08/2008
ACA2604
1 GHz FTTx RF Amplier
Data Sheet - Rev 2.2
S29 Package
28 Pin QFN
5 mm x 5 mm x 1 mm
FEATURES
50 - 1000 MHz Operating Frequency
High Linearity: 65 dBc CTB/CSO (79 Chan.)
Low Equivalent Input Noise: 4.5 pA/rtHz
22 dB Gain Adjust
400 Differential Input Impedance: No
Transformer Required for Interface to Photodiode
Single +5 V Supply
5 mm x 5 mm x 1 mm Surface Mount Package
RoHS Compliant Package
Pin Compatible with the ACA2601
APPLICATIONS
FTTH RF Amplier Used in Conjunction With
Triplexer in Fiber-Coax Line Terminals
Post photodiode RF Amplier in FTTB video
receivers for Multiple Dwelling Units (MDUs).
PRODUCT DESCRIPTION
The ANADIGICS ACA2604 amplier is intended to
be used in ber-to-coax equipment, such as ONUs
for FTTH systems incorporating RF overlay, or FTTB
optical receivers for MDUs. The device is driven by,
and amplies the output of, the video downstream
path photodiode.
The high-impedance input of the ACA2604 eliminates
the need for a costly transformer usually needed to
interface to the photodiode, and a low equivalent input
noise level offers excellent sensitivity. The device
Figure 1: Application Block Diagram
provides sufcient linearity to maintain low CTB and
CSO levels in full-bandwidth (132 channel) systems,
even across a wide gain adjustment range.
The ACA2604 is manufactured using ANADIGICS’s
proven MESFET technology that offers state-of-the-
art reliability, temperature stability and ruggedness.
The device operates from a single +5 V supply and
is offered in a 5 mm x 5 mm x 1 mm surface mount
package.
LNA Output
Amplifier
Voltage
Controlled
Attenuator
Matching
Circuit
RF Outpu
t
1:1
Transmission
Line Balun
Attenuator
Control
Supply
ACA2604
ACA2604
2Data Sheet - Rev 2.2
08/2010
ACA2604
Table 1: Pin Description
Figure 2: Pinout (X-ray Top View)
PIN NAME DESCRIPTION PIN NAME DESCRIPTION
1NC No Connection 28 V
CC_IN1
Input Stage Supply 1
2RF
IN1
RF Input 1 27 NC No Connection
3NC No Connection 26 V
AGC
AGC Control Input
4GND Ground 25 GND Ground
5NC No Connection 24 V
CC_AGC
AGC Supply
6RF
IN2
RF Input 2 23 NC No Connection
7NC No Connection 22 GND Ground
8 V
CC_IN2
Input Stage Supply 2 21 V
CC_OUT1
Output Stage Supply 1
9GND Ground 20 RF
OUT1
RF Output 1
10 I
AD J_IN
Input Stage Current Adjust 19 GND Ground
11 GND Ground 18 GND Ground
12 GND Ground 17 GND Ground
13 GND Ground 16 RF
OUT2
RF Output 2
14 GND Ground 15 V
CC_OUT2
Output Stage Supply 2
Data Sheet - Rev 2.2
08/2010
ACA2604
3
ELECTRICAL CHARACTERISTICS
Table 2: Absolute Minimum and Maximum Ratings
Stresses in excess of the absolute ratings may cause permanent damage.
Functional operation is not implied under these conditions. Exposure
to absolute ratings for extended periods of time may adversely affect
reliability.
Table 3: Operating Ranges
The device may be operated safely over these conditions; however, parametric performance is guaranteed only
over the conditions dened in the electrical specications.
