8-Channel, 24-Bit,
Simultaneous Sampling ADC
Data Sheet AD7779
Rev. D Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice.
No license is granted by implication or otherwise under any patent or patent rights of Analog
Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2016–2020 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
8-channel, 24-bit simultaneous sampling analog-to-digital
converter (ADC)
Single-ended or true differential inputs
Programmable gain amplifier (PGA) per channel (gains of
1, 2, 4, and 8)
Low dc input current
±1.5 nA (differential)
±4 nA (single-ended)
Up to 16 kSPS output data rate (ODR) per channel
Programmable ODRs and bandwidth
Sample rate converter (SRC) for coherent sampling
Sampling rate resolution up to 15.2 μSPS
Low latency sinc3 filter path
Adjustable phase synchronization
Internal 2.5 V reference
Two power modes optimizing power dissipation and
performance: high resolution mode and low power mode
Low resolution successive approximation (SAR) ADC for
system and chip diagnostics
Power supply
Bipolar (±1.65 V) or unipolar (3.3 V) supplies
Digital input/output (I/O) supply: 1.8 V to 3.6 V
Performance temperature range: –40°C to +105°C
Functional temperature range: –40°C to +125°C
Performance
Combined ac and dc performance
108 dB signal-to-noise ratio (SNR)/dynamic range at 16 kSPS
in high resolution mode
−109 dB total harmonic distortion (THD)
±7 ppm integral nonlinearity (INL)
±40 μV offset error
±0.1% gain error
±10 ppm/°C typical temperature coefficient
APPLICATIONS
Circuit breakers
General-purpose data acquisition
Electroencephalography (EEG)
Industrial process control
GENERAL DESCRIPTION
The AD7779 is an 8-channel, simultaneous sampling ADC. There
are eight full Σ- ADCs on chip. The AD7779 provides an ultra-
low input current to allow direct sensor connection. Each input
channel has a programmable gain stage allowing gains of 1, 2, 4,
and 8 to map lower amplitude sensor outputs into the full-scale
ADC input range, maximizing the dynamic range of the signal
chain. The AD7779 accepts VREF from 1 V up to 3.6 V. The
analog inputs accept unipolar (0 V to VREF/GAIN) or true bipolar
(±VREF/GAIN/2 V) analog input signals with 3.3 V or ±1.65 V
analog supply voltages. The analog inputs can be configured to
accept true differential, pseudo differential, or single-ended signals
to match different sensor output configurations.
Each channel contains an ADC modulator and a sinc3, low
latency digital filter. An SRC is provided to allow fine resolution
control over the AD7779 ODR. This control can be used in
applications where the ODR resolution is required to maintain
coherency with 0.01 Hz changes in the line frequency. The SRC
is programmable through the serial port interface (SPI). The
AD7779 implements two different interfaces: a data output
interface and SPI control interface. The ADC data output
interface is dedicated to transmitting the ADC conversion results
from the AD7779 to the processor. The SPI interface is used to
write to and read from the AD7779 configuration registers and
for the control and reading of data from the SAR ADC. The SPI
interface can also be configured to output the Σ- conversion data.
The AD7779 includes a 12-bit SAR ADC. This ADC can be used
for AD7779 diagnostics without having to decommission one of
the Σ- ADC channels dedicated to system measurement func-
tions. With the use of an external multiplexer, which can be
controlled through the three general-purpose inputs/outputs pins
(GPIOs), and signal conditioning, the SAR ADC can be used to
validate the Σ- ADC measurements in applications where
functional safety is required. In addition, the AD7779 SAR ADC
includes an internal multiplexer to sense internal nodes.
The AD7779 contains a 2.5 V reference and reference buffer.
The reference has a typical temperature coefficient of 10 ppm/°C.
The AD7779 offers two modes of operation: high resolution mode
and low power mode. High resolution mode provides a higher
dynamic range while consuming 10.75 mW per channel; low
power mode consumes just 3.37 mW per channel at a reduced
dynamic range specification.
The specified operating temperature range is −40°C to +105°C,
although the device is operational up to +125°C.
Note that throughout this data sheet, certain terms are used to
refer to either the multifunction pins or a range of pins. The
multifunction pins, such as DCLK0/SDO, are referred to either by
the entire pin name or by a single function of the pin, for example,
DCLK0, when only that function is relevant. In the case of ranges
of pins, AVSSx refers to the following pins: AVSS1A, AVSS1B,
AVSS2A, AVSS2B, AVSS3, and AVSS4.
