This is information on a product in full production.
April 2012 Doc ID 018572 Rev 3 1/86
1
STA350BW
Sound Terminal®
2.1-channel high-efficiency digital audio system
Datasheet production data
Features
Wide-range supply voltage
5 V to 26 V (operating range)
30 V (absolute maximum rating)
Four power output configurations(a)
2 channels of ternary PWM (stereo mode)
(2 x 50 W into 6 Ω at 25 V)
3 channels - left, right using binary and LFE
using ternary PWM (2.1 mode) (2 x 18 W +
1x40W into 2x4 Ω, 1 x 8 Ω at 25 V)
2 channels of ternary PWM (2 x 50 W) +
stereo lineout ternary
1 channel of ternary PWM as mono-BTL
(1 x 90 W into 3 Ω at 24.5 V)
FFX 100 dB SNR and dynamic range
Selectable 32 to 192 kHz input sample rates
I2C control with selectable device address
Digital gain/attenuation +42 dB to -80 dB with
0.125 dB/step resolution
Soft-volume update with programmable ratio
Individual channel and master gain/attenuation
Two independent DRCs configurable as a
dual-band anti-clipper (B2DRC) or independent
limiters/compressors
EQ-DRC for DRC based on filtered signals
Dedicated LFE processing for bass boosting
with 0.125 dB/step resolution
Audio presets:
15 preset crossover filters
5 preset anti-clipping modes
Preset nighttime listening mode
Individual channel and master soft/hard mute
Independent channel volume and DSP bypass
Automatic zero-detect mute
Automatic invalid input-detect mute
I2S input data interface
Input and output channel mapping
Up to 8 user-programmable biquads per
channel
3 coefficient banks for EQ presets storing with
fast recall via I2C interface
Extended coefficient dynamic up to -4..4 for
easy implementation of high shelf filters
Bass/treble tones and de-emphasis control
Selectable high-pass filter for DC blocking
Advanced AM interference frequency
switching and noise suppression modes
Selectable high or low bandwidth
noise-shaping topologies
Selectable clock input ratio
96 kHz internal processing sample rate with
quantization error noise shaping for very low
cutoff frequency filters
Thermal overload and short-circuit protection
embedded
Video apps: 576 x Fs input mode supported
Fully compatible with STA339BW and
STA339BWS
a. Music output power with THD = 10%, using ST’s recommended board, see Section 4:
Characterization curves for more details.
PowerSSO-36
with exposed pad down (EPD)
www.st.com
Contents STA350BW
2/86 Doc ID 018572 Rev 3
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Connection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Electrical specifications for the digital section . . . . . . . . . . . . . . . . . . . . . 15
3.5 Electrical specifications for the power section . . . . . . . . . . . . . . . . . . . . . 16
4 Characterization curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1 Mono parallel BTL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5 Processing data paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6I
2C bus specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1 Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1.1 Data transition or change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1.2 Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1.3 Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1.4 Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3.1 Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3.2 Multi-byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.4 Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.4.1 Current address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.4.2 Current address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.4.3 Random address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
STA350BW Contents
Doc ID 018572 Rev 3 3/86
6.4.4 Random address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.4.5 Write mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4.6 Read mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1 Configuration register A (addr 0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.1.1 Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.1.2 Interpolation ratio select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.1.3 Thermal warning recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.1.4 Thermal warning adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.1.5 Fault detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 Configuration register B (addr 0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2.1 Serial audio input interface format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2.2 Serial data interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2.3 Serial data first bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2.4 Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2.5 Channel input mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.3 Configuration register C (addr 0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.3.1 FFX power output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.3.2 FFX compensating pulse size register . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.3.3 Overcurrent warning detect adjustment bypass . . . . . . . . . . . . . . . . . . . 40
7.4 Configuration register D (addr 0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.4.1 High-pass filter bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.4.2 De-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.4.3 DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.4.4 Post-scale link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.4.5 Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.4.6 Dynamic range compression/anti-clipping bit . . . . . . . . . . . . . . . . . . . . 41
7.4.7 Zero-detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.4.8 Submix mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.5 Configuration register E (addr 0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.5.1 Max power correction variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.5.2 Max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.5.3 Noise-shaper bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.5.4 AM mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.5.5 PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.5.6 Distortion compensation variable enable . . . . . . . . . . . . . . . . . . . . . . . . 43
Contents STA350BW
4/86 Doc ID 018572 Rev 3
7.5.7 Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.5.8 Soft-volume update enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.6 Configuration register F (addr 0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.6.1 Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.6.2 Invalid input detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.6.3 Binary output mode clock loss detection . . . . . . . . . . . . . . . . . . . . . . . . 50
7.6.4 LRCK double trigger protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.6.5 Auto EAPD on clock loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.6.6 IC power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.6.7 External amplifier power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.7 Volume control registers (addr 0x06 - 0x0A) . . . . . . . . . . . . . . . . . . . . . . 51
7.7.1 Mute/line output configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.7.2 Master volume register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.7.3 Channel 1 volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.7.4 Channel 2 volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.7.5 Channel 3 / line output volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.8 Audio preset registers (addr 0x0B and 0x0C) . . . . . . . . . . . . . . . . . . . . . 53
7.8.1 Audio preset register 1 (addr 0x0B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.8.2 Audio preset register 2 (addr 0x0C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.8.3 AM interference frequency switching . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.8.4 Bass management crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.9 Channel configuration registers (addr 0x0E - 0x10) . . . . . . . . . . . . . . . . . 55
7.9.1 Tone control bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.9.2 EQ bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.9.3 Volume bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.9.4 Binary output enable registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.9.5 Limiter select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.9.6 Output mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.10 Tone control register (addr 0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.10.1 Tone control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.11 Dynamic control registers (addr 0x12 - 0x15) . . . . . . . . . . . . . . . . . . . . . 57
7.11.1 Limiter 1 attack/release rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.11.2 Limiter 1 attack/release threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.11.3 Limiter 2 attack/release rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.11.4 Limiter 2 attack/release threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.11.5 Limiter 1 extended attack threshold (addr 0x32) . . . . . . . . . . . . . . . . . . 61
STA350BW Contents
Doc ID 018572 Rev 3 5/86
7.11.6 Limiter 1 extended release threshold (addr 0x33) . . . . . . . . . . . . . . . . . 61
7.11.7 Limiter 2 extended attack threshold (addr 0x34 . . . . . . . . . . . . . . . . . . ) 62
7.11.8 Limiter 2 extended release threshold (addr 0x35) . . . . . . . . . . . . . . . . . 62
7.12 User-defined coefficient control registers (addr 0x16 - 0x26) . . . . . . . . . . 62
7.12.1 Coefficient address register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.12.2 Coefficient b1 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.12.3 Coefficient b1 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.12.4 Coefficient b1 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.12.5 Coefficient b2 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.12.6 Coefficient b2 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.12.7 Coefficient b2 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.12.8 Coefficient a1 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.12.9 Coefficient a1 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.12.10 Coefficient a1 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.12.11 Coefficient a2 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.12.12 Coefficient a2 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.12.13 Coefficient a2 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.12.14 Coefficient b0 data register bits 23:16 . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.12.15 Coefficient b0 data register bits 15:8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.12.16 Coefficient b0 data register bits 7:0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.12.17 Coefficient write/read control register . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.12.18 User-defined EQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.12.19 Pre-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.12.20 Post-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.12.21 Overcurrent post-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.13 Variable max power correction registers (addr 0x27 - 0x28) . . . . . . . . . . 69
7.14 Variable distortion compensation registers (addr 0x29 - 0x2A) . . . . . . . . 69
7.15 Fault detect recovery constant registers (addr 0x2B - 0x2C) . . . . . . . . . . 70
7.16 Device status register (addr 0x2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.17 EQ coefficients and DRC configuration register (addr 0x31) . . . . . . . . . . 71
7.18 Extended configuration register (addr 0x36) . . . . . . . . . . . . . . . . . . . . . . 72
7.18.1 Dual-band DRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.18.2 EQ DRC mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.18.3 Extended post-scale range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.18.4 Extended attack rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.18.5 Extended BIQUAD selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Contents STA350BW
6/86 Doc ID 018572 Rev 3
7.19 EQ soft-volume configuration registers (addr 0x37 - 0x38) . . . . . . . . . . . 75
7.20 DRC RMS filter coefficients (addr 0x39-0x3E) . . . . . . . . . . . . . . . . . . . . . 76
7.21 Extra volume resolution configuration registers (address 0x3F) . . . . . . . 77
7.22 Quantization error noise correction (address 0x48) . . . . . . . . . . . . . . . . . 78
7.23 Extended coefficient range up to -4...4 (address 0x49, 0x4A) . . . . . . . . . 79
7.24 Miscellaneous registers (address 0x4B, 0x4C) . . . . . . . . . . . . . . . . . . . . 80
7.24.1 Rate powerdown enable (RPDNEN) bit (address 0x4B, bit D7) . . . . . . 80
7.24.2 Noise-shaping on DC cut filter enable (NSHHPEN) bit (address 0x4B, bit
D6) 80
7.24.3 Bridge immediate off (BRIDGOFF) bit (address 0x4B, bit D5) . . . . . . . 80
7.24.4 Channel PWM enable (CPWMEN) bit (address 0x4B, bit D2) . . . . . . . . 81
7.24.5 Power-down delay selector (PNDLSL[2:0]) bits
(address 0x4C, bit D4, D3, D2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
9 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
STA350BW List of tables
Doc ID 018572 Rev 3 7/86
List of tables
Table 1. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 2. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 3. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4. Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 5. Electrical specifications - digital section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 6. Electrical specifications - power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 7. Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 8. Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 9. Input sampling rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 10. Internal interpolation ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 11. IR bit settings as a function of input sample rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 12. Thermal warning recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 13. Thermal warning adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 14. Fault detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 15. Serial audio input interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 16. Serial data first bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 17. Support serial audio input formats for MSB-first (SAIFB = 0) . . . . . . . . . . . . . . . . . . . . . . . 36
Table 18. Supported serial audio input formats for LSB-first (SAIFB = 1) . . . . . . . . . . . . . . . . . . . . . 37
Table 19. Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 20. Channel input mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 21. FFX power output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 22. Output modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 23. FFX compensating pulse size bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 24. Compensating pulse size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 25. Overcurrent warning bypass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 26. High-pass filter bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 27. De-emphasis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 28. DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 29. Post-scale link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 30. Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 31. Dynamic range compression/anti-clipping bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 32. Zero-detect mute enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 33. Submix mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 34. Max power correction variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 35. Max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 36. Noise-shaper bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 37. AM mode enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 38. PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 39. Distortion compensation variable enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 40. Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 41. Soft-volume update enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 42. Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 43. Output configuration engine selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 44. Invalid input detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 45. Binary output mode clock loss detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 46. LRCK double trigger protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 47. Auto EAPD on clock loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 48. IC power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
List of tables STA350BW
8/86 Doc ID 018572 Rev 3
Table 49. External amplifier power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 50. Line output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 51. Master volume offset as a function of MV[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 52. Channel volume as a function of CxV[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 53. Audio preset gain compression/limiters selection for AMGC[3:2] = 00. . . . . . . . . . . . . . . . 53
Table 54. AM interference frequency switching bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 55. Audio preset AM switching frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 56. Bass management crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 57. Bass management crossover frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 58. Tone control bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 59. EQ bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 60. Binary output enable registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 61. Channel limiter mapping as a function of CxLS bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 62. Channel output mapping as a function of CxOM bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 63. Tone control boost/cut as a function of BTC and TTC bits . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 64. Limiter attack rate as a function of LxA bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 65. Limiter release rate as a function of LxR bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 66. Limiter attack threshold as a function of LxAT bits (AC-mode). . . . . . . . . . . . . . . . . . . . . . 60
Table 67. Limiter release threshold as a function of LxRT bits (AC-mode) . . . . . . . . . . . . . . . . . . . . 60
Table 68. Limiter attack threshold as a function of LxAT bits (DRC -mode) . . . . . . . . . . . . . . . . . . . . 61
Table 69. Limiter release threshold as a as a function of LxRT bits (DRC-mode) . . . . . . . . . . . . . . . 61
Table 70. RAM block for biquads, mixing, scaling and bass management. . . . . . . . . . . . . . . . . . . . . 68
Table 71. Status register bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 72. EQ RAM select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 73. Anti-clipping and DRC preset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 74. Anti-clipping selection for AMGC[3:2] = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 75. Biquad filter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 76. PowerSSO-36 EPD dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 77. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
STA350BW List of figures
Doc ID 018572 Rev 3 9/86
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2. Pin connection PowerSSO-36 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 3. Test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 4. Demonstration board, 2.0 channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 5. Mono parallel BTL schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 6. THD+N vs. output power (VCC = 25 V, load = 6 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 7. THD+N vs. output power (VCC = 18 V, load = 8 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 8. Output power vs. VCC (load = 6 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 9. Output power vs. VCC (load = 8 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 10. Efficiency vs. output power (VCC = 25 V, load = 6 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 11. Efficiency vs. output power (VCC = 25 V, load = 8 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 12. THD+N vs. output power (VCC = 25 V, load = 3 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 13. Output power vs. VCC (load = 3 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 14. Efficiency vs. output power (VCC = 26 V, load = 3 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 15. Efficiency vs. output power (VCC = 18 V, load = 3 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 16. Left and right processing - part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 17. Processing - part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 18. Write mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 19. Read mode sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 20. OCFG = 00 (default value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 21. OCFG = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 22. OCFG = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 23. OCFG = 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 24. Output mapping scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 25. 2.0 channels (OCFG = 00) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 26. 2.1 channels (OCFG = 01) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 27. 2.1 channels (OCFG = 10) PWM slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 28. Basic limiter and volume flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 29. B2DRC scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 30. EQDRC scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 31. Extra resolution volume scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 32. Biquad filter structure with quantization error noise-shaping . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 33. Double-layer PCB with 2 copper ground areas and 24 via holes . . . . . . . . . . . . . . . . . . . 82
Figure 34. PowerSSO-36 power derating curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 35. PowerSSO-36 EPD outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Description STA350BW
10/86 Doc ID 018572 Rev 3
1 Description
The STA350BW is an integrated solution of digital audio processing, digital amplifier control,
and FFX-power output stage, thereby creating a high-power single-chip FFX solution
comprising high-quality, high-efficiency, and all-digital amplification.
The STA350BW is based on an FFX (fully flexible amplification) processor, a proprietary
technology from STMicroelectronics. FFX is the evolution and the enlargement of ST’s
ternary technology: the new processor can be configured to work in ternary, binary, binary
differential and phase-shift PWM modulation schemes.
The STA350BW contains the ternary, binary and binary differential implementations, a
subset of the full capability of the FFX processor.
The STA350BW is part of the Sound Terminal® family that provides full digital audio
streaming to the speaker, offering cost effectiveness, low power dissipation and sound
enrichment.
The STA350BW power section consists of four independent half-bridges. These can be
configured via digital control to operate in different modes. 2.1 channels can be provided by
two half-bridges and a single full-bridge, providing up to 2 x 18 W + 1 x 40 W of music output
power, by using standard 4 and 8 Ω speakers. Two channels can be provided by two full-
bridges, providing up to 2 x 50 W of music power, by using standard 6 Ω speaker or
2 x 40 W by using 8 Ω speakers at 25 V. The IC can also be configured as 2.1 channels with
2 x 40 W provided by the device and external power for FFX power drive. If configured as
mono-BTL, the latter is capable of providing up to 1 x 90 W on a standard 3 Ω load or
1 x 75 W by using a 4 Ω, setting the supply voltage at 25 V. Please refer to the package
thermal characteristics and application suggestions for more details.
Also provided in the STA350BW are a full assortment of digital processing features. This
includes up to 8 programmable biquads (EQ) per channel. Special digital signal processing
techniques are available in order to manage low-frequency quantization noise in case of
very low frequency cutoff filter thresholds. The coefficient range -4..4 allows the easy
implementation of high shelf filters. Available presets allow the advantage of earlier time-to-
market by substantially reducing the amount of software development needed for certain
functions. This includes audio preset volume loudness, preset volume curves and preset EQ
settings. There are also new advanced AM radio interference reduction modes. Dual-band
DRC dynamically equalizes the system to provide speaker linear frequency response
regardless of output power level. This feature independently processes the two bands,
controlling dynamically the output power level in each band and so providing better sound
clarity.
The serial audio data input interface accepts all possible formats, including the popular I2S
format. Three channels of FFX processing are provided. This high-quality conversion from
PCM audio to FFX PWM switching waveform provides over 100 dB SNR and dynamic
range.
