ATF-331M4
Low Noise Pseudomorphic HEMT
in a Miniature Leadless Package
Data Sheet
Description
Avago Technologiess ATF-331M4 is a high linearity, low
noise pHEMT housed in a miniature leadless package.
The ATF-331M4’s small size and low pro le makes it
ideal for the design of hybrid modules and other space-
constraint devices.
Based on its featured performance, ATF-331M4 is ideal for
the  rst or second stage of base station LNA due to the
excellent combination of low noise  gure and enhanced
linearity[1]. The device is also suitable for applications
in Wireless LAN, WLL/RLL, MMDS, and other systems
requiring super low noise  gure with good intercept in
the 450 MHz to 10 GHz frequency range.
Note:
1. From the same PHEMT FET family, the smaller geometry ATF-34143
may also be considered for the higher gain performance, particularly
in the higher frequency band (1.8GHz and up).
Features
Low noise  gure
Excellent uniformity in product speci cations
1600 micron gate width
Miniature leadless package 1.4mmx 1.2 mm x 0.7mm
Tape-and-reel packaging option available
Speci cations
2 GHz; 4 V, 60mA (Typ.)
0.6 dB noise  gure
15 dB associated gain
19 dBm output power at 1 dB gain compression
31 dBm output 3rd order intercept
Applications
Tower mounted ampli er, low noise ampli er and
driver ampli er for GSM/TDMA/CDMA base stations
LNA for WLAN, WLL/RLL, MMDS and wireless data
infrastructures
General purpose discrete PHEMT for other ultra low
noise applications
MiniPak 1.4 mm x 1.2 mm Package
Pin Connections and Package Marking
Note:
Top View. Package marking provides orientation, product identi cation
and date code.
“P” = Device Type Code
“x” = Date code character. A di erent character is assigned for each
month and year.
Px
Source
Pin 3
Gate
Pin 2
Source
Pin 1
Drain
Pin 4
Px
2
ATF-331M4 Absolute Maximum Ratings[1]
Symbol Parameter Units
Absolute
Maximum
VDS Drain-Source Voltage
[2] V 5.5
VGS Gate-Source Voltage [2] V -5
VGD Gate Drain Voltage
[2] V -5
IDS Drain Current
[2] mA Idiss[3]
Pdiss Total Power Dissipation [4] mW 400
Pin max. RF Input Power dBm 20
TCH Channel Temperature [5] °C 160
TSTG Storage Temperature °C -65 to 160
jc Thermal Resistance [6] °C/W 200
Notes:
1. Operation of this device above any one of
these parameters may cause permanent
damage.
2. Assumes DC quiescent conditions.
3. VGS = 0V
4. Source lead temperature is 25°C. Derate
5mW/°C for TL > 40°C.
5. Please refer to failure rates in reliability
data sheet to assess the reliability impact
of running devices above a channel
temperature of 140°C.
6. Thermal resistance measured using 150°C
Liquid Crystal Measurement method.
Product Consistency Distribution Charts[8, 9]
V
DS
(V)
Figure 1. Typical Pulsed I-V Curves
[7]
.
(VGS = -0.2 V per step)
I
DS
(mA)
02 468
500
400
300
200
100
0
-0.6 V
0 V
+0.6 V
NF (dBm)
Figure 2. NF @ 2 GHz, 4 V, 60 mA.
LSL = 28.5, Nominal = 0.6, USL = 0.8.
0.2 0.4 0.5 0.6 0.70.3 0.8 0.9
100
80
60
40
20
0
-3 Std +3 Std
Cpk = 1.05
Stdev = 0.07
OIP3 (dBm)
Figure 3. OIP3 @ 2 GHz, 4 V, 60 mA.
LSL = 28.5, Nominal = 31.0, USL = 36.0
28 3230 34 36
-3 Std +3 Std
150
120
90
60
30
0
Cpk = 1.00
Stdev = 1.07
GAIN (dB)
Figure 4. Gain @ 2 GHz, 4 V, 60 mA.
LSL = 13.5, Nominal = 15.0, USL = 16.5
13 1514 16 17
-3 Std +3 Std
120
100
80
60
40
20
0
Cpk = 4.37
Stdev = 1.11
Notes:
8. Distribution data sample size is 349 samples from 4 di erent wafers. Future wafers allocated to this product may have nominal values anywhere
within the upper and lower spec limits.
9. Measurements made on production test board. This circuit represents a trade-o between an optimal noise match and a realizeable match based
on production test requirements. Circuit losses have been de-embedded from actual measurements.
Note:
7. Under large signal conditions, VGS may
swing positive and the drain current may
exceed Idss. These conditions are acceptable
as long as the Maximum Pdiss and Pin max
ratings are not exceeded.
3
ATF-331M4 DC Electrical Speci cations
TA = 25°C, RF parameters measured in a test circuit for a typical device
Symbol Parameter and Test Condition Units Min. Typ.[2] Max.
