AMMC-5024
30 KHz 40 GHz Traveling Wave Amplier
Data Sheet
Features
Wide frequency range: 30 KHz 40 GHz
High gain: 16 dB
Gain atness: ±0.75 dB
Return loss:
Input: 13 dB, Output: 13 dB
Medium power: P-1dB=22.5 dBm at 22 GHz
Low noise gure: 4.6 dB at 26 GHz
Applications
Communication systems
Microwave instrumentation
Optical systems
Broadband applications requiring at gain and group
delay with excellent input and output port matches over
the 30 KHz and 40 GHz frequency range
Absolute Maximum Ratings[1]
Symbol Parameters/Conditions Units Min. Max.
Vdd Positive Drain Voltage V 10
Idd Total Drain Current mA 340
Vg1 First Gate Voltage V -9.5 0
Ig1 First Gate Current mA -38 +1
Vg2 Second Gate Voltage V -3.5 +4
Ig2 Second Gate Current mA -20
Pin CW Input Power dBm 17
Tch Operating Channel Temperature °C +150
Tb Operating Backside Temperature °C -55
Tstg Storage Temperature °C -65 +165
Tmax Max. Assembly Temp (60 sec max) °C +300
Notes:
1. Absolute maximum ratings for continuous operation unless otherwise noted.
Description
Avago Technologies' AMMC-5024 is a broadband PHEMT
GaAs MMIC TWA designed for medium output power
and high gain over the full 30 KHz to 40 GHz frequency
range. The design employs a 9-stage,cascade-connected
FET structure to ensure at gain and power as well as uni-
form group delay. E-beam lithography is used to produce
uniform gate lengths of 0.15 mm and MBE technology as-
sures precise semiconductor layer control. For improved
reliability and moisture protection, the die is passivated
at the active areas.
Chip Size: 2350 x 1050 µm (92.5 x 41.3 mils)
Chip Size Tolerance: ±10 µm (±0.4 mils)
Chip Thickness: 100 ± 10 µm (4 ± 0.4 mils)
Pad Dimensions: 80 x 80 µm (2.95 ± 0.4 mils)
2
AMMC-5024 DC Specications/Physical Properties [1]
Symbol Parameters and Test Conditions Units Min. Typ. Max.
Idss Saturated Drain Current (Vdd=7 V, Vg1=0 V, Vg2=open circuit) mA 265 350 385
Vp First Gate Pinch-o Voltage (Vdd=7 V, Idd=30 mA, Vg2=open circuit) V -8.2
Vg2 Second Gate Self-bias Voltage (Vdd=7 V, Idd = 200 mA, Vg2=open circuit) V 2.75
Idsmin First Gate Minimum Drain Current mA 47
(Vg1) (Vdd=7 V, Vg1=-7 V, Vg2=open circuit)
Idsmin Second Gate Minimum Drain Current mA 105
(Vg2) (Vdd=7 V, Vg1=0 V, Vg2= -3.5 V)
θch-b Thermal Resistance[2] (Backside temperature, Tb = 25°C) °C/W 16.2
RF Specications for High Gain and Low Power Applications [2, 3] (Vdd=4 V, Idd(Q)=160 mA, Zin= Zo=50Ω)
Symbol Parameters and Test Conditions Units Min. Typ. Max.
|S21|2 Small-signal Gain dB 17.5
|S21|2 Small-signal Gain Flatness dB ±1.5
RLin Minimum Input Return Loss dB 13
RLout Minimum Output Return Loss dB 13
|S12|2 Isolation dB 30
P-1dB Output Power @ 1 dB Gain Compression f = 22 GHz dBm 17.3
Psat Saturated Output Power f = 22 GHz dBm 20.5
OIP3 Output 3rd Order Intercept Point, dBm 22.5
Rfin1 = Rfin2 = 2 dBm, f = 22 GHz, f = 2 MHz
NF Noise Figure f = 26 GHz dB 3.7
f = 40 GHz dB 5.5
Notes:
1. Backside temperature Tb = 25°C unless otherwise noted.
2. Channel to board Thermal Resistance is measured using QFI method.
3. 100% on-wafer RF test is done at frequency = 2, 10, 20, 30 and 40 GHz, except as noted.