STA350BW Description
Doc ID 018572 Rev 3 11/86
1.1 Block diagram
Figure 1. Block diagram
Pro tection
curre nt/the rm al
Log ic
Regulators
Bias
Power
contro l
FFX
PLL
Vo lume
control
Channel
1A
Chann el
1B
Ch anne l
2A
Chann el
2B
I2S
in ter face
PowerDigita l DSP
I2C
AM045167v1
Pin connections STA350BW
12/86 Doc ID 018572 Rev 3
2 Pin connections
2.1 Connection diagram
Figure 2. Pin connection PowerSSO-36 (top view)
2.2 Pin description
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
VDD_DIG
GND_DIG
SCL
SDA
INT_LINE
RESET
SDI
LRCKI
BICKI
XTI
GND_PLL
FILTER_PLL
VDD_PLL
PWRDN
GND_DIG
VDD_DIG
TWARN/OUT4A
EAPD/OUT4B
GND_SUB
SA
TEST_MODE
VSS
VCC_REG
OUT2B
GND2
VCC2
OUT2A
OUT1B
VCC1
GND1
OUT1A
GND_REG
VDD
CONFIG
OUT3B/FFX3B
OUT3A/FFX3A
D05AU1638 AM045168v1
Table 1. Pin description
Pin Type Name Description
1 GND GND_SUB Substrate ground
2I SA I
2
C select address (pull-down)
3 I TEST_MODE This pin must be connected to ground (pull-down)
4 I/O VSS Internal reference at Vcc-3.3 V
5 I/O VCC_REG Internal Vcc reference
6 O OUT2B Output half-bridge 2B
7 GND GND2 Power negative supply
8 Power VCC2 Power positive supply
9 O OUT2A Output half-bridge 2A
10 O OUT1B Output half-bridge 1B
STA350BW Pin connections
Doc ID 018572 Rev 3 13/86
11 Power VCC1 Power positive supply
12 GND GND1 Power negative supply
13 O OUT1A Output half-bridge 1A
14 GND GND_REG Internal ground reference
15 Power VDD Internal 3.3 V reference voltage
16 I CONFIG Parallel mode command
17 O OUT3B/FFX3B PWM out CH3B / external bridge driver
18 O OUT3A/FFX3A PWM out CH3A / external bridge driver
19 O EAPD/OUT4B Power-down for external bridge / PWM out CH4B
20 I/O TWARN/OUT4A Thermal warning from external bridge (pull-up when input)
/ PWM out CH4A
21 Power VDD_DIG Digital supply voltage
22 GND GND_DIG Digital ground
23 I PWRDN Power down (pull-up)
24 Power VDD_PLL Positive supply for PLL
25 I FILTER_PLL Connection to PLL filter
26 GND GND_PLL Negative supply for PLL
27 I XTI PLL input clock
28 I BICKI I
2
S serial clock
29 I LRCKI I
2
S left/right clock
30 I SDI I
2
S serial data channels 1 and 2
31 I RESET Reset (pull-up)
32 O INT_LINE Fault interrupt
33 I/O SDA I
2
C serial data
34 I SCL I
2
C serial clock
35 GND GND_DIG Digital ground
36 Power VDD_DIG Digital supply voltage
Table 1. Pin description (continued)
Pin Type Name Description
Electrical specifications STA350BW
14/86 Doc ID 018572 Rev 3
3 Electrical specifications
3.1 Absolute maximum ratings
Warning: Stresses beyond those listed in Table 2 above may cause
permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any
other conditions beyond those indicated under
“Recommended operating conditions” are not implied.
Exposure to AMR conditions for extended periods may affect
device reliability. In the real application, power supplies with
nominal values rated within the recommended operating
conditions may rise beyond the maximum operating
conditions for a short time when no or very low current is
sunk (amplifier in mute state). In this case the reliability of the
device is guaranteed, provided that the absolute maximum
ratings are not exceeded.
3.2 Thermal data
Table 2. Absolute maximum ratings
Symbol Parameter Min Typ Max Unit
Vcc Power supply voltage (VCCxA, VCCxB) -0.3 30 V
VDD_DIG Digital supply voltage -0.3 4 V
VDD_PLL PLL supply voltage -0.3 4
Top Operating junction temperature -20 150 °C
Tstg Storage temperature -40 150 °C
Table 3. Thermal data
Symbol Parameter Min Typ Max Unit
Rth j-case Thermal resistance junction-case (thermal pad) 1.5 °C/W
Tth-sdj Thermal shutdown junction temperature 150 °C
Tth-w Thermal warning temperature 130 °C
Tth-sdh Thermal shutdown hysteresis 20 °C
Rth j-amb Thermal resistance junction-ambient (1)
1. See Section 8: Package thermal characteristics on page 82 for details.
STA350BW Electrical specifications
Doc ID 018572 Rev 3 15/86
3.3 Recommended operating conditions
3.4 Electrical specifications for the digital section
Table 4. Recommended operating conditions
Symbol Parameter Min Typ Max Unit
Vcc Power supply voltage (VCCxA, VCCxB) 5 26 V
VDD_DIG Digital supply voltage 2.7 3.3 3.6 V
VDD_PLL PLL supply voltage 2.7 3.3 3.6 V
Tamb Ambient temperature -20 +85 °C
Table 5. Electrical specifications - digital section
Symbol Parameter Conditions Min Typ Max Unit
Iil
Low-level input current without
pull-up/down device Vi = 0 V 1 5 µA
Iih
High-level input current without
pull-up/down device
Vi = VDD_DIG
= 3.6 V 15µA
Vil Low-level input voltage 0.2 *
VDD_DIG V
Vih High-level input voltage 0.8 *
VDD_DIG V
Vol Low-level output voltage Iol=2 mA 0.4 *
VDD_DIG V
Voh High-level output voltage Ioh=2 mA 0.8 *
VDD_DIG V
Ipu Pull-up/down current 25 66 125 µA
Rpu
Equivalent pull-up/down
resistance 50 kΩ
Electrical specifications STA350BW
16/86 Doc ID 018572 Rev 3
3.5 Electrical specifications for the power section
The specifications given in this section are valid for the operating conditions: VCC =24V,
f=1kHz, f
sw = 384 kHz, Tamb = 25° C and RL = 8 Ω, unless otherwise specified.
Table 6. Electrical specifications - power section
Symbol Parameter Conditions Min Typ Max Unit
Po
Continuous output power, BTL, ternary
mode
THD = 1% 27 W
THD = 10% 36
Continuous output power SE, binary
mode, RL = 4 Ω
THD = 1% 12 W
THD = 10% 15.5
RdsON
Power Pchannel/Nchannel MOSFET (total
bridge) ld = 1.5 A 180 250 mΩ
Idss Power Pchannel/Nchannel leakage VCC = 20 V 10 μA
ILDT Low current dead time (static) Resistive load(1) 8 15 ns
IHDT High current dead time (dynamic) I load(1) = 1.5 A 15 30 ns
trRise time Resistive load(1) 10 18 ns
tfFall time Resistive load(1) 10 18 ns
Vcc Supply voltage operating voltage 5 26 V
Ivcc
Supply current from Vcc in power-down PWRDN = 0 1 μA
Supply current from Vcc in operation
PCM input signal
= -60 dBfs,
Switching frequency
= 384 kHz,
No LC filters
52 60 mA
Ivdd
Supply current FFX processing (reference
only)
Internal clock =
49.152 MHz 55 70 mA
Ilim Overcurrent limit (2) 3.0 3.8 4.0 A
Isc Short-circuit protection Hi-Z output 4.0 5.0 A
UVL Undervoltage protection 4.3 V
OVP Overvoltage protection 29 V
tmin Output minimum pulse width No load 100 ns
DR Dynamic range 100 dB
SNR Signal-to-noise ratio, ternary mode A-Weighted 100 dB
Signal-to-noise ratio binary mode 90 dB
THD+N Total harmonic distortion + noise
FFX stereo mode,
Po = 1 W
f=1kHz
0.09 %
STA350BW Electrical specifications
Doc ID 018572 Rev 3 17/86
Figure 3. Test circuit
XTA L K Crosstalk
FFX stereo mode,
<5 kHz
One channel driven
at 1 W
Other channel
measured
80 dB
PSRR Power Supply Rejection Ratio
FFX stereo mode,
<5 kHz
VRipple01V RMS
Audio input = dither
only
80 dB
η
Peak efficiency, FFX mode Po = 2 x 25 W
into 8 Ω90
%
Peak efficiency, binary modes Po = 2 x 10W into 4Ω
+ 1 x 20W into 8 Ω86
1. Refer to Figure 3: Test circuit.
2. Limit current if the register (OCRB Section 7.3.3) overcurrent warning detect adjustment bypass is enabled. When disabled
refer to the Isc.
Table 6. Electrical specifications - power section (continued)
Symbol Parameter Conditions Min Typ Max Unit
tr tf
VCC
0.9*VCC
VCC/2
0.1*VCC
t
OUTxY
+VCC
Duty cycle = 50%
INxY
MP
MN
OUTxY
GND
vdc = VCC/2
R= 8Ω
+
-
Low current dead tim e = M AX(tr,tf)
tr tf
VCC
0.9*VCC
VCC/2
0.1*VCC
t
OUTxY
+VCC
Duty cycle = 50%
INxY
MP
MN
OUTxY
GND
vdc = VCC/2
R= 8Ω
+
-
Low current dead tim e = M AX(tr,tf)
AM045169v1
Characterization curves STA350BW
18/86 Doc ID 018572 Rev 3
4 Characterization curves
The following characterization curves were made using the STA350BW demonstration
board with 2.0 channels (refer to the schematic in Figure 6) under the following test
conditions:
VCC = 25 V, f = 1 kHz, fSW = 384 kHz, Tamb = 25 °C and RL = 6 Ω, unless otherwise
specified.
Figure 4. Demonstration board, 2.0 channels
AM045290v1
STA350BW Characterization curves
Doc ID 018572 Rev 3 19/86
Figure 5. Mono parallel BTL schematic
AM045170v1
Characterization curves STA350BW
20/86 Doc ID 018572 Rev 3
Figure 6. THD+N vs. output power (VCC = 25 V, load = 6 Ω)
Figure 7. THD+N vs. output power (VCC = 18 V, load = 8 Ω)
0.01
10
0.02
0.05
0.1
0.2
0.5
1
2
5
%
1m 1002m 5m 10m 20m 50m 100m 200m 500m 1 2 5 10 20 50
W
Vcc=25V , Load = 6Ω,
Freq= 1KHz
AM045171v1
0.01
10
0.02
0.05
0.1
0.2
0.5
1
2
5
%
1m 502m 5m 10m 20m 50m 100m 200m 500m 1 2 5 10 20
W
Vcc=18V , Load = 8Ω,
Freq= 1KHz
AM045172v1
STA350BW Characterization curves
Doc ID 018572 Rev 3 21/86
Figure 8. Output power vs. VCC (load = 6 Ω)
Figure 9. Output power vs. VCC (load = 8 Ω)
5
60
10
15
20
25
30
35
40
45
50
55
W
+6 +26+8 +10 +12 +14 +16 +18 +20 +22 +24
Vdc
THD = 10%
THD = 1%
Load= 6 Ω,
Freq=1KHz
AM045173v1
5
50
10
15
20
25
30
35
40
45
W
+6 +26+8 +10 +12 +14 +16 +18 +20 +22 +24
Vdc
Load= 8 Ω,
Freq=1KHz
THD = 10%
THD = 1%
AM045174v1
Characterization curves STA350BW
22/86 Doc ID 018572 Rev 3
Figure 10. Efficiency vs. output power (VCC = 25 V, load = 6 Ω)
Figure 11. Efficiency vs. output power (VCC = 25 V, load = 8 Ω)
+0
+1
+0.1
+0.2
+0.3
+0.4
+0.5
+0.6
+0.7
+0.8
+0.9
55510 15 20 25 30 35 40 45 50
W
Vcc= 25V,
Load= 6 Ω,
Freq=1KHz
AM045175v1
η %
+0
+1
+0.1
+0.2
+0.3
+0.4
+0.5
+0.6
+0.7
+0.8
+0.9
54510 15 20 25 30 35 40
W
Vcc= 25V,
Load= 8 Ω,
Freq=1KHz
AM045176v1
η %
STA350BW Characterization curves
Doc ID 018572 Rev 3 23/86
4.1 Mono parallel BTL characteristics
Figure 12. THD+N vs. output power (VCC = 25 V, load = 3 Ω)
Figure 13. Output power vs. VCC (load = 3 Ω)
0.01
10
0.02
0.05
0.1
0.2
0.5
1
2
5
%
1m 1002m 5m 10m 20m 50m 100m 200m 500m 1 2 5 10 20 50
W
Vcc=25V
Load= 3 Ω,
Freq=1KHz
AM045177v1
10
110
20
30
40
50
60
70
80
90
100
W
+6 +26+8 +10 +12 +14 +16 +18 +20 +22 +24
Vdc
Load= 3 Ω,
Freq=1KHz
THD=10%
THD=1%
AM045178v1
Characterization curves STA350BW
24/86 Doc ID 018572 Rev 3
Figure 14. Efficiency vs. output power (VCC = 26 V, load = 3 Ω)
Figure 15. Efficiency vs. output power (VCC = 18 V, load = 3 Ω)
+0
+1
+0.1
+0.2
+0.3
+0.4
+0.5
+0.6
+0.7
+0.8
+0.9
10 11020 30 40 50 60 70 80 90 100
W
Vcc= 26V
Load= 3 Ω,
Freq=1KHz
η %
AM045179v1
+0
+1
+0.1
+0.2
+0.3
+0.4
+0.5
+0.6
+0.7
+0.8
+0.9
55010 15 20 25 30 35 40 45
W
Vcc=18V
Load= 3 Ω,
Freq=1KHz
AM045180v1
η %
STA350BW Processing data paths
Doc ID 018572 Rev 3 25/86
5 Processing data paths
Figure 16 and 17 illustrate the data processing paths inside the STA350BW.
The whole processing chain is composed of two consecutive sections. In the first one dual-
channel processing is implemented, as described below, and then each channel is fed into
the post-mixing block allowing to generate either a third channel (typically used in 2.1 output
configuration and with crossover filters enabled) or to have the channels processed by the
dual-band DRC block (2.0 output configuration with crossover filters used to define the cutoff
frequency of the two bands).
The first section begins with a 2x oversampling FIR filter allowing for 2*Fs audio processing.
Then a selectable high-pass filter removes the DC level (enabled if HFB=0).
The channel 1 and 2 processing chain can include up to 8 filters, depending on the selected
configuration (bits BQL, BQ5, BQ6, BQ7 and XO[3:0]).
By default 4 independent filters per channel are enabled, plus the pre-configured De-
Emphasis, Bass and Treble controls (BQL=0, BQ5=0, BQ6=0, BQ7=0).
If the coefficient sets are linked (BQL=1) it’s then possible to use De-Emphasis, Bass and
Treble filter in a user-defined configuration (provided the relevant BQx bits are set). In other
words both channels will use the same processing coefficients and can have up to 7 filters
each. Note that if BQL=0 the BQx bits are ignored and the 5th, 6th and 7th filters are
configured as, respectively, De-Emphasis, Bass and Treble controls.
Moreover the common 8th filter, from the subsequent processing section, can be available
on both channels (provided the pre-defined crossover frequencies are not used, XO[3:0]=0,
and the dual-band DRC is not used).
In the second section mixing and crossover filters are available. If B2DRC is not enabled
(Figure 17), they are fully user-programmable and allow generating a third channel (2.1
outputs). Alternatively, in B2DRC mode, those blocks will be used to split the sub-band and
define the cutoff frequencies of the two bands. A prescaler and a final post scaler allow full
control over the signal dynamic respectively before and after the filtering stages. A mixer
function is also available.
Figure 16. Left and right processing - part 1
From
I2S input
interface
PreScale Hi-Pass
Filter
Biquad
#1
Biquad
#2
Biquad
#3
Biquad
#4
If HPB=0 User Defined Filters
If DSPB=0 and C1EQBP=0
x2
FIR
over
L
Sampling
frequency=Fs
Sampling
frequency=2xFs
From
I2S input
interface
PreScale Hi-Pass
Filter
Biquad
#1
Biquad
#2
Biquad
#3
Biquad
#4 De-Emph.
If DEMP=0
x2
FIR
over
sampling
L
Sampling
frequency=Fs
Sampling
frequency=2xFs
Bass Treble
If C1TCB=0
BTC: Bass Boost/Cut
TTC: Treble Boost/Cut
PreScale Hi-Pass
Filter
Biquad
#1
Biquad
#2
Biquad
#3
Biquad
#4
If HPB=0 User Defined Filters
If DSPB=0 and C2EQBP=0
x2
FIR
over
L
PreScale Hi-Pass
Filter
Biquad
#1
Biquad
#2
Biquad
#3
Biquad
#4 De-Emph.