Idss[1] Saturated Drain Current Vds = 1.5 V, Vgs = 0V mA 175 237 305
Vp[1] Pinch-o Voltage Vds = 1.5 V, Ids = 10% of Idss V -0.65 -0.5 -0.35
Id Quiescent Bias Current Vgs = -0.51 V, Vds = 4 V mA 60
Gm[1] ] Transconductance Vds = 1.5 V, Gm = Idss/Vp mmho 360 440
Igdo Gate to Drain Leakage Current Vgd = -5 V A — — 1000
Igss Gate Leakage Current Vgd = Vgs = -4V A — 42 600
NF Noise Figure f = 2 GHz
f = 900 MHz
Vds = 4 V, Ids = 60 mA
Vds = 4 V, Ids = 60 mA
dB
dB
0.6
0.5
0.8
Ga Associated Gain f = 2 GHz
f = 900 MHz
Vds = 4 V, Ids = 60 mA
Vds = 4 V, Ids = 60 mA
dB
dB
13.5
15
21
16.5
OIP3 Output 3rd Order
Intercept Point [3]
f = 2 GHz,
5 dBm Pout/Tone
f = 900 MHz,
5 dBm Pout/Tone
Vds = 4 V, Ids = 60 mA
Vds = 4 V, Ids = 60 mA
dBm
dBm
28.5
31
30.8
P1dB 1dB Compressed
Output Power [3]
f = 2 GHz
f = 900 MHz
Vds = 4 V, Ids = 60 mA
Vds = 4 V, Ids = 60 mA
dBm
dBm
19
18
Notes:
1. Guaranteed at wafer probe level
2. Typical values are determined from a sample size of 349 parts from 4 wafers.
3. Measurements obtained using production test board described in Figure 5.
Input 50Ω Input
Transmission Line
Including
Gate Bias T
(0.3 dB loss)
Input
Matching Circuit
Γ_mag = 0.13
Γ_ang = 113°
(0.3 dB loss)
50Ω Output
Transmission Line
Including
Gate Bias T
(0.5 dB loss)
DUT
Output
Figure 5. Block diagram of 2 GHz production test board used for Noise Figure, Associated Gain, P1dB, and OIP3 measurements.
This circuit represents a trade-o between an optimal noise match and a realizable match based on production test requirements.
Circuit losses have been de-embedded from actual measurements.
4
ATF-331M4 Typical Performance Curves
Notes:
1. Measurements made on  xed tuned
production test board that was tuned
for optimal gain match with reasonable
noise  gure at 4V 60 mA bias. This circuit
represents a trade-o between an optimal
noise match, maximum gain match and
a realizable match based on production
test board requirements. Circuit losses
have been de-embedded from actual
measurements.
2. Quiescent drain current, Idsq, is set
with zero RF drive applied. As P1dB is
approached, the drain current may increase
or decrease depending on frequency and
dc bias point. At lower values of Idsq the
device is running closer to class B as power
output approaches P1dB. This results in
higher P1dB and higher PAE (power added
e ciency) when compared to a device that
is driven by a constant current source as is
typically done with active biasing.
Figure 8. P1dB vs. Bias[1,2] 2 GHz.
Idsq (mA)
P1dB (dBm)
0 1004020 8060
2V
3V
4V
25
20
15
10
5
0
Figure 10. NF & Gain vs. Bias[1] at 2 GHz.
Id (mA)
GAIN (dB)
NOISE FIGURE (dB)
0 1004020 8060
2V
3V
4V
16
15
14
13
12
11
10
1.4
1.2
1.0
0.8
0.6
0.4
0.2
Figure 6. OIP3, IIP3 & Bias[1] at 2 GHz.
Ids (mA)
OIP3, IIP3 (dBm)
0 1004020 8060
2V
3V
4V
40
30
20
10
0
Figure 7. OIP3, IIP3 & Bias[1] at 900 MHz.
Ids (mA)
OIP3, IIP3 (dBm)
0 1004020 8060
2V
3V
4V
40
30
20
10
0
Figure 9. P1dB vs. Bias[1] 900 MHz.
Idsq (mA)
P1dB (dBm)
0 1004020 8060
2V
3V
4V
25
20
15
10
5
0
Figure 11. NF & Gain vs. Bias[1] at 900 MHz.
Id (mA)
GAIN (dB)
NOISE FIGURE (dB)
0 1204020 80 10060
2V
3V
4V
22
21
20
19
18
17
16
1.4
1.2
1.0
0.8
0.6
0.4
0.2
5
Notes:
1. Measurements made on  xed tuned
production test board that was tuned
for optimal gain match with reasonable
noise  gure at 4V 60 mA bias. This circuit
represents a trade-o between an optimal
noise match, maximum gain match and
a realizable match based on production
test board requirements. Circuit losses
have been de-embedded from actual
measurements.
2. Quiescent drain current, Idsq, is set
with zero RF drive applied. As P1dB is
approached, the drain current may increase
or decrease depending on frequency and
dc bias point. At lower values of Idsq the
device is running closer to class B as power
output approaches P1dB. This results in
higher P1dB and higher PAE (power added
e ciency) when compared to a device that
is driven by a constant current source as is
typically done with active biasing.
ATF-331M4 Typical Performance Curves, continued
Figure 12. Fmin vs. Frequency at 4 V, 60 mA.
FREQUENCY (GHz)
Fmin (dB)
0104286
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
Figure 14. Fmin & Ga vs. Frequency and Temp.
Vd = 4V, Ids = 60 mA.
FREQUENCY (GHz)
GAIN (dB)
NOISE FIGURE (dB)
08426
85°C
25°C
-40°C
25
20
15
10
5
2.0
1.5
1.0
0.5
0
Figure 15. P1dB, OIP3 vs. Frequency and
Temp at Vd = 4V, Ids = 60 mA.
FREQUENCY (GHz)
P1dB, OIP3 (dBm)
0845 7213 6
85°C
25°C
-40°C
35
30
25
20
15
10
5
0
Figure 16. OIP3, P1dB, NF and Gain vs.