RF Specications for High Power Applications [2, 3] (Vdd=7 V, Idd(Q)=200 mA, Zin= Zo=50Ω
Symbol Parameters and Test Conditions Units Min. Typ. Max.
|S21|2 Small-signal Gain dB 14 16 18
|S21|2 Small-signal Gain Flatness dB ±0.75 ±2
RLin Input Return Loss dB 12 16.9
RLout Output Return Loss dB 10 16.8
|S12|2 Isolation dB 26 28
P-1dB Output Power @ 1 dB Gain Compression f = 22 GHz dBm 21 22.5
Psat Saturated Output Power f = 22 GHz dBm 23 24.5
OIP3 Output 3rd Order Intercept Point, dBm 27 30
Rfin1 = Rfin2 = 2 dBm, f = 22 GHz, f = 2 MHz
NF Noise Figure (Vds = 3V, Ids = 140 mA) f = 26 GHz dB 4.6 6.5
f = 40 GHz dB 7.2 9
3
AMMC-5024 Typical Performance (Tchuck = 25°C, Vdd = 7V, Idd = 200 mA, Vg2 = Open, Z0 = 50Ω)
Figure 1. Gain and Reverse Isolation.
FREQUENCY (GHz)
S21 (dB)
S12 (dB)
0 5010 20 30 40
20
18
16
14
12
10
8
6
4
2
0
0
-20
-40
-60
-80
S21(dB)
S12(dB)
Figure 2. Return Loss (Input and Output).
FREQUENCY (GHz)
RETURN LOSS (dB)
0 5010 20 30 40
0
-5
-10
-15
-20
-25
-30
S11(dB)
S22(dB)
Figure 3. Output Power (P-1 and P-3).
FREQUENCY (GHz)
P-1, P-3 (dBm)
0 5010 20 30 40
30
25
20
15
10
5
0
P-1
P-3
Figure 4. Group Delay.
FREQUENCY (GHz)
td (nS)
0 5010 20 30 40
0.14
0.12
0.1
0.08
0.06
0.04
0.02
0
Figure 5. Noise Figure.
FREQUENCY (GHz)
NOISE FIGURE (dB)
0 5010 20 30 40
10
8
6
4
2
0
Figure 6. Output IP3.
FREQUENCY (GHz)
OIP3 (dBm)
0 5010 20 30 40
40
30
20
10
0
4
AMMC-5024 Typical Scattering Parameters[1] (Tchuck = 25°C, VDD = 7V, IDD = 200 mA, Z in = Zout = 50Ω)
Freq. S11 S21 S12 S22
GHz dB Mag Phase dB Mag Phase dB Mag Phase dB Mag Phase
0.05 -26.524 0.047 -174.370 16.526 6.703 179.390 -66.134 0.000 -56.514 -29.620 0.033 7.766
1 -24.941 0.057 -154.440 16.375 6.588 155.660 -61.862 0.001 -109.670 -29.934 0.032 12.796
2 -21.885 0.080 -146.320 16.277 6.514 133.110 -55.350 0.002 -132.750 -26.919 0.045 18.718
3 -19.412 0.107 -149.270 16.170 6.434 110.580 -51.048 0.003 -153.970 -25.153 0.055 10.362
4 -17.725 0.130 -157.970 16.016 6.321 88.271 -48.620 0.004 -174.570 -24.391 0.060 0.922
5 -16.970 0.142 -168.560 15.868 6.214 66.412 -46.356 0.005 165.210 -24.068 0.063 -7.610
6 -16.940 0.142 -179.420 15.731 6.117 44.780 -44.560 0.006 144.510 -23.775 0.065 -12.684
7 -17.741 0.130 170.600 15.646 6.058 23.511 -42.719 0.007 123.530 -22.940 0.071 -18.420