PARAMETER MIN TYP MAX UNIT COMMENTS
Operating Frequency (f) 50 -1000 MHz
Supply Voltage (V
CC
)-+5 -V
RF Output Power (P
OUT
)-+18 -dBmV/ch
Case Temperature (T
C
)-40 -+110 °C
PARAMETER MIN MAX UNIT
Supply Voltage (V
CC
) 0 +8 V
AGC Voltage (V
AGC
) 0 +5 V
RF Input Power (P
IN
)-+25 dBmV/ch
Storage Temperature -65 +150 °C
4Data Sheet - Rev 2.2
08/2010
ACA2604
Table 4: Electrical Specications - RFIN and RFOUT Characterizations (see Figure 3)
( VCC = +5 V, 75 system, TA = +25 °C)
Table 5: Electrical Specications - Optical in and RFOUT Characterizations
( VCC = +5 V, optical input, 75 output, TA = +25 °C)
Notes:
(1) Temperature range of -30 to +100 8C referenced to the package slug.
(2) 79 analog channels from 55.25 to 547.25 MHz, +21 dBmV output power, with 14 dB gain reduction
by AGC (i.e. mid-range)
(3) Two tones at 379.25 and 301.25 MHz, -12 dBm output power per tone, with 14 dB gain reduction
by AGC (i.e. mid- range)
PARAMETER MIN TYP MAX UNIT COMMENTS
Best linear filt - Tilt
V
AGC
= +3.0 V
V
AGC
= +0.5 V
0.5
2.5
1.5
3.5
2.0
4.5 dB 55.25 to 865.25 MHz
Best linear fit - Tilt over Temperature
(1)
V
AGC
= +3.0 V
V
AGC
= +0.5 V
-
-
4.5
5.8
-
-dB 55.25 to 865.25 MHz
Best linear fit - Gain Flatness
V
AGC
= +3.0 V
V
AGC
= +0.5 V
-
-
0.8
0.8
2.0
2.0 dB
55.25 to 865.25 MHz
(peak to peak deviation)
Best linear fit - Gain Flatness over
Temperature
(1)
V
AGC
= +3.0 V
V
AGC
= +0.5 V
-
-
1.0
1.0
-
-dB 55.25 to 865.25 MHz
(peak to peak deviation)
Equivalent Input Noise (EIN) -4.5 5.5 pA/rt Hz 55.25 to 865.25 MHz
Equivalent Input Noise over Temperature
(1)
-5.0 -pA/rtHz 55.25 to 865.25 MHz
PARAMETER MIN TYP MAX UNIT COMMENTS
RF Gain over Temperature (1) 22.5 24.0 -dB at 547.25 MHz
Gain Adjustment Range 20 22 -dB 55.25 to 865.25 MHz
Gain Adjust Control Voltage +0.5 -+3.0 VMax. gain at +3.0 V
CTB (2) --65 -60 dBc
CSO (2) --65 -dBc
OIP 2 (3) +47 - - dBm
Input Impedance -400 -differential
Output Return Loss over Temperature
-30 oC to +85 oC
+85 oC to +100 oC
16
15
18
-
-
-dB 55.25 to 865.25 MHz
Current Consumption over
Temperature (1) -250 295 mA
Thermal Resistance -18 25 8C/W
Data Sheet - Rev 2.2
08/2010
ACA2604
5
Figure 3: Test Circuit
6Data Sheet - Rev 2.2
08/2010
ACA2604
PERFORMANCE DATA
Performance data on this page measured using application circuit with input photodiode, as shown in Figure 14.
Figure 4: Z21 vs. Frequency over VAGC
(TA = +25 oC, VCC = + 5 V)
Figure 5: Output Return Loss vs. Frequency over VAGC
(TA = +25 oC, VCC = + 5 V)
Z21 ( Ampere/Watt )
Frequency ( MHz )
Figure 4: Z21 vs. Frequency over VAGC
( T A= +25C,VCC = +5V )
Vagc=0.0V
Vagc=0.2V
Vagc=0.4V
Vagc=0.6V
Vagc=0.8V
Vagc=1.0V
Vagc=1.2V
Vagc=1.4V
Vagc=1.6V
Vagc=1.8V
Vagc=2.0V
Vagc=2.2V
Vagc=2.4V
Vagc=2.6V
Vagc=2.8V
Vagc=3.0V
-40
-35
-30
-25
-20
-15
-10
-5
0100 200 300 400 500 600 700 800 900 1000
S22 (dB)
Frequency ( MHz )
Figure 5: Output Return Loss vs. Frequency over VAGC
(TA= +25C, VCC = +5V)
Vagc=0.0V
Vagc=0.2V
Vagc=0.4V
Vagc=0.6V
Vagc=0.8V
Vagc=1.0V
Vagc=1.2V
Vagc=1.4V
Vagc=1.6V
Vagc=1.8V
Vagc=2.0V
Vagc=2.2V
Vagc=2.4V
Vagc=2.6V
Vagc=2.8V
Vagc=3.0V
Data Sheet - Rev 2.2
08/2010
ACA2604
7
Performance data on this page measured using application circuit with input photodiode, as shown in Figure 14.