Bias
[1,2]
at 3.9 GHz.
I
dsq
(mA)
OIP3, P1dB (dBm), GAIN (dB)
NOISE FIUGRE (dB)
0 1004020 8060
P1dB
OIP3
Gain
NF
35
30
25
20
15
10
5
0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
Figure 13. Associated Gain vs. Frequency
at 4V, 60 mA.
FREQUENCY (GHz)
GAIN (dB)
0104286
30
25
20
15
10
5
0
Figure 17. OIP3, P1dB, NF at 5.8 GHz.
I
dsq
(mA)
OIP3, P1dB (dBm), GAIN (dB)
NOISE FIGURE (dB)
0 1004020 8060
P1dB
OIP3
Gain
NF
35
30
25
20
15
10
5
0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
6
ATF-331M4 Typical Scattering Parameters, VDS = 2V, IDS = 40 mA
Freq.
GHz
S11 S21 S12 S22 MSG/MAG
dBMag. Ang. dB Mag. Ang. dB Mag. Ang. Mag. Ang.
0.5 0.82 -91.90 22.10 12.74 127.90 -27.13 0.044 53.30 0.40 -163.10 24.62
0.8 0.79 -119.10 18.85 8.76 112.80 -25.19 0.055 46.70 0.47 -169.67 22.02
1.0 0.78 -132.10 18.06 8.00 106.00 -24.44 0.060 44.70 0.49 -173.83 21.25
1.5 0.76 -151.40 14.75 5.46 93.73 -22.73 0.073 42.73 0.53 177.77 18.74
1.8 0.75 -159.60 13.55 4.76 88.20 -21.72 0.082 42.13 0.53 173.73 17.64
2.0 0.74 -163.60 13.36 4.65 85.00 -21.31 0.086 41.93 0.54 171.27 17.33
2.5 0.72 -170.70 10.33 3.29 77.97 -20.09 0.099 41.33 0.53 165.20 15.21
3.0 0.69 -174.30 9.60 3.02 71.83 -18.12 0.124 40.57 0.55 162.60 13.86
4.0 0.71 163.10 6.62 2.14 53.23 -17.20 0.138 30.30 0.56 138.03 10.77
5.0 0.73 150.00 4.98 1.77 41.60 -16.65 0.147 24.97 0.56 134.30 9.25
6.0 0.71 140.90 3.94 1.57 28.80 -16.08 0.157 17.23 0.57 115.73 7.71
7.0 0.73 123.90 2.92 1.40 14.70 -15.39 0.170 7.10 0.57 109.93 6.97
8.0 0.74 112.90 2.77 1.38 6.70 -15.04 0.177 2.57 0.58 108.90 6.98
9.0 0.76 97.70 2.60 1.35 -4.77 -14.99 0.178 -6.27 0.59 93.03 6.78
10.0 0.79 83.60 2.00 1.26 -18.20 -14.75 0.183 -17.47 0.59 78.30 6.54
11.0 0.86 61.90 0.08 1.01 -32.50 -14.80 0.182 -29.77 0.58 66.00 6.03
12.0 0.87 62.10 -0.71 0.92 -37.90 -14.33 0.192 -33.90 0.65 59.73 5.63
13.0 0.88 51.90 -1.54 0.84 -49.90 -14.89 0.180 -44.67 0.69 49.07 5.20
14.0 0.88 44.60 -2.09 0.79 -58.90 -15.44 0.169 -52.47 0.73 40.13 5.04
15.0 0.91 38.70 -4.00 0.63 -67.70 -15.81 0.162 -60.63 0.75 30.57 4.34
16.0 0.93 33.30 -5.66 0.52 -74.80 -18.71 0.116 -67.27 0.78 24.73 4.04
17.0 0.93 28.40 -5.68 0.52 -80.50 -17.86 0.128 -73.07 0.79 18.67 4.02
18.0 0.92 25.20 -6.58 0.47 -84.00 -17.99 0.126 -77.40 0.81 13.87 3.03
Notes:
1. The Fmin values are based on a set of 16 noise  gure measurements made at 16 di erent impedances using an ATN NP5 test system. From these
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the
end of the gate pad. The output reference plane is at the end of the drain pad.
Typical Noise Parameters, VDS = 2V, IDS = 40 mA
Freq
GHz
Fmin
dB
opt
Mag.
opt
Ang. Rn/50
Ga
dB
0.50 0.37 0.39 0.6 0.07 21.16
0.90 0.41 0.381 26.3 0.06 18.36
1.00 0.41 0.38 32.9 0.06 18.19
1.50 0.46 0.38 63.6 0.05 15.96
1.80 0.48 0.385 80 0.05 15.43
2.00 0.5 0.39 90.1 0.05 14.56
2.50 0.54 0.407 112.8 0.04 13.29
3.00 0.59 0.431 132 0.04 12.18
4.00 0.67 0.492 161.3 0.03 10.4
5.00 0.76 0.565 -179 0.02 8.94
6.00 0.85 0.638 -166 0.02 7.96
7.00 0.93 0.702 -156.9 0.04 7
8.00 1.02 0.747 -148.9 0.07 6.16
9.00 1.11 0.762 -139 0.11 5.8
10.00 1.19 0.737 -124.5 0.18 4.89
Figure 18. MSG/MAG and |S
21
|
2
vs.
Frequency at 2V, 40 mA.
