IRF100P219 IR MOSFET - StrongIRFETTM VDSS 100V RDS(on) typ. 1.4m 1.7m 304A 195A D G Applications max UPS and Inverter applications Half-bridge and full-bridge topologies Resonant mode power supplies DC/DC and AC/DC converters OR-ing and redundant power switches Brushed and BLDC Motor drive applications Battery powered circuits D S G D TO-247AC IRF100P219 Benefits G Gate Improved Gate, Avalanche and Dynamic dv/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dv/dt and di/dt Capability Pb-Free ; RoHS Compliant ; Halogen-Free Package Type IRF100P219 TO-247AC RDS(on), Drain-to -Source On Resistance (m ) Base part number Standard Pack Form Tube 6 S Source Orderable Part Number IRF100P219 315 I D = 100A Limited By Package 280 5 245 4 3 TJ = 125C 2 210 175 140 105 70 TJ = 25C 1 35 0 2 4 6 8 10 12 14 16 18 20 0 25 Typical On-Resistance vs. Gate Voltage Final Datasheet www.infineon.com 50 75 100 125 150 175 TC , Case Temperature (C) VGS, Gate -to -Source Voltage (V) Figure 1 D Drain Quantity 25 I D, Drain Current (A) ID (Silicon Limited) ID (Package Limited) S Figure 2 Maximum Drain Current vs. Case Temperature Please read the important Notice and Warnings at the end of this document V2.0 2017-12-18 IR MOSFET-StrongIRFETTM IRF100P219 Table of Contents Table of Contents Applications Benefits .........................................................................................................................1 ..........................................................................................................................1 Ordering Table ......................................................................................................................1 Table of Contents ...................................................................................................................2 1 Parameters ............................................................................................................3 2 Maximum ratings, Thermal, and Avalanche characteristics .............................................4 3 Electrical characteristics ..........................................................................................5 4 Electrical characteristic diagrams ..............................................................................6 Package Information ............................................................................................................14 Qualification Information .........................................................................................................15 Revision History ....................................................................................................................16 Final Datasheet 2 V2.0 2017-12-18 IR MOSFET-StrongIRFETTM IRF100P219 Parameters 1 Parameters Table1 Key performance parameters Parameter Values Units VDS 100 V RDS(on) max 1.7 m ID (Silicon Limited) 304 A ID (Package Limited) 195 A Final Datasheet 3 V2.0 2017-12-18 IR MOSFET-StrongIRFETTM IRF100P219 Maximum ratings and thermal characteristics 2 Maximum ratings and thermal characteristics Table 2 Maximum ratings (at TJ=25C, unless otherwise specified) Parameter Symbol Conditions Continuous Drain Current (Silicon Limited) Continuous Drain Current (Silicon Limited) Continuous Drain Current (Package Limited) Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting Torque, 6-32 or M3 Screw Table 3 Thermal characteristics Parameter Symbol Junction-to-Case RJC Case-to-Sink, Flat Greased Surface RCS Junction-to-Ambient RJA Table 4 ID ID ID