AD7779 Data Sheet
Rev. D | Page 2 of 101
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ...................................................................................... 1
General Description ......................................................................... 1
Revision History ............................................................................... 4
Functional Block Diagram .............................................................. 5
Specifications .................................................................................... 6
DOUTx Timing Characterististics ........................................... 10
SPI Timing Characterististics ................................................... 11
Synchronization Pins and Reset Timing Characteristics ..... 12
SAR ADC Timing Characterististics ....................................... 13
GPIO SRC Update Timing Characterististics ........................ 13
Absolute Maximum Ratings ......................................................... 14
Thermal Resistance .................................................................... 14
ESD Caution................................................................................ 14
Pin Configuration and Function Descriptions .......................... 15
Typical Performance Characteristics ........................................... 18
Terminology .................................................................................... 31
RMS Noise and Resolution ........................................................... 33
High Resolution Mode .............................................................. 33
Low Power Mode ....................................................................... 33
Theory of Operation ...................................................................... 34
Analog Inputs ............................................................................. 34
Transfer Function ...................................................................... 35
Core Signal Chain ...................................................................... 36
Capacitive PGA .......................................................................... 36
Internal Reference and Reference Buffers .............................. 36
Integrated LDOs ......................................................................... 37
Clocking and Sampling ............................................................. 37
Digital Reset and Synchronization Pins .................................. 37
Digital Filtering ........................................................................... 38
Shutdown Mode ......................................................................... 38
Controlling the AD7779 ............................................................ 39
Pin Control Mode ...................................................................... 39
SPI Control .................................................................................. 41
Digital SPI Interface ................................................................... 44
Diagnostics and Monitoring ......................................................... 47
Self Diagnostics Error ................................................................ 47
Monitoring Using the AD7779 SAR ADC (SPI Control
Mode) ........................................................................................... 48
Σ- ADC Diagnostics (SPI Control Mode) ........................... 50
Σ-∆ Output Data ............................................................................. 51
ADC Conversion Output—Header and Data ........................ 51
Sample Rate Converter (SRC) (SPI Control Mode) .............. 52
Data Output Interface ............................................................... 54
Calculating the CRC Checksum .............................................. 58
Register Summary .......................................................................... 60
Register Details ............................................................................... 65
Channel 0 Configuration Register ........................................... 65
Channel 1 Configuration Register ........................................... 65
Channel 2 Configuration Register ........................................... 66
Channel 3 Configuration Register ........................................... 66
Channel 4 Configuration Register ........................................... 67
Channel 5 Configuration Register ........................................... 67
Channel 6 Configuration Register ........................................... 68
Channel 7 Configuration Register ........................................... 68
Disable Clocks to ADC Channel Register .............................. 69
Channel 0 Sync Offset Register ................................................ 69
Channel 1 Sync Offset Register ................................................ 69
Channel 2 Sync Offset Register ................................................ 70
Channel 3 Sync Offset Register ................................................ 70
Channel 4 Sync Offset Register ................................................ 70
Channel 5 Sync Offset Register ................................................ 70
Channel 6 Sync Offset Register ................................................ 71
Channel 7 Sync Offset Register ................................................ 71
General User Configuration 1 Register ................................... 71
General User Configuration 2 Register ................................... 72
General User Configuration 3 Register ................................... 73
Data Output Format Register ................................................... 73
Main ADC Meter and Reference Mux Control Register ...... 74
Global Diagnostics Mux Register ............................................ 75
GPIO Configuration Register ................................................... 76
GPIO Data Register ................................................................... 76
Buffer Configuration 1 Register ............................................... 76