Table 6: Gain Flatness to Best Fit Line
(VAGC = +3.0 V)
The best t line is calculated
using the least mean squares
method:
bxmy+ =
( )
( )
n
x
x
n
yx
yx
m
2
2
=
n
x
m
n
y
b =
Figure 6: Gain Flatness to Best Fit Line Over Temperature
(VCC = + 5 V, VAGC = +3.0 V)
Temp (oC) Tilt (dB) Flatness (dB)
85 3.7 1.3
25 4.5 1.0
-40 5.1 0.9
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
0100 200 300 400 500 600 700 800 900 1000
Gain Flaness (dB)
Frequency (MHz)
Figure 6: Gain Flatness To Best Fit Line vs. Frequency over Temperature
( VCC = +5V, VAGC = +3.0V )
+85C
+25C
-40C
8Data Sheet - Rev 2.2
08/2010
ACA2604
Table 7: Gain Flatness to Best Fit Line
(VAGC = +1.6 V)
Performance data on this page measured using application circuit with input photodiode, as shown in Figure 14.
Figure 7: Gain Flatness to Best Fit Line Over Temperature
(VCC = + 5 V, VAGC = +1.6 V)
Temp (oC) Tilt (dB) Flatness (dB)
85 4.1 0.5
25 4.5 0.7
-40 5.1 0.8
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
0100 200 300 400 500 600 700 800 900 1000
Gain Flatness (dB)
Frequency (MHz)
Figure 7: Gain Flatness To Best Fit Line vs. Frequency over Temperature
(VCC = +5V, VAGC = +1.6V)
+85C
+25C
-40C
Data Sheet - Rev 2.2
08/2010
ACA2604
9
Table 8: Gain Flatness to Best Fit Line
(VAGC = 0 V)
Performance data on this page measured using application circuit with input photodiode, as shown in Figure 14.
Figure 8: Gain Flatness to Best Fit Line vs. Frequency Over Temperature
(VCC = + 5 V, VAGC = 0 V)
Temp (oC) Tilt (dB) Flatness (dB)
85 5.2 1.2
25 5.8 1.0
-40 6.3 0.8
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
0100 200 300 400 500 600 700 800 900 1000
Gain Flaness (dB)
Frequency (MHz)
Figure 8: Gain Flatness To Best Fit Line vs. Frequency over Temperature
(VCC = +5V, VAGC = +0.0V)
+85C
+25C
-40C
`
10 Data Sheet - Rev 2.2
08/2010
ACA2604
Performance data on this page measured using test circuit shown in Figure 3.
Figure 9: CTB vs. Frequency
(79 Analog channels (55.25 to 547.25 MHz), +21 dBmV output power,
with 14 dB gain reduction by AGC)
Figure 10: Worst Case CSO vs. Frequency
(79 Analog channels (55.25 to 547.25 MHz), +21 dBmV output power,
with 14 dB gain reduction by AGC)
-70
-69
-68
-67
-66
-65
-64
-63
-62
-61
-60
0100 200 300 400 500 600
CTB (dBc)
Frequency (MHz)
Figure 9: CTB vs Frequency
79 Analog channels (55.25 to 547.25MHz), +21dBmV output power, with 14dB gain reduction by AGC
-90
-88
-86
-84
-82
-80
-78
-76
-74
-72
-70
-68
-66
-64
-62
-60
0100 200 300 400 500 600
wst CSO (dBc)
Frequency (MHz)
Figure 10: Worst Case CSO vs Frequency
79 Analog channels (55.25 to 547.25MHz), +21dBmV output power, with 14dB gain reduction by AGC
Data Sheet - Rev 2.2
08/2010
ACA2604
11
Performance data on this page measured using application circuit with input photodiode, as shown in Figure 14.
