARE
DON’T CARE
R/W
SPI_SDI
SPI_SDO
12260-025
D7 D6 D5 D4 D3 D2 D1 D0
SPI_CS
S
PI_SCLK
A12 A11 A11 A9 A8
16-BIT INSTRUCTION HEADER REGISTER DATA
A7 A6 A5 A4 A3 A2 A1 A0
W0
W1
DON’T CARE
DON’T CARE
DON’T CARE
DON’T CARE
DON’T CARE
DON’T CARE
R/W
SPI_SDI
SPI_SDO
12260-026
Data Sheet AD9993
Rev. B | Page 17 of 56
SPI CONFIGURATION PROGRAMMING
The SPI_CONFIG register controls AD9993 SPI interface
operation. By default, the SPI bus operates MSB first. In MSB
fist mode, the register address counter decrements automati-
cally during multiple byte reads or writes. The SPI bus can be
configured to run LSB first by setting the SPI_LSB_FIRSTx bits
to 1. During LSB first multiple register read or write operations,
the register address counter is incremented automatically. SPI
registers can be reset to their Reset values by setting the self
clearing SPI_SOFT_RESETx bits to 1.
REGISTER UPDATE TRANSFER METHOD
Changes to the writeable SPI registers labeled transfer in Table 10
do not take effect immediately when written to the device via
the SPI. Values are held in a shadow register set until the self
clearing CHIP_REGMAP_TRANSFER bit in the DEVICE_
UPDATE register is set. All changes to transfer register values
then take effect simultaneously.
ADC REGISTER UPDATE INDEXING
In addition to the register transfer mechanism, the POWER_
MODES and FLEX_OUTPUT_MODE registers have an
indexing mechanism. Each of the four ADC cores has its own
page containing these registers. These pages can be
programmed independently or simultaneously in any
combination. ADC core register sets are addressed for a
particular register map master/slave transfer by setting the
SPI_ADC_x_INDEX bits in the DEVICE_INDEX register.
Register data is transferred to the ADC core pages that have
these bits set when the next transfer occurs.
ADCs
The MxFE ADCs are multistage pipelined CMOS ADC cores
designed for use in communications receivers.
ADC ARCHITECTURE
The AD9993 architecture consists of a dual front-end sample-
and-hold circuit, followed by a pipelined switched capacitor
ADC. The quantized outputs from each stage are combined into
a final 14-bit result.
The input stage of each ADC core contains a differential
sampling circuit that can be ac- or dc-coupled in differential or
single-ended modes.
Input Common-Mode Voltage (VCM) References
The analog inputs of the AD9993 are not internally dc biased.
In ac-coupled applications, the user must provide this bias
externally. Setting the device so that VCM = 0.5 × AVDD (or
0.9 V) is recommended for optimum performance. Four
on-board common-mode voltage references are included in the
design, one for each AD9993 ADC, and are available from the
A_CML, B_CML, C_CML, and D_CML pins. Using these
common-mode voltage outputs to set the input common mode
of each ADC is recommended. Optimum performance is
achieved when the common-mode voltage of the analog input is
set by the on-chip common mode references. The A_CML,
B_CML, C_CML, and D_CML pins must be decoupled to
ground by a 0.1 μF capacitor.
ADC SECTION PROGRAMMING
Each of the four ADCs has its power mode programmed by the
indexed ADC_PDWN_MODE bit field of the POWER_
MODES register (see the ADC Register Update Indexing
section). At reset, all four ADC cores are in power-down mode.
ADC digital data output modes are programmed by the indexed
FLEX_OUTPUT_MODE register (see the ADC Register Update
Indexing section). Setting the DP_OUT_DATA_EN_N bit to 0
enables the data output of each ADC selected in the DEVICE_
INDEX register. At reset, ADC output data is disabled. Setting
the DP_OUT_DATA_INV bit to 1 inverts the data output from
selected ADCs. The DP_OUT_DFS bit field selects the output
code for each selected ADC, offset binary (twos complement with
the sine bit inverted), twos complement (reset value), or gray code.
ANALOG INPUT CONSIDERATIONS
The analog input to the AD9993 is a differential switched
capacitor circuit that has been designed for optimum
performance while processing a differential input signal.
For baseband applications where SNR is a key parameter,
differential transformer coupling is the recommended input
configuration. An example is shown in Figure 22. To bias the
analog input, the VCM voltage can be connected to the center tap
of the secondary winding of the transformer.
Figure 22. Differential Transformer-Coupled Configuration
Differential double balun coupling is used as the input
configuration for AD9993 ADC performance characterization
(see Figure 23). In this configuration, the input is ac-coupled and
the VCM voltage is provided to each input through a 33 Ω resistor.
These resistors compensate for losses in the input baluns to
provide a 50 Ω impedance to the driver.
2V p-p
49.9Ω
0.1µF
R1
R1
C1 ADC
x_VINP
x_VIN
Nx_CML
C2
R2
R3
R2
C2
R3 0.1µF
33Ω
12260-027
AD9993 Data Sheet
Rev. B | Page 18 of 56
Figure 23. Differential Double Balun Input Configuration
In the double balun and transformer configurations, the value of
the input capacitors and resistors is dependent on the input
frequency and source impedance. Based on these parameters,
the value of the input resistors and capacitors may need to be
adjusted or some components may need to be removed. Table 7
displays recommended values to set the RC network for the
0 MHz to 100 MHz frequency range:
Table 7. Example RC Network
Component Value
R1 Series 33 Ω
C1 Differential 8.2 pF
R2 Series 0 Ω
C2 Shunt 15 pF
R3 Shunt 49.9 Ω
The values given in Table 7 are for each R1, R2, C1, C2, and R3
component shown in Figure 22 and Figure 23.
ADRF6518 as ADC Driver
The ADRF6518 is a variable gain amplifier and low-pass filter
that is designed to drive the analog inputs of analog-to-digital
converters like the ones included in the AD9993. A principle
application of the ADRF6518 is as part of the signal chain in a
wideband radio receiver. Figure 32 shows a block diagram for a
wideband microwave radio that includes the ADRF6518 and
the AD9993.
The low impedance (<10 Ω) output buffers of the ADRF6518
are designed to drive ADC inputs. They are capable of delivering
up to 4 V p-p composite two-tone signals into 400 differential
loads with >60 dBc IMD3. The output common-mode voltage
can be adjusted to 900 mV (the AD9993 input common-mode
voltage) without loss of drive capability by presenting the
ADRF6518 VOCM pin with the desired common-mode voltage.
The high input impedance of VOCM allows the AD9993 refer-
ence output (A_CML, B_CML, C_CML or D_CML) to be
connected directly.
DACs
The MxFE DACs are part of the Analog Devices high speed
CMOS DAC core family. These DACs are designed to be used
as part of wide bandwidth communication system transmitter
signal chains.
DAC TRANSFER FUNCTION
The AD9993 DACs provide two differential current outputs:
IOUTA_P/IOUTA_N, and IOUTB_P/IOUTB_N.
The DAC output current equations are as follows:
IOUTx_P = IOUTFS × DACx input code/214
IOUTx_N = IOUTFS × ((2141) − DACx input code)/214
where:
DACx input code = 0 to 214 1.
IOUTFS is the full-scale output current or DAC gain specified in
Table 1.
IOUTFS = 32 × IIREFx
where IREFx = VREFDAC/RFSADJ_x.
Each DAC has its own IREFx set resistor, RFSADJ_x. RFSADJ_x resistors
can be on or off chip at the discretion of the users. The nominal
value of RFSADJ_x is 1.6 kΩ. The nominal value of VREFDAC is 1.0 V.
VREFDAC can be selected as the on-chip band gap reference or as
an external user supplied reference.
DAC outputs have a sinfOUT/fDAC)/(πfOUT/fDAC) envelope
response as a function frequency. This response is also referred
to as a sinc envelope.
DAC OUTPUT COMPLIANCE VOLTAGE RANGE
AND AC PERFORMANCE
Each DAC has a pair of differential current outputs. The
compliance voltage range for each of these two outputs is
specified in Table 1. Optimal DAC ac performance is achieved
when the output common-mode voltage is between 0.0 V and
0.5 V. and the signal swing falls within the compliance range.
x_VINP
x_VIN
Nx_CML
ADC
R1
0.1µF
0.1µF
2V p-p
C1
C2
R1
R2
R2
0.1µF
S
0.1µF
C2
33Ω
33Ω
S
P
A
P
R3
R3 0.1µF
33Ω
12260-028
Data Sheet AD9993
Rev. B | Page 19 of 56
Figure 24. DACs, Band Gap Reference, On-Chip and Off-Chip RFSADJ_x, DAC Gain Setting, and IQ Calibration
Selecting DAC Output Common-Mode Voltage
Two steps are required to select the common-mode output
voltages for the two DACs. For a common-mode voltage less
than 0.5 V, the CML_A and CML_B pins are grounded. For
common-mode voltages that are greater than or equal to 0.5 V,
connect a 0.1 µF capacitor between CML_A or CML_B and
ground. The second step is to program the DAC_VCM_
VREF_BIT bit field. There are three common-mode level
settings to choose from. This common-mode setting applies to
both DACs.
DAC VOLTAGE REFERENCE
The DACs use a single common voltage reference. An on-chip
band gap reference is provided. Optionally, an off-chip voltage
reference can be used. If an off-chip DAC reference is used, set
the DAC_REF_EXT bit in the DAC_CTRL register to 1. After
reset, the on-chip reference is selected.
DAC GAIN SETTING
Figure 24 is a diagram of the AD9993 DACs gain setting
section. It shows the two transmit DACs, the bypassable built-in
1.0 V band gap reference, and the selectable internal and board
level RFSADJ_x resistors. By default, the on-chip band gap
reference is selected. If using a board level. DAC reference
voltage, write 1 to the DAC_REF_EXT bit of the DAC_CTRL
register.