Buffer Configuration 2 Register ............................................... 77
Channel 0 Offset Upper Byte Register .................................... 77
Data Sheet AD7779
Rev. D | Page 3 of 101
Channel 0 Offset Middle Byte Register .................................... 77
Channel 0 Offset Lower Byte Register ..................................... 78
Channel 0 Gain Upper Byte Register ....................................... 78
Channel 0 Gain Middle Byte Register ...................................... 78
Channel 0 Gain Lower Byte Register ....................................... 78
Channel 1 Offset Upper Byte Register ..................................... 79
Channel 1 Offset Middle Byte Register .................................... 79
Channel 1 Offset Lower Byte Register ..................................... 79
Channel 1 Gain Upper Byte Register ....................................... 79
Channel 1 Gain Middle Byte Register ...................................... 80
Channel 1 Gain Lower Byte Register ....................................... 80
Channel 2 Offset Upper Byte Register ..................................... 80
Channel 2 Offset Middle Byte Register .................................... 80
Channel 2 Offset Lower Byte Register ..................................... 81
Channel 2 Gain Upper Byte Register ....................................... 81
Channel 2 Gain Middle Byte Register ...................................... 81
Channel 2 Gain Lower Byte Register ....................................... 81
Channel 3 Offset Upper Byte Register ..................................... 82
Channel 3 Offset Middle Byte Register .................................... 82
Channel 3 Offset Lower Byte Register ..................................... 82
Channel 3 Gain Upper Byte Register ....................................... 82
Channel 3 Gain Middle Byte Register ...................................... 83
Channel 3 Gain Lower Byte Register ....................................... 83
Channel 4 Offset Upper Byte Register ..................................... 83
Channel 4 Offset Middle Byte Register .................................... 83
Channel 4 Offset Lower Byte Register ..................................... 84
Channel 4 Gain Upper Byte Register ....................................... 84
Channel 4 Gain Middle Byte Register ...................................... 84
Channel 4 Gain Lower Byte Register ....................................... 84
Channel 5 Offset Upper Byte Register ..................................... 85
Channel 5 Offset Middle Byte Register .................................... 85
Channel 5 Offset Lower Byte Register ..................................... 85
Channel 5 Gain Upper Byte Register ....................................... 85
Channel 5 Gain Middle Byte Register ...................................... 86
Channel 5 Gain Lower Byte Register ....................................... 86
Channel 6 Offset Upper Byte Register ..................................... 86
Channel 6 Offset Middle Byte Register .................................... 86
Channel 6 Offset Lower Byte Register ..................................... 87
Channel 6 Gain Upper Byte Register ....................................... 87
Channel 6 Gain Middle Byte Register ...................................... 87
Channel 6 Gain Lower Byte Register ....................................... 87
Channel 7 Offset Upper Byte Register ..................................... 88
Channel 7 Offset Middle Byte Register.................................... 88
Channel 7 Offset Lower Byte Register ..................................... 88
Channel 7 Gain Upper Byte Register ....................................... 88
Channel 7 Gain Middle Byte Register ...................................... 89
Channel 7 Gain Lower Byte Register ....................................... 89
Channel 0 Status Register .......................................................... 89
Channel 1 Status Register .......................................................... 90
Channel 2 Status Register .......................................................... 90
Channel 3 Status Register .......................................................... 91
Channel 4 Status Register .......................................................... 91
Channel 5 Status Register .......................................................... 92
Channel 6 Status Register .......................................................... 92
Channel 7 Status Register .......................................................... 93
Channel 0/Channel 1 DSP Errors Register ............................. 93
Channel 2/Channel 3 DSP Errors Register ............................. 94
Channel 4/Channel 5 DSP Errors Register ............................. 94
Channel 6/Channel 7 DSP Errors Register ............................. 95
Channel 0 to Channel 7 Error Register Enable Register ....... 95
General Errors Register 1 ........................................................... 96
General Errors Register 1 Enable.............................................. 96
General Errors Register 2 ........................................................... 97
General Errors Register 2 Enable.............................................. 97
Error Status Register 1 ............................................................... 98
Error Status Register 2 ............................................................... 98
Error Status Register 3 ............................................................... 99
Decimation Rate (N) MSB Register ......................................... 99
Decimation Rate (N) LSB Register ........................................... 99
Decimation Rate (IF) MSB Register ....................................... 100
Decimation Rate (IF) LSB Register ........................................ 100
SRC Load Source and Load Update Register ........................ 100
Outline Dimensions ..................................................................... 101
Ordering Guide ......................................................................... 101
AD7779 Data Sheet
Rev. D | Page 4 of 101
REVISION HISTORY
5/2020—Rev. C to Rev. D