MSG
MAG
FREQUENCY (GHz)
MSG/MAG and |S
21
|
2
(dB)
02010515
40
30
20
10
0
-10
|S
21
|
2
7
Figure 19. MSG/MAG and |S
21
|
2
vs.
Frequency at 3V, 40 mA.
MSG
MAG
FREQUENCY (GHz)
MSG/MAG and |S
21
|
2
(dB)
02010515
40
30
20
10
0
-10
|S
21
|
2
ATF-331M4 Typical Scattering Parameters, VDS = 3V, IDS = 40 mA
Freq.
GHz
S11 S21 S12 S22 MSG/MAG
dB Mag. Ang. dB Mag. Ang. dB Mag. Ang. Mag. Ang.
0.5 0.82 -90.50 22.45 13.27 128.40 -27.54 0.042 53.80 0.38 -155.50 24.99
0.8 0.78 -117.70 19.31 9.24 113.30 -25.35 0.054 47.10 0.44 -165.77 22.33
1.0 0.77 -130.90 18.50 8.41 106.40 -24.58 0.059 45.10 0.46 -170.63 21.54
1.5 0.75 -150.40 15.23 5.77 93.93 -22.97 0.071 43.03 0.49 180.17 19.10
1.8 0.74 -158.70 14.02 5.02 88.30 -21.94 0.080 42.33 0.49 -184.17 17.98
2.0 0.74 -162.70 13.79 4.89 85.10 -21.51 0.084 42.13 0.50 173.27 17.65
2.5 0.72 -170.00 10.81 3.47 77.97 -20.18 0.098 41.53 0.50 166.80 15.49
3.0 0.69 -174.10 9.60 3.02 71.63 -18.24 0.122 40.67 0.52 163.70 13.92
4.0 0.71 163.70 7.13 2.27 53.03 -17.33 0.136 30.70 0.52 139.43 11.20
5.0 0.73 150.50 5.46 1.87 41.40 -16.83 0.144 25.67 0.52 136.10 9.63
6.0 0.71 141.50 4.37 1.65 28.50 -16.31 0.153 18.13 0.54 118.23 8.02
7.0 0.73 124.40 3.34 1.47 14.10 -15.55 0.167 8.10 0.54 111.83 7.28
8.0 0.74 113.40 3.14 1.44 6.00 -15.19 0.174 3.57 0.54 110.90 7.28
9.0 0.76 98.20 2.94 1.40 -5.57 -15.14 0.175 -4.97 0.55 95.33 7.05
10.0 0.79 84.10 2.33 1.31 -19.10 -14.94 0.179 -16.07 0.55 80.50 6.83
11.0 0.86 62.40 0.44 1.05 -33.40 -14.94 0.179 -28.27 0.55 67.80 6.40
12.0 0.87 62.50 -0.38 0.96 -38.90 -14.47 0.189 -32.20 0.61 61.73 6.00
13.0 0.88 52.30 -1.20 0.87 -50.90 -14.99 0.178 -42.87 0.66 50.97 5.55
14.0 0.89 44.90 -1.79 0.81 -60.20 -15.55 0.167 -50.87 0.70 41.63 5.33
15.0 0.91 39.00 -3.64 0.66 -69.10 -15.81 0.162 -59.03 0.73 32.17 4.81
16.0 0.93 33.40 -5.30 0.54 -76.40 -18.64 0.117 -65.67 0.76 26.13 4.49
17.0 0.93 28.50 -5.40 0.54 -82.40 -17.79 0.129 -71.87 0.78 19.77 4.48
18.0 0.92 25.10 -6.34 0.48 -86.10 -17.92 0.127 -76.40 0.80 14.87 3.39
Notes:
1. The Fmin values are based on a set of 16 noise  gure measurements made at 16 di erent impedances using an ATN NP5 test system. From these
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the
end of the gate pad. The output reference plane is at the end of the drain pad.
Typical Noise Parameters, VDS = 3V, IDS = 40 mA
Freq
GHz
Fmin
dB
opt
Mag.
opt
Ang. Rn/50
Ga
dB
0.50 0.37 0.377 0.7 0.07 21.42
0.90 0.41 0.367 24.5 0.06 18.53
1.00 0.42 0.366 31.1 0.06 18.28
1.50 0.46 0.365 61.6 0.05 15.95
1.80 0.49 0.37 77.8 0.05 15.42
2.00 0.51 0.374 87.9 0.05 14.61
2.50 0.55 0.392 110.5 0.04 13.33
3.00 0.59 0.416 129.6 0.04 12.25
4.00 0.68 0.479 159.2 0.03 10.5
5.00 0.77 0.553 179.4 0.02 9.06
6.00 0.86 0.627 -167.2 0.02 8.05
7.00 0.95 0.69 -157.6 0.04 7.13
8.00 1.04 0.733 -149.2 0.06 6.38
9.00 1.13 0.742 -139.1 0.1 5.97
10.00 1.22 0.709 -124.7 0.18 5
8
Figure 20. MSG/MAG and |S
21
|
2
vs.
Frequency at 3V, 60 mA.
MSG
MAG
FREQUENCY (GHz)
MSG/MAG and |S
21
|
2
(dB)
02010515
40
30
20
10
0
-10
|S
21
|
2
ATF-331M4 Typical Scattering Parameters, VDS = 3V, IDS = 60 mA
Freq.
GHz
S11 S21 S12 S22 MSG/MAG
dB Mag. Ang. dB Mag. Ang. dB Mag. Ang. Mag. Ang.