Each DAC has its own RFSADJ_x set resistor. These resistors can be
on or off chip at the discretion of the user. When the on-chip
resistors are in use, their gain accuracy is factory calibrated.
When the off-chip RFSADJ_x resistors are used, an on-chip IQ
calibration scheme can be employed to maintain accuracy
between DAC pairs. By default, the on-chip RFSADJ_x is selected.
If using a board level RFSADJ_x, write 0 to the DAC_RSET_EN bit
of the DAC_CTRL register.
DAC IQ Gain Calibration
When board level RFSADJ_x resistors are used, the gains of the two
DACs can be better matched by running the automatic DAC IQ
gain calibration procedure. This is done by programming the
DAC_CAL_IQ_CTRL register and observing the
DAC_CAL_IQ_STAT register as follows:
1. Write 0x23 to DAC_CAL_IQ_CTRL (power up the DAC
clock, enable IQ calibration, and start IQ calibration).
2. Read the DAC_CAL_IQ_DONE bit of the
DAC_CAL_IQ_STAT register until it goes high.
3. Write 0x4 to DAC_CAL_IQ_CTRL.
DAC DATAPATH FORMAT SELECTION
At reset, the DAC_BINARY bit in the DAC_DP_FMT register is
set to 0, selecting twos complement as the data input format for
both DACs. To select binary offset, set the DAC_BINARY bit to 1.
DAC TEST TONE GENERATOR DDS
The AD9993 includes a tunable direct digital synthesizer for
DAC output tone generation. When the DDS_EN bit of the
DDS_CTRL register is set to 1, the DDS becomes the digital
signal source for the two DACs. The DDS_CTRL register also
has a clock inversion control and amplitude attenuation
controls. At reset, the 32-bit DDS tuning word in the
DDS_TW1_3, DDS_TW1_2, DDS_TW1_1, and DDS_TW1_0
registers is set to 0x19A00000. This value programs the DDS to
produce a 50 MHz tone at both DAC outputs if the master clock
frequency is 1 GHz (DAC sampling rate = 500 MSPS). The
equation for DDS output frequency is
fDDS = (DDS_TW1/232) × fDAC
NOTE:
DEFAULT VALUES FOR
DAC A GAIN AND
DAC B GAIN ARE
SET AT FACTORY TRIM
FOR IFS = 20mA WITH
DAC_RSET_EN = 1
DAC_A
–0.25V
TO +0.25V
CLKA
CLKB
IOUTP25Ω
25Ω
IOUTN
DAC_REF_EXT = 0
REG 0x039[0]
CAL IQ
1
0
BAND GAP
TRIM
1.0V
±1%
IMEAS A
DAC_B
IOUTP25Ω
25Ω
IOUTN
DAC_CAL_IQ_SEL
REG 0x03C[1]
IMEAS B
–0.25V
TO +0.25V
ON CHIP
DAC_RSET_EN = 0
REG 0x039[1]
1.6kΩ
±2%
DAC_RSET_EN = 1
REG 0x039[1]
1.6kΩ
±2% 0.1µF
1.6kΩ
TRIM
±3%
12260-029
AD9993 Data Sheet
Rev. B | Page 20 of 56
CLOCKING
The clock signals for the LVDS lanes, the DACs, and the ADCs
are developed from a single master clock signal. This signal is
either input directly on the CLKP/CLKN pins or synthesized by
an on-chip PLL multiplier using the REFCLK input signal as a
reference. The ADC output and DAC input LVDS lanes run at
the master clock frequency divided by 2 and are DDR. Data is
clocked on both edges. The sampling rate of the ADCs is ¼ the
master clock rate. The sampling rate of the DACs is ½ the
master clock frequency. A 1 GHz master clock is shown in
Figure 1.
At a 1 GHz master clock frequency, the other on-chip clock
frequencies are as follows:
DCO (ADC DDR LVDS output lane clock): 500 MHz
DCI (DAC DDR LVDS input lane clock): 500 MHz
DAC sampling rate: 500 MSPS
ADC sampling rate: 250 MSPS
ON-CHIP PLL CLOCK MULTIPLIER
Figure 25 shows a block diagram of the MxFE on-chip PLL
clock multiplier. If the PLL clock multiplier is used to generate
the master clock, the buffered VCO output signal is divided by 4
to produce the synthesized master clock signal.
The reference clock of the on-chip PLL can be either 31.25 MHz
or 62.5 MHz. When using a 62.5 MHz clock, a divide by 2
option is provided, as shown in Figure 25, such that the internal
PLL reference clock can be set to 31.25 MHz.
A programmable loop filter is integrated on chip. At reset, the
on-chip loop filter bandwidth is set to 500 kHz. Lower loop
bandwidth can be achieved using an external loop filter
connected to the CP pin, as shown in Figure 25.
An on-chip LDO provides the supply voltage for the VCO.
PLL Synthesizer Control and Status Registers
At reset, the SYNTH_INT register contains the reset default
value for the VCO output divider of 64 (shown in Figure 25).
The PLL multiplier lock status can be read back on Bit 1 of the
SYNTH_STAT register. Calibration status is also read from this
register. Bits in the SYNTH_CTRL register are used to enable
charge pump calibration and to start synthesizer calibration.
Synthesizer calibration is required as part of the process of
acquiring lock. Charge pump calibration and synthesizer
calibration are steps described in the Power-Up Routine When
Using the On-Chip Clock Synthesizer section.
Figure 25. On-Chip PLL Clock Multiplier Block Diagram
VCO
CAL
PFD
DIVIDER
÷64
BUF
VCO
LDO
VDD = 1.8V
VCO
4GHz
R3
R1
BYP_R3
NOTES
1. WHEN USING EXTERNAL LOOP FILTER SET C1, C2, C3, R1, AND R3 TO
MIN OR MAX VALUES AS DEFINED IN REGISTER DESCRIPTION, AS DESIRED.
EXT_CP
_SEL
REFCLK =
31.25MHz
CP
1.5V
FIXED
PROGRAMABLE
REG 0x031
ON-CHIP LOOP FILTER
PROGRAMABLE BY
REG 0x02E TO REG 0x030
C62
390pF
C67
22nF
R110
487Ω
DIVIDER
÷2
BUF
C3
0.1µF
0.1µF
C2C1
12260-030
Data Sheet AD9993
Rev. B | Page 21 of 56
Figure 26. MxFE Clock Control
SELECTING CLOCKING OPTIONS
Figure 26 is a block diagram of the MxFE clocking system and
its controls. Options of using either an external master clock or
a master clock generated from the on-chip PLL are provided.
CLKGEN_MODE[1:0] in the CLKGEN_CTRL2 register selects
the PLL multiplier or CLKP/CLKN as the master clock source.
ADC DATAPATH AND DAC DATAPATH FIFOS
In the AD9993, data FIFOs are placed between the ADC core
outputs and the LVDS buffers and drivers. Similarly, on the
DAC side, data FIFOs are placed between the LVDS input
buffers and the DAC cores. These FIFOs absorb the phase
difference between DCI and the DAC sampling clock and
between the ADC sampling clock and DCO. DAC sampling
clock and DCI are locked in frequency but have an unknown
phase relationship. The ADC sampling clock and DCO have the
same characteristics.
FIFOs are eight samples deep. During a start-up register
sequence, both the DAC input datapath FIFOs and the ADC
output data path FIFOs have their read and write pointers
initialized (see the Start-Up Register Sequences section). This
occurs after all clocks in the AD9993 are running and settled.
The pointers are set four data samples apart. The ADC datapath
FIFO depth can be read in the RXFIFO_WR_OFFSET bit field
in the align register. The DAC datapath FIFO depth can be read
as the RXFIFO_THERM[7:0] value in the DAC_FIFO_STS1
register. This value is a thermometer code. FIFO depths remain
constant after initialization when all clocks are running
properly.
LVDS INTERFACES
Each DAC has seven DDR LVDS input data lanes. Each DAC
sample input requires the user to input two 7-bit words to the
interface with appropriate zero stuffing. Each ADC has four
DDR LVDS output data lanes. For each ADC output sample,
four 4-bit words are output.
LVDS ADC Data Link
There are two LVDS ADC buses for the two ADCs. Each LVDS
ADC Data bus has four lanes for 14-bit data output in two full
DDR cycles. A strobe lane is shared by the four ADC LVDS
links to identify the MSB of the 14-bit data. Figure 27 shows one
LVDS ADC output data link with four lanes. Lane 0 to Lane 2
output the 12 MSBs of the 14-bit ADC data. Lane 3 carries the
two LSBs of the 14-bit ADC data and an overrange bit.
LVDS DAC Data Link
There are two LVDS DAC data links for the dual DAC. Each
LVDS DAC data link has seven lanes capable of transmitting
14-bit data in one DDR full cycle. Figure 28 shows one LVDS
DAC input data link with seven lanes.
REFCLK = 31.25MHz
OR
62.5MHz
CLKPCLKN
MASTER
CLOCK INPUT
TO DAC,
ADC, AND
LVDS
÷2
Reg 0x033[5]
CLKGEN_REFCLK_DIV1
0
1
MUX
DIFF
REG 0x034[1:0]
CLKGEN_MODE
Reg 0x031[7:0]
SYNTH_INT
8kΩ
8kΩ
1.8V
Reg 0x034[1:0]
CLKGEN_MODE
00 = INTERNAL 1GHz CLOCK
11 = EXTERNAL CLOCK (200MHz TO 1GHz)
200MHz TO
1000MHz
Reg 0x031[7:0]
PLL Input Freq | SYNTH_INT
31.25MHz | 0x80
62.5MHz | 0x40
100Ω
0
1
MUX
15kΩ
15kΩ
PLL
12260-031
AD9993 Data Sheet
Rev. B | Page 22 of 56
Figure 27. Output Sample Data Format
Figure 28. DAC Input Sample Data Format
LVDS INTERFACE TIMING
DAC Input Interface
Table 8 specifies the setup and hold time requirements for DAC
LVDS data lane inputs relative to DCI. Figure 29 shows a timing
diagram for this interface. DDR DCI edges occur at the position
within the data eye (the white region in Figure 29) listed in
Table 8.