If DEMP=0
x2
FIR
over
sampling
R
Bass Treble
If C2TCB=0
BTC: Bass Boost/Cut
TTC: Treble Boost/Cut
If BQ5=1
and BQL=1
Biquad
#5
If BQ6=1
and BQL=1
Biquad
#6
IF BQ7=1
and BQL=1
Biquad
#7
If BQ5=1
and BQL=1
Biquad
#5
If BQ6=1
and BQL=1
Biquad
#6
IF BQ7=1
and BQL=1
Biquad
#7
AM045181v1
Processing data paths STA350BW
26/86 Doc ID 018572 Rev 3
Figure 17. Processing - part 2
Crossover Frequency determined by XO Setting
User Defined If XO=0000
R
L
+
+
+
C1Mx2
C2Mx1
C2Mx2
C3Mx1
C3Mx2
C1Mx1
Hi-Pass XO
Filter
Hi-Pass XO
Filter
User-Defined Mix Coefficients
Postscale
Postscale
User Defined If XO=0000
R
L
+
+
+
C1Mx2=
0x00000
C2Mx1=
0x000000
C2Mx2=
0x7fffff
C3Mx1=
0x40000
C3Mx2=
0x400000
C1Mx1=
0x7fffff
B2DRC
Hi-pass
filter
User-Defined Mix Coefficients
Postscale
Postscale
Vol
And
Limiter
DRC1
DRC1
DRC2
CH1
Volume
CH2
Volume
CH3
Volume
B2DRC
Hi-pass
filter
+
+
DRC2
CH3
Volume
-+
-+
Crossover Frequency determined by XO Setting
User Defined If XO=0000
R
L
+
+
+
C1Mx2
C2Mx1
C2Mx2
C3Mx1
C3Mx2
C1Mx1
Hi-Pass XO
Filter
Hi-Pass XO
Filter
Lo-Pass XO
Filter
User-Defined Mix Coefficients
Vol
And
Limiter
Vol
And
Limiter
Vol
And
Limiter
Postscale
Postscale
Postscale
User Defined If XO=0000
R
L
+
+
+
C1Mx2
C2Mx1
C2Mx2
C3Mx1
C3Mx2
C1Mx1
Channel ½
Biquad#5
--------------
Hi-pass XO
filter
User-Defined Mix Coefficients
Vol
And
Limiter
Vol
And
Limiter
Vol
And
Limiter
Postscale
Postscale
Postscale
Channel ½
Biquad#5
--------------
Hi-pass XO
filter
Channel 3
Biquad
--------------
Low-pass XO
filter
B2DRC Disabled
Dual-band DRC enabled
Dual-band DRC disabled
AM045182v1
STA350BW I2C bus specification
Doc ID 018572 Rev 3 27/86
6 I2C bus specification
The STA350BW supports the I2C protocol via the input ports SCL and SDA_IN (master to
slave) and the output port SDA_OUT (slave to master). This protocol defines any device that
sends data to the bus as a transmitter and any device that reads the data as a receiver. The
device that controls the data transfer is known as the master and the other as the slave. The
master always starts the transfer and provides data to the serial clock for synchronization.
The STA350BW is always a slave device in all of its communications. It supports up to
400 kb/sec rate (fast-mode bit rate). The STA350BW I2C is a slave-only interface. The I2C
interface works properly only in the case that the master clock generated by the PLL has a
frequency 10 times higher compared to the frequency of the applied SCL signal.
6.1 Communication protocol
6.1.1 Data transition or change
Data changes on the SDA line must only occur when the SCL clock is low. An SDA transition
while the clock is high is used to identify a START or STOP condition.
6.1.2 Start condition
START is identified by a high-to-low transition of the data bus SDA signal while the clock
signal SCL is stable in the high state. A START condition must precede any command for
data transfer.
6.1.3 Stop condition
STOP is identified by a low-to-high transition of the data bus SDA signal while the clock
signal SCL is stable in the high state. A STOP condition terminates communication between
the STA350BW and the bus master.
6.1.4 Data input
During data input the STA350BW samples the SDA signal on the rising edge of clock SCL.
For correct device operation the SDA signal must be stable during the rising edge of the
clock and the data can change only when the SCL line is low.
6.2 Device addressing
To start communication between the master and the STA350BW, the master must initiate a
start condition. Following this, the master sends 8 bits (MSB first) corresponding to the
device select address and read or write mode to the SDA line.
The seven most significant bits are the device address identifiers, corresponding to the I2C
bus definition. In the STA350BW the I2C interface has two device addresses depending on
the SA port configuration, 0x38 when SA = 0, and 0x3A when SA = 1.
The eighth bit (LSB) identifies the read or write operation RW, this bit is set to 1 in read
mode and to 0 for write mode. After a START condition the STA350BW identifies on the bus
the device address and if a match is found, it acknowledges the identification on the SDA
I2C bus specification STA350BW
28/86 Doc ID 018572 Rev 3
bus during the 9th bit time. The byte following the device identification byte is the internal
space address.
6.3 Write operation
Following the START condition the master sends a device select code with the RW bit set
to 0. The STA350BW acknowledges this and then writes the byte of the internal address.
After receiving the internal byte address the STA350BW again responds with an
acknowledgement.
6.3.1 Byte write
In the byte write mode the master sends one data byte which is acknowledged by the
STA350BW. The master then terminates the transfer by generating a STOP condition.
6.3.2 Multi-byte write
The multi-byte write modes can start from any internal address. The master generating a
STOP condition terminates the transfer.
6.4 Read operation
6.4.1 Current address byte read
Following the START condition the master sends a device select code with the RW bit set
to 1. The STA350BW acknowledges this and then responds by sending one byte of data.
The master then terminates the transfer by generating a STOP condition.
6.4.2 Current address multi-byte read
The multi-byte read modes can start from any internal address. Sequential data bytes are
read from sequential addresses within the STA350BW. The master acknowledges each
data byte read and then generates a STOP condition, terminating the transfer.
6.4.3 Random address byte read
Following the START condition the master sends a device select code with the RW bit set
to 0. The STA350BW acknowledges this and then the master writes the internal address
byte. After receiving the internal byte address, the STA350BW again responds with an
acknowledgement. The master then initiates another START condition and sends the device
select code with the RW bit set to 1. The STA350BW acknowledges this and then responds
by sending one byte of data. The master then terminates the transfer by generating a STOP
condition.
6.4.4 Random address multi-byte read
The multi-byte read modes can start from any internal address. Sequential data bytes are
read from sequential addresses within the STA350BW. The master acknowledges each
data byte read and then generates a STOP condition, terminating the transfer.
STA350BW I2C bus specification
Doc ID 018572 Rev 3 29/86
6.4.5 Write mode sequence
Figure 18. Write mode sequence
6.4.6 Read mode sequence
Figure 19. Read mode sequence
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DATA IN
ACK
STOP
BYTE
WRITE
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DATA IN
ACK
STOP
MULTIBYTE
WRITE
DATA IN
ACK
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DATA IN
ACK
STOP
BYTE
WRITE
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DATA IN
ACK
STOP
MULTIBYTE
WRITE
DATA IN
ACK
AM045183v1
DEV-ADDR
ACK
START RW
DATA
NO ACK
STOP
CURRENT
ADDRESS
READ
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DEV-ADDR
ACK
STOP
RANDOM
ADDRESS
READ
DATA
NO ACK
WRTRATS
DEV-ADDR
ACK
START
DATA
ACK
DATA
ACK
STOP
SEQUENTIAL
CURRENT
READ
DATA
NO ACK
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DEV-ADDR
ACK
SEQUENTIAL
RANDOM
READ
DATA
ACK
WRTRATS
DATA
ACK NO ACK
STOP
DATA
RW=
HIGH
DEV-ADDR
ACK
START RW
DATA
NO ACK
STOP
CURRENT
ADDRESS
READ
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DEV-ADDR
ACK
STOP
RANDOM
ADDRESS
READ
DATA
NO ACK
WRTRATS
DEV-ADDR
ACK
START
DATA
ACK
DATA
ACK
STOP
SEQUENTIAL
CURRENT
READ
DATA
NO ACK
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DEV-ADDR
ACK
SEQUENTIAL
RANDOM
READ
DATA
ACK
WRTRATS
DATA
ACK NO ACK
STOP
DATA
RW=
HIGH
AM045184v1
Register description STA350BW
30/86 Doc ID 018572 Rev 3
7 Register description
Table 7. Register summary
Addr Name D7 D6 D5 D4 D3 D2 D1 D0
0x00 CONFA FDRB TWAB TWRB IR1 IR0 MCS2 MCS1 MCS0
0x01 CONFB C2IM C1IM DSCKE SAIFB SAI3 SAI2 SAI1 SAI0
0x02 CONFC OCRB CSZ3 CSZ2 CSZ1 CSZ0 OM1 OM0
0x03 CONFD SME ZDE DRC BQL PSL DSPB DEMP HPB
0x04 CONFE SVE ZCE DCCV PWMS AME NSBW MPC MPCV
0x05 CONFF EAPD PWDN ECLE LDTE BCLE IDE OCFG1 OCFG0
0x06 MUTE/LOC LOC1 LOC0 Reserved Reserved C3M C2M C1M MMUTE
0x07 MVOL MV7 MV6 MV5 MV4 MV3 MV2 MV1 MV0
0x08 C1VOL C1V7 C1V6 C1V5 C1V4 C1V3 C1V2 C1V1 C1V0
0x09 C2VOL C2V7 C2V6 C2V5 C2V4 C2V3 C2V2 C2V1 C2V0
0x0A C3VOL C3V7 C3V6 C3V5 C3V4 C3V3 C3V2 C3V1 C3V0
0x0B AUTO1 Reserved Reserved AMGC1 AMGC0 Reserved Reserved Reserved Reserved
0x0C AUTO2 XO3 XO2 XO1 XO0 AMAM2 AMAM1 AMAM0 AMAME
0x0D AUTO3 Reserved
0x0E C1CFG C1OM1 C1OM0 C1LS1 C1LS0 C1BO C1VBP C1EQBP C1TCB
0x0F C2CFG C2OM1 C2OM0 C2LS1 C2LS0 C2BO C2VBP C2EQBP C2TCB
0x10 C3CFG C3OM1 C3OM0 C3LS1 C3LS0 C3BO C3VBP Reserved Reserved
0x11 TONE TTC3 TTC2 TTC1 TTC0 BTC3 BTC2 BTC1 BTC0
0x12 L1AR L1A3 L1A2 L1A1 L1A0 L1R3 L1R2 L1R1 L1R0
0x13 L1ATRT L1AT3 L1AT2 L1AT1 L1AT0 L1RT3 L1RT2 L1RT1 L1RT0
0x14 L2AR L2A3 L2A2 L2A1 L2A0 L2R3 L2R2 L2R1 L2R0
0x15 L2ATRT L2AT3 L2AT2 L2AT1 L2AT0 L2RT3 L2RT2 L2RT1 L2RT0
0x16 CFADDR Reserved Reserved CFA5 CFA4 CFA3 CFA2 CFA1 CFA0
0x17 B1CF1 C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16
0x18 B1CF2 C1B15 C1B14 C1B13 C1B12 C1B11 C1B10 C1B9 C1B8
0x19 B1CF3 C1B7 C1B6 C1B5 C1B4 C1B3 C1B2 C1B1 C1B0
0x1A B2CF1 C2B23 C2B22 C2B21 C2B20 C2B19 C2B18 C2B17 C2B16
0x1B B2CF2 C2B15 C2B14 C2B13 C2B12 C2B11 C2B10 C2B9 C2B8
0x1C B2CF3 C2B7 C2B6 C2B5 C2B4 C2B3 C2B2 C2B1 C2B0
0x1D A1CF1 C3B23 C3B22 C3B21 C3B20 C3B19 C3B18 C3B17 C3B16
0x1E A1CF2 C3B15 C3B14 C3B13 C3B12 C3B11 C3B10 C3B9 C3B8
0x1F A1CF3 C3B7 C3B6 C3B5 C3B4 C3B3 C3B2 C3B1 C3B0
0x20 A2CF1 C4B23 C4B22 C4B21 C4B20 C4B19 C4B18 C4B17 C4B16
0x21 A2CF2 C4B15 C4B14 C4B13 C4B12 C4B11 C4B10 C4B9 C4B8
STA350BW Register description
Doc ID 018572 Rev 3 31/86
0x22 A2CF3 C4B7 C4B6 C4B5 C4B4 C4B3 C4B2 C4B1 C4B0
0x23 B0CF1 C5B23 C5B22 C5B21 C5B20 C5B19 C5B18 C5B17 C5B16
0x24 B0CF2 C5B15 C5B14 C5B13 C5B12 C5B11 C5B10 C5B9 C5B8
0x25 B0CF3 C5B7 C5B6 C5B5 C5B4 C5B3 C5B2 C5B1 C5B0
0x26 CFUD Reserved RA R1 WA W1
0x27 MPCC1 MPCC15 MPCC14 MPCC13 MPCC12 MPCC11 MPCC10 MPCC9 MPCC8
0x28 MPCC2 MPCC7 MPCC6 MPCC5 MPCC4 MPCC3 MPCC2 MPCC1 MPCC0
0x29 DCC1 DCC15 DCC14 DCC13 DCC12 DCC11 DCC10 DCC9 DCC8
0x2A DCC2 DCC7 DCC6 DCC5 DCC4 DCC3 DCC2 DCC1 DCC0
0x2B FDRC1 FDRC15 FDRC14 FDRC13 FDRC12 FDRC11 FDRC10 FDRC9 FDRC8
0x2C FDRC2 FDRC7 FDRC6 FDRC5 FDRC4 FDRC3 FDRC2 FDRC1 FDRC0
0x2D STATUS PLLUL FAULT UVFAULT OVFAULT OCFAULT OCWARN TFAULT TWARN
0x2E Reserved Reserved RO1BACT R5BACT R4BACT R3BACT R2BACT R1BACT
0x2F Reserved Reserved R01BEND R5BEND R4BEND R3BEND R2BEND R1BEND
0x30 Reserved Reserved R5BBAD R4BBAD R3BBAD R2BBAD R1BBAD
0x31 EQCFG XOB Reserved Reserved AMGC3 AMGC2 Reserved SEL1 SEL0
0x32 EATH1 EATHEN1 EATH1[6] EATH1[5] EATH1[4] EATH1[3] EATH1[2] EATH1[1] EATH1[0]
0x33 ERTH1 ERTHEN1 ERTH1[6] ERTH1[5] ERTH1[4] ERTH1[3] ERTH1[2] ERTH1[1] ERTH1[0]
0x34 EATH2 EATHEN2 EATH2[6] EATH2[5] EATH2[4] EATH2[3] EATH2[2] EATH2[1] EATH2[0]
0x35 ERTH2 ERTHEN2 ERTH2[6] ERTH2[5] ERTH2[4] ERTH2[3] ERTH2[2] ERTH2[1] ERTH2[0]
0x36 CONFX MDRC[1] MDRC[0] PS48DB XAR1 XAR2 BQ5 BQ6 BQ7
0x37 SVCA Reserved Reserved SVUPE SVUP[4] SVUP[3] SVUP[2] SVUP[1] SVUP[0]
0x38 SVCB Reserved Reserved SVDWE SVDW[4] SVDW[3] SVDW[2] SVDW[1] SVDW[0]
0x39 RMS0A R_C0[23] R_C0[22] R_C0[21] R_C0[20] R_C0[19] R_C0[18] R_C0[17] R_C0[16]
0x3A RMS0B R_C0[15] R_C0[14] R_C0[13] R_C0[12] R_C0[11] R_C0[10] R_C0[9] R_C0[8]
0x3B RMS0C R_C0[7] R_C0[6] R_C0[5] R_C0[4] R_C0[3] R_C0[2] R_C0[1] R_C0[0]
0x3C RMS1A R_C1[23] R_C1[22] R_C1[21] R_C1[20] R_C1[19] R_C1[18] R_C1[17] R_C1[16]
0x3D RMS1B R_C1[15] R_C1[14] R_C1[13] R_C1[12] R_C1[11] R_C1[10] R_C1[9] R_C1[8]
0x3E RMS1C R_C1[7] R_C1[6] R_C1[5] R_C1[4] R_C1[3] R_C1[2] R_C1[1] R_C1[0]
0x3F EVOLRES VRESEN VRESTG C3VR[1] C3VR[0] C2VR[1] C2VR[0] C1VR[1] C1VR[0]
0x40 Reserved
0x41 Reserved
0x42 Reserved
0x43 Reserved
0x44 Reserved
0x45 Reserved
0x46 Reserved
Table 7. Register summary (continued)
Addr Name D7 D6 D5 D4 D3 D2 D1 D0
Register description STA350BW
32/86 Doc ID 018572 Rev 3
0x47 Reserved
0x48 NSHAPE NSHXEN NSHB7EN NSHB6EN NSHB5EN NSHB4EN NSHB3EN NSHB2EN NSHB1E
N
0x49 CXT[B4B1] CXTB4[1] CXTB4[0] CXTB3[1] CXTB3[0] CXTB2[1] CXTB2[0] CXTB1[1] CXTB1[0]
0x4A CXT[B7B5] Reserved Reserved CXTB7[1] CXTB7[0] CXTB6[1] CXTB6[0] CXTB5[1] CXTB5[0]
0x4B MISC1 RPDNEN NSHHPEN BRIDGOFF Reserved Reserved CPWMEN Reserved Reserved
0x4C MISC2 Reserved Reserved Reserved PNDLSL[2] PNDLSL[1] PNDLSL[0] Reserved Reserved
0x4D Reserved
0x4E Reserved
0x4F Reserved
0x50 Reserved
0x51 Reserved
0x52 Reserved
0x53 Reserved
0x54 Reserved
0x55 Reserved
0x56 Reserved
Table 7. Register summary (continued)
Addr Name D7 D6 D5 D4 D3 D2 D1 D0
STA350BW Register description
Doc ID 018572 Rev 3 33/86
7.1 Configuration register A (addr 0x00)
7.1.1 Master clock select
The STA350BW supports sample rates of 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz,
176.4 kHz, and 192 kHz. Therefore the internal clock is:
32.768 MHz for 32 kHz
45.1584 MHz for 44.1 kHz, 88.2 kHz, and 176.4 kHz
49.152 MHz for 48 kHz, 96 kHz, and 192 kHz
The external clock frequency provided to the XTI pin must be a multiple of the input sample
frequency (fs).