IDM PD Values TC = 25C, VGS @ 10V TC = 100C, VGS @ 10V TC = 25C, VGS @ 10V TC = 25C TC = 25C TC = 25C - 304 215 195 780 341 2.3 20 - -55 to + 175 - - 300 - - 10 lbf*in (1.1 N*m) VGS TJ TSTG Conditions TJ approximately 90C - Min. - Typ. 0.24 - Max. 0.44 40 Unit A W W/C V C - Unit C/W Avalanche characteristics Parameter Single Pulse Avalanche Energy Avalanche Current Symbol Values Unit EAS (Thermally limited) IAR 464 mJ A EAR Repetitive Avalanche Energy See Fig 16, 17, 23a, 23b mJ Notes: Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 195A. Note that Current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25C, L = 0.093mH, RG = 50, IAS = 100A, VGS =10V. ISD 100A, di/dt 1950A/s, VDD V(BR)DSS, TJ 175C. Pulse width 400s; duty cycle 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. R is measured at TJ approximately 90C. Pulse drain current is limited to 780A by source bonding technology. Final Datasheet 4 V2.0 2017-12-18 IR MOSFET-StrongIRFETTM IRF100P219 Electrical characteristics 3 Electrical characteristics Table 5 Static characteristics Parameter Symbol Conditions Drain-to-Source Breakdown Voltage V(BR)DSS VGS = 0V, ID = 1.0mA Breakdown Voltage Temp. Coefficient V(BR)DSS/TJ Reference to 25C, ID = 2.0mA VGS = 10V, ID = 100A Static Drain-to-Source On-Resistance RDS(on) VGS = 6V, ID = 50A Gate Threshold Voltage VGS(th) Drain-to-Source Leakage Current IDSS Gate-to-Source Forward Leakage Gate Resistance Table 6 Forward Trans conductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain Charge Total Gate Charge Sync. (Qg- Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Output Capacitance (Time Related) VDS = VGS, ID = 278A VDS = 100V, VGS =0V 2.2 - - 3.8 5.0 VDS = 100V,VGS = 0V,TJ =125C - - 100 IGSS RG VGS = 20V - 1.2 100 - Symbol Conditions gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss VDS = 25V, ID = 100A VDD = 50V ID = 100A RG = 2.7 VGS = 10V VGS = 0V VDS = 50V = 1.0MHz, See Fig.7 Coss eff.(ER) VGS = 0V, VDS = 0V to 80V - 2380 - Coss eff.(TR) VGS = 0V, VDS = 0V to 80V - 2760 - V A nA Values Min. Typ. Max. 224 180 270 50 40 140 30 90 100 80 12020 1950 50 - ID = 100A VDS = 50V VGS = 10V Unit S nC ns pF Reverse Diode Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Peak Diode Recovery dv/dt Symbol IS ISM Conditions MOSFET symbol showing the integral reverse p-n junction diode. Min. D Values Typ. Max. - - 304 - - 780 G S Unit A VSD TJ = 25C, IS = 100A,VGS = 0V - - 1.2 V dv/dt TJ = 175C, IS = 100A,VDS = 100V - 2.5 - V/ns TJ = 25C TJ = 125C TJ = 25C TJ = 125C TJ = 25C - 90 100 224 280 4.3 - Reverse Recovery Time trr Reverse Recovery Charge Qrr Reverse Recovery Current IRRM Final Datasheet - Values Unit Typ. Max. V 0.04 V/C 1.4 1.7 m 1.7 2.1 Dynamic characteristics Parameter Table 7 Min. 100 - 5 VDD = 85V IF = 100A, di/dt = 100A/s ns nC A V2.0 2017-12-18 IR MOSFET-StrongIRFETTM IRF100P219 Electrical characteristic diagrams 4 Electrical characteristic diagrams 1000 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 1000 4.5V 100 TOP 60s PULSE WIDTH Tj = 25C BOTTOM VGS 15V 12V 10V 7.0V 6.0V 5.5V 5.0V 4.5V 1 10 100 TOP 60s PULSE WIDTH Tj = 175C 0.1 100 1 Figure 4 Typical Output Characteristics Typical Output Characteristics TJ = 175C 100 TJ = 25C 10 1.0 VDS = 25V 60s PULSE WIDTH I D = 100A VGS = 10V 2.0 1.5 (Normalized) R DS(on) , Drain-to-Source On Resistance ID, Drain-to-Source Current (A) 100 2.5 1000 1.0 0.5 0.0 0.10 2 3 4 5 6 7 -60 8 Typical Transfer Characteristics Final Datasheet -20 20 60 100 140 180 TJ , Junction Temperature (C) VGS, Gate-to-Source