Table 8. DAC DDR LVDS Input Setup and Hold Times
Relative to DCI (Guaranteed)
Parameter Minimum Unit
|tSU| 150 ps
|tHOLD| 200 ps
Data Period 1000 Ps
Figure 29. DAC Input LVDS Lane Timing
ADC Output Interface
Figure 30. ADC Output LVDS Lane Timing
DCO_P
ADC LVDS
A/B/C/D
(DATA CLOCK OUTPUT PORT)
LANE 3
STROBE+
LANE 2
LANE 1
LANE 0
D[–2]
(SAMPLE N – 1)
D[–1]
(SAMPLE N)
0D[–2]
(SAMPLE N)
OVERRANGE
(SAMPLE N + 1)
D[2]
(SAMPLE N – 1)
D[5]
(SAMPLE N)
D[8]
(SAMPLE N)
D[1]
(SAMPLE N – 1)
D[4]
(SAMPLE N)
D[7]
(SAMPLE N)
D[0]
(SAMPLE N – 1)
D[3]
(SAMPLE N)
D[2]
(SAMPLE N)
D[1]
(SAMPLE N)
D[0]
(SAMPLE N)
D[11]
(SAMPLE N + 1)
D[10]
(SAMPLE N + 1)
D[9]
(SAMPLE N + 1)
D[6]
(SAMPLE N)
OVERRANGE
(SAMPLE N)
D[11]
(SAMPLE N)
D[10]
(SAMPLE N)
D[9]
(SAMPLE N)
12206-032
LANE 6
LANE 5
LANE 4
LANE 3
LANE 2
LANE 1
LANE 0
DCI_P
(DATA CLOCK INPUT PORT)
D[6]
(SAMPLE N – 1)
D[5]
(SAMPLE N – 1)
D[4]
(SAMPLE N – 1)
D[3]
(SAMPLE N – 1)
D[2]
(SAMPLE N – 1)
D[1]
(SAMPLE N – 1)
D[0]
(SAMPLE N – 1)
D[6]
(SAMPLE N + 1)
D[5]
(SAMPLE N + 1)
D[4]
(SAMPLE N + 1)
D[3]
(SAMPLE N + 1)
D[2]
(SAMPLE N + 1)
D[1]
(SAMPLE N + 1)
D[0]
(SAMPLE N + 1)
D[6]
(SAMPLE N)
D[5]
(SAMPLE N)
D[4]
(SAMPLE N)
D[3]
(SAMPLE N)
D[2]
(SAMPLE N)
D[1]
(SAMPLE N)
D[0]
(SAMPLE N)
D[13]
(SAMPLE N)
D[12]
(SAMPLE N)
D[11]
(SAMPLE N)
D[10]
(SAMPLE N)
D[9]
(SAMPLE N)
D[8]
(SAMPLE N)
D[7]
(SAMPLE N)
D[13]
(SAMPLE N + 1)
D[12]
(SAMPLE N + 1)
D[11]
(SAMPLE N + 1)
D[10]
(SAMPLE N + 1)
D[9]
(SAMPLE N + 1)
D[8]
(SAMPLE N + 1)
D[7]
(SAMPLE N + 1)
D[13]
(SAMPLE N + 2)
D[12]
(SAMPLE N + 2)
D[11]
(SAMPLE N + 2)
D[10]
(SAMPLE N + 2)
D[9]
(SAMPLE N + 2)
D[8]
(SAMPLE N + 2)
D[7]
(SAMPLE N + 2)
12206-033
DATA PERIOD
tSU tHOLD tSU tHOLD tSU tHOLD
DATA PERIOD
DATA
CLOCK
12206-034
DATA
PERIOD
DATA
PERIOD
STROBE_P/
STROBE_N
DCO_P/
DCO_N
DATA
12206-035
t
SU
t
HOLD
t
SU
t
HOLD
t
SU
t
HOLD
t
SU
t
HOLD
Data Sheet AD9993
Rev. B | Page 23 of 56
Table 9 specifies the time between the ADC LVDS data lane
output transitions and the DDR DCO clock edge 50% transition
point.
Table 9. ADC DDR LVDS Data and Strobe Output Setup and
Hold Times Relative to DCO (Guaranteed)
Parameter Minimum Unit
|tSU| 400 ps
|tHOLD| 430 ps
Data Period 1000 ps
LVDS LANE TESTING USING PRBS
One pseudorandom binary sequence (PRBS) generator is
included for each ADC LVDS lane and one PRBS detector on
each DAC LVDS lane. The designs for the generator and
detector are implemented as a 23rd-order pseudorandom noise
(PN23) sequence defined by the generator polynomial x23 + x18 + 1.
The initial seed of the generator is programmable so that each
lane can output different values if started simultaneously. The
four seed registers are indexed as described in the ADC Register
Update Indexing section.
DAC PRBS test results are read back on the DAC_A_PRBS_ERRx
and DAC_B_PRBS_ERRx error counter registers. The DAC
input PRBS error counters are enabled and the error counters
cleared by the bits in the DAC_PRBS_CTRL register. ADC
output lane PRBS generation is controlled by the bits in the
PRBS_GEN_CTRL register.
POWER MODE PROGRAMMING
The AD9993 has a POWER_MODES register that allows the
user to place sections of the chip into different power modes.
The PDWN_PIN_FUNC bit programs the function of the
PDWN pin. By default, assertion of PDWN causes the AD9993
to go into full power-down. The clock generator, indexed
ADCs, DACs, and PLL synthesizer are all powered down at
reset. The indexed ADCs have four power modes. See the ADC
Register Update Indexing section for a definition of indexing.
INTERRUPT REQUEST OPERATION
The AD9993 provides an interrupt request signal, ALERT. It is
used to notify the user system of significant on-chip events.
The ALERT pin is an open-drain, active low output.
Eight different event flags provide visibility into the device.
These raw events are located in the INT_RAW register. These
raw events are always latched in the INT register. If the event is
left unmasked, the latched event triggers an external interrupt
on ALERT. INTEN is the interrupt enable register. When an
event is masked, the INT register captures the event in latched
form. A masked event does not cause ALERT to go true.
The eight events that trigger an interrupt (if enabled) are
PLL lock lost
PLL locked
FIFO Warning 1
FIFO Warning 2
ADC A overrange
ADC B overrange
ADC C overrange
ADC D overrange
Interrupt Service Routine
For the interrupt service routine, interrupt request management
starts by selecting the set of events that require host interven-
tion or monitoring using the bits in the INTEN register. For
events requiring host intervention, upon ALERT activation, run
the following routine to clear an interrupt request:
1. Read the status of the latched bits in the INT register that
are being monitored.
2. Monitor the unlatched status bits in the INT_RAW register
directly if needed.
3. Perform any actions that may be required to clear the
interrupt(s).
4. Read the INT_RAW bits to verify that the actions taken
have cleared the event.
5. Clear the interrupt by writing 1 to the event flag bit in the
INT register.
TEMPERATURE SENSOR
The AD9993 has a diode-based temperature sensor for
measuring the temperature of the die. The temperature reading
is accessed using the TS_RD_LSB and TS_RD_MSB registers.
The temperature of the die can be calculated as
106
237
,41
=Temp[15:0]Die
TDIE
where:
TDIE is the die temperature in degrees Celsius.
Die Temp is the concatenated 16-bit contents of the TD_RD_LSB
and TD_RD_MSB registers. The temperature accuracy is ±7°C
typical over the −40°C to +8C range with one point
temperature calibration against a known temperature. A typical
plot of the die temperature code readback vs. die temperature is
shown in Figure 31.
AD9993 Data Sheet
Rev. B | Page 24 of 56
Figure 31. Die Temperature Code Readback vs. Die Temperature
Estimates of the ambient temperature can be made if the power
dissipation of the device is known.
51000
49000
47000
DIE CODE READBACK
45000
43000
41000
39000
37000
35000
–40 –30 –20 –10 010 20
TEMPERATURE (°C)
30 40 50 60 70 80 90
12206-036
Data Sheet AD9993
Rev. B | Page 25 of 56
START-UP REGISTER SEQUENCES
POWER-UP ROUTINE WHEN USING THE ON-CHIP
CLOCK SYNTHESIZER
To power up the device, set the register settings as described in
the following sections.
Chip Power-Up
SPI.Write(0x008, 0x00); power up all
blocks
DAC Setup
SPI.Write(0x03A, 0x02); DAC data format
offset binary
or
SPI.Write(0x03A, 0x00); DAC data format
twos complement
ADC Setup
SPI.Write(0x013, 0x00); enable ADC LVDS
output and offset binary
or
SPI.Write(0x013, 0x01); enable ADC LVDS
output and twos complement
SPI.Write(0x014, 0x01); set LVDS to 2 mA
(optional: 1 mA is default)
SPI.Write(0x0FF, 0x01); transfer
Synthesizer Setup (62.5 MHz Reference Clock Input)
SPI.Write(0x032, 0x01); SYNTH_CP_CAL_EN
SPI.Write(0x0FF, 0x01); transfer
SPI.Write(0x032, 0x11); start synthesizer
calibration
SPI.Write(0x0FF, 0x01); transfer
SPI.Read(0x02D); synthesizer status
0x01; calibration in progress
0x04; calibration done, synthesizer no
lock
0x06;calibration done, synthesizer locked
Sythesizer Setup (31.25 MHz Reference Clock Input)
SPI.Write(0x033, 0x20); CLKGEN_REFCLK_DIV1
SPI.Write(0x032, 0x01); synthesizer
CP_CAL_EN
SPI.Write(0x0FF, 0x01); transfer
SPI.Write(0x032, 0x11); start synth
calibration
SPI.Write(0x0FF, 0x01); transfer
SPI.Read(0x02D); synthesizer status
0x01; calibration in progress
0x04; calibration done, synthesizer no
lock
0x06; calibration done, synthesizer
locked
Synchronize LVDS Interface
SPI.Write(0x00A, 0x82); synchronize ADC
data with DCO clock, self cleared but
needs following SPI clock
SPI.Write(0x00A, 0x81); realign Tx FIFO
read and write pointers, self cleared but
need following SPI clock
SPI.Write(0x00A, 0x90); realign Rx FIFO
read and write pointers, DCI clock must be
present, self cleared but need following
SPI clock
Miscellaneous
Clear Interrupt
SPI.Write(0x0F0, 0xFF)
Enable Interrupt
SPI.Write(0x0F1, 0xFF)
SPI.Write(0x055, 0x01); ALERT_PULLUP_EN
(optional)
SPI.Write(0x0FF, 0x01); transfer
SPI.Write(0x039, 0x12); set DAC CML based
on compliance range of 0.7 V and on-chip
RFSADJ_x resistors
Set this bit if using DAC compliance range > 0.7 V.