Figure 11: CTB vs. Frequency vs. POPT
79 Analog channels (55.25 to 547.25 MH), +17 dBmV at 109.25 MHz, 3.5% OMI/ch
-80
-75
-70
-65
-60
0100 200 300 400 500 600
CTB (dBc)
Frequency (MHz)
Figure 11: CTB vs. Frequency vs. POPT
79 Analog channels (55.25 to 547.25MH), +17dBmV @ 109.25MHz, 3.5% OMI/ch
Popt = -7dBm
Popt = 0dBm
Popt = +2dBm
Figure 12: CSO vs. Frequency vs. POPT
(79 Analog channels (55.25 to 547.25 MH), +17 dBmV at 109.25 MHz, 3.5% OMI/ch)
-80.00
-75.00
-70.00
-65.00
-60.00
0100 200 300 400 500 600
CSO (dBc)
Frequency (MHz)
Figure 12: CSO vs. Frequency vs. Popt
79 Analog channels (55.25 to 547.25MH), +17dBmV @ 109.25MHz, 3.5% OMI/ch
Popt = -7dBm
Popt = 0dBm
Popt = +2dBm
12 Data Sheet - Rev 2.2
08/2010
ACA2604
Figure 13: Equivalent Input Noise vs. Frequency
(TA = 25 8C, VCC = +5 V, VAGC = +3.0 V)
Performance data on this page measured using application circuit with input photodiode, as shown in Figure 14.
0
1
2
3
4
5
6
0100 200 300 400 500 600 700 800 900 1000
EIN (pA/rtHz)
Frequency (MHz)
Figure 13: Equivalent Input Noise vs. Frequency
(TA= +25oC, Vcc = +5V, VAGC = +3V)
Data Sheet - Rev 2.2
08/2010
ACA2604
13
APPLICATION INFORMATION
Figure 14: Application Circuit with Input Photodiode
14 Data Sheet - Rev 2.2
08/2010
ACA2604
Table 9: Evaluation Board Parts List for 50 - 870 MHz Applications
REF DESCRIPTION QTY VENDOR VENDOR PART NO.
C18 0.6 pF; 0402 Cap 1Murata Electronics GRM1555C1HR60BZ01
C1 1 pF; 0603 Cap 1Murata Electronics GRM1885C1H1R0CZ01D
C9, C10 270 pF; 0603 Cap 2Murata Electronics GRM155R7H271KA01D
C2, C3 470 pF; 0603 Cap 2Murata Electronics GRM155R71H471KA01D
C5 1000 pF; 0603 Cap 1Murata Electronics GRM1885C1H102JA01D
C6, C7, C12, C13,
C15, C16 0.01 F; 0603 Cap 6Murata Electronics GRM1885C1HR50CZ01D
C4, C17 0.1 F; 0603 Cap 1Murata Electronics GRM188F51C104ZA01D
C14 1 F; 0603 Cap 1Murata Electronics GRM188R61C105KA93D
C8 47 F; Elect. Cap 25 V 1Panasonic-ECG ECA-1EM470B
L1, L2, L3, L4 30 nH; 0603 Ind 4Coilcraft 0603HP-30NXJL
L5, L6, L7, L8 330 nH; 1008 Ind 4Coilcraft 1008CS-331XJLB
R1, R2 1 k; 0603 Res 2Panasonic-ECG ERJ-2GEJ102X
R3 20 0603 Res 1Panasonic-ECG ERT-3GEYJ200W
R4 0 ; 0603 Res 1Panasonic-ECG ERJ-3GE40R00V
T1 1:1 Balun Transformer 1M/A-COM MABA-009921-CT1A40
D1 Analog Photodiode 1EGTRAN PD070-HL1-300 or
PD070-HL2-300
Connector 75 N Male Panel
Mount 1Pasternack
Enterprises PE4504
L10 7.5 nH; 0402 Ind 1Murata LQG154S7N5J02D
FB1, FB2 EMI Ferrite Chip 2Murata Electronics BLM15HD182SN
FB3 EMI Ferrite Chip 1Murata BLM15HG102SN1D
Data Sheet - Rev 2.2
08/2010
ACA2604
15
Table 10: Evaluation Board Parts List for 50 - 1000 MHz Applications
REF DESCRIPTION QTY VENDOR VENDOR PART NO.