8 -19.505 0.106 163.170 15.636 6.051 2.105 -41.197 0.009 102.140 -21.619 0.083 -28.987
9 -22.752 0.073 163.190 15.679 6.081 -19.628 -39.902 0.010 80.129 -20.245 0.097 -47.192
10 -25.795 0.051 -165.530 15.733 6.119 -42.046 -38.851 0.011 58.121 -19.716 0.103 -73.520
11 -21.613 0.083 -134.230 15.705 6.099 -64.823 -37.914 0.013 36.356 -20.130 0.099 -109.900
12 -17.435 0.134 -136.040 15.558 5.997 -87.590 -37.130 0.014 15.803 -21.644 0.083 -157.830
13 -14.804 0.182 -147.840 15.381 5.876 -109.420 -36.350 0.015 -4.845 -22.284 0.077 137.330
14 -13.213 0.218 -163.030 15.307 5.826 -130.680 -35.589 0.017 -25.521 -20.256 0.097 76.041
15 -12.628 0.234 -179.470 15.351 5.855 -152.100 -34.692 0.018 -45.793 -18.092 0.125 29.951
16 -12.989 0.224 163.010 15.496 5.954 -174.100 -33.794 0.020 -67.515 -16.431 0.151 -7.571
17 -14.171 0.196 147.400 15.663 6.070 163.120 -32.937 0.023 -90.266 -15.737 0.163 -40.792
18 -16.678 0.147 135.040 15.812 6.174 139.670 -32.208 0.025 -113.940 -15.813 0.162 -74.475
19 -20.641 0.093 130.070 15.870 6.216 115.610 -31.690 0.026 -137.810 -16.780 0.145 -106.600
20 -23.782 0.065 154.470 15.863 6.211 91.770 -31.208 0.028 -161.750 -18.810 0.115 -142.950
21 -21.425 0.085 177.240 15.823 6.182 67.954 -30.781 0.029 174.640 -21.397 0.085 169.440
22 -19.193 0.110 173.670 15.856 6.206 44.285 -30.231 0.031 151.020 -23.661 0.066 104.260
23 -18.288 0.122 156.910 15.922 6.253 20.329 -29.783 0.032 126.440 -21.101 0.088 34.057
24 -19.046 0.112 138.050 16.022 6.326 -4.276 -29.336 0.034 100.950 -18.085 0.125 -13.560
25 -21.832 0.081 114.120 16.122 6.399 -29.641 -28.991 0.036 75.101 -15.617 0.166 -54.765
26 -27.570 0.042 67.164 16.137 6.410 -55.651 -28.757 0.036 47.960 -14.258 0.194 -92.329
27 -28.076 0.039 -50.074 16.057 6.351 -82.011 -28.622 0.037 20.890 -13.705 0.206 -131.060
28 -20.068 0.099 -96.000 15.869 6.215 -108.060 -28.763 0.036 -6.265 -13.717 0.206 -171.110
29 -16.785 0.145 -121.770 15.675 6.078 -133.780 -28.808 0.036 -33.072 -14.430 0.190 145.610
30 -15.212 0.174 -145.820 15.567 6.003 -158.990 -28.853 0.036 -59.523 -15.005 0.178 97.895
31 -14.889 0.180 -168.310 15.661 6.068 175.180 -28.759 0.036 -86.846 -15.146 0.175 46.328
32 -16.789 0.145 173.110 15.788 6.158 147.730 -28.591 0.037 -115.960 -14.682 0.184 -10.820
33 -18.936 0.113 166.700 15.810 6.173 118.780 -28.536 0.037 -146.370 -13.588 0.209 -62.908