0.5 0.81 -93.60 22.93 14.01 127.00 -28.64 0.037 54.00 0.39 -167.20 25.78
0.8 0.78 -120.70 19.68 9.64 112.10 -26.56 0.047 48.30 0.46 -172.07 23.12
1.0 0.77 -133.60 18.81 8.72 105.40 -25.68 0.052 46.80 0.48 -175.73 22.24
1.5 0.75 -152.50 15.50 5.96 93.43 -23.88 0.064 46.03 0.51 176.57 19.69
1.8 0.74 -160.50 14.27 5.17 88.00 -22.73 0.073 45.93 0.51 172.73 18.50
2.0 0.74 -164.40 14.02 5.02 84.80 -22.16 0.078 46.03 0.52 170.47 18.09
2.5 0.72 -171.30 11.06 3.57 77.97 -20.72 0.092 45.93 0.52 164.60 15.89
3.0 0.70 -175.30 9.80 3.09 71.93 -18.40 0.120 45.37 0.53 161.90 14.10
4.0 0.71 162.70 7.39 2.34 53.33 -17.52 0.133 35.20 0.54 137.43 11.21
5.0 0.73 149.70 5.70 1.93 41.90 -16.95 0.142 29.87 0.54 134.20 9.70
6.0 0.71 140.60 4.61 1.70 29.10 -16.31 0.153 21.73 0.55 116.23 8.18
7.0 0.73 123.70 3.54 1.50 15.10 -15.55 0.167 11.40 0.56 110.13 7.39
8.0 0.74 112.70 3.33 1.47 7.10 -15.09 0.176 6.37 0.56 109.10 7.35
9.0 0.76 97.60 3.12 1.43 -4.37 -15.04 0.177 -2.77 0.57 93.43 7.16
10.0 0.79 83.40 2.52 1.34 -17.80 -14.75 0.183 -14.27 0.57 78.70 6.95
11.0 0.86 61.80 0.66 1.08 -32.10 -14.80 0.182 -26.87 0.57 66.20 6.68
12.0 0.87 62.00 -0.15 0.98 -37.60 -14.29 0.193 -31.00 0.63 60.03 6.21
13.0 0.88 52.00 -0.96 0.90 -49.50 -14.80 0.182 -41.97 0.68 49.47 5.74
14.0 0.89 44.50 -1.56 0.84 -58.70 -15.34 0.171 -50.27 0.71 40.23 5.55
15.0 0.92 38.80 -3.38 0.68 -67.60 -15.65 0.165 -58.43 0.74 30.87 5.16
16.0 0.94 33.20 -5.04 0.56 -74.90 -18.42 0.120 -65.47 0.77 25.03 4.92
17.0 0.94 28.20 -5.15 0.55 -80.90 -17.65 0.131 -71.67 0.78 18.87 4.96
18.0 0.93 24.60 -6.11 0.50 -84.90 -17.79 0.129 -76.30 0.80 14.17 3.76
Notes:
1. The Fmin values are based on a set of 16 noise  gure measurements made at 16 di erent impedances using an ATN NP5 test system. From these
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the
end of the gate pad. The output reference plane is at the end of the drain pad.
Typical Noise Parameters, VDS = 3V, IDS = 60 mA
Freq
GHz
Fmin
dB
opt
Mag.
opt
Ang. Rn/50
Ga
dB
0.50 0.36 0.35 0.2 0.06 21.97
0.90 0.4 0.341 24.3 0.06 18.96
1.00 0.41 0.34 31.1 0.05 18.77
1.50 0.45 0.341 62.5 0.04 16.31
1.80 0.48 0.346 79.3 0.05 15.79
2.00 0.5 0.351 89.6 0.05 14.93
2.50 0.54 0.37 112.8 0.04 13.67
3.00 0.59 0.395 132.4 0.04 12.62
4.00 0.68 0.461 162.3 0.03 10.78
5.00 0.77 0.538 -177.6 0.02 9.28
6.00 0.86 0.616 -164.4 0.02 8.34
7.00 0.95 0.683 -155.3 0.04 7.37
8.00 1.04 0.729 -147.2 0.07 6.63
9.00 1.13 0.742 -137.3 0.11 6.19
10.00 1.22 0.712 -122.6 0.19 5.23
9
Figure 21. MSG/MAG and |S
21
|
2
vs.
Frequency at 4V, 40 mA.
MSG
MAG
FREQUENCY (GHz)
MSG/MAG and |S
21
|
2
(dB)
02010515
40
30
20
10
0
-10
|S
21
|
2
ATF-331M4 Typical Scattering Parameters, VDS = 4V, IDS = 40 mA
Freq.
GHz
S11 S21 S12 S22 MSG/MAG
dB Mag. Ang. dB Mag. Ang. dB Mag. Ang. Mag. Ang.