The relationship between the input clock and the input sample rate is determined by both
the MCSx and the IR (input rate) register bits. The MCSx bits determine the PLL factor
generating the internal clock and the IR bit determines the oversampling ratio used
internally.
D7 D6 D5 D4 D3 D2 D1 D0
FDRB TWAB TWRB IR1 IR0 MCS2 MCS1 MCS0
01100011
Table 8. Master clock select
Bit R/W RST Name Description
0R/W 1 MCS0
Selects the ratio between the input I2S sample
frequency and the input clock.
1R/W 1 MCS1
2R/W 0 MCS2
Table 9. Input sampling rates
Input sample rate
fs (kHz) IR MCS[2:0]
101 100 011 010 001 000
32, 44.1, 48 00 576 * fs 128 * fs 256 * fs 384 * fs 512 * fs 768 * fs
88.2, 96 01 NA 64 * fs 128 * fs 192 * fs 256 * fs 384 * fs
176.4, 192 1X NA 32 * fs 64 * fs 96 * fs 128 * fs 192 * fs
Register description STA350BW
34/86 Doc ID 018572 Rev 3
7.1.2 Interpolation ratio select
The STA350BW has variable interpolation (oversampling) settings such that internal
processing and FFX output rates remain consistent. The first processing block interpolates
by either 2-times or 1-time (pass-through) or provides a 2-times downsample. The
oversampling ratio of this interpolation is determined by the IR bits.
7.1.3 Thermal warning recovery bypass
If the thermal warning adjustment is enabled (TWAB = 0), then the thermal warning
recovery determines if the -3 dB output limit is removed when thermal warning is negative.
If TWRB = 0 and TWAB = 0, then when a thermal warning disappears the -3 dB output limit
is removed and the gain is added back to the system. If TWRB = 1 and TWAB = 0, then
when a thermal warning disappears the -3 dB output limit remains until TWRB is changed to
zero or the device is reset.
7.1.4 Thermal warning adjustment bypass
Table 10. Internal interpolation ratio
Bit R/W RST Name Description
4:3 R/W 00 IR [1:0] Selects internal interpolation ratio based on input I2S
sample frequency
Table 11. IR bit settings as a function of input sample rate
Input sample rate fs (kHz) IR 1st stage interpolation ratio
32 00 2 times oversampling
44.1 00 2 times oversampling
48 00 2 times oversampling
88.2 01 Pass-through
96 01 Pass-through
176.4 10 2 times downsampling
192 10 2 times downsampling
Table 12. Thermal warning recovery bypass
Bit R/W RST Name Description
5R/W 1 TWRB 0: Thermal warning recovery enabled
1: Thermal warning recovery disabled
Table 13. Thermal warning adjustment bypass
Bit R/W RST Name Description
6R/W 1 TWAB 0: Thermal warning adjustment enabled
1: Thermal warning adjustment disabled
STA350BW Register description
Doc ID 018572 Rev 3 35/86
The on-chip STA350BW power output block provides feedback to the digital controller using
inputs to the power control block. Input TWARN is used to indicate a thermal warning
condition. When TWARN is asserted (set to 0) for a period of time greater than 400 ms, the
power control block forces a -3 dB output limit (determined by TWOCL in the coefficient
RAM) to the modulation limit in an attempt to eliminate the thermal warning condition. Once
the thermal warning output limit adjustment is applied, it remains in this state until reset,
unless FDRB = 0.
7.1.5 Fault detect recovery bypass
The on-chip STA350BW power output block provides feedback to the digital controller using
inputs to the power control block. The FAULT input is used to indicate a fault condition (either
over-current or thermal). When FAULT is asserted (set to 0), the power control block
attempts a recovery from the fault by asserting the tri-state output (setting it to 0 which
directs the power output block to begin recovery), holds it at 0 for period of time in the range
of 0.1 ms to 1 second as defined by the fault-detect recovery constant register (FDRC
registers 0x29-0x2A), then toggles it back to 1. This sequence is repeated as long as the
fault indication exists. This feature is enabled by default but can be bypassed by setting the
FDRB control bit to 1.
7.2 Configuration register B (addr 0x01)
7.2.1 Serial audio input interface format
Table 14. Fault detect recovery bypass
Bit R/W RST Name Description
7R/W 0 FDRB 0: fault detect recovery enabled
1: fault detect recovery disabled
D7 D6 D5 D4 D3 D2 D1 D0
C2IM C1IM DSCKE SAIFB SAI3 SAI2 SAI1 SAI0
10000000
Table 15. Serial audio input interface
Bit R/W RST Name Description
0 R/W 0 SAI0
Determines the interface format of the input serial
digital audio interface.
1 R/W 0 SAI1
2 R/W 0 SAI2
3 R/W 0 SAI3
Register description STA350BW
36/86 Doc ID 018572 Rev 3
7.2.2 Serial data interface
The STA350BW audio serial input was designed to interface with standard digital audio
components and to accept a number of serial data formats. The STA350BW always acts as
the slave when receiving audio input from standard digital audio components. Serial data for
two channels is provided using three inputs: left/right clock LRCKI, serial clock BICKI, and
serial data 1 and 2 SDI12.
The SAI bits (D3 to D0) and the SAIFB bit (D4) are used to specify the serial data format.
The default serial data format is I2S, MSB-first. Available formats are shown in the tables
that follow.
7.2.3 Serial data first bit
Table 16. Serial data first bit
SAIFB Format
0 MSB-first
1 LSB-first
Table 17. Support serial audio input formats for MSB-first (SAIFB = 0)
BICKI SAI [3:0] SAIFB Interface format
32 * fs 0000 0 I2S 15-bit data
0001 0 Left/right-justified 16-bit data
48 * fs
0000 0 I2S 16 to 23-bit data
0001 0 Left-justified 16 to 24-bit data
0010 0 Right-justified 24-bit data
0110 0 Right-justified 20-bit data
1010 0 Right-justified 18-bit data
1110 0 Right-justified 16-bit data
64 * fs
0000 0 I2S 16 to 24-bit data
0001 0 Left-justified 16 to 24-bit data
0010 0 Right-justified 24-bit data
0110 0 Right-justified 20-bit data
1010 0 Right-justified 18-bit data
1110 0 Right-justified 16-bit data
STA350BW Register description
Doc ID 018572 Rev 3 37/86
To make the STA350BW work properly, the serial audio interface LRCKI clock must be
synchronous to the PLL output clock. It means that:
the frequency of PLL clock / frequency of LRCKI = N ±4 cycles,
where N depends on the settings in Table 11 on page 34
the PLL must be locked.
If these two conditions are not met, and the IDE bit (reg 0x05 bit 2) is set to 1, the
STA350BW will immediately mute the I2S PCM data out (provided to the processing block)
and it will freeze any active processing task.
Table 18. Supported serial audio input formats for LSB-first (SAIFB = 1)
BICKI SAI [3:0] SAIFB Interface format
32 * fs 1100 1 I2S 15-bit data
1110 1 Left/right-justified 16-bit data
48 * fs
0100 1 I2S 23-bit data
0100 1 I2S 20-bit data
1000 1 I2S 18-bit data
1100 1 LSB first I2S 16-bit data
0001 1 Left-justified 24-bit data
0101 1 Left-justified 20-bit data
1001 1 Left-justified 18-bit data
1101 1 Left-justified 16-bit data
0010 1 Right-justified 24-bit data
0110 1 Right-justified 20-bit data
1010 1 Right-justified 18-bit data
1110 1 Right-justified 16-bit data
64 * fs
0000 1 I2S 24-bit data
0100 1 I2S 20-bit data
1000 1 I2S 18-bit data
1100 1 LSB first I2S 16-bit data
0001 1 Left-justified 24-bit data
0101 1 Left-justified 20-bit data
1001 1 Left-justified 18-bit data
1101 1 Left-justified 16-bit data
0010 1 Right-justified 24-bit data
0110 1 Right-justified 20-bit data
1010 1 Right-justified 18-bit data
1110 1 Right-justified 16-bit data
Register description STA350BW
38/86 Doc ID 018572 Rev 3
To avoid any audio side effects (like pop noise), it is strongly recommended to soft-mute any
audio streams flowing into the STA350BW data path before the desynchronization event
happens. At the same time any processing related to the I2C configuration should be issued
only after the serial audio interface and the internal PLL are synchronous again.
Note: Any mute or volume change causes some delay in the completion of the I2C operation due
to the soft-volume feature. The soft-volume phase change must be finished before any clock
desynchronization.
7.2.4 Delay serial clock enable
7.2.5 Channel input mapping
Each channel received via I2S can be mapped to any internal processing channel via the
Channel Input Mapping registers. This allows for flexibility in processing. The default
settings of these registers map each I2S input channel to its corresponding processing
channel.
Table 19. Delay serial clock enable
Bit R/W RST Name Description
5R/W 0 DSCKE
0: No serial clock delay
1: Serial clock delay by 1 core clock cycle to tolerate
anomalies in some I2S master devices
Table 20. Channel input mapping
Bit R/W RST Name Description
6R/W 0 C1IM 0: Processing channel 1 receives Left I2S Input
1: Processing channel 1 receives Right I2S Input
7R/W 1 C2IM 0: Processing channel 2 receives Left I2S Input
1: Processing channel 2 receives Right I2S Input
STA350BW Register description
Doc ID 018572 Rev 3 39/86
7.3 Configuration register C (addr 0x02)
7.3.1 FFX power output mode
The FFX power output mode selects how the FFX output timing is configured.
Different power devices use different output modes.
7.3.2 FFX compensating pulse size register
Table 6:
D7 D6 D5 D4 D3 D2 D1 D0
OCRB CSZ3 CSZ2 CSZ1 CSZ0 OM1 OM0
1 011111
Table 21. FFX power output mode
Bit R/W RST Name Description
0R/W 1 OM0 Selects configuration of FFX output.
1R/W 1 OM1
Table 22. Output modes
OM[1,0] Output stage mode
00 Drop compensation
01 Discrete output stage - tapered compensation
10 Full power mode
11 Variable drop compensation (CSZx bits)
Table 23. FFX compensating pulse size bits
Bit R/W RST Name Description
2R/W 1 CSZ0
When OM[1,0] = 11, this register determines the
size of the FFX compensating pulse from 0 clock
ticks to 15 clock ticks.
3R/W 1 CSZ1
4R/W 1 CSZ2
5R/W 0 CSZ3
Table 24. Compensating pulse size
CSZ[3:0] Compensating pulse size
0000 0 ns (0 tick) compensating pulse size
0001 20 ns (1 tick) clock period compensating pulse size
……
1111 300 ns (15 tick) clock period compensating pulse size
Register description STA350BW
40/86 Doc ID 018572 Rev 3
7.3.3 Overcurrent warning detect adjustment bypass
The OCWARN input is used to indicate an overcurrent warning condition. When OCWARN
is asserted (set to 0), the power control block forces an adjustment to the modulation limit
(default is -3 dB) in an attempt to eliminate the overcurrent warning condition. Once the
overcurrent warning volume adjustment is applied, it remains in this state until a reset
occurs. The level of adjustment can be changed via the TWOCL (thermal warning/over
current limit) setting which is address 0x37 of the user-defined coefficient RAM.
7.4 Configuration register D (addr 0x03)
7.4.1 High-pass filter bypass
The STA350BW features an internal digital high-pass filter for the purpose of AC coupling.
The purpose of this filter is to prevent DC signals from passing through an FFX amplifier. DC
signals can cause speaker damage. When HPB = 0, this filter is enabled.
7.4.2 De-emphasis
Table 25. Overcurrent warning bypass
Bit R/W RST Name Description
7 R/W 1 OCRB 0: Overcurrent warning adjustment enabled
1: Overcurrent warning adjustment disabled
D7 D6 D5 D4 D3 D2 D1 D0
SME ZDE DRC BQL PSL DSPB DEMP HPB
01000000
Table 26. High-pass filter bypass
Bit R/W RST Name Description
0R/W 0 HPB Setting of one bypasses internal AC coupling digital
high-pass filter
Table 27. De-emphasis
Bit R/W RST Name Description
1R/W 0 DEMP 0: No de-emphasis
1: Enable de-emphasis on all channels
STA350BW Register description
Doc ID 018572 Rev 3 41/86
7.4.3 DSP bypass
Setting the DSPB bit to 1 bypasses the EQ function of the STA350BW.
7.4.4 Post-scale link
Post-scale functionality can be used for power-supply error correction. For multi-channel
applications running off the same power-supply, the post-scale values can be linked to the
value of channel 1 for ease of use and to update the values faster.
7.4.5 Biquad coefficient link
For ease of use, all channels can use the biquad coefficients loaded into the Channel-1
coefficient RAM space by setting the BQL bit to 1. Therefore, any EQ updates only have to
be performed once.
7.4.6 Dynamic range compression/anti-clipping bit
Both limiters can be used in one of two ways, anti-clipping or dynamic range compression.
When used in anti-clipping mode the limiter threshold values are constant and dependent on
the limiter settings. In dynamic range compression mode the limiter threshold values vary
with the volume settings allowing a nighttime listening mode that provides a reduction in the
dynamic range regardless of the volume level.
Table 28. DSP bypass
Bit R/W RST Name Description
2 R/W 0 DSPB 0: Normal operation
1: Bypass of biquad and bass/treble functions
Table 29. Post-scale link
Bit R/W RST Name Description
3 R/W 0 PSL 0: Each channel uses individual post-scale value
1: Each channel uses channel 1 post-scale value
Table 30. Biquad coefficient link
Bit R/W RST Name Description
4R/W 0 BQL 0: Each channel uses coefficient values
1: Each channel uses channel 1 coefficient values
Table 31. Dynamic range compression/anti-clipping bit
Bit R/W RST Name Description
5 R/W 0 DRC 0: Limiters act in anti-clipping mode
1: Limiters act in dynamic range compression mode
Register description STA350BW
42/86 Doc ID 018572 Rev 3
7.4.7 Zero-detect mute enable
Setting the ZDE bit enables the zero-detect automatic mute. The zero-detect circuit looks at
the data for each processing channel at the output of the crossover (bass management)
filter. If any channel receives 2048 consecutive zero value samples (regardless of fs) then
that individual channel is muted if this function is enabled.
7.4.8 Submix mode enable
7.5 Configuration register E (addr 0x04)
7.5.1 Max power correction variable
7.5.2 Max power correction
Setting the MPC bit turns on special processing that corrects the STA350BW power device
at high power. This mode should lower the THD+N of a full FFX system at maximum power
output and slightly below. If enabled, MPC is operational in all output modes except tapered
(OM[1,0] = 01) and binary. When OCFG = 00, MPC will not effect channels 3 and 4, the line-
out channels.
Table 32. Zero-detect mute enable
Bit R/W RST Name Description
6 R/W 1 ZDE Setting of 1 enables the automatic zero-detect mute
Table 33. Submix mode enable
Bit R/W RST Name Description
7R/W 0 SME 0: Sub Mix into Left/Right disabled
1: Sub Mix into Left/Right enabled
D7 D6 D5 D4 D3 D2 D1 D0
SVE ZCE DCCV PWMS AME NSBW MPC MPCV
11000010
Table 34. Max power correction variable
Bit R/W RST Name Description
0R/W 0 MPCV 0: Use standard MPC coefficient
1: Use MPCC bits for MPC coefficient
Table 35. Max power correction
Bit R/W RST Name Description
1R/W 1 MPC Setting of 1 enables power bridge correction for THD
reduction near maximum power output.
STA350BW Register description
Doc ID 018572 Rev 3 43/86
7.5.3 Noise-shaper bandwidth selection
7.5.4 AM mode enable
The STA350BW features an FFX processing mode that minimizes the amount of noise
generated in the frequency range of AM radio. This mode is intended for use when FFX is
operating in a device with an AM tuner active. The SNR of the FFX processing is reduced to
approximately 83 dB in this mode, which is still greater than the SNR of AM radio.
7.5.5 PWM speed mode
7.5.6 Distortion compensation variable enable
7.5.7 Zero-crossing volume enable
The ZCE bit enables zero-crossing volume adjustments. When volume is adjusted on digital
zero-crossings, no clicks are audible.