34 -19.985 0.100 177.880 15.612 6.034 89.206 -28.676 0.037 -177.890 -12.883 0.227 -111.430
35 -19.130 0.111 179.680 15.269 5.800 60.446 -28.992 0.036 151.190 -12.719 0.231 -155.460
36 -18.210 0.123 160.620 15.025 5.640 32.215 -29.214 0.035 120.660 -13.861 0.203 164.720
37 -18.457 0.119 134.410 14.926 5.576 3.374 -29.344 0.034 90.933 -15.387 0.170 122.630
38 -22.391 0.076 91.975 14.869 5.539 -27.424 -29.287 0.034 60.092 -19.170 0.110 84.484
39 -24.387 0.060 23.468 14.636 5.393 -59.455 -29.189 0.035 27.357 -30.763 0.029 20.516
40 -22.649 0.074 -37.468 14.174 5.113 -92.328 -29.513 0.033 -6.508 -24.452 0.060 -146.250
41 -20.369 0.096 -74.314 13.581 4.776 -124.820 -29.849 0.032 -39.965 -17.619 0.132 165.520
42 -20.473 0.095 -84.567 12.946 4.439 -157.360 -30.351 0.030 -73.488 -16.143 0.156 133.010
43 -20.560 0.094 -91.634 12.305 4.123 169.650 -30.858 0.029 -107.270 -16.259 0.154 99.260
44 -18.778 0.115 -92.252 11.524 3.769 136.220 -31.563 0.026 -142.290 -18.606 0.117 76.664
45 -19.072 0.111 -85.034 10.748 3.447 103.130 -32.440 0.024 -175.820 -24.603 0.059 93.515
46 -18.104 0.124 -73.258 10.059 3.184 69.590 -33.098 0.022 150.230 -21.717 0.082 135.190
47 -14.701 0.184 -64.708 9.479 2.978 34.467 -33.500 0.021 119.650 -15.939 0.160 122.900
48 -11.446 0.268 -65.771 8.863 2.774 -3.117 -33.995 0.020 83.945 -13.445 0.213 114.170
49 -9.005 0.355 -76.848 8.007 2.514 -42.656 -33.996 0.020 49.390 -12.285 0.243 89.641
50 -6.637 0.466 -89.734 6.902 2.214 -83.972 -34.691 0.018 15.240 -11.324 0.272 78.671
Note:
1. Data obtained from on-wafer measurements.
5
AMMC-5024 Typical Performance (Tchuck = 25°C, Vdd = 4V, Idd = 160 mA, Vg2 = Open, Z0 = 50Ω)
Figure 7. Gain and Reverse Isolation.
FREQUENCY (GHz)
S21 (dB)
S12 (dB)
0 5020 40
20
15
10
5
0
0
-20
-40
-60
-80
S21(dB)
S12(dB)
Figure 8. Return Loss (Input and Output).
FREQUENCY (GHz)
RETURN LOSS (dB)
0 5010 20 30 40
0
-5
-10
-15
-20
-25
-30
S11(dB)
S22(dB)
Figure 9. Output Power (P-1 and P-3).
FREQUENCY (GHz)
P-1, P-3 (dBm)
0 5010 20 30 40
30
25
20
15
10
5
0
P-1
P-3
Figure 10. Group Delay.
FREQUENCY (GHz)
td (nS)
0 5010 20 30 40
0.14
0.12
0.1
0.08
0.06
0.04
0.02
0
Figure 11. Noise Figure.
FREQUENCY (GHz)
NOISE FIGURE (dB)
0 5010 20 30 40
10
8
6
4
2
0
Figure 12. Output IP3.
