Parameter Max. Units
VCES Collector-to-Emitter Voltage 600 V
IC @ TC = 25°C Continuous Collector Current 8.5
IC @ TC = 100°C Continuous Collector Current 5.0
ICM Pulsed Collector Current 34 A
ILM Clamped Inductive Load Current 34
IF @ TC = 100°C Diode Continuous Forward Current 4.0
IFM Diode Maximum Forward Current 16
VGE Gate-to-Emitter Voltage ± 20 V
PD @ TC = 25°C Maximum Power Dissipation 38
PD @ TC = 100°C Maximum Power Dissipation 15
TJOperating Junction and -55 to +150
TSTG Storage Temperature Range °C
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw. 10 lbfin (1.1 Nm)
IRG4BC10UDPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
E
G
n-channel
C
VCES = 600V
VCE(on) typ. = 2.15V
@VGE = 15V, IC = 5.0A
tf (typ.) = 140ns
UltraFast CoPack IGBT
12/23/03
Absolute Maximum Ratings
PD - 94905
W
T
O
-22
0
AB
Features
UltraFast: Optimized for high operating
up to 80 kHz in hard switching, >200 kHz in
resonant mode
Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency than
previous Generation
 IGBT co-packaged with HEXFREDTM ultrafast,
ultra-soft-recovery anti-parallel diodes for use in
bridge configurations
Industry standard TO-220AB package
Lead-Free
Benefits
Generation 4 IGBT's offer highest efficiencies
available
IGBT's optimized for specific application conditions
HEXFRED diodes optimized for performance with
IGBT's . Minimized recovery characteristics require
less/no snubbing
Parameter Min. Typ. Max. Units
RθJC Junction-to-Case - IGBT 3.3
RθJC Junction-to-Case - Diode 7.0 °C/W
RθCS Case-to-Sink, flat, greased surface 0.50
RθJA Junction-to-Ambient, typical socket mount 80
Wt Weight 2 (0.07) g (oz)
Thermal Resistance
www.irf.com 1
IRG4BC10UDPbF
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
QgTotal Gate Charge (turn-on) 15 22 IC = 5.0A
Qge Gate - Emitter Charge (turn-on) 2.6 4.0 nC VCC = 400V See Fig. 8
Qgc Gate - Collector Charge (turn-on) 5.8 8.7 VGE = 15V
td(on) Turn-On Delay Time 40 TJ = 25°C
trRise Time 16 ns IC = 5.0A, VCC = 480V
td(off) Turn-Off Delay Time 87 130 VGE = 15V, RG = 100
tfFall Time 140 210 Energy losses include "tail" and
Eon Turn-On Switching Loss 0.14 diode reverse recovery.
Eoff Turn-Off Switching Loss 0.12 mJ See Fig. 9, 10, 18
Ets Total Switching Loss 0.26 0.33
td(on) Turn-On Delay Time 38 TJ = 150°C, See Fig. 11, 18
trRise Time 18 ns IC = 5.0A, VCC = 480V
td(off) Turn-Off Delay Time 95 VGE = 15V, RG = 100
tfFall Time 250 Energy losses include "tail" and
Ets Total Switching Loss 0.45 mJ diode reverse recovery.
LEInternal Emitter Inductance 7.5 nH Measured 5mm from package
Cies Input Capacitance 270 VGE = 0V
Coes Output Capacitance 21 pF VCC = 30V See Fig. 7
Cres Reverse Transfer Capacitance 3.5 = 1.0MHz
trr Diode Reverse Recovery Time 28 42 ns TJ = 25°C See Fig.
3857 T
J = 125°C 14 IF = 4.0A
Irr Diode Peak Reverse Recovery Current 2.9 5.2 A TJ = 25°C See Fig.
3.7 6.7 TJ = 125°C 15 VR = 200V
Qrr Diode Reverse Recovery Charge 40 60 nC TJ = 25°C See Fig.
70 105 TJ = 125°C 16 di/dt = 200A/µs
di(rec)M/dt Diode Peak Rate of Fall of Recovery 280 A/µs TJ = 25°C See Fig.