Voltage (V) Figure 5 10 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Figure 3 BOTTOM VGS 15V 12V 10V 7.0V 6.0V 5.5V 5.0V 4.5V 10 10 0.1 4.5V Figure 6 6 Normalized On-Resistance vs. Temperature V2.0 2017-12-18 IR MOSFET-StrongIRFETTM IRF100P219 Electrical characteristic diagrams VGS C iss C rss C oss C, Capacitance (pF) 100000 14 = 0V, f = 1 MHZ = C gs + C gd, C ds SHORTED = C gd = C ds + C gd C iss 10000 ID= 100A 12 VGS, Gate-to-Source Voltage (V) 1000000 C oss 1000 C rss 100 VDS= 80V 10 VDS= 50V VDS= 20V 8 6 4 2 10 0 1 10 100 1000 0 50 VDS, Drain-to-Source Voltage (V) Figure 7 100 150 200 250 Q G, Total Gate Charge (nC) Figure 8 Typical Capacitance vs. Drain-to-Source Voltage Typical Gate Charge vs. Gate-to-Source Voltage ISD, Reverse Drain Current (A) 1000 TJ = 175C 100 10 TJ = 25C 1 VGS = 0V 0.1 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 VSD, Source-to-Drain Voltage (V) Figure 9 Final Datasheet Typical Source-Drain Diode Forward Voltage 7 V2.0 2017-12-18 IR MOSFET-StrongIRFETTM IRF100P219 Electrical characteristic diagrams I D, Drain-to-Source Current (A) 1000 100sec 100 Limited by Package 10 1msec OPERATION IN THIS AREA LIMITED BY R DS(on) 1 10msec DC Tc = 25C Tj = 175C Single Pulse 0.1 0.01 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) Maximum Safe Operating Area 115 113 12 Id = 2.0mA 10 111 8 109 Energy (J) V(BR)DSS, Drain-to-Source Breakdown Voltage (V) Figure 10 107 105 6 4 103 2 101 0 99 0 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 TJ , Temperature ( C ) Figure 11 Final Datasheet 15 30 45 60 75 90 105 VDS, Drain-to-Source Voltage (V) Drain-to-Source Breakdown Voltage Figure 12 8 Typical Coss Stored Energy V2.0 2017-12-18 IR MOSFET-StrongIRFETTM IRF100P219 Electrical characteristic diagrams 4.5 VGS = 5.0V VGS = 7.0V VGS = 8.0V VGS = 10V VGS = 12V 4 4.0 VGS(th), Gate threshold Voltage (V) R DS(on), Drain-to -Source On Resistance (m ) 5 3 2 1 3.5 3.0 2.5 I D = 278A ID = 1.0mA I D = 1.0A 2.0 1.5 1.0 0 0 25 50 75 100 125 150 175 -75 -50 -25 200 I D, Drain Current (A) Figure 13 0 25 50 75 100 125 150 175 TJ , Temperature ( C ) Typical On-Resistance vs. Drain Current Figure 14 Threshold Voltage vs. Temperature Thermal Response ( Z thJC ) C/W 1 D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 0.01 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t 1 , Rectangular Pulse Duration (sec) Figure 15 Final Datasheet Maximum Effective Transient Thermal Impedance, Junction-to-Case 9 V2.0 2017-12-18 IR MOSFET-StrongIRFETTM IRF100P219 Electrical characteristic diagrams 1000 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150C and Tstart =25C (Single Pulse) Avalanche Current (A) 100 10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 25C and Tstart = 150C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Figure 16 Avalanche Current vs. Pulse Width Notes on Repetitive Avalanche Curves , Figures 16, 17: (For further info, see AN-1005 at www.infineon.com) 1.Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. DT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav *f ZthJC(D, tav) = Transient thermal resistance, see Figures 14) PD (ave) = 1/2 ( 1.3*BV*Iav) = T/ ZthJC Iav = 2T/ [1.3*BV*Zth] EAS (AR) = PD (ave)*tav EAR , Avalanche Energy (mJ) 500 TOP Single Pulse BOTTOM 1.0% Duty Cycle I D = 100A 400 300 200 100 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (C) Figure 17 Final Datasheet Maximum Avalanche Energy vs. Temperature 10 V2.0 2017-12-18 IR MOSFET-StrongIRFETTM IRF100P219 Electrical characteristic