FREQUENCY (GHz)
OIP3 (dBm)
0 5010 20 30 40
30
25
20
15
10
5
0
6
AMMC-5024 Typical Scattering Parameters [1] (Tchuck = 25°C, VDD = 4V, IDD = 160 mA, Z in = Zout = 50Ω)
Freq. S11 S21 S12 S22
GHz dB Mag Phase dB Mag Phase dB Mag Phase dB Mag Phase
0.05 -26.046 0.050 -175.110 16.908 7.005 179.610 -59.336 0.001 -61.940 -32.459 0.024 16.703
1 -25.998 0.050 -164.940 16.786 6.907 156.790 -65.942 0.001 -108.900 -34.057 0.020 5.690
2 -24.392 0.060 -151.920 16.727 6.860 135.230 -59.134 0.001 -128.490 -31.519 0.027 17.159
3 -22.084 0.079 -147.760 16.657 6.805 113.560 -54.398 0.002 -158.090 -30.113 0.031 12.590
4 -20.032 0.100 -152.230 16.538 6.713 92.010 -52.371 0.002 -178.300 -29.546 0.033 10.367
5 -18.871 0.114 -160.550 16.419 6.621 70.825 -49.621 0.003 161.460 -28.527 0.037 9.842
6 -18.430 0.120 -170.290 16.305 6.535 49.938 -47.520 0.004 141.190 -26.705 0.046 8.417
7 -18.727 0.116 179.750 16.225 6.475 29.369 -45.659 0.005 119.280 -24.546 0.059 -0.474
8 -19.934 0.101 170.600 16.227 6.476 8.799 -43.865 0.006 97.498 -22.558 0.074 -17.521
9 -22.656 0.074 164.210 16.287 6.522 -12.033 -42.482 0.008 74.972 -21.031 0.089 -41.715
10 -27.478 0.042 -179.640 16.384 6.595 -33.532 -41.201 0.009 53.471 -20.499 0.094 -72.840
11 -25.347 0.054 -126.840 16.410 6.614 -55.435 -40.162 0.010 31.594 -20.801 0.091 -112.770
12 -19.749 0.103 -120.480 16.336 6.559 -77.463 -39.239 0.011 10.910 -21.844 0.081 -161.860
13 -16.206 0.155 -131.310 16.209 6.464 -98.816 -38.327 0.012 -9.819 -22.131 0.078 138.490
14 -14.011 0.199 -146.840 16.158 6.425 -119.500 -37.323 0.014 -29.734 -20.818 0.091 82.104
15 -12.962 0.225 -164.520 16.210 6.464 -140.230 -36.407 0.015 -50.251 -19.513 0.106 36.945
16 -12.935 0.226 176.980 16.352 6.570 -161.440 -35.276 0.017 -72.076 -18.421 0.120 -0.979
17 -13.689 0.207 159.730 16.530 6.707 176.800 -34.270 0.019 -94.562 -18.158 0.124 -34.038
18 -15.570 0.167 143.690 16.717 6.853 154.440 -33.419 0.021 -118.010 -18.744 0.116 -67.232
19 -19.085 0.111 128.620 16.846 6.955 131.460 -32.607 0.023 -141.710 -20.205 0.098 -96.759
20 -25.363 0.054 133.080 16.926 7.020 108.520 -31.889 0.025 -166.020 -23.130 0.070 -128.700
21 -26.442 0.048 -165.970 16.965 7.051 85.461 -31.268 0.027 169.730 -27.569 0.042 -173.310
22 -20.900 0.090 -156.420 17.054 7.124 62.568 -30.682 0.029 145.660 -33.534 0.021 98.102
23 -18.349 0.121 -172.490 17.170 7.220 39.543 -30.022 0.032 121.250 -26.084 0.050 10.942
24 -17.560 0.132 168.580 17.320 7.345 16.078 -29.439 0.034 96.409 -21.809 0.081 -29.430
25 -18.343 0.121 145.730 17.534 7.528 -8.082 -28.885 0.036 70.972 -18.685 0.116 -66.154
26 -20.831 0.091 110.490 17.708 7.680 -32.996 -28.374 0.038 44.076 -16.869 0.143 -100.080
