Data Sheet ADP7105
Rev. B | Page 21 of 26
CURRENT-LIMIT AND THERMAL OVERLOAD
PROTECTION
The ADP7105 is protected against damage due to excessive
power dissipation by current and thermal overload protection
circuits. The ADP7105 is designed to limit the current when the
output load reaches 775 mA (typical). When the output load
exceeds 775 mA, the output voltage is reduced to maintain a
constant current limit. As the output voltage drops, the current
is folded back to approximately 50 mA to minimize heat
generation inside the LDO regulator.
Thermal overload protection is included, which limits the
junction temperature to a maximum of 150°C (typical). Under
extreme conditions (that is, high ambient temperature and/or
high power dissipation) when the junction temperature starts to
rise above 150°C, the output is turned off, reducing the output
current to zero. When the junction temperature falls below
135°C, the output is turned on again, and output current is
restored to its operating value.
Consider the case where a hard short from VOUT to ground
occurs. At first, the ADP7105 limits the current so that only
775 mA is conducted into the short. If self heating of the
junction is great enough to cause its temperature to rise above
150°C, thermal shutdown is activated, turning off the output and
reducing the output current to zero. As the junction temperature
cools and falls below 135°C, the output turns on and conducts
775 mA into the short, again causing the junction temperature
to rise above 150°C. This thermal oscillation between 135°C
and 150°C causes a current oscillation between 775 mA and
0 mA that continues as long as the short remains at the output.
Current-limit and thermal limit protections are intended to
protect the device against accidental overload conditions. For
reliable operation, device power dissipation must be externally
limited so that the junction temperature does not exceed 125°C.
THERMAL CONSIDERATIONS
In applications with a low input-to-output voltage differential,
the ADP7105 does not dissipate much heat. However, in
applications with high ambient temperature and/or high input
voltage, the heat dissipated in the package may become
significant enough that it causes the junction temperature of the
die to exceed the maximum junction temperature of 125°C.
When the junction temperature exceeds 150°C, the regulator
enters thermal shutdown. It recovers only after the junction
temperature decreases below 135°C to prevent any permanent
damage. Therefore, thermal analysis for the chosen application
is very important to guarantee reliable performance over all
conditions. The junction temperature of the die is the sum of
the ambient temperature of the environment and the tempera-
ture rise of the package due to the power dissipation, as shown
in Equation 2.
To guarantee reliable operation, the junction temperature of the
ADP7105 must not exceed 125°C. To ensure that the junction
temperature stays below this maximum value, the user must be
aware of the parameters that contribute to junction temperature
changes. These parameters include ambient temperature, power
dissipation in the power device, and thermal resistances between
the junction and ambient air (θJA). The θJA value is dependent on
the package assembly compounds that are used and the amount of
copper used to solder the package GND pins to the PCB.
Table 6 shows typical θJA values for the 8-lead SOIC and 8-lead
LFCSP packages for various PCB copper sizes. Table 7 shows
the typical ΨJB values for the 8-lead SOIC and 8-lead LFCSP
with PCB area.
Table 6. Typical θJA Values
Copper Size (mm2)
θJA (°C/W)
LFCSP SOIC
251 165.1 167.8
100 125.8 111
500 68.1 65.9
6400 42.1 45.8
1 Device soldered to minimum size pin traces.
Table 7. Typical ΨJB Values with PCB Area
Model ΨJB (°C/W)
8-Lead LFCSP1 15.1
8-Lead SOIC 31.3
1 Note that the ΨJB value for the LFCSP package accounts for PCB area, which
is being used as a heat sink via the exposed pad, whereas the value in Table 4 is
per the JEDEC standard.
The junction temperature of the ADP7105 is calculated from
the following equation:
TJ = TA + (PD × θJA) (2)
where:
TA is the ambient temperature.
θJA is the junction-to-ambient thermal resistance.
PD is the power dissipation in the die, given by
PD = [(VIN − VOUT) × ILOAD] + (VIN × IGND) (3)
where:
VIN and VOUT are the input and output voltages, respectively.
ILOAD is the load current.
IGND is the ground current.
Power dissipation due to ground current is quite small and can
be ignored. Therefore, the junction temperature equation
simplifies to the following:
TJ = TA + {[(VIN − VOUT) × ILOAD] × θJA} (4)
As shown in Equation 4, for a given ambient temperature, input-
to-output voltage differential, and continuous load current, a
minimum copper size requirement for the PCB exists to ensure
that the junction temperature does not rise above 125°C. Figure 71
to Figure 76 show junction temperature calculations for different
ambient temperatures, power dissipation, and areas of PCB copper.