Table 36. Noise-shaper bandwidth selection
Bit R/W RST Name Description
2 R/W 0 NSBW 1: Third order NS
0: Fourth order NS
Table 37. AM mode enable
Bit R/W RST Name Description
3R/W 0 AME 0: Normal FFX operation
1: AM reduction mode FFX operation
Table 38. PWM speed mode
Bit R/W RST Name Description
4R/W 0 PWMS 0: Normal speed (384 kHz) all channels
1: Odd speed (341.3 kHz) all channels
Table 39. Distortion compensation variable enable
Bit R/W RST Name Description
5R/W 0 DCCV 0: Use preset DC coefficient
1: Use DCC coefficient
Table 40. Zero-crossing volume enable
Bit R/W RST Name Description
6R/W 1 ZCE 1: Volume adjustments only occur at digital zero-crossings
0: Volume adjustments occur immediately
Register description STA350BW
44/86 Doc ID 018572 Rev 3
7.5.8 Soft-volume update enable
7.6 Configuration register F (addr 0x05)
7.6.1 Output configuration
Note: To the left of the arrow is the processing channel. When using channel output mapping, any
of the three processing channel outputs can be used for any of the three inputs.
Table 41. Soft-volume update enable
Bit R/W RST Name Description
7R/W 1 SVE 1: Volume adjustments ramp according to SVR settings
0: Volume adjustments occur immediately
D7 D6 D5 D4 D3 D2 D1 D0
EAPD PWDN ECLE LDTE BCLE IDE OCFG1 OCFG0
01011100
Table 42. Output configuration
Bit R/W RST Name Description
0 R/W 0 OCFG0 Selects the output configuration
1 R/W 0 OCFG1
Table 43. Output configuration engine selection
OCFG[1:0] Output configuration Config pin
00
2-channel (full-bridge) power, 2-channel data-out:
1A/1B 1A/1B
2A/2B 2A/2B
LineOut1 3A/3B
LineOut2 4A/4B
Line Out Configuration determined by LOC register
0
01
2(half-bridge).1(full-bridge) on-board power:
1A 1A Binary 0 °
2A 1B Binary 90°
3A/3B 2A/2B Binary 45°
1A/B 3A/B Binary 0°
2A/B 4A/B Binary 90°
0
10
2 Channel (Full-Bridge) Power, 1 Channel FFX:
1A/1B 1A/1B
2A/2B 2A/2B
3A/3B 3A/3B
EAPDEXT and TWARNEXT Active
0
11
1 Channel Mono-Parallel:
3A 1A/1B w/ C3BO 45°
3B 2A/2B w/ C3BO 45°
1A/1B 3A/3B
2A/2B 4A/4B
1
STA350BW Register description
Doc ID 018572 Rev 3 45/86
Figure 20. OCFG = 00 (default value)
Figure 21. OCFG = 01
Figure 22. OCFG = 10
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 2
Channel 1
LPF
LineOut1
OUT3B
LPF
LineOut2
OUT4B
OUT4A
OUT3A
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 2
Channel 1
LPF
LineOut1
OUT3B
LPF
LineOut2
OUT4B
OUT4A
OUT3A
AM045185v1
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 3
Channel 1
Channel 2
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 3
Channel 1
Channel 2
AM045186v1
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 2
Channel 1
Power
Device
OUT3B
OUT3A
EAPD
Channel 3
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 2
Channel 1
Power
Device
OUT3B
OUT3A
EAPD
Channel 3
AM045187v1
Register description STA350BW
46/86 Doc ID 018572 Rev 3
Figure 23. OCFG = 11
The STA350BW can be configured to support different output configurations. For each PWM
output channel a PWM slot is defined. A PWM slot is always 1 / (8 * fs) seconds length. The
PWM slot defines the maximum extension for the PWM rising and falling edge, that is, the
rising edge as well as the falling edge cannot range outside the PWM slot boundaries.
Figure 24. Output mapping scheme
For each configuration the PWM signals from the digital driver are mapped in different ways
to the power stage.
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 3
OUT3B
OUT4B
OUT4A
OUT3AChannel 1
Channel 2
Half
Bridge
Half
Bridge
Half
Bridge
Half
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
Channel 3
OUT3B
OUT4B
OUT4A
OUT3AChannel 1
Channel 2
AM045188v1
FFX
modulator
REMAP
FFX1A
FFX1 B
FFX2 A
FFX 2B
OUT1A
OUT1B
OUT2A
OUT2B
Power
Bridge
OUT1A
OUT1B
OUT2A
OUT2B
FFX3A
FFX3B
FFX4 A
FFX 4B
OUT3A
OUT3B
OUT4A
OUT4B
FFX
modulator
REMAP
Power
Bridge
FFX
modulator
REMAP
Power
Bridge
FFX
modulator
REMAP
Power
Bridge
FFX
modulator
REMAP
Power
Bridge
FFX
modulator
REMAP
Power
Bridge
AM045189v1
STA350BW Register description
Doc ID 018572 Rev 3 47/86
2.0 channels, two full bridges (OCFG = 00)
FFX1A -> OUT1A
FFX1B -> OUT1B
FFX2A -> OUT2A
FFX2B -> OUT2B
FFX3A -> OUT3A
FFX3B -> OUT3B
FFX4A -> OUT4A
FFX4B -> OUT4B
FFX1A/1B configured as ternary
FFX2A/2B configured as ternary
FFX3A/3B configured as lineout ternary
FFX4A/4B configured as lineout ternary
On channel 3 line out (LOC bits = 00) the same data as channel 1 processing is sent. On
channel 4 line out (LOC bits = 00) the same data as channel 2 processing is sent. In this
configuration, neither volume control nor EQ has any effect on channels 3 and 4.
In this configuration the PWM slot phase is the following as shown in Figure 25.
Figure 25. 2.0 channels (OCFG = 00) PWM slots
OUT1A
OUT1B
OUT2A
OUT2B
OUT3A
OUT3B
OUT4A
OUT4B
OUT1A
OUT1B
OUT2A
OUT2B
OUT3A
OUT3B
OUT4A
OUT4B
AM045190v1
Register description STA350BW
48/86 Doc ID 018572 Rev 3
2.1 channels, two half-bridges + one full-bridge (OCFG = 01)
FFX1A -> OUT1A
FFX2A -> OUT1B
FFX3A -> OUT2A
FFX3B -> OUT2B
FFX1A -> OUT3A
FFX1B -> OUT3B
FFX2A -> OUT4A
FFX2B -> OUT4B
FFX1A/1B configured as binary
FFX2A/2B configured as binary
FFX3A/3B configured as binary
FFX4A/4B is not used
In this configuration, channel 3 has full control (volume, EQ, etc…). On OUT3/OUT4
channels the channel 1 and channel 2 PWM are replicated.
In this configuration the PWM slot phase is the following as shown in Figure 26.
Figure 26. 2.1 channels (OCFG = 01) PWM slots
OUT1A
OUT2A
OUT2B
OUT3A
OUT3B
OUT1B
OUT4A
OUT4B
OUT1A
OUT2A
OUT2B
OUT3A
OUT3B
OUT1B
OUT4A
OUT4B
OUT1A
OUT2A
OUT2B
OUT3A
OUT3B
OUT1B
OUT4A
OUT4B
OUT1A
OUT2A
OUT2B
OUT3A
OUT3B
OUT1B
OUT1A
OUT2A
OUT2B
OUT3A
OUT3B
OUT1B
OUT4A
OUT4B
OUT1A
OUT2A
OUT2B
OUT3A
OUT3B
OUT1B
OUT4A
OUT4B
AM045191v1
STA350BW Register description
Doc ID 018572 Rev 3 49/86
2.1 channels, two full-bridge + one external full-bridge (OCFG = 10)
FFX1A -> OUT1A
FFX1B -> OUT1B
FFX2A -> OUT2A
FFX2B -> OUT2B
FFX3A -> OUT3A
FFX3B -> OUT3B
EAPD -> OUT4A
TWARN -> OUT4B
FFX1A/1B configured as ternary
FFX2A/2B configured as ternary
FFX3A/3B configured as ternary
FFX4A/4B is not used
In this configuration, channel 3 has full control (volume, EQ, etc…). On OUT4 channel the
external bridge control signals are muxed.
In this configuration the PWM slot phase is the following as shown in Figure 27.
Figure 27. 2.1 channels (OCFG = 10) PWM slots
OUT1A
OUT1B
OUT2A
OUT2B
OUT3A
OUT3B
OUT1A
OUT1B
OUT2A
OUT2B
OUT3A
OUT3B
OUT1A
OUT1B
OUT2A
OUT2B
OUT3A
OUT3B
OUT1A
OUT1B
OUT2A
OUT2B
OUT3A
OUT3B
AM045192v1
Register description STA350BW
50/86 Doc ID 018572 Rev 3
7.6.2 Invalid input detect mute enable
Setting the IDE bit enables this function, which looks at the input I2S data and automatically
mutes if the signals are perceived as invalid.
7.6.3 Binary output mode clock loss detection
The BCLE bit detects loss of input MCLK in binary mode and will output 50% duty cycle.
7.6.4 LRCK double trigger protection
The LDTE bit actively prevents double triggering of the LRCLK.
7.6.5 Auto EAPD on clock loss
When active, the ECLE bit issues a power device power-down signal (EAPD) on clock loss
detection.
7.6.6 IC power-down
The PWDN register is used to place the IC in a low-power state. When PWDN is written
as 0, the output begins a soft-mute. After the mute condition is reached, EAPD is asserted
Table 44. Invalid input detect mute enable
Bit R/W RST Name Description
2 R/W 1 IDE Setting of 1 enables the automatic invalid input detect mute
Table 45. Binary output mode clock loss detection
Bit R/W RST Name Description
3 R/W 1 BCLE Binary output mode clock loss detection enable
Table 46. LRCK double trigger protection
Bit R/W RST Name Description
4 R/W 1 LDTE LRCLK double trigger protection enable
Table 47. Auto EAPD on clock loss
Bit R/W RST Name Description
5 R/W 0 ECLE Auto EAPD on clock loss
Table 48. IC power-down
Bit R/W RST Name Description
7R/W 1 PWDN 0: IC power-down low-power condition
1: IC normal operation
STA350BW Register description
Doc ID 018572 Rev 3 51/86
to power down the power-stage, then the master clock to all internal hardware except the
I2C block is gated. This places the IC in a very low power consumption state.
7.6.7 External amplifier power-down
The EAPD register directly disables/enables the internal power circuitry.
When EAPD = 0, the internal power section is placed in a low-power state (disabled). This
register also controls the FFX4B/EAPD output pin when OCFG = 10.
7.7 Volume control registers (addr 0x06 - 0x0A)
7.7.1 Mute/line output configuration register
Line output is only active when OCFG = 00. In this case LOC determines the line output
configuration. The source of the line output is always the channel 1 and 2 inputs.
7.7.2 Master volume register
7.7.3 Channel 1 volume
Table 49. External amplifier power-down
Bit R/W RST Name Description
7 R/W 0 EAPD 0: External power stage power down active
1: Normal operation
D7 D6 D5 D4 D3 D2 D1 D0
LOC1 LOC0 Reserved Reserved C3M C2M C1M MMUTE
00000000
Table 50. Line output configuration
LOC[1:0] Line output configuration
00 Line output fixed - no volume, no EQ
01 Line output variable - CH3 volume effects line output, no EQ
10 Line output variable with EQ - CH3 volume effects line output
D7 D6 D5 D4 D3 D2 D1 D0
MV7 MV6 MV5 MV4 MV3 MV2 MV1 MV0
11111111
D7 D6 D5 D4 D3 D2 D1 D0
C1V7 C1V6 C1V5 C1V4 C1V3 C1V2 C1V1 C1V0
01100000
Register description STA350BW
52/86 Doc ID 018572 Rev 3
7.7.4 Channel 2 volume
7.7.5 Channel 3 / line output volume
The volume structure of the STA350BW consists of individual volume registers for each
channel and a master volume register that provides an offset to each channels volume
setting. The individual channel volumes are adjustable in 0.5 dB steps from +48 dB
to -80 dB.
As an example if C3V = 0x00 or +48 dB and MV = 0x18 or -12 dB, then the total gain for
channel 3 = +36 dB.
The master mute, when set to 1, mutes all channels at once, whereas the individual channel
mute (CxM) mutes only that channel. Both the master mute and the channel mutes provide
a “soft mute” with the volume ramping down to mute in 4096 samples from the maximum
volume setting at the internal processing rate (approximately 96 kHz).
A “hard (instantaneous) mute” can be obtained by programming a value of 0xFF (255) to
any channel volume register or the master volume register. When volume offsets are
provided via the master volume register, any channel whose total volume is less than -80 dB
is muted.
All changes in volume take place at zero-crossings when ZCE = 1 (Configuration register E
(addr 0x04)) on a per channel basis as this creates the smoothest possible volume
transitions. When ZCE = 0, volume updates occur immediately.
D7 D6 D5 D4 D3 D2 D1 D0
C2V7 C2V6 C2V5 C2V4 C2V3 C2V2 C2V1 C2V0
01100000
D7 D6 D5 D4 D3 D2 D1 D0
C3V7 C3V6 C3V5 C3V4 C3V3 C3V2 C3V1 C3V0
01100000
Table 51. Master volume offset as a function of MV[7:0]
MV[7:0] Volume offset from channel value
00000000 (0x00) 0 dB
00000001 (0x01) -0.5 dB
00000010 (0x02) -1 dB
……
01001100 (0x4C) -38 dB
……
11111110 (0xFE) -127.5 dB
11111111 (0xFF) Hard master mute
STA350BW Register description
Doc ID 018572 Rev 3 53/86
7.8 Audio preset registers (addr 0x0B and 0x0C)
7.8.1 Audio preset register 1 (addr 0x0B)
Using AMGC[3:0] bits, attack and release thresholds and rates are automatically configured
to properly fit application specific configurations. AMGC[3:2] is defined in register EQ
coefficients and DRC configuration register (addr 0x31) on page 71.
The AMGC[1:0] bits behave in two different ways depending on the value of AMGC[3:2].
When this value is 00, then bits AMGC[1:0] are defined below in Ta bl e 5 3.
Table 52. Channel volume as a function of CxV[7:0]
CxV[7:0] Volume
00000000 (0x00) +48 dB
00000001 (0x01) +47.5 dB
00000010 (0x02) +47 dB
……
01011111 (0x5F) +0.5 dB
01100000 (0x60) 0 dB
01100001 (0x61) -0.5 dB
……
11010111 (0xD7) -59.5 dB
11011000 (0xD8) -60 dB
11011001 (0xD9) -61 dB
11011010 (0xDA) -62 dB
……
11101100 (0xEC) -80 dB
11101101 (0xED) Hard channel mute
……
11111111 (0xFF) Hard channel mute
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved AMGC[1] AMGC[0] Reserved Reserved Reserved Reserved
00000000
Table 53. Audio preset gain compression/limiters selection for AMGC[3:2] = 00
AMGC[1:0] Mode
00 User-programmable GC
01 AC no clipping 2.1
10 AC limited clipping (10%) 2.1
11 DRC nighttime listening mode 2.1
Register description STA350BW
54/86 Doc ID 018572 Rev 3
7.8.2 Audio preset register 2 (addr 0x0C)
7.8.3 AM interference frequency switching
7.8.4 Bass management crossover
D7 D6 D5 D4 D3 D2 D1 D0
XO3 XO2 XO1 XO0 AMAM2 AMAM1 AMAM0 AMAME
00000000
Table 54. AM interference frequency switching bits
Bit R/W RST Name Description
0 R/W 0 AMAME
Audio preset AM enable
0: switching frequency determined by PWMS setting
1: switching frequency determined by AMAM settings
Table 55. Audio preset AM switching frequency selection
AMAM[2:0] 48 kHz/96 kHz input fs 44.1 kHz/88.2 kHz input fs
000 0.535 MHz - 0.720 MHz 0.535 MHz - 0.670 MHz
001 0.721 MHz - 0.900 MHz 0.671 MHz - 0.800 MHz
010 0.901 MHz - 1.100 MHz 0.801 MHz - 1.000 MHz
011 1.101 MHz - 1.300 MHz 1.001 MHz - 1.180 MHz
100 1.301 MHz - 1.480 MHz 1.181 MHz - 1.340 MHz
101 1.481 MHz - 1.600 MHz 1.341 MHz - 1.500 MHz
110 1.601 MHz - 1.700 MHz 1.501 MHz - 1.700 MHz
Table 56. Bass management crossover
Bit R/W RST Name Description
4R/W 0 XO0
Selects the bass-management crossover frequency.
A 1st-order hign-pass filter (channels 1 and 2) or a
2nd-order low-pass filter (channel 3) at the selected
frequency is performed.
5R/W 0 XO1
6R/W 0 XO2
7R/W 0 XO3
Table 57. Bass management crossover frequency
XO[3:0] Crossover frequency
0000 User-defined
0001 80 Hz
0010 100 Hz
0011 120 Hz
STA350BW Register description
Doc ID 018572 Rev 3 55/86
7.9 Channel configuration registers (addr 0x0E - 0x10)
7.9.1 Tone control bypass
Tone control (bass/treble) can be bypassed on a per-channel basis for channels 1 and 2.
7.9.2 EQ bypass
EQ control can be bypassed on a per-channel basis for channels 1 and 2. If EQ control is
bypassed on a given channel, the prescale and all filters (high-pass, biquads, de-emphasis,
bass, treble in any combination) are bypassed for that channel.