Changes to Figure 1 .......................................................................... 5
Change to Table 1 ............................................................................. 6
Changes to Table 6 and Figure 6 .................................................. 13
Add Figure 82; Renumbered Sequentially .................................. 30
Changes to Common-Mode Rejection Ratio (CMRR) Section ..... 31
Changes to Core Signal Chain Section, Capacitive PGA Section,
and Internal Reference and Reference Buffers Section ............. 36
Changes to Figure 99 ..................................................................... 41
Changes to Phase Adjustment Section ........................................ 42
Changes to Temperature Sensor Section .................................... 49
Changes to Sample Rate Converter (SRC) (SPI Control Mode)
Section and Figure 110 .................................................................. 52
Changes to Figure 115 through Figure 117 ................................ 54
Changes to Figure 121 ................................................................... 56
6/2018—Rev. B to Rev. C
Change to t22B Parameter, Table 3 ................................................ 11
Changes to AUXAIN± Parameter, Table 7 ................................ 14
Changes to Table 17 ....................................................................... 39
Added Figure 104; Renumbered Sequentially ............................ 46
Changes to Figure 115 Caption and Figure 116 Caption ......... 54
Updated Outline Dimensions ..................................................... 100
Changes to Ordering Guide ........................................................ 100
8/2017—Rev. A to Rev. B
Changes to Features Section ........................................................... 1
Change to START Pin Description, Table 9 ............................... 15
Changes to Figure 48 ..................................................................... 24
Changes to Digital Reset and Synchronization Pins Section ... 37
Changes to Figure 94 ..................................................................... 38
Changes to Phase Adjustment Section and Table 20 ................ 42
Added Table 21; Renumbered Sequentially ................................ 42
Changes to Digital SPI Interface Section .................................... 44
9/2016—Rev. 0 to Rev. A
Changes to General Description Section ....................................... 1
Changes to Table 1 ............................................................................ 6
Changes to Table 2 ......................................................................... 10
Changes to Table 4 ......................................................................... 12
Changes to Figure 8 Caption through Figure 13 Caption ........ 18
Changes to Figure 14 Caption and Figure 17 Caption ............. 19
Changes to Figure 22 ..................................................................... 20
Changes to Figure 26 Caption, Figure 27 Caption, Figure 29
Caption, and Figure 30 Caption ................................................... 21
Changes to Figure 35 Caption ...................................................... 22
Changes to Figure 38 through Figure 43 .................................... 23
Changes to Figure 44, Figure 45 Caption, and Figure 47 ......... 24
Changes to Figure 51 Caption, Figure 52 Caption, and
Figure 55 Caption ........................................................................... 25
Changes to Figure 56, Figure 58, Figure 59, and Figure 61 ...... 26
Changes to Figure 63 Caption, Figure 64 Caption, Figure 66
Caption, and Figure 67 Caption ................................................... 27
Changes to Figure 76 and Figure 79 ............................................ 29
Changes to Figure 80 and Figure 81 ............................................ 30
Changes to Figure 100 ................................................................... 44
Changes to SPI SAR Diagnostic Mode (SPI Control Mode)
Section .............................................................................................. 46
Changes to SPI Transmission Errors (SPI Control Mode) ...... 48
Changes to CRC Header Section, Figure 107, and Table 33 to
Table 35 ............................................................................................ 51
Changes to SRC Bandwidth Section ............................................ 52
Changes to Figure 109, Figure 110, SRC Group Delay and
Latency Section, and Setting Time Section ................................. 53
Added Figure 111 and Figure 112; Renumbered Sequentially ... 53
Changes to Table 40 ............................................................................ 57
Changes to Calculating the CRC Checksum Section and
Table 42 ............................................................................................ 58
Changes to SPI Control Mode Checksum Section .................... 59
Changes to Table 66 ....................................................................... 74
2/2016—Revision 0: Initial Version
Data Sheet AD7779
Rev. D | Page 5 of 101
FUNCTIONAL BLOCK DIAGRAM
AVDD1x REF_OUT REFx+
VCM
AVDD2
AVSSx AVDD4 CONVST_SAR
IOVDD
AREGxCAP DREGCAP
CLOCK
MANAGER
XTAL1
XTAL2/MCLK
SYNC_IN
SYNC_OUT
START
REFx–
DCLK
DRDY
DOUT3
DOUT2
DOUT1
DOUT0
FORMAT1
FORMAT0
MODE3/ALERT
MODE2/GPIO2
MODE1/GPIO1
MODE0/GPIO0
ALERT/CS
DCLK2/SCLK
DCLK1/SDI
DCLK0/SDO
RESET
Σ-Δ ADC
AIN0+
AIN0– 280mV p-p
Σ-Δ ADC
REFERENCES
EXT_REF
INT_REF
AIN1+
AIN1–
Σ-Δ ADC
REFERENCES
AIN2+
AIN2–
Σ-Δ ADC
REFERENCES
AIN3+
AIN3–
Σ-Δ ADC
REFERENCES
AIN4+
AIN4–
Σ-Δ ADC
REFERENCES
AIN5+
AIN5–
REFERENCES
AIN6+
AIN6–
REFERENCES
DIAGNOSTIC
INPUTS
AIN7+
AIN7–
SINC3/
SRC
FILTER
GAIN
OFFSET
COMMON-
MODE
VOLTAGE
ANALOG
LDO
2.5V REF
SINC3/
SRC
FILTER
GAIN
OFFSET
SINC3/
SRC
FILTER
GAIN
OFFSET
SINC3/
SRC
FILTER
GAIN
OFFSET
SINC3/
SRC
FILTER
GAIN
OFFSET
SINC3/
SRC
FILTER
GAIN
OFFSET
SINC3/
SRC
FILTER
GAIN
OFFSET
SINC3/
SRC
FILTER
GAIN
OFFSET
Σ-Δ ADC
Σ-Δ ADC
AUXAIN+
AUXAIN–
DATA OUTPUT
INTERFACE
REGISTER MAP
AND
LOGIC CONTROL
HARDWARE
MODE
CONFIGURATION
SPI INTERFACE
AD7779
SAR ADC
DIGITAL
LDO
13295-001
PGA
PGA
PGA
PGA