SPI.Write(0x0ff, 0x001); data transfer
POWER-UP ROUTINE WHEN USING EXTERNAL
CLOCK
Chip Power-Up
SPI.Write(0x008, 0x00); power up all
blocks
DAC Setup
SPI.Write(0x03A, 0x02); DAC data format
offset binary
or
SPI.Write(0x03A, 0x00); DAC data format
twos complement
ADC Setup
SPI.Write(0x013, 0x00); enable ADC LVDS
output and offset binary
or
SPI.Write(0x013, 0x01); enable ADC LVDS
output and twos complement
SPI.Write(0x014, 0x01); set LVDS to 2 mA
(optional: 1 mA is default)
SPI.Write(0x0FF, 0x01); transfer
External Clock Setup
SPI.Write(0x034, 0x07); set external clock
mode
SPI.Write(0x0FF, 0x01); transfer
AD9993 Data Sheet
Rev. B | Page 26 of 56
Synchronize LVDS Interface
SPI.Write(0x00A, 0x82); synchronize ADC
data with DCO clock, self cleared but
needs following SPI clock
SPI.Write(0x00A, 0x81); realign Tx FIFO
read and write pointers, self cleared but
need following SPI clock
SPI.Write(0x00A, 0x90); realign Rx FIFO
read and write pointers, DCI clock must be
present, self cleared but need following
SPI clock.
Miscellaneous
Clear Interrupt
SPI.Write(0x0F0, 0xFF)
Enable Interrupt
SPI.Write(0x0F1, 0xFF)
SPI.Write(0x055, 0x01); ALERT_PULLUP_EN
(optional)
SPI.Write(0x0FF, 0x01); transfer
SPI.Write(0x039, 0x12); set DAC CML based
on compliance range of 0.7 V and on-chip
RFSADJ_x resistors,
Set this bit if using DAC compliance range > 0.7 V
SPI.Write(0x0FF, 0x001); data transfer
Data Sheet AD9993
Rev. B | Page 27 of 56
APPLICATIONS INFORMATION
DIRECT CONVERSION RADIO APPLICATION
A direct conversion radio application of the MxFE is shown in
Figure 32. The DAC output signals, IOUTA_P/IOUTA_N and
IOUTB_P/IOUTB_N, are differential currents. At 500 MSPS,
DAC output signals fall within the 1st Nyquist zone (dc to
250 MHz). DAC current outputs are converted to a voltage and
then processed by passive low-pass filters (LPF). The low-pass
filters reject out of band signal harmonics and their sampling
images. The filter outputs feed the baseband inputs of a
quadrature modulator. Quadrature modulator baseband inputs
must fall within an allowable voltage range, which gives rise to a
common-mode voltage requirement at the outputs of the DACs.
The MxFE receive signal chain consists of a VGA followed by a
quadrature demodulator, then by a programmable L P F, and
another VGA. The ADRF6518 is an LPF and VGA specifically
designed to drive the analog inputs of high speed ADCs like the
ones on the MxFE. The LPF is an antialiasing filter. At
250 MSPS, the ADC signal bandwidth is 125 MHz.
See the ADRF6518 as ADC Driver section for further
information about this interface.
Figure 32. Radio Signal Chain Example
DATA
ASSEMBLER
PLLAND CLOCK
DISTRIBUTION
OR BYPASS
CLKP
CLKN
STROBE_x
DOUTxA_x/DOUxB_x
DINxA_x, DINxB_x
DCI_x
DCO_x
SERIAL
PORT
LOGIC
RST
SPI_SDI, SPI_SDO
SPI_SCLK
SPI_CS
IOUTA_x
IOUTB_x
REFERENCES
AND BIAS
VREF_DAC
CML_A, CML_B
A_CML, B_CML,
C_CML, D_CML
IBIAS_TEST
250MSPS
ADCs
A_VINx, B_VINx
C_VINx, D_VINx
QUAD
MODULATOR
QUAD
DEMOD
ADRF6518
VGA
RF IN
VGARF OUT
AD9993
500MSPS
DACs PASSIVE LPF
PROGRAMMABLE
LPF AND VGA
12206-037
AD9993 Data Sheet
Rev. B | Page 28 of 56
REGISTER MAP
Table 10. SPI Accessible Register Summary
Address Name Description Reset Value RW
0x000 SPI_CONFIG SPI configuration 0x18 RW
0x001 CHIP_ID Chip ID 0xB2 R
0x002 CHIP_GRADE CHIP_GRADE 0x01 R
0x005 DEVICE_INDEX Device index 0x0F RW
0x008 POWER_MODES Power mode control (indexed) 0x55 RW
0x00A ALIGN Align ADC LVDS clocks, ADC FIFO, DAC FIFO 0x80 RW
0x00C Reserved Reserved 0x01 R
0x010
Reserved
Reserved
0x00
R
0x011 Reserved Reserved 0x00 R
0x012 STROBE_CTRL Strobe lane control (transfer) 0x00 RW
0x013 FLEX_OUTPUT_MODE Output mode (transfer, indexed) 0x11 RW
0x014 FLEX_OUTPUT_ADJUST LVDS Tx control (transfer) 0x00 RW
0x016
FLEX_VREF
V
REF
control (transfer)
0x00
RW
0x017 PRBS_GEN_CTRL PRBS generator control (transfer, indexed) 0x00 RW
0x020 PRBS0_SEED_MSB 8-bit seed MSB of PRBS generator for Lane0 (transfer, indexed) 0x01 RW
0x021 PRBS1_SEED_MSB 8-bit seed MSB of PRBS generator for Lane1 (transfer, indexed) 0x02 RW
0x022 PRBS2_SEED_MSB 8-bit seed MSB of PRBS generator for Lane2 (transfer, indexed) 0x03 RW
0x023 PRBS3_SEED_MSB 8-bit seed MSB of PRBS generator for Lane3 (transfer, indexed) 0x04 RW
0x02D SYNTH_STAT Synthesizer status 0x00 R
0x02E LF_CTRL1 Loop filter control signals (transfer) 0x77 RW
0x02F LF_CTRL2 Loop filter control signals (transfer) 0xF7 RW
0x030 LF_CTRL3 Loop filter control signals (transfer) 0x00 RW
0x031 SYNTH_INT Integer value of synthesize divider (transfer) 0x40 RW
0x032 SYNTH_CTRL Synthesizer control (transfer) 0x00 RW
0x033
CLKGEN_CTRL1
Clock generator control (transfer)
0x00
RW
0x034 CLKGEN_CTRL2 CLKGEN control (transfer) 0x04 RW
0x035 DAC_LVDS_CTRL DAC LVDS Rx control (transfer) 0x4D RW
0x036 DAC_LVDS_BIAS DAC LVDS current bias control (transfer) 0x00 RW
0x037 Reserved Reserved 0x00 RW
0x038
Reserved
Reserved
0x00
RW
0x039 DAC_CTRL DAC cores control (transfer) 0x02 RW
0x03A DAC_DP_FMT DAC datapath format control (transfer) 0x00 RW
0x03C DAC_CAL_IQ_CTRL DAC IQ calibration control (transfer) 0x04 RW
0x03D DAC_CAL_IQ_STAT DAC IQ calibration status 0x00 R
0x03F DAC_FIFO_STS1 DAC Rx FIFO Status 1 0x55 R
0x040 DAC_PRBS_CTRL PRBS detector control (transfer) 0x00 RW
0x041 DAC_A_PRBS_ERR0 PRBS Detector Error Count 0 for DAC A 0x00 R
0x042 DAC_A_PRBS_ERR1 PRBS Detector Error Count 1 for DAC A 0x00 R
0x043 DAC_A_PRBS_ERR2 PRBS Detector Error Count 2 for DAC A 0x00 R
0x044 DAC_A_PRBS_ERR3 PRBS Detector Error Count 3 for DAC A 0x00 R
0x045 DAC_A_PRBS_ERR4 PRBS Detector Error Count 4 for DAC A 0x00 R
0x046 DAC_A_PRBS_ERR5 PRBS Detector Error Count 5 for DAC A 0x00 R
0x047 DAC_A_PRBS_ERR6 PRBS Detector Error Count 6 for DAC A 0x00 R
0x048 DAC_B_PRBS_ERR0 PRBS Detector Error Count 0 for DAC B 0x00 R
0x049 DAC_B_PRBS_ERR1 PRBS Detector Error Count 1 for DAC B 0x00 R
0x04A
DAC_B_PRBS_ERR2
PRBS Detector Error Count 2 for DAC B
0x00
R
0x04B
DAC_B_PRBS_ERR3
PRBS Detector Error Count 3 for DAC B
0x00
R
0x04C DAC_B_PRBS_ERR4 PRBS Detector Error Count 4 for DAC B 0x00 R
0x04D DAC_B_PRBS_ERR5 PRBS Detector Error Count 5 for DAC B 0x00 R
0x04E DAC_B_PRBS_ERR6 PRBS Detector Error Count 6 for DAC B 0x00 R
Data Sheet AD9993
Rev. B | Page 29 of 56
Address Name Description Reset Value RW
0x050 TS_RD_LSB Bits[7:0] of Temperature sensor data readback 0x00 R
0x051 TS_RD_MSB Bits[15:8] of Temperature sensor data readback 0x00 R
0x052 Reserved Reserved 0x00 R
0x053 Reserved Reserved 0x00 R
0x054
TS_CTRL
Temperature sensor control signals
0x01
RW
0x055 IRQ_CTRL Interrupt pin control 0x00 RW
0x060 DDS_CTRL DDS control 0x00 RW
0x061 DDS_TW1_0 DDS tuning word for Tone 1 0x00 RW
0x062 DDS_TW1_1 DDS tuning word for Tone 1 0x00 RW
0x063 DDS_TW1_2 DDS tuning word for Tone 1 0xA0 RW
0x064 DDS_TW1_3 DDS tuning word for Tone 1 0x19 RW
0x0F0 INT Interrupt status 0x00 R
0x0F1 INTEN Interrupt enable (transfer) 0x00 RW
0x0F2 INT_RAW Interrupt source status 0x00 R
0x0FF DEVICE_UPDATE Global device update register 0x00 RW
AD9993 Data Sheet
Rev. B | Page 30 of 56
REGISTER DESCRIPTIONS
SPI CONFIGURATION REGISTER
Address: 0x000, Reset: 0x18, Name: SPI_CONFIG
Table 11. Bit Descriptions for SPI_CONFIG
Bits Bit Name Description Reset Access
6 SPI_LSB_FIRST2 SPI least significant bit first. 0x0 RW
1 = least significant bit shifted first for all SPI operations. On multibyte SPI
operations, addressing increments automatically.