27 -25.482 0.053 47.234 17.813 7.774 -58.575 -27.893 0.040 17.025 -15.693 0.164 -136.500
28 -21.019 0.089 -43.397 17.786 7.750 -84.438 -27.722 0.041 -10.669 -15.062 0.177 -174.690
29 -15.842 0.161 -84.248 17.674 7.651 -110.030 -27.501 0.042 -38.170 -15.047 0.177 144.500
30 -13.096 0.221 -115.690 17.547 7.540 -134.660 -27.408 0.043 -65.246 -15.045 0.177 101.700
31 -11.817 0.257 -144.730 17.670 7.648 -159.020 -27.130 0.044 -92.100 -14.911 0.180 56.891
32 -12.588 0.235 -171.610 17.969 7.915 175.550 -26.768 0.046 -119.520 -14.657 0.185 6.430
33 -14.900 0.180 163.390 18.362 8.282 148.060 -26.185 0.049 -148.970 -13.556 0.210 -42.887
34 -21.159 0.088 161.170 18.588 8.500 118.310 -25.723 0.052 179.060 -12.691 0.232 -92.108
35 -20.309 0.097 -141.280 18.465 8.380 88.090 -25.559 0.053 145.960 -12.218 0.245 -138.540
36 -14.744 0.183 -158.220 18.201 8.130 59.059 -25.633 0.052 113.580 -13.056 0.222 -178.190
37 -12.538 0.236 170.230 18.066 8.004 30.963 -25.760 0.052 82.862 -14.378 0.191 143.400
38 -13.339 0.215 132.480 18.167 8.098 1.607 -25.749 0.052 52.499 -16.970 0.142 116.660
39 -15.011 0.178 78.005 18.276 8.200 -29.543 -25.454 0.053 20.356 -21.811 0.081 111.200
40 -16.105 0.157 6.891 18.189 8.118 -62.709 -25.424 0.054 -13.439 -20.840 0.091 134.530
41 -14.757 0.183 -61.000 17.917 7.868 -95.764 -25.415 0.054 -47.607 -16.035 0.158 118.260
42 -15.383 0.170 -108.170 17.784 7.748 -128.890 -25.467 0.053 -83.226 -15.120 0.175 80.564
43 -21.471 0.084 -141.240 17.922 7.872 -165.490 -25.277 0.054 -122.260 -16.069 0.157 25.234
44 -18.182 0.123 -72.748 17.442 7.449 151.790 -25.857 0.051 -166.580 -19.776 0.103 -75.636
45 -12.590 0.235 -105.520 15.750 6.130 110.450 -27.536 0.042 150.440 -14.233 0.194 -173.290
46 -13.269 0.217 -153.320 13.940 4.978 75.442 -29.470 0.034 112.520 -11.523 0.265 139.690
47 -20.284 0.097 126.900 12.983 4.458 40.022 -30.994 0.028 73.538 -10.251 0.307 102.000
48 -14.029 0.199 -5.310 11.793 3.887 -5.741 -33.295 0.022 27.040 -12.501 0.237 75.692
49 -9.656 0.329 -41.069 7.696 2.426 -50.048 -39.913 0.010 -10.430 -17.076 0.140 74.549
50 -5.683 0.520 -68.263 4.495 1.678 -69.558 -44.196 0.006 11.969 -12.434 0.239 98.012
Note:
1. Data obtained from on-wafer measurements.
7
AMMC-5024 Typical Performance (Over Temperature and Voltage)
Figure 13. Gain and Voltage.
FREQUENCY (GHz)
GAIN (dB)
0 5010 20 30 40
25
20
15
10
5
0
7V/200mA
6V/187mA
5V/174mA
4V/160mA
3V/147mA
Figure 14. P-1 and Voltage.
FREQUENCY (GHz)
P-1 (dBm)
0 5010 20 30 40
30
25
20
15
10
5
0
7V/200mA
6V/187mA
5V/174mA
4V/160mA
3V/147mA
Figure 15. Gain and Return Loss with
Temperature.