0100 140 Hz
0101 160 Hz
0110 180 Hz
0111 200 Hz
1000 220 Hz
1001 240 Hz
1010 260 Hz
1011 280 Hz
1100 300 Hz
1101 320 Hz
1110 340 Hz
1111 360 Hz
Table 57. Bass management crossover frequency (continued)
XO[3:0] Crossover frequency
D7 D6 D5 D4 D3 D2 D1 D0
C1OM1 C1OM0 C1LS1 C1LS0 C1BO C1VPB C1EQBP C1TCB
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C2OM1 C2OM0 C2LS1 C2LS0 C2BO C2VPB C2EQBP C2TCB
01000000
D7 D6 D5 D4 D3 D2 D1 D0
C3OM1 C3OM0 C3LS1 C3LS0 C3BO C3VPB Reserved Reserved
10000000
Table 58. Tone control bypass
CxTCB Mode
0 Perform tone control on channel x - normal operation
1 Bypass tone control on channel x
Register description STA350BW
56/86 Doc ID 018572 Rev 3
7.9.3 Volume bypass
Each channel contains an individual channel volume bypass. If a particular channel has
volume bypassed via the CxVBP = 1 register then only the channel volume setting for that
particular channel affects the volume setting, the master volume setting will not affect that
channel.
7.9.4 Binary output enable registers
Each individual channel output can be set to output a binary PWM stream. In this mode
output A of a channel is considered the positive output and output B is the negative inverse.
7.9.5 Limiter select
Limiter selection can be made on a per-channel basis according to the channel limiter select
bits.
.
7.9.6 Output mapping
Output mapping can be performed on a per channel basis according to the CxOM channel
output mapping bits. Each input into the output configuration engine can receive data from
any of the three processing channel outputs.
.
Table 59. EQ bypass
CxEQBP Mode
0 Perform EQ on channel x - normal operation
1 Bypass EQ on channel x
Table 60. Binary output enable registers
CxBO Mode
0 FFX 3-state output - normal operation
1 Binary output
Table 61. Channel limiter mapping as a function of CxLS bits
CxLS[1:0] Channel limiter mapping
00 Channel has limiting disabled
01 Channel is mapped to limiter #1
10 Channel is mapped to limiter #2
Table 62. Channel output mapping as a function of CxOM bits
CxOM[1:0] Channel x output source from
00 Channel1
01 Channel 2
10 Channel 3
STA350BW Register description
Doc ID 018572 Rev 3 57/86
7.10 Tone control register (addr 0x11)
7.10.1 Tone control
7.11 Dynamic control registers (addr 0x12 - 0x15)
7.11.1 Limiter 1 attack/release rate
7.11.2 Limiter 1 attack/release threshold
7.11.3 Limiter 2 attack/release rate
D7 D6 D5 D4 D3 D2 D1 D0
TTC3 TTC2 TTC1 TTC0 BTC3 BTC2 BTC1 BTC0
01110111
Table 63. Tone control boost/cut as a function of BTC and TTC bits
BTC[3:0]/TTC[3:0] Boost/Cut
0000 -12 dB
0001 -12 dB
……
0111 -4 dB
0110 -2 dB
0111 0 dB
1000 +2 dB
1001 +4 dB
……
1101 +12 dB
1110 +12 dB
1111 +12 dB
D7 D6 D5 D4 D3 D2 D1 D0
L1A3 L1A2 L1A1 L1A0 L1R3 L1R2 L1R1 L1R0
01101010
D7 D6 D5 D4 D3 D2 D1 D0
L1AT3 L1AT2 L1AT1 L1AT0 L1RT3 L1RT2 L1RT1 L1RT0
01101001
D7 D6 D5 D4 D3 D2 D1 D0
L2A3 L2A2 L2A1 L2A0 L2R3 L2R2 L2R1 L2R0
01101010
Register description STA350BW
58/86 Doc ID 018572 Rev 3
7.11.4 Limiter 2 attack/release threshold
The STA350BW includes two independent limiter blocks. The purpose of the limiters is to
automatically reduce the dynamic range of a recording to prevent the outputs from clipping
in anti-clipping mode or to actively reduce the dynamic range for a better listening
environment such as a night-time listening mode which is often needed for DVDs. The two
modes are selected via the DRC bit in Configuration register E (addr 0x04) on page 42.
Each channel can be mapped to either limiter or not mapped, meaning that the channel will
clip when 0 dBfs is exceeded. Each limiter looks at the present value of each channel that is
mapped to it, selects the maximum absolute value of all these channels, performs the
limiting algorithm on that value, and then if needed adjusts the gain of the mapped channels
in unison.
The limiter attack thresholds are determined by the LxAT registers if EATHx[7] bits are set
to 0 else the thresholds are determined by EATHx[6:0] . It is recommended in anti-clipping
mode to set this to 0 dBfs, which corresponds to the maximum unclipped output power of an
FFX amplifier. Since gain can be added digitally within the STA350BW, it is possible to
exceed 0 dBfs or any other LxAT setting. When this occurs, the limiter, when active,
automatically starts reducing the gain. The rate at which the gain is reduced when the attack
threshold is exceeded is dependent upon the attack rate register setting for that limiter. Gain
reduction occurs on a peak-detect algorithm. Setting the EATHx[7] bits to 1 selects the
anti-clipping mode.
The limiter release thresholds are determined by the LxRT registers if ERTHx[7] bits are set
to 0, else the thresholds are determined by ERTHx[6:0]. Setting the ERTHx[7] bits to 1
automatically selects the anti-clipping mode. The release of the limiter, when the gain is
again increased, is dependent on an RMS-detect algorithm. The output of the volume/limiter
block is passed through an RMS filter. The output of this filter is compared to the release
threshold, determined by the Release Threshold register. When the RMS filter output falls
below the release threshold, the gain is again increased at a rate dependent upon the
Release Rate register. The gain can never be increased past its set value and, therefore, the
release only occurs if the limiter has already reduced the gain. The release threshold value
can be used to set what is effectively a minimum dynamic range, this is helpful as
overlimiting can reduce the dynamic range to virtually zero and cause program material to
sound “lifeless”.
In AC mode, the attack and release thresholds are set relative to full-scale. In DRC mode,
the attack threshold is set relative to the maximum volume setting of the channels mapped
to that limiter and the release threshold is set relative to the maximum volume setting plus
the attack threshold.
D7 D6 D5 D4 D3 D2 D1 D0
L2AT3 L2AT2 L2AT1 L2AT0 L2RT3 L2RT2 L2RT1 L2RT0
01101001
STA350BW Register description
Doc ID 018572 Rev 3 59/86
Figure 28. Basic limiter and volume flow diagram
ATTENUATION SATURATION
RMS
LIMITER
GAIN
GAIN /VOLUME
INPUT OUTPUT
+
ATTENUATION SATURATION
RMS
LIMITER
GAIN
GAIN /VOLUME
INPUT OUTPUT
+
AM045193v1
Table 64. Limiter attack rate as a function
of LxA bits
Table 65. Limiter release rate as a
function of LxR bits
LxA[3:0] Attack rate dB/ms LxR[3:0] Release rate dB/ms
0000 3.1584
Fast
Slow
0000 0.5116
Fast
Slow
0001 2.7072 0001 0.1370
0010 2.2560 0010 0.0744
0011 1.8048 0011 0.0499
0100 1.3536 0100 0.0360
0101 0.9024 0101 0.0299
0110 0.4512 0110 0.0264
0111 0.2256 0111 0.0208
1000 0.1504 1000 0.0198
1001 0.1123 1001 0.0172
1010 0.0902 1010 0.0147
1011 0.0752 1011 0.0137
1100 0.0645 1100 0.0134
1101 0.0564 1101 0.0117
1110 0.0501 1110 0.0110
1111 0.0451 1111 0.0104
Register description STA350BW
60/86 Doc ID 018572 Rev 3
Anti-clipping mode
Table 66. Limiter attack threshold as a
function of LxAT bits (AC-mode)
Table 67. Limiter release threshold as a
function of LxRT bits (AC-
mode)
LxAT[3:0] AC (dB relative to fs) LxRT[3:0] AC (dB relative to fs)
0000 -12 0000 -
0001 -10 0001 -29 dB
0010 -8 0010 -20 dB
0011 -6 0011 -16 dB
0100 -4 0100 -14 dB
0101 -2 0101 -12 dB
0110 0 0110 -10 dB
0111 +2 0111 -8 dB
1000 +3 1000 -7 dB
1001 +4 1001 -6 dB
1010 +5 1010 -5 dB
1011 +6 1011 -4 dB
1100 +7 1100 -3 dB
1101 +8 1101 -2 dB
1110 +9 1110 -1 dB
1111 +10 1111 -0 dB
STA350BW Register description
Doc ID 018572 Rev 3 61/86
Dynamic range compression mode
7.11.5 Limiter 1 extended attack threshold (addr 0x32)
The extended attack threshold value is determined as follows:
attack threshold = -12 + EATH1 / 4
7.11.6 Limiter 1 extended release threshold (addr 0x33)
The extended release threshold value is determined as follows:
release threshold = -12 + ERTH1 / 4
Table 68. Limiter attack threshold as a
function of LxAT bits (DRC -
mode)
Table 69. Limiter release threshold as a
as a function of LxRT bits
(DRC-mode)
LxAT[3:0] DRC (dB relative to Volume) LxRT[3:0] DRC (db relative to Volume +
LxAT)
0000 -31 0000 -
0001 -29 0001 -38 dB
0010 -27 0010 -36 dB
0011 -25 0011 -33 dB
0100 -23 0100 -31 dB
0101 -21 0101 -30 dB
0110 -19 0110 -28 dB
0111 -17 0111 -26 dB
1000 -16 1000 -24 dB
1001 -15 1001 -22 dB
1010 -14 1010 -20 dB
1011 -13 1011 -18 dB
1100 -12 1100 -15 dB
1101 -10 1101 -12 dB
1110 -7 1110 -9 dB
1111 -4 1111 -6 dB
D7 D6 D5 D4 D3 D2 D1 D0
EATHEN1 EATH1[6] EATH1[5] EATH1[4] EATH1[3] EATH1[2] EATH1[1] EATH1[0]
TBDTBDTBDTBDTBDTBDTBDTBD
D7 D6 D5 D4 D3 D2 D1 D0
ERTHEN1 ERTH1[6] ERTH1[5] ERTH1[4] ERTH1[3] ERTH1[2] ERTH1[1] ERTH1[0]
TBDTBDTBDTBDTBDTBDTBDTBD
Register description STA350BW
62/86 Doc ID 018572 Rev 3
7.11.7 Limiter 2 extended attack threshold (addr 0x34)
The extended attack threshold value is determined as follows:
attack threshold = -12 + EATH2 / 4
7.11.8 Limiter 2 extended release threshold (addr 0x35)
The extended release threshold value is determined as follows:
release threshold = -12 + ERTH2 / 4
Note: Attack/release threshold step is 0.125 dB in the range -12 dB to 0 dB.
7.12 User-defined coefficient control registers (addr 0x16 - 0x26)
7.12.1 Coefficient address register
7.12.2 Coefficient b1 data register bits 23:16
7.12.3 Coefficient b1 data register bits 15:8
7.12.4 Coefficient b1 data register bits 7:0
D7 D6 D5 D4 D3 D2 D1 D0
EATHEN2 EATH2[6] EATH2[5] EATH2[4] EATH2[3] EATH2[2] EATH2[1] EATH2[0]
TBDTBDTBDTBDTBDTBDTBDTBD
D7 D6 D5 D4 D3 D2 D1 D0
ERTHEN2 ERTH2[6] ERTH2[5] ERTH2[4] ERTH2[3] ERTH2[2] ERTH2[1] ERTH2[0]
TBDTBDTBDTBDTBDTBDTBDTBD
D7 D6 D5 D4 D3 D2 D1 D0
CFA5 CFA4 CFA3 CFA2 CFA1 CFA0
000000
D7 D6 D5 D4 D3 D2 D1 D0
C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C1B15 C1B14 C1B13 C1B12 C1B11 C1B10 C1B9 C1B8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C1B7 C1B6 C1B5 C1B4 C1B3 C1B2 C1B1 C1B0
00000000
STA350BW Register description
Doc ID 018572 Rev 3 63/86
7.12.5 Coefficient b2 data register bits 23:16
7.12.6 Coefficient b2 data register bits 15:8
7.12.7 Coefficient b2 data register bits 7:0
7.12.8 Coefficient a1 data register bits 23:16
7.12.9 Coefficient a1 data register bits 15:8
7.12.10 Coefficient a1 data register bits 7:0
7.12.11 Coefficient a2 data register bits 23:16
D7 D6 D5 D4 D3 D2 D1 D0
C2B23 C2B22 C2B21 C2B20 C2B19 C2B18 C2B17 C2B16
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C2B15 C2B14 C2B13 C2B12 C2B11 C2B10 C2B9 C2B8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C2B7 C2B6 C2B5 C2B4 C2B3 C2B2 C2B1 C2B0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C3B15 C3B14 C3B13 C3B12 C3B11 C3B10 C3B9 C3B8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C3B7 C3B6 C3B5 C3B4 C3B3 C3B2 C3B1 C3B0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C4B23 C4B22 C4B21 C4B20 C4B19 C4B18 C4B17 C4B16
00000000
Register description STA350BW
64/86 Doc ID 018572 Rev 3
7.12.12 Coefficient a2 data register bits 15:8
7.12.13 Coefficient a2 data register bits 7:0
7.12.14 Coefficient b0 data register bits 23:16
7.12.15 Coefficient b0 data register bits 15:8
7.12.16 Coefficient b0 data register bits 7:0
7.12.17 Coefficient write/read control register
Coefficients for user-defined EQ, mixing, scaling, and bass management are handled
internally in the STA350BW via RAM. Access to this RAM is available to the user via an I2C
register interface. A collection of I2C registers are dedicated to this function. One contains a
coefficient base address, five sets of three store the values of the 24-bit coefficients to be
written or that were read, and one contains bits used to control the write/read of the
coefficient(s) to/from RAM.
Three different RAM banks are embedded in the STA350BW. The three banks are managed
in paging mode using EQCFG register bits. They can be used to store different EQ settings.
For speaker frequency compensation, a sampling frequency independent EQ must be
implemented. Computing three different coefficients set for 32 kHz, 44.1kHz, 48 kHz and
downloading them into the three RAM banks, it is possible to select the suitable RAM block
depending on the incoming frequency with a simple I2C write operation in register 0x31.
D7 D6 D5 D4 D3 D2 D1 D0
C4B15 C4B14 C4B13 C4B12 C4B11 C4B10 C4B9 C4B8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C4B7 C4B6 C4B5 C4B4 C4B3 C4B2 C4B1 C4B0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C5B23 C5B22 C5B21 C5B20 C5B19 C5B18 C5B17 C5B16
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C5B15 C5B14 C5B13 C5B12 C5B11 C5B10 C5B9 C5B8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C5B7 C5B6 C5B5 C5B4 C5B3 C5B2 C5B1 C5B0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
Reserved RA R1 WA W1
0 0000
STA350BW Register description
Doc ID 018572 Rev 3 65/86
For example, in case of different input sources (different sampling rates), the three different
sets of coefficients can be downloaded once at startup, and during normal play it is possible
to switch among the three RAM blocks allowing faster operation, without any additional
download from the microcontroller.
To write the coefficients in a particular RAM bank, this bank must be selected first, writing
bit 0 and bit 1 in register 0x31. Then the write procedure below can be used.
Note that as soon as a RAM bank is selected, the EQ settings are automatically switched to
the coefficients stored in the active RAM block.
Note: The read and write operation on RAM coefficients works only if LRCKI (pin 29) is switching.