PGA
PGA
PGA
PGA
DGND
CLK_SEL
Figure 1.
AD7779 Data Sheet
Rev. D | Page 6 of 101
SPECIFICATIONS
AVDD1x = +1.65 V, AVSSx1 = −1.65 V (dual supply operation), AVDD1x = 3.3 V, AVSSx = AGND (single-supply operation), AVDD2x
AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− = 2.5 V AVSSx (internal/external), master clock (MCLK)
= 8192 kHz for high resolution mode and 4096 kHz for low power mode, ODR = 16 kSPS for high resolution mode and 4 kSPS for low
power mode; all specifications at TMIN to TMAX, unless otherwise noted.
Table 1.
Parameter Test Conditions/Comments Min Typ Max Unit
Σ- ADC CHANNELS
Speed and Performance
Resolution 24 Bits
ODR High resolution (HR) mode 16 kSPS
Low power (LP) mode 8 kSPS
No Missing Codes 24 Bits
Gain Settings 1, 2, 4, or 8
Bandwidth Small signal, high resolution mode 2 MHz
Small signal, low power mode 512 kHz
Large signal, high resolution mode 5 kHz
Large signal, low power mode 1.5 kHz
AC Accuracy
Dynamic Range Shorted inputs, PGAGAIN = 1
16 kSPS High resolution mode 108 dB
4 kSPS High resolution mode 116 dB
Low power mode 106 dB
1 kSPS Low power mode 116 dB
THD −0.5 dBFS, HR mode −109 dB
−0.5 dBFS, LP mode 105 dB
SINAD fIN = 60 Hz 106 dB
SFDR HR mode, 16 kSPS, PGAGAIN = 1 132 dB
Intermodulation Distortion
(IMD)
fA = 50 Hz, fB = 51 Hz, HR mode −125 dB
f
A = 50 Hz, fB = 51 Hz, LP mode −105 dB
DC Power Supply Rejection AVDD1x = 3.3 V −90 dB
DC Common-Mode
Rejection Ratio
80 dB
Crosstalk −120 dB
DC ACCURACY
INL Endpoint method, PGAGAIN = 1 ±7 ppm of FSR
Other PGA gains ±3 ppm of FSR
Offset Error ±40 ±125 µV
Offset Error Drift ±0.5 µV/°C
Offset Error Drift vs. Time −2 µV/
1000 hrs
Offset Matching 25 µV
Gain Error ±0.1 % FS
Gain Drift vs. Temperature PGAGAIN = 1 ±0.75 ppm/°C
Gain Matching ±0.1 %
Data Sheet AD7779
Rev. D | Page 7 of 101
Parameter Test Conditions/Comments Min Typ Max Unit
ANALOG INPUTS
Differential Input Voltage
Range
VREF = (REFx+ − REFx−) ±VREF/PGAGAIN V
Single-Ended Input Voltage
Range
0 to VREF/PGAGAIN V
AINx± Common-Mode Input
Range
AVSSx + 0.10 (AVDD1x + AVSSx)/2 AVDD1x − 0.10 V
Absolute AINx± Voltage
Limits
AVSSx + 0.10 AVDD1x − 0.10 V
DC Input Current
Differential HR, MCLK = 8192 kHz ±1.5 nA
Low power mode, MCLK =
4096 kHz
±0.6 nA
Single-Ended HR, MCLK = 8192 kHz ±4 nA
Low power mode, MCLK =
4096 kHz
±1.5 nA
Input Current Drift 50 pA/°C
AC Input Capacitance 8 pF
REFERENCE
Internal
Initial Accuracy REF_OUT, TA = 25°C 2.5 − 0.2% 2.5 2.5 + 0.2% V
Temperature Coefficient ±10 ±38 ppm/°C
Reference Load Current, IL −10 +10 mA
DC Power Supply Rejection Line regulation 95 dB
Load Regulation, ∆VOUT/∆IL 100 µV/mA
Voltage Noise eN p-p, 0.1 Hz to 10 Hz 6.8 µV rms
Voltage Noise Density eN, 1 kHz, 2.5 V reference 273.5 nV/√Hz
Turn On Settling Time 100 nF 1.5 ms
External
Input Voltage VREF = (REFx+ − REFx−) 1 2.5 AVDD1x V
Buffer Headroom AVSSx + 0.1 AVDD1x − 0.1
REFx− Input Voltage AVSSx AVDD1x – REFx+ V
Average REFx± Input
Current
Current per channel
Reference buffer disabled,
high resolution mode
18 µA/V
Reference buffer precharge mode
(pre-Q), high resolution mode
600 nA/V
Reference buffer disabled,
low power mode
4.5 µA/V
Reference buffer pre-Q,
low power mode
100 nA/V
Reference buffer enabled,
high resolution mode
10 nA/V
Reference buffer enabled,
low power mode
5 nA/V
TEMPERATURE RANGE
Specified Performance TMIN to TMAX −40 +105 °C
Functional2 T
MIN to TMAX −40 +125 °C
TEMPERATURE SENSOR
Accuracy ±2 °C
AD7779 Data Sheet
Rev. D | Page 8 of 101
Parameter Test Conditions/Comments Min Typ Max Unit
DIGITAL FILTER RESPONSE
(SINC3)
Group Delay See the SRC Group
Delay section
Settling Time See the Settling
Time section
Pass Band −0.1 dB See the SRC
Bandwidth section
−3 dB See the SRC
Bandwidth section
Decimation Rate High resolution mode 128 4095.99
Low power mode 64 4095.99
CLOCK SOURCE
Frequency High resolution mode 0.655 8.192 MHz
Low power mode 1.3 4.096 MHz
Duty Cycle 45:55 50:50 55:45 %
SAR ADC CHANNEL
Speed and Performance
Resolution 12 Bits
Analog Input Range AVSS4 + 0.1 AVDD4 − 0.1 V
Analog Input Common-
Mode Range
AVSS4 + 0.1 (AVDD4 + AVSS4)/2 AVDD4 − 0.1 V
Analog Input Dynamic
Current
256 kSPS, 0 dBFS ±100 nA
Throughput 256 kSPS
DC Accuracy Differential mode
INL 1.5 LSB
DNL No missing codes (12-bit) −0.99 +1 LSB
Offset 1 LSB
Gain 12 LSB
AC Performance
SNR 1 kHz 66 dB
THD 1 kHz −81 dB
VCM PIN
Output (AVDD1x + AVSSx)/2 V
Load Current, IL 1 mA
Load Regulation, ∆VOUT/∆IL 12 mV/mA
Short-Circuit Current 5 mA
LOGIC INPUTS
Input High Voltage, VIH 0.7 × IOVDD V
Input Low Voltage, VIL 0.4 V
Hysteresis 0.1 V
Input Currents −10 +10 µA
LOGIC OUTPUTS3
Output High Voltage, VOH IOVDD ≥ 3 V, ISOURCE = 1 mA 0.8 × IOVDD V
2.3 ≤ IOVDD < 3 V, ISOURCE = 500 µA 0.8 × IOVDD V
IOVDD < 2.3 V, ISOURCE = 200 µA 0.8 × IOVDD V
Output Low Voltage, VOL IOVDD ≥ 3 V, ISINK = 2 mA 0.4 V
2.3 ≤ IOVDD < 3 V, ISINK = 1 mA 0.4 V
IOVDD < 2.3 V, ISINK = 100 µA 0.4 V
Data Sheet AD7779
Rev. D | Page 9 of 101
Parameter Test Conditions/Comments Min Typ Max Unit
Leakage Current Floating state −10 +10 µA
Output Capacitance Floating state 10 pF
Σ- ADC Data Output Coding Twos complement
SAR ADC Data Output Coding Binary
POWER SUPPLIES All Σ- channels enabled
AVDD1x – AVSSx 3.0 3.6 V
IAVDD1x4, 5 Reference buffer pre-Q, VCM
enabled, internal reference enabled
High resolution mode 17 22.7 mA
Low power mode 4.5 6.1 mA
Reference buffer enabled, VCM
enabled, internal reference enabled
High resolution mode 19 25.5 mA
Low power mode 5 6.8 mA
Reference buffer disabled, VCM
disabled, internal reference
disabled
High resolution mode 13 17.8 mA
Low power mode 3.5 4.8 mA
AVDD2x – AVSSx 2.2 3.6 V
IAVDD2x High resolution mode 9 9.45 mA
Low power mode 3.5 3.7 mA
AVDD4 – AVSSx AVDD1x – 0.3 AVDD1x V
IAVDD4 SAR enabled 1.7 2 mA
SAR disabled 1 10 µA
AVSSx − DGND −1.8 0 V
IOVDD − DGND 1.8 3.6 V
IIOVDD High resolution mode 8 10.7 mA
Low power mode 3 4.4 mA
Power Dissipation6 Internal buffers bypassed, internal
reference disabled, internal
oscillator disabled, SAR disabled
High Resolution Mode 16 kSPS 86 133 mW
Low Power Mode 4 kSPS 27 44 mW
Power-Down All ADCs disabled 530 µW
1 AVSSx is used to refer to the following pins: AVSS1A, AVSS1B, AVSS2B, and AVSS2A. This term is used throughout the data sheet.