diagrams 40 35 I F = 100A I F = 60A VR = 85V VR = 85V 32 TJ = 25C TJ = 125C 21 IRRM (A) I RRM (A) 28 14 TJ = 25C TJ = 125C 24 16 8 7 0 0 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 diF /dt (A/s) diF /dt (A/s) Figure 18 Typical Recovery Current vs. dif/dt Figure 19 1600 Typical Recovery Current vs. dif/dt 1600 I F = 60A I F = 100A VR = 85V 1200 QRR (nC) 1200 QRR (nC) VR = 85V TJ = 25C TJ = 125C 800 400 TJ = 25C TJ = 125C 800 400 0 0 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 diF /dt (A/s) diF /dt (A/s) Figure 20 Final Datasheet Typical Stored Charge vs. dif/dt Figure 21 11 Typical Stored Charge vs. dif/dt V2.0 2017-12-18 IR MOSFET-StrongIRFETTM IRF100P219 Electrical characteristic diagrams Figure 22 Figure 23a Final Datasheet Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFETTM Power MOSFETs Unclamped Inductive Test Circuit Figure 23b 12 Unclamped Inductive Waveforms V2.0 2017-12-18 IR MOSFET-StrongIRFETTM IRF100P219 Electrical characteristic diagrams Figure 24a Switching Time Test Circuit Figure 24b Switching Time Waveforms Figure 25a Gate Charge Test Circuit Figure 25b Gate Charge Waveform Final Datasheet 13 V2.0 2017-12-18 IR MOSFET-StrongIRFETTM IRF100P219 Package Information 5 Package Information TO-247AC Package Outline (Dimensions are shown in millimeters (inches)) TO-247AC Part Marking Information EXAMPLE: THIS IS AN IRFPE30 WITH ASSEMBLY LOT CODE 5657 ASSEMBLED ON WW 35, 2001 IN THE ASSEMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" INTERNATIONAL RECTIFIER LOGO PART NUMBER IRFPE30 56 ASSEMBLY LOT CODE 135H 57 DATE CODE YEAR 1 = 2001 WEEK 35 LINE H TO-247AC package is not recommended for Surface Mount Application. Final Datasheet 14 V2.0 2017-12-18 IR MOSFET-StrongIRFETTM IRF100P219 Qualification Information 6 Qualification Information Qualification Information Industrial (per JEDEC JESD47F) Qualification Level Moisture Sensitivity Level TO-247AC Yes RoHS Compliant N/A Applicable version of JEDEC standard at the time of product release. Final Datasheet 15 V2.0 2017-12-18 IR MOSFET-StrongIRFETTM IRF100P219 Revision History Revision History Major changes since the last revision Page or Reference Revision All pages Final Datasheet 2.0 Date Description of changes 2017-12-18 First release data sheet. 16 V2.0 2017-12-18 Trademarks of Infineon Technologies AG HVICTM, IPMTM, PFCTM, AU-ConvertIRTM, AURIXTM, C166TM, CanPAKTM, CIPOSTM, CIPURSETM, CoolDPTM, CoolGaNTM, COOLiRTM, CoolMOSTM, CoolSETTM, CoolSiCTM, DAVETM, DI-POLTM, DirectFETTM, DrBladeTM, EasyPIMTM, EconoBRIDGETM, EconoDUALTM, EconoPACKTM, EconoPIMTM, EiceDRIVERTM, eupecTM, FCOSTM, GaNpowIRTM, HEXFETTM, HITFETTM, HybridPACKTM, iMOTIONTM, IRAMTM, ISOFACETM, IsoPACKTM, LEDrivIRTM, LITIXTM, MIPAQTM, ModSTACKTM, my-dTM, NovalithICTM, OPTIGATM, OptiMOSTM, ORIGATM, PowIRaudioTM, PowIRStageTM, PrimePACKTM, PrimeSTACKTM, PROFETTM, PRO-SILTM, RASICTM, REAL3TM, SmartLEWISTM, SOLID FLASHTM, SPOCTM, StrongIRFETTM, SupIRBuckTM, TEMPFETTM, TRENCHSTOPTM, TriCoreTM, UHVICTM, XHPTM, XMCTM Trademarks updated November 2015 Other Trademarks All referenced product or service names and trademarks are the property of their respective owners. IMPORTANT NOTICE Edition 2015-05-06 Published by Infineon Technologies AG 81726 Munich, Germany (c) 2016 Infineon Technologies AG. All Rights Reserved. Do you have a question about this document? Email: erratum@infineon.com Document reference The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie") . For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with