0.5 0.82 -89.80 22.59 13.48 128.80 -27.54 0.042 54.00 0.36 -149.40 25.06
0.8 0.78 -116.90 19.49 9.43 113.60 -25.51 0.053 47.30 0.41 -162.57 22.50
1.0 0.77 -130.00 18.68 8.59 106.60 -24.73 0.058 45.20 0.43 -167.93 21.70
1.5 0.75 -149.70 15.42 5.90 94.13 -22.97 0.071 42.93 0.46 -177.83 19.20
1.8 0.74 -158.00 14.21 5.13 88.40 -22.05 0.079 42.23 0.46 177.53 18.13
2.0 0.74 -162.20 13.70 4.84 85.10 -21.51 0.084 41.93 0.47 174.77 17.61
2.5 0.72 -169.50 11.50 3.76 77.87 -20.26 0.097 41.33 0.48 168.10 15.88
3.0 0.69 -173.80 10.20 3.24 71.53 -18.20 0.123 40.47 0.49 164.80 14.20
4.0 0.70 164.10 7.34 2.33 52.63 -17.46 0.134 30.50 0.50 140.63 11.39
5.0 0.73 150.90 5.66 1.92 40.90 -16.95 0.142 25.67 0.50 137.60 9.81
6.0 0.71 141.80 4.54 1.69 28.00 -16.42 0.151 18.43 0.51 120.43 8.14
7.0 0.73 124.70 3.52 1.50 13.40 -15.65 0.165 8.40 0.52 113.63 7.45
8.0 0.74 113.70 3.29 1.46 5.20 -15.29 0.172 4.07 0.52 112.80 7.42
9.0 0.76 98.50 3.08 1.43 -6.37 -15.29 0.172 -4.27 0.53 97.33 7.18
10.0 0.79 84.30 2.45 1.33 -20.00 -15.04 0.177 -15.27 0.53 82.40 6.94
11.0 0.86 62.60 0.59 1.07 -34.50 -15.04 0.177 -27.37 0.53 69.40 6.64
12.0 0.87 62.70 -0.26 0.97 -40.00 -14.56 0.187 -31.00 0.59 63.63 6.29
13.0 0.88 52.60 -1.08 0.88 -52.10 -15.09 0.176 -41.67 0.64 52.57 5.80
14.0 0.89 45.10 -1.66 0.83 -61.60 -15.55 0.167 -49.77 0.69 43.13 5.59
15.0 0.92 39.20 -3.49 0.67 -70.50 -15.81 0.162 -58.03 0.71 33.47 5.35
16.0 0.94 33.50 -5.16 0.55 -78.00 -18.64 0.117 -64.67 0.75 27.23 4.93
17.0 0.94 28.40 -5.30 0.54 -84.20 -17.72 0.130 -71.07 0.77 20.77 4.97
18.0 0.93 24.90 -6.29 0.49 -88.30 -17.86 0.128 -75.90 0.79 15.87 3.70
Notes:
1. The Fmin values are based on a set of 16 noise  gure measurements made at 16 di erent impedances using an ATN NP5 test system. From these
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the
end of the gate pad. The output reference plane is at the end of the drain pad.
Typical Noise Parameters, VDS = 4V, IDS = 40 mA
Freq
GHz
Fmin
dB
opt
Mag.
opt
Ang. Rn/50
Ga
dB
0.50 0.4 0.335 0.5 0.07 21.8
0.90 0.43 0.332 27.9 0.06 18.83
1.00 0.44 0.332 34.3 0.06 18.59
1.50 0.48 0.338 63.8 0.05 16.22
1.80 0.51 0.345 79.6 0.05 15.46
2.00 0.52 0.352 89.3 0.05 14.61
2.50 0.57 0.373 111.3 0.05 13.34
3.00 0.61 0.4 130 0.04 12.29
4.00 0.69 0.467 158.9 0.03 10.47
5.00 0.78 0.542 178.7 0.03 8.96
6.00 0.86 0.617 -167.8 0.02 8.05
7.00 0.95 0.68 -158.1 0.04 7.19
8.00 1.03 0.724 -149.3 0.06 6.41
9.00 1.12 0.738 -138.9 0.1 6.15
10.00 1.2 0.712 -124.2 0.18 5.07
10
Figure 22. MSG/MAG and |S
21
|
2
vs.
Frequency at 4V, 60 mA.
MSG
MAG
FREQUENCY (GHz)
MSG/MAG and |S
21
|
2
(dB)
02010515
40
30
20
10
0
-10
|S
21
|
2
ATF-331M4 Typical Scattering Parameters, VDS = 4V, IDS = 60 mA
Freq.
GHz
S11 S21 S12 S22 MSG/MAG
dB Mag. Ang. dB Mag. Ang. dB Mag. Ang. Mag. Ang.