2 At temperatures higher than 105°C, the device can be operated normally, though slight degradation on the maximum/minimum specifications is expected because
these specifications are only guaranteed up to 105°C. See the Typical Performance Characteristics section for plots showing the typical performance of the device at
high temperatures.
3 The SDO pin and the DOUTx pin are configured in the default mode of strength.
4 AVDD1x = 3.3 V, AVSSx = GND = ground, IOVDD = 1.8 V, CMOS clock.
5 Disabling either the VCM pin or the internal reference results in a 40 µA typical current consumption reduction.
6 Power dissipation is calculated using the maximum supply voltage, 3.6 V.
AD7779 Data Sheet
Rev. D | Page 10 of 101
DOUTx TIMING CHARACTERISTISTICS
AVDD1x/AVSSx = ±1.65 V, 3.3 V/AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− =
2.5 V (internal/external), MCLK = 8192 kHz; all specifications at TMIN to TMAX, unless otherwise noted.
Table 2.
Parameter Description1 Test Conditions/Comments Min Typ Max Unit
t1 MCLK frequency 50:50 0.655 8.192 MHz
t2 MCLK low time 60 ns
t3 MCLK high time 60 ns
t4 DCLKx high time MCLK/2 121 ns
t5 DCLKx low time MCLK/2 121 ns
t6 MCLK falling edge to DCLK rising edge 45 ns
t7 MCLK falling edge to DCLK falling edge 45 ns
t8 DCLKx rising edge to DRDY rising edge 2 ns
t9 DCLKx rising edge to DRDY falling edge 1 ns
t10 DOUTx setup time 20 ns
t11 DOUTx hold time 20 ns
1 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2.
MCLK
DCLK
DRDY
LSB MSB MSB – 1 LSB + 1 LSBDOUTx
t
2
t
4
t
5
t
6
t
7
t
10
t
11
t
8
t
9
t
1
t
3
13295-002
Figure 2. Data Interface Timing Diagram
Data Sheet AD7779
Rev. D | Page 11 of 101
SPI TIMING CHARACTERISTISTICS
AVDD1x/AVSSx = ±1.65 V, 3.3 V/AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− =
2.5 V (internal/external), MCLK = 8192 kHz; all specifications at TMIN to TMAX, unless otherwise noted.
Table 3.
Parameter Description1 Test Conditions/Comments Min Typ Max Unit
t12 SCLK period 50:50 30 MHz
t13 SCLK low time 7 ns
t14 SCLK high time 7 ns
t15 SCLK rising edge to CS falling edge 10 ns
t16 CS falling edge to SCLK rising edge 10 ns
t17 SCLK rising edge to CS rising edge 10 ns
t18 CS rising edge to SCLK rising edge 10 ns
t19 Minimum
CS high time 10 ns
t20 SDI setup time 5 ns
t21 SDI hold time 5 ns
t22A CS falling edge to SDO enable (SPI = Mode 0) 30 ns
t22B SCLK falling edge to SDO enable (SPI = Mode 3) 49 ns
t23 SDO setup time 10 ns
t24 SDO hold time 10 ns
t25 CS rising edge to SDO disable 30 ns
1 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2.
CS
SCLK
MSB MSB – 1 LSB + 1 LSBSDI
MSB MSB – 1 LSB + 1 LSBSDO
t
15
t
16
t
13
t
14
t
20
t
22A
t
21
t
24
t
23
t
22B
t
12
t
19
t
17
t
18
t
25
13295-003
Figure 3. SPI Control Interface Timing Diagram
AD7779 Data Sheet
Rev. D | Page 12 of 101
SYNCHRONIZATION PINS AND RESET TIMING CHARACTERISTICS
AVDD1x/AVSSx = ±1.65 V, 3.3 V/AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− =
2.5 V (internal/external), MCLK = 8192 kHz; all specifications at TMIN to TMAX, unless otherwise noted.
Table 4.
Parameter Description1 Test Conditions/Comments Min Typ Max Unit
t26 START setup time 10 ns
t27 START hold time MCLK ns
t28 MCLK falling edge to SYNC_OUT falling edge MCLK ns
t29 SYNC_IN setup time 10 ns
t30 SYNC_IN hold time MCLK ns
tINIT_SYNC_IN SYNC_IN rising edge to first DRDY 16 kSPS, HR mode 145 µs
tINIT_RESET RESET rising edge to first DRDY 16 kSPS, HR mode 225 µs
t31 RESET hold time 2 × MCLK ns
tPOWER_UP Start time tPOWER_UP is not shown in Figure 4 2 ms
1 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2.
MCLK
START
S
Y
NC_OUT
SYNC_IN
DRDY
RESET
t
26
t
27
t
28
t
29
t
INIT_SYNC_IN
t
31
t
INIT_RESET
t
30
13295-004
Figure 4. Synchronization Pins and Reset Control Interface Timing Diagram
Data Sheet AD7779
Rev. D | Page 13 of 101
SAR ADC TIMING CHARACTERISTISTICS
AVDD1x/AVSSx = ±1.65 V, 3.3 V/AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− =
2.5 V (internal/external), MCLK = 8192 kHz; all specifications at TMIN to TMAX, unless otherwise noted.
Table 5.
Parameter Description1 Min Typ Max Unit
t32 Conversion time 1 3.4 µs
t33 Acquisition time2 500 ns
t34 Delay time 50 ns
t35 Throughput data 256 kSPS
1 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2.