Reading a coefficient from RAM
1. Select the RAM block with register 0x31 bit 1, bit 0.
2. Write 6 bits of address to I2C register 0x16.
3. Write 1 to R1 bit in I2C address 0x26.
4. Read top 8 bits of coefficient in I2C address 0x17.
5. Read middle 8 bits of coefficient in I2C address 0x18.
6. Read bottom 8 bits of coefficient in I2C address 0x19.
Reading a set of coefficients from RAM
1. Select the RAM block with register 0x31 bit1, bit0.
2. Write 6 bits of address to I2C register 0x16.
3. Write 1 to RA bit in I2C address 0x26.
4. Read top 8 bits of coefficient in I2C address 0x17.
5. Read middle 8 bits of coefficient in I2C address 0x18.
6. Read bottom 8 bits of coefficient in I2C address 0x19.
7. Read top 8 bits of coefficient b2 in I2C address 0x1A.
8. Read middle 8 bits of coefficient b2 in I2C address 0x1B.
9. Read bottom 8 bits of coefficient b2 in I2C address 0x1C.
10. Read top 8 bits of coefficient a1 in I2C address 0x1D.
11. Read middle 8 bits of coefficient a1 in I2C address 0x1E.
12. Read bottom 8 bits of coefficient a1 in I2C address 0x1F.
13. Read top 8 bits of coefficient a2 in I2C address 0x20.
14. Read middle 8 bits of coefficient a2 in I2C address 0x21.
15. Read bottom 8 bits of coefficient a2 in I2C address 0x22.
16. Read top 8 bits of coefficient b0 in I2C address 0x23.
17. Read middle 8 bits of coefficient b0 in I2C address 0x24.
18. Read bottom 8 bits of coefficient b0 in I2C address 0x25.
Register description STA350BW
66/86 Doc ID 018572 Rev 3
Writing a single coefficient to RAM
1. Select the RAM block with register 0x31 bit1, bit0.
2. Write 6 bits of address to I2C register 0x16.
3. Write top 8 bits of coefficient in I2C address 0x17.
4. Write middle 8 bits of coefficient in I2C address 0x18.
5. Write bottom 8 bits of coefficient in I2C address 0x19.
6. Write 1 to the W1 bit in I2C address 0x26.
Writing a set of coefficients to RAM
1. Select the RAM block with register 0x31 bit1, bit0.
2. Write 6 bits of starting address to I2C register 0x16.
3. Write top 8 bits of coefficient b1 in I2C address 0x17.
4. Write middle 8 bits of coefficient b1 in I2C address 0x18.
5. Write bottom 8 bits of coefficient b1 in I2C address 0x19.
6. Write top 8 bits of coefficient b2 in I2C address 0x1A.
7. Write middle 8 bits of coefficient b2 in I2C address 0x1B.
8. Write bottom 8 bits of coefficient b2 in I2C address 0x1C.
9. Write top 8 bits of coefficient a1 in I2C address 0x1D.
10. Write middle 8 bits of coefficient a1 in I2C address 0x1E.
11. Write bottom 8 bits of coefficient a1 in I2C address 0x1F.
12. Write top 8 bits of coefficient a2 in I2C address 0x20.
13. Write middle 8 bits of coefficient a2 in I2C address 0x21.
14. Write bottom 8 bits of coefficient a2 in I2C address 0x22.
15. Write top 8 bits of coefficient b0 in I2C address 0x23.
16. Write middle 8 bits of coefficient b0 in I2C address 0x24.
17. Write bottom 8 bits of coefficient b0 in I2C address 0x25.
18. Write 1 to the WA bit in I2C address 0x26.
The mechanism for writing a set of coefficients to RAM provides a method of updating the
five coefficients corresponding to a given biquad (filter) simultaneously to avoid possible
unpleasant acoustic side-effects. When using this technique, the 6-bit address specifies the
address of the biquad b1 coefficient (for example, 0, 5, 10, 20, 35 decimal), and the
STA350BW generates the RAM addresses as offsets from this base value to write the
complete set of coefficient data.
STA350BW Register description
Doc ID 018572 Rev 3 67/86
7.12.18 User-defined EQ
The STA350BW can be programmed for four EQ filters (biquads) per each of the two input
channels. The biquads use the following equation:
Y[n] = 2 * (b0 / 2) * X[n] + 2 * (b1 / 2) * X[n-1] + b2 * X[n-2] - 2 * (a1 / 2) * Y[n-1] - a2 * Y[n-2]
= b0 * X[n] + b1 * X[n-1] + b2 * X[n-2] - a1 * Y[n-1] - a2 * Y[n-2]
where Y[n] represents the output and X[n] represents the input. Multipliers are 24-bit signed
fractional multipliers, with coefficient values in the range of 0x800000 (-1) to 0x7FFFFF
(0.9999998808).
Coefficients stored in the user-defined coefficient RAM are referenced in the following
manner:
CxHy0 = b1 / 2
CxHy1 = b2
CxHy2 = -a1 / 2
CxHy3 = -a2
CxHy4 = b0 / 2
where x represents the channel and the y the biquad number. For example, C2H41 is the b2
coefficient in the fourth biquad for channel 2.
Additionally, the STA350BW can be programmed for a high-pass filter (processing
channels 1 and 2) and a low-pass filter (processing channel 3) to be used for bass-
management crossover when the XO setting is 000 (user-defined). Both of these filters
when defined by the user (rather than using the preset crossover filters) are second order
filters that use the biquad equation given above. They are loaded into the C12H0-4 and
C3Hy0-4 areas of RAM noted in Ta b l e 7 0 .
By default, all user-defined filters are pass-through where all coefficients are set to 0, except
the b0/2 coefficient which is set to 0x400000 (representing 0.5).
7.12.19 Pre-scale
The STA350BW provides a multiplication for each input channel for the purpose of scaling
the input prior to EQ. This pre-EQ scaling is accomplished by using a 24-bit signed
fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. The scale factor
for this multiplication is loaded into RAM using the same I2C registers as the biquad
coefficients and the bass-management. All channels can use the channel-1 pre-scale factor
by setting the Biquad link bit. By default, all pre-scale factors are set to 0x7FFFFF.
7.12.20 Post-scale
The STA350BW provides one additional multiplication after the last interpolation stage and
the distortion compensation on each channel. This post-scaling is accomplished by using a
24-bit signed fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. The
scale factor for this multiplication is loaded into RAM using the same I2C registers as the
biquad coefficients and the bass-management. This post-scale factor can be used in
conjunction with an ADC equipped microcontroller to perform power-supply error correction.
All channels can use the channel-1 post-scale factor by setting the post-scale link bit. By
default, all post-scale factors are set to 0x7FFFFF. When line output is being used,
channel-3 post-scale will affect both channels 3 and 4.
Register description STA350BW
68/86 Doc ID 018572 Rev 3
7.12.21 Overcurrent post-scale
The STA350BW provides a simple mechanism for reacting to overcurrent detection in the
power block. When the ocwarn input is asserted, the overcurrent post-scale value is used in
place of the normal post-scale value to provide output attenuation on all channels. The
default setting provides 3 dB of output attenuation when ocwarn is asserted.
The amount of attenuation to be applied in this situation can be adjusted by modifying the
Overcurrent Post-scale value. As with the normal post-scale, this scaling value is a 24-bit
signed fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. By default,
the overcurrent post-scale factor is set to 0x5A9DF7. Once the overcurrent attenuation is
applied, it remains until the device is reset.
Table 70. RAM block for biquads, mixing, scaling and bass management
Index (decimal) Index (hex) Coefficient Default
0 0x00
Channel 1 - Biquad 1
C1H10(b1/2) 0x000000
1 0x01 C1H11(b2) 0x000000
2 0x02 C1H12(a1/2) 0x000000
3 0x03 C1H13(a2) 0x000000
4 0x04 C1H14(b0/2) 0x400000
5 0x05 Channel 1 - Biquad 2 C1H20 0x000000
……
19 0x13 Channel 1 - Biquad 4 C1H44 0x400000
20 0x14 Channel 2 - Biquad 1 C2H10 0x000000
21 0x15 C2H11 0x000000
……
39 0x27 Channel 2 - Biquad 4 C2H44 0x400000
40 0x28
Channel 1/2 - Biquad 5
for XO = 000
Hi-pass 2nd Order filter
for XO000
C12H0(b1/2) 0x000000
41 0x29 C12H1(b2) 0x000000
42 0x2A C12H2(a1/2) 0x000000
43 0x2B C12H3(a2) 0x000000
44 0x2C C12H4(b0/2) 0x400000
45 0x2D
Channel 3 - Biquad
for XO = 000
Low-pass 2nd Order filter
for XO000
C3H0(b1/2) 0x000000
46 0x2E C3H1(b2) 0x000000
47 0x2F C3H2(a1/2) 0x000000
48 0x30 C3H3(a2) 0x000000
49 0x31 C3H4(b0/2) 0x400000
50 0x32 Channel 1 - Pre-Scale C1PreS 0x7FFFFF
51 0x33 Channel 2 - Pre-Scale C2PreS 0x7FFFFF
52 0x34 Channel 1 - Post-Scale C1PstS 0x7FFFFF
53 0x35 Channel 2 - Post-Scale C2PstS 0x7FFFFF
STA350BW Register description
Doc ID 018572 Rev 3 69/86
7.13 Variable max power correction registers (addr 0x27 - 0x28)
The MPCC bits determine the 16 MSBs of the MPC compensation coefficient. This
coefficient is used in place of the default coefficient when MPCV = 1.
7.14 Variable distortion compensation registers (addr 0x29 -
0x2A)
The DCC bits determine the 16 MSBs of the distortion compensation coefficient. This
coefficient is used in place of the default coefficient when DCCV = 1.
54 0x36 Channel 3 - Post-Scale C3PstS 0x7FFFFF
55 0x37 TWARN/OC - Limit TWOCL 0x5A9DF7
56 0x38 Channel 1 - Mix 1 C1MX1 0x7FFFFF
57 0x39 Channel 1 - Mix 2 C1MX2 0x000000
58 0x3A Channel 2 - Mix 1 C2MX1 0x000000
59 0x3B Channel 2 - Mix 2 C2MX2 0x7FFFFF
60 0x3C Channel 3 - Mix 1 C3MX1 0x400000
61 0x3D Channel 3 - Mix 2 C3MX2 0x400000
62 0x3E UNUSED
63 0x3F UNUSED
Table 70. RAM block for biquads, mixing, scaling and bass management (continued)
Index (decimal) Index (hex) Coefficient Default
D7 D6 D5 D4 D3 D2 D1 D0
MPCC15 MPCC14 MPCC13 MPCC12 MPCC11 MPCC10 MPCC9 MPCC8
00011010
D7 D6 D5 D4 D3 D2 D1 D0
MPCC7 MPCC6 MPCC5 MPCC4 MPCC3 MPCC2 MPCC1 MPCC0
11000000
D7 D6 D5 D4 D3 D2 D1 D0
DCC15 DCC14 DCC13 DCC12 DCC11 DCC10 DCC9 DCC8
1111001 1
D7 D6 D5 D4 D3 D2 D1 D0
DCC7 DCC6 DCC5 DCC4 DCC3 DCC2 DCC1 DCC0
00110011
Register description STA350BW
70/86 Doc ID 018572 Rev 3
7.15 Fault detect recovery constant registers (addr 0x2B - 0x2C)
The FDRC bits specify the 16-bit fault detect recovery time delay. When FAULT is asserted,
the TRISTATE output is immediately asserted low and held low for the time period specified
by this constant. A constant value of 0x0001 in this register is approximately 0.083 ms. The
default value of 0x000C gives approximately 0.1 ms.
7.16 Device status register (addr 0x2D)
This read-only register provides fault and thermal-warning status information from the power
control block. Logic value 1 for faults or warning means normal state. Logic 0 means a fault
or warning detected on power bridge. The PLLUL = 1 means that the PLL is not locked.
D7 D6 D5 D4 D3 D2 D1 D0
FDRC15 FDRC14 FDRC13 FDRC12 FDRC11 FDRC10 FDRC9 FDRC8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
FDRC7 FDRC6 FDRC5 FDRC4 FDRC3 FDRC2 FDRC1 FDRC0
00001100
D7 D6 D5 D4 D3 D2 D1 D0
PLLUL FAULT UVFAULT OVFAULT OCFAULT OCWARN TFAULT TWARN
Table 71. Status register bits
Bit R/W RST Name Description
7 R - PLLUL 0: PLL locked
1: PLL not locked
6R - FAULT 0: fault detected on power bridge
1: normal operation
5R - UVFAULT
0: VCCxX internally detected
< undervoltage threshold
4R - OVFAULT
0: VCCxX internally detected
> overvoltage threshold
3 R - OCFAULT 0: overcurrent fault detected
2 R - OCWARN 0: overcurrent warning
1R - TFAULT0: thermal fault, junction temperature over limit
detection
0R - TWARN0: thermal warning, junction temperature is close to
the fault condition
STA350BW Register description
Doc ID 018572 Rev 3 71/86
7.17 EQ coefficients and DRC configuration register (addr 0x31)
Bits AMGC[3:2] change the behavior of the bits AMGC[1:0] as given in Ta b l e 7 3 below.
When AMGC[3:2] = 01 then the bits 1:0 are defined as given here in Ta bl e 7 4 .
The AC0, AC1, AC2 settings are designed for the loudspeaker protection function, limiting at
the minimum any audio artifacts introduced by typical anti-clipping/DRC algorithms. More
detailed information is available in the applications notes “Configurable output power rate
using STA335BW” and “STA335BWS vs STA335BW”.
The XOB bit can be used to bypass the crossover filters. Logic 1 means that the function is
not active. In this case, the high-pass crossover filter works as a pass-through on the data
path (b0 = 1, all the other coefficients at logic 0) while the low-pass filter is configured to
have zero signal on channel-3 data processing (all the coefficients are at logic 0).
D7 D6 D5 D4 D3 D2 D1 D0
XOB Reserved Reserved AMGC[3] AMGC[2] Reserved SEL[1] SEL[0]
00000000
Table 72. EQ RAM select
SEL[1:0] EQ RAM bank selected
00/11 Bank 0 activated
01 Bank 1 activated
10 Bank 2 activated
Table 73. Anti-clipping and DRC preset
AMGC[3:2] Anti clipping and DRC preset selected
00 DRC/Anti-clipping behavior described in Ta b l e 5 3 on page 53 (default).
01 DRC/Anti-clipping behavior is described Table 74 on page 71
10/11 Reserved, do not use
Table 74. Anti-clipping selection for AMGC[3:2] = 01
AMGC[1:0] Mode
00 AC0, stereo anticlipping 0 dB limiter
01 AC1, stereo anticlipping +1.25 dB limiter
10 AC2, stereo anticlipping +2 dB limiter
11 Reserved do not use
Register description STA350BW
72/86 Doc ID 018572 Rev 3
7.18 Extended configuration register (addr 0x36)
The extended configuration register provides access to B2DRC and biquad 5, 6 and 7.
7.18.1 Dual-band DRC
The STA350BW device provide a dual-band DRC (B2DRC) on the left and right channels
data path, as depicted in Figure 29. Dual-band DRC is activated by setting MDRC[1:0] = 1x.
Figure 29. B2DRC scheme
The low frequency information (LFE) is extracted from left and right channels, removing the
high frequencies using a programmable Biquad filter, and then computing the difference with
the original signal. Limiter 1 (DRC1) is then used to control Left/Right high-frequency
amplitude of the components, while limiter 2 (DRC2) is used to control the low-frequency
components (see Chapter 7.11).
The cutoff frequency of the high-pass filters can be user-defined, XO[3:0] = 0, or selected
from the pre-defined values.
DRC1 and DRC2 are then used to independently limit L/R high frequencies and LFE
channels amplitude (see Chapter 7.11) as well as their volume control. To be noted that, in
this configuration, the dedicated channel 3 volume control can actually act as a bass boost
enhancer as well (0.5 dB/step resolution).
The processed LFE channel is then recombined with the L and R channels in order to
reconstruct the 2.0 output signal.
Sub-band decomposition
The sub-band decomposition for B2DRC can be configured specifying the cutoff frequency.
The cutoff frequency can be programmed in two ways, using XO bits in register 0x0C, or
using the “user programmable” mode (coefficients stored in RAM addresses 0x28 to 0x31).
D7 D6 D5 D4 D3 D2 D1 D0
Mdrc[1] Mdrc[0] PS48DB XAR1 XAR2 BQ5 BQ6 BQ7
00000000
R
L
Pass XO
Filter
Pass XO
Filter
R
L
B2DRC
Hi-pass
filter
B2DRC
Hi-pass
filter -
-
CH1
Volume
VolAndLimiter
DRC1
CH2
Volume DRC1
CH3
Volume
VolAndLimiter
DRC2
CH3
Volume
VolAndLimiter
DRC2
+
+
R
L
Pass XO
Filter
Pass XO
Filter
R
L
B2DRC
Hi-pass
filter
B2DRC
Hi-pass
filter -
-
CH1
Volume
VolAndLimiter
DRC1
CH2
Volume DRC1
CH3
Volume
VolAndLimiter
DRC2
CH3
Volume
VolAndLimiter
DRC2
+
+
AM045194v1
STA350BW Register description
Doc ID 018572 Rev 3 73/86
For the user programmable mode, use the formulas below to compute the high-pass filters:
where alpha = (1-sin(ω0))/cos(ω0), and ω0 is the cutoff frequency.
A first-order filter is suggested to guarantee that for every ω0 the corresponding low-pass
filter obtained as the difference (as shown in Figure 29) will have a symmetric (relative to HP
filter) frequency response, and the corresponding recombination after the DRC has low
ripple. Second-order filters can be used as well, but in this case the filter shape must be
carefully chosen to provide good low-pass response and minimum ripple recombination. For
second-order filters it is not possible to give a closed formula to get the best coefficients, but
empirical adjustment should be done.
DRC settings
The DRC blocks used by B2DRC are the same as those described in Chapter 7.11. B2DRC
configure automatically the DRC blocks in anticlipping mode. Attack and release thresholds
can be selected using registers 0x32, 0x33, 0x34, 0x35, while attack and release rates are
configured by registers 0x12 and 0x14.
Band downmixing
The low-frequency band is down-mixed to the left and right channels at the B2DRC output.
Channel volume can be used to weight the bands recombination to fine-tune the overall
frequency response.