During tb235 T
J = 125°C 17
Parameter Min. Typ. Max. Units Conditions
V(BR)CES Collector-to-Emitter Breakdown Voltage600 V VGE = 0V, IC = 250µA
V(BR)CES/TJTemperature Coeff. of Breakdown Voltage 0.54 V/°C VGE = 0V, IC = 1.0mA
VCE(on) Collector-to-Emitter Saturation Voltage 2.15 2.6 IC = 5.0A VGE = 15V
2.61 V IC = 8.5A See Fig. 2, 5
2.30 IC = 5.0A, TJ = 150°C
VGE(th) Gate Threshold Voltage 3.0 6.0 VCE = VGE, IC = 250µA
VGE(th)/TJTemperature Coeff. of Threshold Voltage -8.7 mV/°C VCE = VGE, IC = 250µA
gfe Forward Transconductance 2.8 4.2 S VCE = 100V, IC = 5.0A
ICES Zero Gate Voltage Collector Current 250 µA VGE = 0V, VCE = 600V
1000 VGE = 0V, VCE = 600V, TJ = 150°C
VFM Diode Forward Voltage Drop 1.5 1.8 V IC = 4.0A See Fig. 13
1.4 1.7 IC = 4.0A, TJ = 125°C
IGES Gate-to-Emitter Leakage Current ±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Details of note through are on the last page
IRG4BC10UDPbF
www.irf.com 3
0.1 1 10 100
0
1
2
3
4
5
6
7
f, Frequency (KHz)
LOAD CURRENT (A)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
Fig. 2 - Typical Output Characteristics Fig. 3 - Typical Transfer Characteristics
For both:
Duty cycle: 50%
T = 125°C
T = 90°C
Gate drive as specified
sink
J
Power Dissipation = W
9.2
1
10
100
5678910 11 12 13 14
V , Gate-to-Emitter Voltage (V)
I , Collector-to-Emitter Current (A)
GE
C
V = 50V
s PULSE WIDTH
CC
T = 25 C
Jo
T = 150 C
Jo
60% of rated
voltage
I
Ideal diodes
Square wave:
0.1
1
10
100
1 10
V , Collector-to-Emitter Voltage (V)
I , Collector-to-Emitter Current (A)
CE
C
V = 15V
20µs PULSE WIDTH
GE
T = 25 C
Jo
T = 150 C
Jo
IRG4BC10UDPbF
4www.irf.com
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Fig. 4 - Maximum Collector Current vs. Case
Temperature
-60 -40 -20 020 40 60 80 100 120 140 160
1.0
2.0
3.0
4.0
5.0
T , Junction Temperature ( C)
V , Collector-to-Emitter Voltage(V)
J°
CE
V = 15V
80 us PULSE WIDTH
GE
I = A2.5
C
I = A5
C
I = A10
C
25 50 75 100 125 150
0
2
4
6
8
10
T , Case Temperature ( C)
Maximum DC Collector Current(A)
C°
5.0 A
0.01
0.1
1
10
0.00001 0.0001 0.001 0.01 0.1 1
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1 2
JDM thJC C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response (Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
IRG4BC10UDPbF
www.irf.com 5
50 60 70 80 90 100
0.20
0.25
0.30
R , Gate Resistance (Ohm)
Total Switching Losses (mJ)
G
V = 480V
V = 15V
T = 25 C
I = 5.0A
CC
GE
J
C
°
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
-60 -40 -20 020 40 60 80 100 120 140 160
0.01
0.1
1
10
T , Junction Temperature ( C )
Total Switching Losses (mJ)
J°
R = Ohm
V = 15V
V = 480V
G
GE
CC
I = A
10
C
I = A
5
C
I = A
2.5
C
100
RG , Gate Resistance (Ω)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
0 4 8 12 16
0
4
8
12
16
20
Q , Total Gate Charge (nC)
V , Gate-to-Emitter Voltage (V)
G
GE
V= 400V
I = 5.0A
CC
C
1 10 100
0
100
200
300
400
500
V , Collector-to-Emitter Voltage (V)
C, Capacitance (pF)
CE
V
C
C
C
=
=
=
=
0V,
C
C
C
f = 1MHz
+ C
+ C
C SHORTED
GE
ies ge gc , ce
res gc
oes ce gc
Cies
Coes
Cres
5.0A
IRG4BC10UDPbF
6www.irf.com
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
0246810
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
I , Collector-to-emitter Current (A)
Total Switching Losses (mJ)
C
R = Ohm
T = 150 C
V = 480V
V = 15V
G
J
CC
GE
°
100
1
10
100
1 10 100 1000
V = 20V
T = 125 C
GE
Jo
V , Collector-to-Emitter Voltage (V)
I , Collector-to-Emitter Current (A)
CE
C
SAFE OPERATING AREA
0.1
1
10
100
0.0 1.0 2.0 3.0 4.0 5.0 6.0
FM
Forward Voltage Drop - V (V)
T = 150°C
T = 125°C
T = 2C
J
J
J
Forward Voltage Drop - VFM ( V )
Instantaneous Forward Current ( A )
IRG4BC10UDPbF
www.irf.com 7
Fig. 16 - Typical Stored Charge vs. dif/dt Fig. 17 - Typical di(rec)M/dt vs. dif/dt,
Fig. 14 - Typical Reverse Recovery vs. dif/dt Fig. 15 - Typical Recovery Current vs. dif/dt
di (rec) M/dt- (A /µs)
Qrr- (nC)
Irr- ( A)
trr- (nC)
20
25
30
35
40
45
50
100 1000
f
di /dt - (As)
I = 8.0A
I = 4.0A
F
F
V = 200V
T = 125°C
T = 25°C
R
J
J
0
2
4
6
8
10
12
14
100 1000
f
I = 8.0A
I = 4.0A
V = 200V
T = 125°C
T = 25°C
R
J
J
di /dt - (As)
F
F
0
40
80
120
160
200
100 1000
f
di /dt - (As)
I = 8.0A
I = 4.0A
V = 200V
T = 125°C
T = 25°C
R
J
J
F
F
100
1000
100 1000
f
di /dt - (As)
A
I = 8.0A
I = 4.0A
V = 200V
T = 125°C
T = 25°C
R
J
J
F
F
IRG4BC10UDPbF
8www.irf.com
Same type
device as
D.U.T.