2 Direct mode enabled. If deglitch mode is enabled, add 1.5/MCLK.
CS
CONVST_SAR
t
33
t
32
t
35
t
34
13295-005
Figure 5. SAR ADC Timing Diagram
GPIO SRC UPDATE TIMING CHARACTERISTISTICS
AVDD1x/AVSSx = ±1.65 V, 3.3 V/AGND, AVDD2 − AVSSx = 2.2 V to 3.6 V; IOVDD = 1.8 V to 3.6 V; DGND = 0 V, REFx+/REFx− =
2.5 V (internal/external), MCLK = 8192 kHz; all specifications TMIN to TMAX, unless otherwise noted.
Table 6.
Parameter Description1 Min Typ Max Unit
t36 GPIO2 setup time 10 ns
t37 GPIO2 hold time—high resolution mode MCLK ns
t37 GPIO2 hold time—low power mode 2 × MCLK
t38 MCLK rising edge to GPIO1 rising edge time 20 ns
t39 GPIO0 hold time MCLK ns
t40 GPIO0 setup time 5 ns
1 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVDD) and timed from a voltage level of (VIL + VIH)/2.
MCLK
GPIO2
GPIO1
GPIO0
t36
t37
t38
t39
t40
13295-006
Figure 6. GPIOs for SRC Update Timing Diagram
AD7779 Data Sheet
Rev. D | Page 14 of 101
ABSOLUTE MAXIMUM RATINGS
Table 7.
Parameter Rating
Any Supply Pin to AVSSx −0.3 V to +3.96 V
AVSSx to DGND −1.98 V to +0.3 V
AREGxCAP to AVSSx −0.3 V to +1.98 V
DREGCAP to DGND −0.3 V to +1.98 V
IOVDD to DGND −0.3 V to +3.96 V
IOVDD to AVSSx −0.3 V to +5.94 V
AVDD4 to AVSSx AVDD1x − 0.3 V to 3.96 V
Analog Input Voltage AVSSx − 0.3 V to AVDD1x + 0.3 V or
3.96 V (whichever is less)
REFx± Input Voltage AVSSx − 0.3 V to AVDD1x + 0.3 V or
3.96 V (whichever is less)
AUXAIN± AVSSx − 0.3 V to AVDD4 + 0.3 V or
3.96 V (whichever is less)
Digital Input Voltage to
DGND
DGND − 0.3 V to IOVDD + 0.3 V or
3.96 V (whichever is less)
Digital Output Voltage to
DGND
DGND − 0.3 V to IOVDD + 0.3 V or
3.96 V (whichever is less)
XTAL1 to DGND DGND − 0.3 V to DREGCAP + 0.3 V
or 1.98 V (whichever is less)
AINx±, AUXAIN±, and Digital
Input Current
±10 mA
Temperature
Operating Range −40°C to +125°C
Junction, TJ Maximum 150°C
Storage Range −65°C to +150°C
Reflow Soldering 260°C
Electrostatic Discharge (ESD) 2 kV
Field Induced Charged
Device Model (FICDM)
500 V
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the
operational section of this specification is not implied.
Operation beyond the maximum operating conditions for
extended periods may affect product reliability.
THERMAL RESISTANCE
Thermal performance is directly linked to printed circuit board
(PCB) design and operating environment. Close attention to
PCB thermal design is required.
Table 8. Thermal Resistance
Package Type1 θ
JA θ
JB Ψ
JT Ψ
JB Unit
64-Lead LFCSP
No Thermal Vias1 30.43 N/A2 0.13 6.59 °C/W
49 Thermal Vias1 22.62 3.17 0.09 3.19 °C/W
1 Thermal impedance simulated values are based on a JEDEC 2S2P thermal
test board. See JEDEC JESD51.
2 N/A means not applicable.
ESD CAUTION
Data Sheet AD7779
Rev. D | Page 15 of 101
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
13295-007
AD7779
TOP VIEW
(Not to Scale)
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
CONVST_SAR
ALERT/CS
DCLK2/SCLK
DCLK1/SDI
DCLK0/SDO
DGND
DREGCAP
IOVDD
DOUT3
DOUT2
DOUT1
DOUT0
DCLK
DRDY
XTAL1
XTAL2/MCLK
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
AUXAIN–
AUXAIN+
AVDD4
AVSS4
AVSS2A
AREG1CAP
AVDD2A
VCM
CLK_SEL
FORMAT0
FORMAT1
AVSS3
AVDD2B
AREG2CAP
AVSS2B
REF_OUT
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
AIN0–
AIN0+
AIN1–
AIN1+
AVSS1A
AVDD1A
REF1–
REF1+
AIN2–
AIN2+
AIN3–
AIN3+
MODE0/GPIO0
MODE1/GPIO1
MODE2/GPIO2
MODE3/ALERT
NOTES
1. EXPOSED PAD. CONNECT THE EXPOSED PAD TO AVSSx.
AIN4–
AIN4+
AIN5–
AIN5+
AVSS1B
AVDD1B
REF2–
REF2+
AIN6–
AIN6+
AIN7–
AIN7+
RESET
SYNC_IN
SYNC_OUT
START
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
Figure 7. Pin Configuration
Table 9. Pin Function Descriptions
Pin No. Mnemonic Type Direction Description
1 AIN0− Analog input Input Analog Input Channel 0, Negative.
2 AIN0+ Analog input Input Analog Input Channel 0, Positive.
3 AIN1− Analog input Input Analog Input Channel 1, Negative.
4 AIN1+ Analog input Input Analog Input Channel 1, Positive.
5 AVSS1A Supply Supply
Negative Front-End Analog Supply for Channel 0 to Channel 3, Typical at −1.65 V
(Dual Supply) and AGND (Single Supply). Connect all the AVSSx pins to the
same potential.