0 = most significant bit shifted first for all SPI operations. On multibyte SPI
operations, addressing decrements automatically.
This bit must be accessed with all devices enabled and is not reset by
setting the SPI_SOFT_RESET1 or SPI_SOFT_RESET2 bit.
5 SPI_SOFT_RESET2 Self Clearing Soft Reset 1. Reset the SPI registers (self clearing). 0x0 RW
This bit must be accessed with all devices enabled.
[4:3] SPI_ADDR_MODE 13-bit addressing mode always enabled. 0x3 R
2 SPI_SOFT_RESET1 Self Clearing Soft Reset 1. Reset the SPI registers (self clearing). 0x0 RW
This bit must be accessed with all devices enabled.
1 SPI_LSB_FIRST1 SPI least significant bit first. 0x0 RW
1 = least significant bit shifted first for all SPI operations. On multibyte SPI
operations, addressing increments automatically.
0 = most significant bit shifted first for all SPI operations. On multibyte SPI
operations, addressing decrements automatically.
This bit must be accessed with all devices enabled and is not reset by
setting the SPI_SOFT_RESET1 or SPI_SOFT_RESET2 bit.
CHIP ID REGISTER
Address: 0x001, Reset: 0xB2, Name: CHIP_ID
Table 12. Bit Descriptions for CHIP_ID
Bits Bit Name Description Reset Access
[7:0] CHIP_ID Chip ID. 0xB2 R
Data Sheet AD9993
Rev. B | Page 31 of 56
CHIP GRADE REGISTER
Address: 0x002, Reset: 0x01, Name: CHIP_GRADE
Table 13. Bit Descriptions for CHIP_GRADE
Bits Bit Name Description Reset Access
[5:4] CHIP_SPEED_GRADE Chip ID/speed grade. 0x0 R
[2:0] CHIP_DIE_REV Chip die revision. 0x1 R
DEVICE INDEX REGISTER
Address: 0x005, Reset: 0x0F, Name: DEVICE_INDEX
Table 14. Bit Descriptions for DEVICE_INDEX
Bits Bit Name Description Reset Access
3 SPI_ADC_D_INDEX ADC Core D access enable. 0x1 RW
1 = ADC Core D receives the next read/write access from the SPI interface.
0 = ADC Core D does not receive the next read/write access from the SPI
interface.
2 SPI_ADC_C_INDEX ADC Core C access enable. 0x1 RW
1 = ADC Core C receives the next read/write access from the SPI interface.
0 = ADC Core C does not receive the next read/write access from the SPI
interface.
1 SPI_ADC_B_INDEX ADC Core B access enable. 0x1 RW
1 = ADC Core B receives the next read/write access from the SPI interface.
0 = ADC Core B does not receive the next read/write access from the SPI
interface.
0 SPI_ADC_A_INDEX ADC Core A access enable. 0x1 RW
1 = ADC Core A receives the next read/write access from the SPI interface.
0 = ADC Core A does not receive the next read/write access from the SPI
interface.
AD9993 Data Sheet
Rev. B | Page 32 of 56
POWER MODE CONTROL REGISTER
Address: 0x008, Reset: 0x55, Name: POWER_MODES
Table 15. Bit Descriptions for POWER_MODES
Bits Bit Name Description Reset Access
7 PDWN_PIN_FUNC Power-down pin function. External power-down pin mode. 0x0 RW
0 = assertion of external power-down pin (PDWN) causes chip to enter full
power-down mode.
1 = assertion of external power-down pin (PDWN) causes chip to enter
standby mode.
6 CLKGEN_PDWN Clock generation power-down mode. 0x1 RW
[5:4] SYNTH_PDWN_MODE Synthesizer power-down mode. 0x1 RW
[3:2] DAC_PDWN_MODE DAC power-down mode. 0x1 RW
[1:0] ADC_PDWN_MODE ADC power-down mode. (ADC indexed) 0x1 RW
00 = normal mode (power up).
01 = power-down mode; digital datapath clocks disabled; digital datapath
held in reset; outputs disabled.
10 = standby mode; digital datapath clocks disabled; outputs disabled.
11 = reserved.
ALIGN ADC LVDS CLOCKS, ADC FIFO, DAC FIFO REGISTER
Address: 0x00A, Reset: 0x80, Name: ALIGN
Table 16. Bit Descriptions for ALIGN
Bits Bit Name Description Reset Access
[7:5] RXFIFO_WR_OFFSET
The distance of Rx FIFO write pointer away from read pointer; needs
RXFIFO_ALIGN_REQ asserted to apply this value to datapath.
0x4 RW
4 RXFIFO_ALIGN_REQ Align Rx FIFO read and write pointers. 0x0 RW
1 LVDS_DCO_SYNC Sync LVDS Tx DCO with data and strobe (self clear with following SPI clock). 0x0 RW
0 TXFIFO_ALIGN Align Tx FIFO read and write pointers (self clear with following SPI clock). 0x0 RW
Data Sheet AD9993
Rev. B | Page 33 of 56
STROBE LANE CONTROL REGISTER
Address: 0x012, Reset: 0x00, Name: STROBE_CTRL
Table 17. Bit Descriptions for STROBE_CTRL
Bits Bit Name Description Reset Access
[7:4] STROBE_SAMPLE_RATE Sample rate of strobe output. 0x0 RW
0 = 1/1 of data sample rate.
1 = 1/2 of data sample rate.
2 = 1/4 of data sample rate.
3 = 1/8 of data sample rate.
4 = 1/16 of data sample rate.
5 = 1/32 of data sample rate.
6 = 1/64 of data sample rate.
7 = 1/128 of data sample rate.
8 = 1/256 of data sample rate.
Needs at least one ADC channel working.
0 STROBE_DUTY_CYCLE_EN
Enable 50% duty cycle of strobe lane. Needs at least one ADC channel
working.
0x0 RW
OUTPUT MODE REGISTER
Address: 0x013, Reset: 0x11, Name: FLEX_OUTPUT_MODE
Table 18. Bit Descriptions for FLEX_OUTPUT_MODE
Bits Bit Name Description Reset Access
4 DP_OUT_DATA_EN_N Digital datapath output enable (active low) (ADC indexed). 0x1 RW
0 = digital output from ADC is enabled.
1 = digital output from ADC is disabled.
2 DP_OUT_DATA_INV Digital datapath output invert (ADC indexed). 0x0 RW
0 = output from ADC is not inverted.
1 = output from ADC is inverted.
[1:0] DP_OUT_DFS Digital datapath output data format select (DFS) (ADC indexed). 0x1 RW
00 = offset binary.
01 = twos complement.
10 = gray code.
11 = reserved.
AD9993 Data Sheet
Rev. B | Page 34 of 56
LVDS TX CONTROL REGISTER
Address: 0x014, Reset: 0x00, Name: FLEX_OUTPUT_ADJUST
Table 19. Bit Descriptions for FLEX_OUTPUT_ADJUST
Bits Bit Name Description Reset Access
[7:5] LVDS_BIAS_DAC Sets LVDS output swing. 0x0 RW
000 = 200 mV.
001 = 227 mV.
010 = 257 mV.
011 = 282 mV.
100 = 296 mV.
101 = 330 mV.
110 = 350 mV.
111 = 372 mV.
[4:2] LVDS_BG_TRIM Band gap trim for LVDS Tx DOUTxx_P and DOUTxx_N pins. 0x0 RW
[1:0] LVDS_DRIVE Output LVDS drive current. 0x0 RW
00 = 1 mA output drive current (default).
01 = 2 mA output drive current.
10 = 3 mA output drive current.
11 = 4 mA output drive current.
VREF CONTROL REGISTER
Address: 0x016, Reset: 0x00, Name: FLEX_VREF
Table 20. Bit Descriptions for FLEX_VREF
Bits Bit Name Description Reset Access
[4:0] VREF_FS_ADJ Main reference full-scale VREF adjustment. 0x0 RW
01111 = internal 2.087 V p-p.
00001 = internal 1.772 V p-p.
00000 = internal 1.75 V p-p.
11111 = internal 1.727 V p-p.