0.5 0.81 -93.00 23.11 14.30 127.30 -28.64 0.037 53.90 0.37 -161.30 25.87
0.8 0.78 -120.00 19.90 9.89 112.40 -26.56 0.047 48.30 0.43 -169.07 23.23
1.0 0.77 -133.00 19.03 8.94 105.60 -25.68 0.052 46.80 0.45 -173.33 22.35
1.5 0.75 -152.00 15.74 6.12 93.43 -23.88 0.064 45.83 0.48 178.37 19.81
1.8 0.74 -160.00 14.50 5.31 87.90 -22.85 0.072 45.73 0.48 174.33 18.68
2.0 0.74 -164.00 14.24 5.15 84.80 -22.27 0.077 45.83 0.49 171.87 18.25
2.5 0.72 -171.00 11.29 3.67 77.77 -20.82 0.091 45.73 0.49 165.90 16.06
3.0 0.69 -175.00 10.21 3.24 71.63 -19.25 0.109 45.27 0.51 162.80 14.73
4.0 0.71 163.00 7.64 2.41 52.93 -17.65 0.131 35.20 0.51 138.63 11.41
5.0 0.73 150.00 5.93 1.98 41.40 -17.08 0.140 30.07 0.51 135.70 9.89
6.0 0.71 141.00 4.81 1.74 28.60 -16.48 0.150 22.23 0.52 118.43 8.31
7.0 0.73 124.00 3.75 1.54 14.30 -15.65 0.165 11.90 0.53 111.93 7.56
8.0 0.74 113.00 3.52 1.50 6.20 -15.24 0.173 7.07 0.53 111.10 7.52
9.0 0.76 97.90 3.29 1.46 -5.37 -15.14 0.175 -1.87 0.54 95.43 7.31
10.0 0.79 83.70 2.67 1.36 -18.90 -14.89 0.180 -13.17 0.54 80.60 7.10
11.0 0.86 62.10 0.83 1.10 -33.30 -14.89 0.180 -25.67 0.54 67.90 6.92
12.0 0.87 62.30 0.00 1.00 -38.80 -14.42 0.190 -29.70 0.60 61.93 6.50
13.0 0.88 52.20 -0.82 0.91 -50.80 -14.89 0.180 -40.67 0.65 51.07 5.93
14.0 0.89 44.70 -1.41 0.85 -60.10 -15.39 0.170 -48.97 0.69 41.93 5.76
15.0 0.92 39.00 -3.22 0.69 -69.20 -15.65 0.165 -57.33 0.72 32.27 5.53
16.0 0.94 33.30 -4.88 0.57 -76.60 -18.42 0.120 -64.27 0.75 26.33 5.19
17.0 0.94 28.20 -5.04 0.56 -82.80 -17.59 0.132 -70.77 0.77 19.97 5.22
18.0 0.93 24.70 -6.02 0.50 -86.90 -17.72 0.130 -75.60 0.79 15.07 3.90
Notes:
1. The Fmin values are based on a set of 16 noise  gure measurements made at 16 di erent impedances using an ATN NP5 test system. From these
measurements Fmin is calculated. Refer to the noise parameter measurement section for more information.
2. S and noise parameters are measured on a microstrip line made on 0.010 inch thick alumina carrier assembly. The input reference plane is at the
end of the gate pad. The output reference plane is at the end of the drain pad.
Typical Noise Parameters, VDS = 4V, IDS = 60 mA
Freq
GHz
Fmin
dB
opt
Mag.
opt
Ang. Rn/50
Ga
dB
0.50 0.38 0.316 0.7 0.06 22.33
0.90 0.42 0.314 28.9 0.06 19.23
1.00 0.43 0.314 35.5 0.06 19.1
1.50 0.47 0.321 65.7 0.05 16.63
1.80 0.5 0.329 81.9 0.05 15.86
2.00 0.52 0.336 91.9 0.05 14.96
2.50 0.56 0.358 114.3 0.04 13.73
3.00 0.61 0.386 133.2 0.04 12.58
4.00 0.7 0.454 162.3 0.03 10.78
5.00 0.79 0.53 -178.1 0.03 9.3
6.00 0.88 0.606 -165.1 0.02 8.32
7.00 0.97 0.67 -155.8 0.04 7.44
8.00 1.06 0.714 -147.4 0.07 6.59
9.00 1.16 0.728 -137.1 0.11 6.36
10.00 1.25 0.703 -121.9 0.19 5.27
11
S and Noise Parameter Measurements
The position of the reference planes used for the mea-
surement of both S and Noise Parameter measurements is
shown in Figure 23. The reference plane can be described
as being at the center of both the gate and drain pads.
S and noise parameters are measured with a 50 ohm
microstrip test  xture made with a 0.010” thickness
aluminum substrate. Both source pads are connected
directly to ground via a 0.010” thickness metal rib which
provides a very low inductance path to ground for both
source pads. The inductance associated with the addition
of printed circuit board plated through holes and source
bypass capacitors must be added to the computer circuit
simulation to properly model the e ect of grounding the
source leads in a typical ampli er design.
a matching network that will present o to the device with
minimal associated circuit losses. The noise  gure of the
completed ampli er is equal to the noise  gure of the
device plus the losses of the matching network preceding
the device. The noise  gure of the device is equal to Fmin
only when the device is presented with o. If the re ection
coe cient of the matching network is other than o, then
the noise  gure of the device will be greater than Fmin
based on the following equation.
NF = Fmin + 4 Rn |
s
o
| 2
Zo (|1 +
o
|2)(1 - |
s
|2)
Where Rn/Zo is the normalized noise resistance, o is the
optimum re ection coe cient required to produce Fmin
and
s is the re ection coe cient of the source impedance
actually presented to the device.
The losses of the matching networks are non-zero and
they will also add to the noise  gure of the device creating
a higher ampli er noise  gure. The losses of the matching
networks are related to the Q of the components and asso-
ciated printed circuit board loss. o is typically fairly low at
higher frequencies and increases as frequency is lowered.
Larger gate width devices will typically have a lower o
as compared to narrower gate width devices. Typically for
FETs, the higher o usually infers that an impedance much
higher than 50 is required for the device to produce Fmin.
At VHF frequencies and even lower L Band frequencies,
the required impedance can be in the vicinity of several
thousand ohms. Matching to such a high impedance
requires very hi-Q components in order to minimize circuit
losses. As an example at 900 MHz, when air wound coils
(Q>100)are used for matching networks, the loss can still
be up to 0.25 dB which will add directly to the noise  gure
of the device. Using multilayer molded inductors with Qs
in the 30 to 50 range results in additional loss over the air
wound coil. Losses as high as 0.5 dB or greater add to the
typical 0.15 dB Fmin of the device creating an ampli er
noise  gure of nearly 0.65 dB.