7.18.2 EQ DRC mode
Setting MDRC = 01, it is possible to add a programmable biquad (the XO biquad at RAM
addresses 0x28 to 0x2C is used for this purpose) to the Limiter/compressor measure path
(side chain). Using EQDRC the peak detector input can be shaped in frequency using the
programmable biquad. For example if a +2 dB bass boost is applied (using a low shelf filter
for example), the effect is that the EQDRC output will limit bass frequencies to -2 dB below
the selected attack threshold.
Generally speaking, if the biquad boosts frequency f with an amount of X dB, the level of a
compressed sine wave at the output will be TH - X, where TH is the selected attack
threshold.
Note: EQDRC works only if the biquad frequency response magnitude is 0dB for every
frequency.
b0 = (1 + alpha) / 2 a0 = 1
b1 = -(1 + alpha) / 2 a1 = -alpha
b2 = 0 a2 = 0
Register description STA350BW
74/86 Doc ID 018572 Rev 3
Figure 30. EQDRC scheme
7.18.3 Extended post-scale range
Post-scale is an attenuation by default. When PS48DB is set to 1, a 48-dB offset is applied
to the coefficient RAM value, so post-scale can act as a gain too.
7.18.4 Extended attack rate
The attack rate shown in Ta b l e 6 4 can be extended to provide up to an 8 dB/ms attack rate
on both limiters.
Channel In
Channel In BIQUAD
EQDRC
Standard DRC
Channel In
Channel In BIQUADBIQUAD PEAK
DETECTOR
PEAK
DETECTOR
ATTENUATION
CLACULATOR
ATTENUATION
CLACULATOR
ATTENUATION
ATTENUATION
Channel In
Channel In BIQUAD
EQDRC
Standard DRC
Channel In
Channel In BIQUADBIQUAD PEAK
DETECTOR
PEAK
DETECTOR
ATTENUATION
CLACULATOR
ATTENUATION
CLACULATOR
ATTENUATION
ATTENUATION
AM045195v1
PS48DB Mode
0 Post-scale value is applied as defined in coefficient RAM
1Post-scale value is applied with +48 dB offset with respect to the
coefficient RAM value
XAR1 Mode
0 Limiter1 attack rate is configured using Ta bl e 6 4
1 Limiter1 attack rate is 8 dB/ms
XAR2 Mode
0 Limiter2 attack rate is configured using Ta bl e 6 4
1 Limiter2 attack rate is 8 dB/ms
STA350BW Register description
Doc ID 018572 Rev 3 75/86
7.18.5 Extended BIQUAD selector
De-emphasis filter as well as bass and treble controls can be configured as user-defined
filters when the equalization coefficients link is activated (BQL = 1) and the corresponding
BQx bit is set to 1.
When filters from 5th to 7th are configured as user-programmable, the corresponding
coefficients are stored respectively in addresses 0x20-0x24 (BQ5), 0x25-0x29 (BQ6), 0x2A-
0x2E (BQ7) as in Ta b le 7 0 .
Note: BQx bits are ignored if BQL = 0 or if DEMP = 1 (relevant for BQ5) or CxTCB = 1 (relevant for
BQ6 and BQ7).
7.19 EQ soft-volume configuration registers (addr 0x37 - 0x38)
The soft-volume update has a fixed rate by default. Using register 0x37 and 0x38 it is
possible to override the default behavior allowing different volume change rates.
It is also possible to independently define the fade-in (volume is increased) and fade-out
(volume is decreased) rates according to the desired behavior.
BQ5 Mode
0 Pre-set de-emphasis filter selected
1 User-defined biquad 5 coefficients are selected
BQ6 Mode
0 Pre-set bass filter selected as per Ta b le 6 3
1 User-defined biquad 6 coefficients are selected
BQ7 Mode
0 Pre-set treble filter selected as per Ta bl e 6 3
1 User-defined biquad 7 coefficients are selected
D7 D6 D5 D4 D3 D2 D1 D0
SVUPE SVUP[4] SVUP[3] SVUP[2] SVUP[1] SVUP[0]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
SVDWE SVDW4] SVDW[3] SVDW[2] SVDW[1] SVDW[0]
00000000
SVUPE Mode
0 When volume is increased, use the default rate
1 When volume is increased, use the rates defined by SVUP[4:0]
Register description STA350BW
76/86 Doc ID 018572 Rev 3
When SVUPE = 1 the fade-in rate is defined by the SVUP[4:0] bits according to the following
formula:
Fade-in rate = 48 / (N + 1) dB/ms
where N is the SVUP[4:0] value.
When SVDWE = 1 the fade-out rate is defined by the SVDW[4:0] bits according to the
following formula:
Fade-in rate = 48 / (N + 1) dB/ms
where N is the SVDW[4:0] value.
Note: For fade-out rates greater than 6 dB/msec it is suggested to disable the CPWMEN bit
(Section 7.24.4 ) and ZCE bit (Section 7.5.7) in order to avoid any audible pop noise.
7.20 DRC RMS filter coefficients (addr 0x39-0x3E)
Signal level detection in DRC algorithm is computed using the following formula:
y(t) = c0 * abs(x(t)) + c1 * y(t-1)
where x(t) represents the audio signal applied to the limiter, and y(t) the measured level.
SVDWE Mode
0 When volume is decreased, use the default rate
1 When volume is decreased, use the rates defined by SVDW[4:0]
D7 D6 D5 D4 D3 D2 D1 D0
R_C0[23] R_C0[22] R_C0[21] R_C0[20] R_C0[19] R_C0[18] R_C0[17] R_C0[16]
00000001
D7 D6 D5 D4 D3 D2 D1 D0
R_C0[15] R_C0[14] R_C0[13] R_C0[12] R_C0[11] R_C0[10] R_C0[9] R_C0[8]
11101110
D7 D6 D5 D4 D3 D2 D1 D0
R_C0[7] R_C0[6] R_C0[5] R_C0[4] R_C0[3] R_C0[2] R_C0[1] R_C0[0]
11111111
D7 D6 D5 D4 D3 D2 D1 D0
R_C1[23] R_C1[22] R_C1[21] R_C1[20] R_C1[19] R_C1[18] R_C1[17] R_C1[16]
01111110
D7 D6 D5 D4 D3 D2 D1 D0
R_C1[15] R_C1[14] R_C1[13] R_C1[12] R_C1[11] R_C1[10] R_C1[9] R_C1[8]
11000000
D7 D6 D5 D4 D3 D2 D1 D0
R_C1[7] R_C1[6] R_C1[5] R_C1[4] R_C1[3] R_C1[2] R_C1[1] R_C1[0]
00100110
STA350BW Register description
Doc ID 018572 Rev 3 77/86
7.21 Extra volume resolution configuration registers (address
0x3F)
The extra volume resolution allows fine volume tuning by steps of 0.125dB.
The feature is enabled when VRESEN=1 , as depicted in Figure 31. The overall channel
volume in this case will be CxVol+CxVR (in dB). On top of the total volume range from
-80 dB to +48 dB, this extra volume resolution works in a volume range from -80 dB to +42
dB. For volumes greater than +42 dB, this function must not be selected.
Figure 31. Extra resolution volume scheme
If VRESEN = 0 the channel volume will be defined only by the CxVol registers.
Fine-tuning steps can be set according to the following table for channels 1, 2, 3:
D7 D6 D5 D4 D3 D2 D1 D0
VRESEN VRESTG C3VR[1] C3VR[0] C2VR[1] C2VR[0] C1VR[1] C1VR[0]
00000000
CxVR Mode
00 0 dB
01 -0.125dB
10 -0.25dB
11 -0.375dB
Audio Data Out
CxVOL Soft
Volume
X
X
Audio Data In
VRESEN
VRESTG
CxVR
MVOL or CxVOL’event
1
0
01
Audio Data Out
CxVOL Soft
Volume
X
X
Audio Data In
VRESEN
VRESTG
CxVR
MVOL or CxVOLevent
1
0
01
AM045196v1
Register description STA350BW
78/86 Doc ID 018572 Rev 3
Two different behaviors can be configured by the VRESTG bit:
If VRESTG=’0’ the CxVR contribution will be applied immediately after the
corresponding I2C bits are written.
If VRESTG=’1’ the CxVR bits will be effective on channel volume only after the
corresponding CxVol register or master volume register is written (even to the previous
values).
7.22 Quantization error noise correction (address 0x48)
A special feature inside the digital processing block is available. In case of poles positioned
at very low frequencies, biquad filters can generate some audible quantization noise or
unwanted DC level. In order to avoid this kind of effect, a quantization noise-shaping
capability can be used. The filter structure including this special feature, relative to each
biquad, is shown in Figure 32.
By default, this capability is not activated to maintain backward compatibility with all the
previous Sound Terminal products. The new feature can be enabled independently for each
biquad using the I2C registers. The D7 bit, when set, is responsible for activating this
function on the crossover filter while the other bits address any specific biquads according to
the previous table. Channels 1 and 2 share the same settings. Bit D7 is effective also for
channel 3 if the relative OCFG is used.
VRESEN VRESTG Mode
0 0 Extra Volume Resolution disabled
0 1 Extra Volume Resolution disabled
1 0 Volume fine-tuning enabled and applied immediately.
11
Volume fine-tuning enabled and applied when master or
channel volume is updated
D7 D6 D5 D4 D3 D2 D1 D0
NSHXEN NSHB7EN NSHB6EN NSHB5EN NSHB4EN NSHB3EN NSHB2EN NSHB1EN
00000000
STA350BW Register description
Doc ID 018572 Rev 3 79/86
Figure 32. Biquad filter structure with quantization error noise-shaping
7.23 Extended coefficient range up to -4...4 (address 0x49, 0x4A)
Biquads from 1 to 7 have in the STA350BW the possibility to extend the coefficient range
from [-1,1) to [-4..4). This allows the realization of high shelf filters that may require a
coefficients dynamic greater in absolute value than 1.
Three ranges are available, [-1;1) [-2;2) [-4;4). By default the extended range is not activated
to maintain backward compatibility with all the previous Sound Terminal products.
Each biquad has its independent setting according to the following table:
Table 75. Biquad filter settings
z-1
z-1
z-1
z-1
Q
In(t) b0
b1
b2
a1
a
2
z-1
+
-
Out(t)
z-1
z-1
z-1
z-1
Q
In(t) b0
b1
b2
a1
a
2
z-1
+
-
Out(t)
AM045197v1
D7 D6 D5 D4 D3 D2 D1 D0
CXTB4[1] CXTB4[0] CXTB3[1] CXTB3[0] CX_B2[1] CXTB2[0] CXTB1[1] CXTB1[0]
00000000
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved CXTB7[1] CXTB7[0] CXTB6[1] CXTB6[0] CXTB5[1] CXTB5[0]
0 0 00000 0
CEXT_Bx[1] CEXT_Bx[0]
00
[-1;1)
01
[-2;2)
10
[-4;4)
1 1 Reserved
Register description STA350BW
80/86 Doc ID 018572 Rev 3
In this case the user can decide, for each filter stage, the right coefficients range. Note that
for a given biquad the same range will be applied to Left and Right (Channel 1 and Channel
2).
The crossover biquad does not have the availability of this feature, maintaining the [-1;1)
range unchanged.
7.24 Miscellaneous registers (address 0x4B, 0x4C)
7.24.1 Rate powerdown enable (RPDNEN) bit (address 0x4B, bit D7)
In the STA350BW, by default, the power-down pin and I2C power-down act on mute
commands to perform the fadeout. This default can be changed so that the fadeout can be
started using the master volume. The RPDNEN bit, when set, activates this feature.
7.24.2 Noise-shaping on DC cut filter enable (NSHHPEN) bit (address 0x4B,
bit D6)
Following the description in Section 7.22, this bit, when set, enables the noise-shaping
technique on the DC cutoff filter. Channels 1 and 2 share the same settings.
7.24.3 Bridge immediate off (BRIDGOFF) bit (address 0x4B, bit D5)
A fadeout procedure is started in the STA350BW once the PWDN function is enabled.
Independently from the fadeout time, after 13 million clock cycles (PLL internal frequency)
the bridge is put in powerdown (tristate mode). There is also the possibility to change this
behavior so that the power bridge will be switched off immediately after the PWDN pin is tied
to ground, without therefore waiting for the 13 million clock cycles. The BRIDGOFF bit, when
set, activates this function. Obviously the immediate power-down will generate a pop noise
at the output. therefore this procedure must be used only in case pop noise is not relevant in
the application. Note that this feature works only for hardware PWDN assertion and not for a
powerdown applied through the I2C interface. Refer to Section 7.24.5 in order to program a
different number of clock cycles.
D7 D6 D5 D4 D3 D2 D1 D0
RPDNEN NSHHPEN BRIDGOFF Reserved Reserved CPWMEN Reserved Reserved
0 0 0001 0 0
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved Reserved PNDLSL[2] PNDLSL[1] PNDLSL[0] Reserved Reserved
00000000
STA350BW Register description
Doc ID 018572 Rev 3 81/86
7.24.4 Channel PWM enable (CPWMEN) bit (address 0x4B, bit D2)
This bit, when set, activates a mute output in case the volume will reach a value lower than
-76 dBFS.
7.24.5 Power-down delay selector (PNDLSL[2:0]) bits (address 0x4C, bit D4,
D3, D2)
As per Section 7.24.3, the assertion of PWDN activates a counter that, by default, after 13
million clock cycles puts the power bridge in tristate mode, independently from the fadeout
time. Using these registers it is possible to program this counter according to the following
table:
PNDLSL[2] PNDLSL[1] PNDLSL[2] Fade out time
00 0 Default time (13M clock cycles)
00 1 Default time divided by 2
01 0 Default time divided by 4
01 1 Default time divided by 8
10 0 Default time divided by 16
10 1 Default time divided by 32
11 0 Default time divided by 64
11 1
Default time divided by 128
Package thermal characteristics STA350BW
82/86 Doc ID 018572 Rev 3
8 Package thermal characteristics
Using a four-layer PCB the thermal resistance junction-to-ambient with 2 copper ground
areas of 6 x 4 cm2 and with 24 via holes (see Figure 33) is 17 °C/W in natural air convection.
The dissipated power within the device depends primarily on the supply voltage, load
impedance and output modulation level.
Thus, the maximum estimated dissipated power for the STA350BW is:
Figure 33. Double-layer PCB with 2 copper ground areas and 24 via holes
Figure 34 shows the power derating curve for the PowerSSO-36 slug-down package on
PCBs with copper areas of 5 x 4 cm2 and 6 x 4cm2.
Figure 34. PowerSSO-36 power derating curve
2 x 40 W @ 8 Ω, 25.5 V Pd max ~ 8 W
2 x 17 W + 1 x 35 W @ 4 Ω, 8 Ω, 25 V Pd max < 7 W
AM045200v1
0
1
2
3
4
5
6
7
8
020406080 100 120 140 160
Pd (W)
Tamb( °C)
Copper Area 5x4 cm
and 20 via holes
STA350BW
Power-SSO36
Copper Area 6x4 cm
and 24 via holes
Copper Area 5x4 cm
and 20 via holes
STA350BW
Power-SSO36
Copper Area 6x4 cm
and 24 via holes
AM045201v1
STA350BW Package mechanical data
Doc ID 018572 Rev 3 83/86
9 Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Table 76. PowerSSO-36 EPD dimensions
Symbol
Dimensions in mm Dimensions in inches
Min Typ Max Min Typ Max
A 2.15 - 2.47 0.085 - 0.097
A2 2.15 - 2.40 0.085 - 0.094
a1 0.00 - 0.10 0.00 - 0.004
b 0.18 - 0.36 0.007 - 0.014
c 0.23 - 0.32 0.009 - 0.013
D 10.10 - 10.50 0.398 - 0.413
E 7.40 - 7.60 0.291 - 0.299
e- 0.5 - - 0.020 -
e3 - 8.5 - - 0.335 -
F- 2.3 - - 0.091 -
G - - 0.10 - - 0.004
H 10.10 - 10.50 0.398 - 0.413
h - - 0.40 - - 0.016
k 0 - 8 degrees 0 - 8 degrees
L 0.60 - 1.00 0.024 - 0.039
M - 4.30 - - 0.169 -
N - - 10 degrees - - 10 degrees
O - 1.20 - - 0.047 -
Q - 0.80 - - 0.031 -
S - 2.90 - - 0.114 -
T - 3.65 - - 0.144 -
U - 1.00 - - 0.039 -
X 4.10 - 4.70 0.161 - 0.185
Y 6.50 - 7.10 0.256 - 0.280
STA350BW Package mechanical data
Doc ID 018572 Rev 3 84/86
Figure 35. PowerSSO-36 EPD outline drawing
h x 45°
STA350BW Revision history
Doc ID 018572 Rev 3 85/86
10 Revision history
Table 77. Document revision history
Date Revision Changes
11-Mar-2011 1Initial release.
20-Apr-2011 2 Updated Figure 4: Demonstration board, 2.0 channels
Added Figure 5: Mono parallel BTL schematic
13-Apr-2012 3 Updated min. and typ. values for Isc in Table 6: Electrical
specifications - power section
STA350BW
86/86 Doc ID 018572 Rev 3
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com