10000 = internal 1.383 V p-p.
Data Sheet AD9993
Rev. B | Page 35 of 56
PRBS GENERATOR CONTROL REGISTER
Address: 0x017, Reset: 0x00, Name: PRBS_GEN_CTRL
Table 21. Bit Descriptions for PRBS_GEN_CTRL
Bits Bit Name Description Reset Access
5 STROBE_PRBS_RESET Reset PRBS generator on strobe lane (transfer not needed). 0x0 RW
0 = normal working if PRBS enabled.
1 = reset the PRBS on strobe lane.
4 STROBE_PRBS_EN Enable PRBS testing on strobe lane. 0x0 RW
0 = normal mode working with STROBE_DUTY_CYCLE_EN and
STROBE_SAMPLE_RATE.
1 = test mode only.
Note: needs at least one ADC channel working.
1 DP_PRBS_GEN_RESET
Pseudorandom binary sequence generator reset (transfer not needed,
ADC indexed).
0x0 RW
0 = PRBS generator enabled.
1 = PRBS generator held in reset.
0 DP_PRBS_GEN_EN Enable PRBS generating on ADC data lanes (ADC indexed). 0x0 RW
8-BIT SEED MSB OF PRBS GENERATOR FOR LANE 0 REGISTER
Address: 0x020, Reset: 0x01, Name: PRBS0_SEED_MSB
Table 22. Bit Descriptions for PRBS0_SEED_MSB
Bits Bit Name Description Reset Access
[7:0] DP_PRBS0_SEED_MSB
8-bit MSB seed of PRBS generator in Lane 0 (ADC indexed).
The 15-bit LSB is always 0x3AFF.
0x1 RW
AD9993 Data Sheet
Rev. B | Page 36 of 56
8-BIT SEED MSB OF PRBS GENERATOR FOR LANE 1 REGISTER
Address: 0x021, Reset: 0x02, Name: PRBS1_SEED_MSB
Table 23. Bit Descriptions for PRBS1_SEED_MSB
Bits Bit Name Description Reset Access
[7:0] DP_PRBS1_SEED_MSB
8-bit MSB seed of PRBS generator in Lane 1 (ADC indexed.)
The 15-bit LSB is always 0x3AFF.
0x2 RW
8-BIT SEED MSB OF PRBS GENERATOR FOR LANE 2 REGISTER
Address: 0x022, Reset: 0x03, Name: PRBS2_SEED_MSB
Table 24. Bit Descriptions for PRBS2_SEED_MSB
Bits Bit Name Description Reset Access
[7:0] DP_PRBS2_SEED_MSB
8-bit MSB seed of PRBS generator in Lane 2 (ADC indexed).
The 15-bit LSB is always 0x3AFF.
0x3 RW
8-BIT SEED MSB OF PRBS GENERATOR FOR LANE 3 REGISTER
Address: 0x023, Reset: 0x04, Name: PRBS3_SEED_MSB
Table 25. Bit Descriptions for PRBS3_SEED_MSB
Bits Bit Name Description Reset Access
[7:0] DP_PRBS3_SEED_MSB
8-bit MSB seed of PRBS generator in Lane 3 (ADC indexed).
The 15-bit LSB is always 0x3AFF.
0x4 RW
Data Sheet AD9993
Rev. B | Page 37 of 56
SYNTHESIZER STATUS REGISTER
Address: 0x02D, Reset: 0x00, Name: SYNTH_STAT
Table 26. Bit Descriptions for SYNTH_STAT
Bits Bit Name Description Reset Access
2 SYNTH_CP_CAL_DONE Charge pump calibration done. 0x0 R
1 SYNTH_LOCKDET Synthesizer frequency locked. 0x0 R
0 SYNTH_VCO_CAL_IN_PROGRESS VCO calibration in progress. 0x0 R
LOOP FILTER CONTROL SIGNALS REGISTER
Address: 0x02E, Reset: 0x77, Name: LF_CTRL1
Table 27. Bit Descriptions for LF_CTRL1
Bits Bit Name Description Reset Access
[6:4] LF_C2 Loop filter coefficient. 0x7 RW
000 = 3.13 pF.
001 = 2.26 pF.
010 = 9.39 pF.
011 = 12.52 pF.
100 = 15.65 pF.
101 = 18.78 pF.
110 = 21.91 pF.
111 = 25.04 pF.
[2:0] LF_C1 Loop filter coefficient. 0x7 RW
000 = 46.584 pF.
001 = 93.168 pF.
010 = 139.752 pF.
011 = 186.336 pF.
100 = 232.920 pF.
101 = 279.504 pF.
110 = 326.088 pF.
111 = 372.672 pF.
AD9993 Data Sheet
Rev. B | Page 38 of 56
LOOP FILTER CONTROL SIGNALS REGISTER
Address: 0x02F, Reset: 0xF7, Name: LF_CTRL2
Table 28. Bit Descriptions for LF_CTRL2
Bits Bit Name Description Reset Access
[7:6] LF_R3 Loop filter coefficient. 0x3 RW
00 = 4.63 kΩ.
01 = 2.315 kΩ.
10 = 1.543 kΩ.
11 = 1.157 kΩ
[5:4] LF_R1 Loop filter coefficient. 0x3 RW
00 = 12.04 kΩ.
01 = 6.02 kΩ.
10 = 4.01 kΩ.
11 = 3.01 kΩ.
[2:0] LF_C3 Loop filter coefficient. 0x7 RW
000 = 0.6325 pF.
001 = 1.265 pF.
010 = 1.8975 pF.
011 = 2.530 pF.
100 = 3.1625 pF.
101 = 3.795 pF.
110 = 4.4275 pF.
111 = 5.06 pF.
LOOP FILTER CONTROL SIGNALS REGISTER
Address: 0x030, Reset: 0x00, Name: LF_CTRL3
Table 29. Bit Descriptions for LF_CTRL3
Bits Bit Name Description Reset Access
1 EXT_CP_SEL Short external CP pin to charge pump output. 0x0 RW
0 BYP_R3 Bypass R3 in loop filter. 0x0 RW
Data Sheet AD9993
Rev. B | Page 39 of 56
INTEGER VALUE OF SYNTHESIZER DIVIDER REGISTER
Address: 0x031, Reset: 0x40, Name: SYNTH_INT
Table 30. Bit Descriptions for SYNTH_INT
Bits Bit Name Description Reset Access
[7:0] SYNTH_INT Integer part on the synthesizer divider (N). N = freq (MHz)/31.25. 0x40 RW
SYNTHESIZER CONTROL REGISTER
Address: 0x032, Reset: 0x00, Name: SYNTH_CTRL
Table 31. Bit Descriptions for SYNTH_CTRL
Bits Bit Name Description Reset Access
4 SYNTH_CAL_START Start synthesizer calibration. 0x0 RW
0 SYNTH_CP_CAL_EN Enable charge pump calibration. 0x0 RW
CLOCK GENERATOR CONTROL REGISTER
Address: 0x033, Reset: 0x00, Name: CLKGEN_CTRL1
Table 32. Bit Descriptions for CLKGEN_CTRL1
Bits Bit Name Description Reset Access
7 CLKGEN_DC_MODE DAC clock direct connect to ADC. 0x0 RW
0 = ADC clock from 1 GHz.
1 = ADC clock from DAC.
6 CLKGEN_DC_MODE_INV Not used. 0x0 RW
5 CLKGEN_REFCLK_DIV1 0 = select REFCLK as PLL reference. 0x0 RW
1 = select REFCLK/2 as PLL reference.
4 CLKGEN_REFDIV_EN Selects the output of the on-chip reference clock divider to the PLL. 0x0 RW
[1:0] CLKGEN_REFDIV_SEL Sets the divider ratio for the on-chip reference clock divider. 0x0 RW
AD9993 Data Sheet
Rev. B | Page 40 of 56
CLKGEN CONTROL REGISTER
Address: 0x034, Reset: 0x04, Name: CLKGEN_CTRL2
Table 33. Bit Descriptions for CLKGEN_CTRL2
Bits Bit Name Description Reset Access
3 CLKGEN_DAC_M0_INV Swaps CMOS and differential clock buffer for DAC only. 0x0 RW
0 = normal mode.
1 = inverts CLKGEN_MODE[0] for DAC only.
2 CLKGEN_ADC_M0_INV Swaps CMOS and differential clock buffer for ADC only. 0x1 RW
0 = normal mode.
1 = inverts CLKGEN_MODE[0] for ADC only.
[1:0] CLKGEN_MODE Configures the IC for external or internal clock. 0x0 RW
00 = selects on-chip synthesizer to drive LVDS at 1 GHz, ADC at 250 MHz,
and DAC at 500 MHz.
01 = same as 00 except uses differential clock buffer for DAC and ADC.
10 = selects external clock source to drive LVDS at clock rate, ADC at clock
rate divide by 4, and DAC at clock rate divide by 2. Minimum clock rate =
200 MHz.
11 = same as 10 except uses differential clock buffer for DAC and ADC.
DAC LVDS RX CONTROL REGISTER
Address: 0x035, Reset: 0x4D, Name: DAC_LVDS_CTRL
Data Sheet AD9993
Rev. B | Page 41 of 56
Table 34. Bit Descriptions for DAC_LVDS_CTRL
Bits Bit Name Description Reset Access
[3:0] DAC_RES_CAL DAC LVDS Rx termination selection. 0xD RW
0001 = 977 Ω.
0010 = 497 Ω.
0011 = 341 Ω.
0100 = 267 Ω.
0101 = 215 Ω.
0110 = 184 Ω.
0111 = 160 Ω.
1000 = 145Ω.
1001 = 131 Ω.
1010 = 121 Ω.
1011 = 112 .
1100 = 105 Ω.
1101 = 99 Ω.
1110 = 93Ω.
1111 = 89 Ω.