FREQUENCY (GHz)
S21, S11, and S22 (dB)
0 5010 20 30 40
20
10
0
-10
-20
-30
-40
S11/80°C
S22/-40°C
S21/25°C
S22/80°C
S22/-40°C
S11/25°C
S21/80°C
S22/-40°C
S22/25°C
Figure 16. P-1 and Temperature, V
dd
=7V,
I
dd
=200 mA.
FREQUENCY (GHz)
P-1 (dBm)
0 5010 20 30 40
30
25
20
15
10
5
0
P-1/80°C
P-1/25°C
P-1/-40°C
Figure 17. Noise Figure and Temperature at
V
dd
=4V, I
dd
=160 mA.
FREQUENCY (GHz)
P-1 (dBm)
0 5010 20 30 40
7
6
5
4
3
2
1
0
NF/-40°C
NF/25°C
NF/80°C
Figure 18. Noise Figure and Voltage.
FREQUENCY (GHz)
NOISE FIGURE (dB)
0 5010 20 30 40
8
6
4
2
0
7V/200 mA
6V/187 mA
5V/174 mA
4V/160 mA
3V/147 mA
8
Biasing and Operation
AMMC-5024 is biased with a single positive drain supply
(Vdd) a negative gate supply (Vg1).
For best overall perfor-
mance the recommended bias is Vdd =7V and Idd = 200
mA. To achieve this drain current level, Vg1 is typically
between –2.5 to –3.5V. Typically, DC current ow for Vg1
is –10 mA.
The AMMC-5024 has a second gate bias (Vg2) that may be
used for gain control. When not being utilized, Vg2 should
be left open-circuited.
This feature further enhances the versatility of applica-
tions where variable gain over a broad bandwidth is
necessary.
This second gate bias (Vg2) is connected to the gates of
the upper FETs in each cascode stage through a small
de-queing resistor. The other end of the gate line is termi-
nated in an on-chip resistive/diode divider network, which
allows the second gate to self-bias. Thus, with Vg2 left
open-circuited, the drain current is set by the (Vg1) gate
bias voltage applied to the lower FET in each stage.
The nominal open circuit voltage for Vg2 is approximately
2 volts. Under this operating condition, maximum gain
and power are achieved from the TWA.
By applying an external voltage to the second gate bias
(Vg2) less than the open-circuit potential, the drain volt-
age on the lower FET can be decreased to a point where
the lower FET enters the linear operating region. This
reduces the current drawn by each stage. Decreasing Vg2
further will reduce the drain voltage on the lower FET to-
wards zero while pinching o the upper FET in each stage.
At larger negative values of Vg2 (between 0 and -2.5 volts)
the gain of the TWA will decrease signicantly.
Using the simplest form of assembly (Figure 20), the device
is capable of delivering at gain over a 2 50 GHz range
with a minimum of gain slope and ripple. However, this
device is designed with DC coupled RF I/O ports, and
operation may be extended to lower frequencies (<2
GHz) through the use of o-chip low-frequency extension
circuitry and proper external biasing components. With
low frequency bias extension it may be used in a variety
of time-domain applications (through 40 Gb/s).
Figure 21 shows a typical assembly conguration.
When bypass capacitors are connected to the AUX pads,
the low frequency limit is extended down to the corner
frequency determined by the bypass capacitor and the
combination of the on-chip 50 ohm load and small de-
queing resistor. At this frequency the small signal gain
will increase in magnitude and stay at this elevated level
down to the point where the Caux bypass capacitor acts as
an open circuit, eectively rolling o the gain completely.
The low frequency limit can be approximated from the
following equation:
f
Caux
= 1
2πC
aux
(Ro + R
DEQ
)
where:
Ro is the 50Ω gate or drain line termination resistor.
RDEQ is the small series de-queing resistor and 10Ω.
Caux is the capacitance of the bypass capacitor con-
nected to the AUX Drain pad in farads.