C18 0.6 pF; 0402 Cap 1Murata Electronics GRM1555C1HR60BZ01
C1 1.1 pF; 0603 Cap 1Murata Electronics GRM1885C1H1R01CZ01D
C9, C10 270 pF; 0603 Cap 2Murata Electronics GRM155R7H271KA01D
C2, C3 470 pF; 0603 Cap 2Murata Electronics GRM155R71H471KA01D
C5 1000 pF; 0603 Cap 1Murata Electronics GRM1885C1H102JA01D
C6, C7, C12, C13,
C15, C16 0.01 F; 0603 Cap 6Murata Electronics GRM1885C1HR50CZ01D
C4, C17 0.1 F; 0603 Cap 1Murata Electronics GRM188F51C104ZA01D
C14 1 F; 0603 Cap 1Murata Electronics GRM188R61C105KA93D
C8 47 F; Elect. Cap 25 V 1Panasonic-ECG ECA-1EM470B
L1, L2 18 nH; 0603 Ind 2Coilcraft 0603HP-1BNXJLU
L3, L4 22 nH; 0603 Ind 2Coilcraft 0603HP-22NXJLU
L5, L6 120 nH; 1008 Ind 2Coilcraft 0603LS-121XJLB
L7, L8 180 nH; 0603 Ind 2Coilcraft 0603LS-121XJLB
R1, R2 1 k; 0603 Res 2Panasonic-ECG ERJ-2GEJ102X
R3 20 0603 Res 1Panasonic-ECG ERT-3GEYJ200W
R4 0 ; 0603 Res 1Panasonic-ECG ERJ-3GEY0R00V
T1 1:1 Balun Transformer 1M/A-COM MABA-009921-CT1A40
D1 Analog Photodiode 1EGTRAN PD070-HL1-300 or
PD070-HL2-300
Connector 75 N Male Panel
Mount 1Pasternack
Enterprises PE4504
L10 7.5 nH; 0402 Ind 1Murata LQG154S7N5J02D
FB1, FB2 EMI Ferrite Chip 2Murata Electronics BLM15HD182SN
FB3 EMI Ferrite Chip 1Murata BLM15HG102SN1D
16 Data Sheet - Rev 2.2
08/2010
ACA2604
PACKAGE OUTLINE
Figure 15: S29 Package Outline - 28 Pin 5 mm x 5 mm x 1 mm QFN
Data Sheet - Rev 2.2
08/2010
ACA2604
17
Figure 16: PCB Metal and Solder Mask Details
WARNING
ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product
in any such application without written consent is prohibited.
IMPORTANT NOTICE
ANADIGICS, Inc.
141 Mount Bethel Road
Warren, New Jersey 07059, U.S.A.
Tel: +1 (908) 668-5000
Fax: +1 (908) 668-5132
URL: http://www.anadigics.com
E-mail: Mktg@anadigics.com
ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice.
The product specications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to
change prior to a product’s formal introduction. Information in Data Sheets have been carefully checked and are assumed
to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers
to verify that the information they are using is current before placing orders.
Data Sheet - Rev 2.2
08/2010
18
ACA2604
ORDERING INFORMATION
ORDER NUMBER TEMPERATURE
RANGE
PACKAGE
DESCRIPTION COMPONENT PACKAGING
ACA2604RS29P8 -40 °C to +110 °C
RoHS-Compliant
28 Pin QFN
5 mm x 5 mm x 1 mm
Tape and Reel, 2500 pieces per Reel