DAC LVDS CURRENT BIAS CONTROL REGISTER
Address: 0x036, Reset: 0x00, Name: DAC_LVDS_BIAS
Table 35. Bit Descriptions for DAC_LVDS_BIAS
Bits Bit Name Description Reset Access
[5:4] DAC_IAMP Adjust bias current for LVDS DAC receiver. 0x0 RW
00 = nominal.
01 = 25%.
10 = 50%.
11 = 75%.
[1:0] DAC_IRCV Adjust the bias current to cascade voltage for LVDS DAC receiver. 0x0 RW
00 = nominal.
01 = 25%.
10 = 50%.
11 = 75%.
AD9993 Data Sheet
Rev. B | Page 42 of 56
DAC CORES CONTROL REGISTER
Address: 0x039, Reset: 0x02, Name: DAC_CTRL
Table 36. Bit Descriptions for DAC_CTRL
Bits Bit Name Description Reset Access
7 DAC_TRANS DAC input latch data transfer method select. 0x0 RW
0 = edge triggered.
1 = level triggered.
[6:4] DAC_VCM_VREF_BIT Sets DAC common-mode level. 0x0 RW
000 = 0.0 V.
001 = 0.2 V.
010 = 0.3 V.
011 = 0.4 V
100 = 0.5 V
101 = 0.6 V
110 = 0.7 V.
111 = 0.8 V.
1 DAC_RSET_EN Selects on-chip RFSADJ_x resistor. 0x1 RW
0 DAC_REF_EXT Selects external DAC Reference voltage. Set to 1 to use an off-chip DAC
reference.
0x0 RW
DAC DATAPATH FORMAT CONTROL REGISTER
Address: 0x03A, Reset: 0x00, Name: DAC_DP_FMT
Table 37. Bit Descriptions for DAC_DP_FMT
Bits Bit Name Description Reset Access
1 DAC_BINARY Enable binary offset data format (default is twos complement). 0x0 RW
0 = twos complement.
1 = binary offset.
Data Sheet AD9993
Rev. B | Page 43 of 56
DAC IQ CALIBRATION CONTROL REGISTER
Address: 0x03C, Reset: 0x04, Name: DAC_CAL_IQ_CTRL
Table 38. Bit Descriptions for DAC_CAL_IQ_CTRL
Bits Bit Name Description Reset Access
5 DAC_CAL_IQ_START Starts DAC IQ calibration. 0x0 RW
4 DAC_CAL_IQ_RESET Resets DAC IQ calibration. 0x0 RW
2 PD_DAC_CAL_CLK 0 = DAC IQ calibration clock enabled. Must be 0 to run IQ calibration. 0x1 RW
1 = DAC IQ calibration clock disabled.
1 DAC_CAL_IQ_SEL Selects output of IQ calibration. Must be 1 to run IQ calibration. 0x0 RW
0 DAC_CAL_IQ_EN Enables DAC I to Q calibration. Must stay high until DAC_CAL_IQ_DONE = 1. 0x0 RW
DAC IQ CALIBRATION STATUS REGISTER
Address: 0x03D, Reset: 0x00, Name: DAC_CAL_IQ_STAT
Table 39. Bit Descriptions for DAC_CAL_IQ_STAT
Bits Bit Name Description Reset Access
[7:1] DAC_CAL_IQ_RD Value of DAC IQ calibration, valid when DAC_CAL_IQ_DONE = 1. 0x0 R
0 DAC_CAL_IQ_DONE Indicates when DAC IQ calibration is done. 0x0 R
DAC RX FIFO STATUS 1 REGISTER
Address: 0x03F, Reset: 0x55, Name: DAC_FIFO_STS1
Table 40. Bit Descriptions for DAC_FIFO_STS1
Bits Bit Name Description Reset Access
[7:0] RXFIFO_THERM Thermal value of FIFO usage. 0x55 R
AD9993 Data Sheet
Rev. B | Page 44 of 56
PRBS DETECTOR CONTROL REGISTER
Address: 0x040, Reset: 0x00, Name: DAC_PRBS_CTRL
Table 41. Bit Descriptions for DAC_PRBS_CTRL
Bits Bit Name Description Reset Access
1 PRBS_DET_ERRCLR Clear the error count of PRBS detector (transfer not required). 0x0 RW
0 PRBS_DET_EN Enable the PRBS detector. 0x0 RW
PRBS DETECTOR ERROR COUNT 0 FOR DAC A REGISTER
Address: 0x041, Reset: 0x00, Name: DAC_A_PRBS_ERR0
Table 42. Bit Descriptions for DAC_A_PRBS_ERR0
Bits Bit Name Description Reset Access
[7:0] PRBS_DET_ERRCNT_A0 Error count of Lane 0 of DAC A. 0x0 R
PRBS DETECTOR ERROR COUNT 1 FOR DAC A REGISTER
Address: 0x042, Reset: 0x00, Name: DAC_A_PRBS_ERR1
Table 43. Bit Descriptions for DAC_A_PRBS_ERR1
Bits Bit Name Description Reset Access
[7:0] PRBS_DET_ERRCNT_A1 Error count of Lane 1 of DAC A. 0x0 R
Data Sheet AD9993
Rev. B | Page 45 of 56
PRBS DETECTOR ERROR COUNT 2 FOR DAC A REGISTER
Address: 0x043, Reset: 0x00, Name: DAC_A_PRBS_ERR2
Table 44. Bit Descriptions for DAC_A_PRBS_ERR2
Bits Bit Name Description Reset Access
[7:0] PRBS_DET_ERRCNT_A2 Error count of Lane 2 of DAC A. 0x0 R
PRBS DETECTOR ERROR COUNT 3 FOR DAC A REGISTER
Address: 0x044, Reset: 0x00, Name: DAC_A_PRBS_ERR3
Table 45. Bit Descriptions for DAC_A_PRBS_ERR3
Bits Bit Name Description Reset Access
[7:0] PRBS_DET_ERRCNT_A3 Error count of Lane 3 of DAC A. 0x0 R
PRBS DETECTOR ERROR COUNT 4 FOR DAC A REGISTER
Address: 0x045, Reset: 0x00, Name: DAC_A_PRBS_ERR4
Table 46. Bit Descriptions for DAC_A_PRBS_ERR4
Bits Bit Name Description Reset Access
[7:0] PRBS_DET_ERRCNT_A4 Error count of Lane 4 of DAC A. 0x0 R
AD9993 Data Sheet
Rev. B | Page 46 of 56
PRBS DETECTOR ERROR COUNT 5 FOR DAC A REGISTER
Address: 0x046, Reset: 0x00, Name: DAC_A_PRBS_ERR5
Table 47. Bit Descriptions for DAC_A_PRBS_ERR5
Bits Bit Name Description Reset Access
[7:0] PRBS_DET_ERRCNT_A5 Error count of Lane 5 of DAC A. 0x0 R
PRBS DETECTOR ERROR COUNT 6 FOR DAC A REGISTER
Address: 0x047, Reset: 0x00, Name: DAC_A_PRBS_ERR6
Table 48. Bit Descriptions for DAC_A_PRBS_ERR6
Bits Bit Name Description Reset Access
[7:0] PRBS_DET_ERRCNT_A6 Error count of Lane 6 of DAC A. 0x0 R
PRBS DETECTOR ERROR COUNT 0 FOR DAC B REGISTER
Address: 0x048, Reset: 0x00, Name: DAC_B_PRBS_ERR0
Table 49. Bit Descriptions for DAC_B_PRBS_ERR0
Bits Bit Name Description Reset Access
[7:0] PRBS_DET_ERRCNT_B0 Error count of Lane 0 of DAC B. 0x0 R
Data Sheet AD9993
Rev. B | Page 47 of 56
PRBS DETECTOR ERROR COUNT 1 FOR DAC B REGISTER
Address: 0x049, Reset: 0x00, Name: DAC_B_PRBS_ERR1
Table 50. Bit Descriptions for DAC_B_PRBS_ERR1
Bits Bit Name Description Reset Access
[7:0] PRBS_DET_ERRCNT_B1 Error count of Lane 1 of DAC B. 0x0 R
PRBS DETECTOR ERROR COUNT 2 FOR DAC B REGISTER
Address: 0x04A, Reset: 0x00, Name: DAC_B_PRBS_ERR2
Table 51. Bit Descriptions for DAC_B_PRBS_ERR2
Bits Bit Name Description Reset Access
[7:0] PRBS_DET_ERRCNT_B2 Error count of Lane 2 of DAC B. 0x0 R
PRBS DETECTOR ERROR COUNT 3 FOR DAC B REGISTER
Address: 0x04B, Reset: 0x00, Name: DAC_B_PRBS_ERR3
Table 52. Bit Descriptions for DAC_B_PRBS_ERR3
Bits Bit Name Description Reset Access
[7:0] PRBS_DET_ERRCNT_B3 Error count of Lane 3 of DAC B. 0x0 R
AD9993 Data Sheet
Rev. B | Page 48 of 56
PRBS DETECTOR ERROR COUNT 4 FOR DAC B REGISTER
Address: 0x04C, Reset: 0x00, Name: DAC_B_PRBS_ERR4
Table 53. Bit Descriptions for DAC_B_PRBS_ERR4
Bits Bit Name Description Reset Access
[7:0] PRBS_DET_ERRCNT_B4 Error count of Lane 4 of DAC B. 0x0 R
PRBS DETECTOR ERROR COUNT 5 FOR DAC B REGISTER
Address: 0x04D, Reset: 0x00, Name: DAC_B_PRBS_ERR5
Table 54. Bit Descriptions for DAC_B_PRBS_ERR5
Bits Bit Name Description Reset Access
[7:0] PRBS_DET_ERRCNT_B5 Error count of Lane 5 of DAC B. 0x0 R
PRBS DETECTOR ERROR COUNT 6 FOR DAC B REGISTER
Address: 0x04E, Reset: 0x00, Name: DAC_B_PRBS_ERR6
Table 55. Bit Descriptions for DAC_B_PRBS_ERR6
Bits Bit Name Description Reset Access
[7:0] PRBS_DET_ERRCNT_B6 Error count of Lane 6 of DAC B. 0x0 R
Data Sheet AD9993
Rev. B | Page 49 of 56
BITS[7:0] OF TEMPERATURE SENSOR DATA READBACK REGISTER
Address: 0x050, Reset: 0x00, Name: TS_RD_LSB
Table 56. Bit Descriptions for TS_RD_LSB
Bits Bit Name Description Reset Access
[7:0] TEMP_SENSE_RDBK_LSB Temperature sensor measurement MSB. 0x0 R
BITS[15:8] OF TEMPERATURE SENSOR DATA READBACK REGISTER
Address: 0x051, Reset: 0x00, Name: TS_RD_MSB
Table 57. Bit Descriptions for TS_RD_MSB
Bits Bit Name Description Reset Access
[7:0] TEMP_SENSE_RDBK_MSB Temperature sensor neasurement LSB. 0x0 R
TEMPERATURE SENSOR CONTROL SIGNALS REGISTER
Address: 0x054, Reset: 0x01, Name: TS_CTRL
Table 58. Bit Descriptions for TS_CTRL
Bits Bit Name Description Reset Access
0 TEMP_SENSE_PD Turn off temperature sensor. 0x1 RW
AD9993 Data Sheet
Rev. B | Page 50 of 56
INTERRUPT PIN CONTROL REGISTER
Address: 0x055, Reset: 0x00, Name: IRQ_CTRL
Table 59. Bit Descriptions for IRQ_CTRL
Bits Bit Name Description Reset Access
0 ALERT_PULLUP_EN Interrupt (alarm) pin pull-up enable. 0x0 RW
DDS CONTROL REGISTER
Address: 0x060, Reset: 0x00, Name: DDS_CTRL
Table 60. Bit Descriptions for DDS_CTRL
Bits Bit Name Description Reset Access
6 DDS_1DB_DIS Disable the −1 db attenuation on both DDS tone outputs. 0x0 RW
[3:2] DDS_ATTEN Amplitude attenuation. 0x0 RW
00 = ×1/1 amplitude.