D.U.T.
430µF
80%
of Vce
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
Ic
Vce
t1 t2
90% Ic
10% Vce
td(off) tf
Ic
5% Ic
t1+S
Vce ic dt
90% Vge
+Vge
Eoff =
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
Vce ie dt
t2
t1
5% Vce
Ic
Ipk
Vcc 10% Ic
Vce
t1 t2
DUT VOLTAGE
AND CURRENT
GATE VOLTAGE D.U.T.
+Vg
10% +Vg
90% Ic
tr
td(on)
DIODE REVERSE
RECOVERY ENERGY
tx
Eon =
Erec =
t4
t3
Vd id dt
t4
t3
DIODE RECOVERY
WAVEFORMS
Ic
Vpk
10% Vcc
Irr
10% Irr
Vcc
trr
Qrr =
trr
tx
id dt
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
Vd Ic dt
Vce Ic dt
Ic dt
Vce Ic dt
IRG4BC10UDPbF
www.irf.com 9
Vg GATE SIGNAL
DEVICE UNDER TES
T
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0 t1 t2
D.U.T.
V *
c
50V
L
1000V
6000µF
100V
Figure 19. Clamped Inductive Load Test Circuit Figure 20. Pulsed Collector Current
Test Circuit
RL=480V
4 X IC @25°C
0 - 480V
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
IRG4BC10UDPbF
10 www.irf.com
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
VCC=80%(VCES), VGE=20V, L=10µH, RG = 100(figure 19)
Pulse width 80µs; duty factor 0.1%.
Pulse width 5.0µs, single shot.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 12/03
LEAD ASSIGNMENTS
1 - GATE
2 - DRAIN
3 - SOURCE
4 - DRAIN
- B -
1.32 (.052)
1.22 (.048)
3X 0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
4.69 (.185)
4.20 (.165)
3X 0.93 (.037)
0.69 (.027)
4.06 (.160)
3.55 (.140)
1.15 (.045)
MIN
6.47 (.255)
6.10 (.240)
3.78 (.149)
3.54 (.139)
- A -
10.54 (.415)
10.29 (.405)
2.87 (.113)
2.62 (.103)
15.24 (.600)
14.84 (.584)
14.09 (.555)
13.47 (.530)
3X 1.40 (.055)
1.15 (.045)
2.54 (.100)
2X
0.36 (.014) M B A M
4
1 2 3
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
2 CONTROLLING DIMENSION : INCH 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
HEXFET
1- GATE
2- DRAIN
3- SOURCE
4- DRAIN
LEAD ASSIGNMENTS
IGBTs, CoPACK
1- GATE
2- COLLECTOR
3- EM ITTER
4- COLLECTOR
TO-220AB Package Outline
TO-220AB Part Marking Information
EXAMPLE:
IN THE AS S EMBLY LINE "C"
T H IS IS AN IR F 1010
LOT CODE 1789
ASS E MB LE D ON WW 19, 1997 PART NUMBER
ASSEMBLY
LOT CODE
DATE CODE
YEAR 7 = 1997
LINE C
WEEK 19
LOGO
R E CT IF IE R
IN T E R N AT IO N AL
Note: "P " in assem bly line
position indicates "Lead-Free"
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/