With the external bypass capacitors connected to the AUX
gate and AUX drain pads, gain will show a slight increase
between 1.0 and 1.5 GHz. This is due to a series combina-
tion of Caux and the on chip resistance but is exaggerated
by the parasitic inductance (Lc) of the bypass capacitor and
the inductance of the bond wire (Ld). Therefore the bond
wire from the Aux pads to the bypass capacitors should
be made as short as possible.
Input and output RF ports are DC coupled; therefore, DC
decoupling capacitors are required if there are DC paths.
(Do not attempt to apply bias to these pads.)
RF bond connections should be kept as short as possible
to reduce RF lead inductance which will degrade perfor-
mance above 20 GHz.
An optional output power detector network is also pro-
vided. A >0.5 µF capacitor is required for the Det_Out
pad to expand power detection performance below 100
MHz.
Ground connections are made with plated through-holes
to the backside of the device; therefore, ground wires are
not needed.
9
Figure 19. AMMC-5024 Schematic.
GND
Drain Bias
(Vdd)
Nine Identical
Vdd AUX
Second Gate
First Gate
Bias (Vg1)
RF_Input
DET_OUT
RF_Output
DET_BIAS
DET_REF
Assembly Techniques
The backside of the MMIC chip is RF ground. For microstrip
applications the chip should be attached directly to the
ground plane (e.g. circuit carrier or heatsink) using electri-
cally conductive epoxy [1,2].
For best performance, the topside of the MMIC should be
brought up to the same height as the circuit surrounding
it. This can be accomplished by mounting a gold plated
metal shim (same length as the MMIC) under the chip
which is of correct thickness to make the chip and adja-
cent circuit the same height. The amount of epoxy used
for the chip or shim attachment should be just enough to
provide a thin llet around the bottom perimeter of the
chip. The ground plane should be free of any residue that
may jeopardize electrical or mechanical attachment.
RF connections should be kept as short as reasonable to
minimize performance degradation due to undesirable
series inductance. A single bond wire is normally suf-
cient for single connections, however double bonding
with 0.7mil gold wire will reduce series inductance. Gold
thermo-sonic wedge bonding is the preferred method
for wire attachment to the bond pads. The recommended
wire bond stage temperature is 150°c ± 2°c.
Caution should be taken to not exceed the Absolute Maxi-
mum Rating for assembly temperature and time.
The chip is 100um thick and should be handled with care.
This MMIC has exposed air bridges on the top surface and
should be handled by the edges or with a custom collet
(do not pick up the die with a vacuum on die center).
Bonding pads and chip backside metallization are gold.
This MMIC is also static sensitive and ESD precautions
should be taken. Eutectic attach is not recommended and
may jeopardize reliability of the device.
For more detailed information see Avago Technologies’
Application Note #5359 “GaAs MMIC assembly and han-
dling guidelines”.
Notes:
1. Ablebond 84-1 LMl silver epoxy is recommended
2. Eutectic attach is not recommended and may jeopardize reliability
of the device
Figure 21. AMMC-5024 Assembly Diagram.
V
DD
V
G1
OUT
IN
Drain bias must be decoupled from
RF to lowest operating frequency
4 nH Inductor for operation
to 2 GHz bond wire
100 pF Capacitor
Gate is decoupled from RF.
(Bond wire length is not important)
Ordering Information
AMMC-5024-W10 = 10 devices per tray
AMMC-5024-W50 = 50 devices per tray
For product information and a complete list of distributors, please go to our web site: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2008 Avago Technologies. All rights reserved. Obsoletes 5989-3931EN
AV02-0632EN - September 8, 2008
Figure 20. AMMC-5024 Bonding Pad Locations. (dimensions in micrometers)
1050
960
RF INPUT
235
0
RF Output
90
733
90 2350
0 165 415550 830
V
g1
Vdd_AUX DET_Bias
Vdd
2260
GND
1270
DET_Output
DET_Reference
Vg2
485
2250
2080 GND