Figure 23. Position of the Reference Planes.
Gate
Pin 2
Source
Pin 3
Drain
Pin 4
Source
Pin 1
Reference
Plane
Microstrip
Transmission Lines
Px
Noise Parameter Applications Information
The Fmin values are based on a set of 16 noise  gure mea-
surements made at 16 di erent impedances using an ATN
NP5 test system. From these measurements, a true Fmin
is calculated. Fmin represents the true minimum noise
gure of the device when the device is presented with an
impedance matching network that transforms the source
impedance, typically 50, to an impedance represented
by the re ection coe cient o. The designer must design
12
ATF-331M4 Minipak Model
GATE
SOURCE
INSIDE Package
Port
G
Num=1
C
C1
C=0.28 pF
Port
S1
Num=2
SOURCE
DRAIN
Port
S2
Num=4
Port
D
Num=3
L
L6
L=0.147 nH
R=0.001
C
C2
C=0.046 pF
L
L7
L=0.234 nH
R=0.001
MSub
TLINP
TL3
Z=Z2 Ohm
L=23.6 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
TLINP
TL9
Z=Z2 Ohm
L=11 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
VAR
VAR1
K=5
Z2=85
Z1=30
Var
Egn
TLINP
TL1
Z=Z2/2 Ohm
L=22 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
TLINP
TL2
Z=Z2/2 Ohm
L=20 0 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
TLINP
TL7
Z=Z2/2 Ohm
L=5.2 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
TLINP
TL5
Z=Z2 Ohm
L=27.5 mil
K=K
A=0.000
F=1 GHz
TanD=0.001
L
L1
L=0.234 nH
R=0.001
L
L4
L=0.281 nH
R=0.001
GaAsFET
FET1
Mode1=MESFETM1
Mode=Nonlinear
MSUB
MSub2
H=25.0 mil
Er=9.6
Mur=1
Cond=1.0E+50
Hu=3.9e+034 mil
T=0.15 mil
TanD=0
Rough=0 mil
ATF-331M4 Die Model
This model can be used as a design tool. It has been tested on ADS for various speci cations. However, for more precise
and accurate design, please refer to the measured data in this data sheet. For future improvements, Avago reserves the
right to change these models without prior notice.
13
MiniPak Package Outline Drawing
Ordering Information
Part Number No. of Devices Container
ATF-331M4-TR1 3000 7” Reel
ATF-331M4-TR2 10000 13” Reel
ATF-331M4-BLK 100 antistatic bag
1.44 (0.058)
1.40 (0.056)
Top view
Side view
Dimensions are in millimeteres (inches)
1.20 (0.048)
1.16 (0.046)
0.70 (0.028)
0.58 (0.023)
Px
Solder Pad Dimensions
Bottom view
1.12 (0.045)
1.08 (0.043)
3
2
4
1
0.82 (0.033)
0.78 (0.031)
0.32 (0.013)
0.28 (0.011)
-0.07 (-0.003)
-0.03 (-0.001)
0.00
-0.07 (-0.003)
-0.03 (-0.001)
0.42 (0.017)
0.38 (0.015)
0.92 (0.037)
0.88 (0.035)
1.32 (0.053)
1.28 (0.051)
0.00
For product information and a complete list of distributors, please go to our web site: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved. Obsoletes 5989-4216EN
AV02-3621EN - June 14, 2012
USER
FEED
DIRECTION
COVER TAPE
CARRIER
TAPE
REEL
END VIEW
8 mm
4 mm
TOP VIEW
Note: Px represents Package Marking Code.
Device orientation is indicated by package marking.
Px
Px
Px
Px
Device Orientation for Outline 4T, MiniPak 1412
Tape Dimensions
P
P
0
P
2
F
W
C
D
1
D
E
A
0
5° MAX.
t
1
(CARRIER TAPE THICKNESS) T
t
(COVER TAPE THICKNESS)
5° MAX.
B
0
K
0
DESCRIPTION SYMBOL SIZE (mm) SIZE (INCHES)
LENGTH
WIDTH
DEPTH
PITCH
BOTTOM HOLE DIAMETER
A
0
B
0
K
0
P
D
1
1.40 ± 0.05
1.63 ± 0.05
0.80 ± 0.05
4.00 ± 0.10
0.80 ± 0.05
0.055 ± 0.002
0.064 ± 0.002
0.031 ± 0.002
0.157 ± 0.004
0.031 ± 0.002
CAVITY
DIAMETER
PITCH
POSITION
D
P
0
E
1.50 ± 0.10
4.00 ± 0.10
1.75 ± 0.10
0.060 ± 0.004
0.157 ± 0.004
0.069 ± 0.004
PERFORATION
WIDTH
THICKNESS
W
t
1
8.00 + 0.30 - 0.10
0.254 ± 0.02
0.315 + 0.012 - 0.004
0.010 ± 0.0008
CARRIER TAPE
CAVITY TO PERFORATION
(WIDTH DIRECTION)
CAVITY TO PERFORATION
(LENGTH DIRECTION)
F
P
2
3.50 ± 0.05
2.00 ± 0.05
0.138 ± 0.002
0.079 ± 0.002
DISTANCE
WIDTH
TAPE THICKNESS
C
T
t
5.40 ± 0.10
0.062 ± 0.001
0.213 ± 0.004
0.0024 ± 0.00004
COVER TAPE
A
0
B
0