01 = ×1/2 amplitude.
10 = ×1/4 amplitude.
11 = ×1/8 amplitude.
1 DDS_CLK_INV DDS clock invert bit. 0x0 RW
0 = normal. DDS clock not inverted.
1 = DDS clock inverted.
0 DDS_EN Enable DDS Tone 1 output. 0x0 RW
Data Sheet AD9993
Rev. B | Page 51 of 56
DDS TUNING WORD FOR TONE 1 REGISTER
Address: 0x061, Reset: 0x00, Name: DDS_TW1_0
Table 61. Bit Descriptions for DDS_TW1_0
Bits Bit Name Description Reset Access
[7:0] DDS_TW1_0 32-bit tuning word for Tone 1 combined by DDS_TW1_3, DDS_TW1_2,
DDS_TW1_1, and DDS_TW1_0. The default configuration is for 50 MHz
when working with 500 MHz DAC clock.
0x0 RW
DDS TUNING WORD FOR TONE 1 REGISTER
Address: 0x062, Reset: 0x00, Name: DDS_TW1_1
Table 62. Bit Descriptions for DDS_TW1_1
Bits Bit Name Description Reset Access
[7:0] DDS_TW1_1 32-bit tuning word for Tone 1 combined by DDS_TW1_3, DDS_TW1_2,
DDS_TW1_1, and DDS_TW1_0. The default configuration is for 50 MHz
when working with 500 MHz DAC clock.
0x0 RW
AD9993 Data Sheet
Rev. B | Page 52 of 56
DDS TUNING WORD FOR TONE 1 REGISTER
Address: 0x063, Reset: 0xA0, Name: DDS_TW1_2
Table 63. Bit Descriptions for DDS_TW1_2
Bits Bit Name Description Reset Access
[7:0] DDS_TW1_2 32-bit tuning word for Tone 1 combined by DDS_TW1_3, DDS_TW1_2,
DDS_TW1_1, and DDS_TW1_0. The default configuration is for 50 MHz
when working with 500 MHz DAC clock.
0xa0 RW
DDS TUNING WORD FOR TONE 1 REGISTER
Address: 0x064, Reset: 0x19, Name: DDS_TW1_3
Table 64. Bit Descriptions for DDS_TW1_3
Bits Bit Name Description Reset Access
[7:0] DDS_TW1_3 32-bit tuning word for Tone 1 combined by DDS_TW1_3, DDS_TW1_2,
DDS_TW1_1, and DDS_TW1_0. The default configuration is for 50 MHz
when working with 500 MHz DAC clock.
0x19 RW
Data Sheet AD9993
Rev. B | Page 53 of 56
INTERRUPT STATUS REGISTER
Address: 0x0F0, Reset: 0x00, Name: INT
Table 65. Bit Descriptions for INT
Bits Bit Name Description Reset Access
7 ADC_D_OVR_IRQ ADC D overrange interrupt (write 1 to clear). 0x0 RW1C
6 ADC_C_OVR_IRQ ADC C overrange interrupt (write 1 to clear). 0x0 RW1C
5 ADC_B_OVR_IRQ ADC B overrange interrupt(write 1 to clear). 0x0 RW1C
4 ADC_A_OVR_IRQ ADC A overrange interrupt (write 1 to clear). 0x0 RW1C
3 FIFO_WARN2_IRQ FIFO Warning 2 interrupt (write 1 to clear). 0x0 RW1C
2 FIFO_WARN1_IRQ FIFO Warning 1 interrupt (write 1 to clear). 0x0 RW1C
1 PLL_UNLOCK_IRQ PLL unlock interrupt (write 1 to clear). 0x0 RW1C
0 PLL_LOCKED_IRQ PLL lock interrupt (write 1 to clear). 0x0 RW1C
INTERRUPT ENABLE REGISTER
Address: 0x0F1, Reset: 0x00, Name: INTEN
AD9993 Data Sheet
Rev. B | Page 54 of 56
Table 66. Bit Descriptions for INTEN
Bits Bit Name Description Reset Access
7 ADC_D_OVR_IRQ_EN Enable ADC D Overrange interrupt. 0x0 RW
6 ADC_C_OVR_IRQ_EN Enable ADC C Overrange interrupt. 0x0 RW
5 ADC_B_OVR_IRQ_EN Enable ADC B Overrange interrupt. 0x0 RW
4 ADC_A_OVR_IRQ_EN Enable ADC A Overrange interrupt. 0x0 RW
3 FIFO_WARN2_IRQ_EN Enable FIFO Warning 2 interrupt. 0x0 RW
2 FIFO_WARN1_IRQ_EN Enable FIFO Warning 1 interrupt. 0x0 RW
1 PLL_UNLOCK_IRQ_EN Enable PLL unlock interrupt. 0x0 RW
0 PLL_LOCKED_IRQ_EN Enable PLL lock interrupt. 0x0 RW
INTERRUPT SOURCE STATUS REGISTER
Address: 0x0F2, Reset: 0x00, Name: INT_RAW
Table 67. Bit Descriptions for INT_RAW
Bits Bit Name Description Reset Access
7 ADC_D_OVR_RAW ADC D overrange interrupt source. 0x0 R
6 ADC_C_OVR_RAW ADC C overrange interrupt source. 0x0 R
5 ADC_B_OVR_RAW ADC B overrange interrupt source. 0x0 R
4 ADC_A_OVR_RAW ADC A overrange interrupt source. 0x0 R
3 FIFO_WARN2_RAW FIFO Warning 2 interrupt source. 0x0 R
2 FIFO_WARN1_RAW FIFO Warning 1 interrupt source. 0x0 R
1 PLL_UNLOCK_RAW PLL unlock interrupt source. 0x0 R
0 PLL_LOCKED_RAW PLL lock interrupt source. 0x0 R
Data Sheet AD9993
Rev. B | Page 55 of 56
GLOBAL DEVICE UPDATE REGISTER
Address: 0x0FF, Reset: 0x00, Name: DEVICE_UPDATE
Table 68. Bit Descriptions for DEVICE_UPDATE
Bits Bit Name Description Reset Access
0 CHIP_REGMAP_TRANSFER
Register map master/slave transfer bit. Self clearing bit used to
synchronize the transfer of data from the master to the slave registers.
0x0 RW
0 = no effect
1 = transfer data from the master registers written by the register maps
to the slave registers seen by the datapath.
AD9993 Data Sheet
Rev. B | Page 56 of 56
OUTLINE DIMENSIONS
Figure 33. 196-Ball Chip Scale Package Ball Grid Array [CSP_BGA]
(BC-196-9)
Dimensions shown in millimeters
ORDERING GUIDE
Model1 Temperature Range Package Description Package Option
AD9993BBCZ 40°C to +85°C 196-Ball Chip Scale Package Ball Grid Array [CSP_BGA] BC-196-9
AD9993BBCZRL 40°C to +85°C 196-Ball Chip Scale Package Ball Grid Array [CSP_BGA] BC-196-9
AD9993-EBZ Evaluation Board
1 Z = RoHS Compliant Part.
*COMPLIANT TO JEDEC STANDARDS MO-219 WITH
EXCEPTION TO PACKAGE HEIGHT.
05-09-2011-A
0.80
BSC
0.80
REF
0.54
REF
0.36
REF
A
B
C
D
E
F
G
910 811121314 7 56 4 23 1
BOTTOM VIEW
10.40
BSC SQ
H
J
K
L
M
N
P
DETAIL A
TOP VIEW
DETAIL A
COPLANARITY
0.12
0.50
0.45
0.40
BALL DIAMETER
SEATING
PLANE
12.10
12.00 SQ
11.90
A1 BALL
CORNER
A1 BALL
CORNER
*1.40
1.24
1.15
0.97
0.90
0.83
0.39
0.34
0.29
©20142017 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D12260-0-12/17(B)