6 AVDD1A Supply Supply
Positive Front-End Analog Supply for Channel 0 to Channel 3, Typical at
AVSSx + 3.3 V. Connect this pin to AVDD1B.
7 REF1− Reference Input
Negative Reference Input 1 for Channel 0 to Channel 3, Typical at AVSSx.
Connect all the REFx− pins to the same potential.
8 REF1+ Reference Input Positive Reference Input 1 for Channel 0 to Channel 3, Typical at REF1− + 2.5 V.
9 AIN2− Analog input Input Analog Input Channel 2, Negative.
10 AIN2+ Analog input Input Analog Input Channel 2, Positive.
11 AIN3− Analog input Input Analog Input Channel 3, Negative.
12 AIN3+ Analog input Input Analog Input Channel 3, Positive.
13 MODE0/GPIO0 Digital I/O I/O Mode 0 Input Pin in Pin Control Mode (MODE0). See Table 18 for more details.
Configurable General-Purpose Input/Output 0 in SPI Control Mode (GPIO0).
If not in use, connect this pin to DGND or IOVDD.
14 MODE1/GPIO1 Digital I/O I/O Mode 1 Input Pin in Pin Control Mode (MODE1). See Table 18 for more details.
Configurable General-Purpose Input/Output 1 in SPI Control Mode (GPIO1).
If not in use, connect this pin to DGND or IOVDD.
15 MODE2/GPIO2 Digital I/O I/O Mode 2 Input Pin in Pin Control Mode (MODE2). See Table 18 for more details.
Configurable General-Purpose Input/Output 2 in SPI Control Mode (GPIO2).
If not in use, connect this pin to DGND or IOVDD.
16 MODE3/ALERT Digital I/O I/O Mode 3 Input Pin in Pin Control Mode (MODE3). See Table 18 for more details.
Alert Output Pin in SPI Control Mode (ALERT).
AD7779 Data Sheet
Rev. D | Page 16 of 101
Pin No. Mnemonic Type Direction Description
17 CONVST_SAR Digital input Input Σ- Output Interface Selection Pin in Pin Control Mode. See Table 17 for more
details. This pin also functions as the start for the SAR conversion in SPI
control mode.
18 ALERT/CS Digital input Input Alert Output Pin in Pin Control Mode (ALERT).
Chip Select Pin in SPI Control Mode (CS).
19 DCLK2/SCLK Digital input Input DCLK Frequency Selection Pin 2 in Pin Control Mode (DCLK2). See Table 19 for
more details.
SPI Clock in SPI Control Mode (SCLK).
20 DCLK1/SDI Digital input Input DCLK Frequency Selection Pin 1 in Pin Control Mode (DCLK1). See Table 19 for
more details.
SPI Data Input in SPI Control Mode (SDI). Connect this pin to DGND if the
device is configured in pin control mode with the SPI as the data output interface.
21 DCLK0/SDO Digital output Output
DCLK Frequency Selection Pin 0 in Pin Control Mode (DCLK0). See Table 19 for
more details.
SPI Data Output in SPI Control Mode (SDO).
22 DGND Supply Supply Digital Ground.
23 DREGCAP Supply Output Digital LDO Output. Decouple this pin to DGND with a 1 µF capacitor.
24 IOVDD Supply Supply
Digital Levels Input/Output and Digital LDO (DLDO) Supply from 1.8 V to
3.6 V. IOVDD must not be lower than DREGCAP.
25 DOUT3 Digital output I/O Data Output Pin 3. If the device is configured in daisy-chain mode, this pin
acts as an input pin. See the Daisy-Chain Mode section for more details.
26 DOUT2 Digital output I/O Data Output Pin 2. If the device is configured in daisy-chain mode, this pin
acts as an input pin. See the Daisy-Chain Mode section for more details.
27 DOUT1 Digital output Output Data Output Pin 1.
28 DOUT0 Digital output Output Data Output Pin 0.
29 DCLK Digital output Output Data Output Clock.
30 DRDY Digital output Output Data Output Ready Pin.
31 XTAL1 Clock Input
Crystal 1 Input Connection. If CMOS is used as a clock source, tie this pin to
DGND. See Table 16 for more details.
32 XTAL2/MCLK Clock Input Crystal 2 Input Connection (XTAL2). See Table 16 for more details.
CMOS Clock (MCLK). See Table 16 for more details.
33 START Digital input Input Synchronization Pulse. This pin is used to synchronize internally an external
START asynchronous pulse with MCLK. The synchronize signal is shift out by
the SYNC_OUT pin. If not in use, tie this pin to IOVDD. See the Phase Adjustment
section and the Digital Reset and Synchronization Pins section for more details.
34 SYNC_OUT Digital output Input Synchronization Signal. This pin generates a synchronous pulse generated
and driven by hardware (via the START pin) or by software (GENERAL_USER_
CONFIG_2, Bit 0). If this pin is in use, it must be wired to the SYNC_IN pin. See
the Phase Adjustment and the Digital Reset and Synchronization Pins section
for more details.
35 SYNC_IN Digital input Input Reset for the Internal Digital Block and Synchronize for Multiple Devices. See
the Digital Reset and Synchronization Pins section for more details.
36 RESET Digital input Input Asynchronous Reset Pin. This pin resets all registers to their default value. It is
recommended to generate a pulse on this pin after the device is powered up
because a slow slew rate in the supplies may generate an incorrect initialization
in the digital block.
37 AIN7+ Analog input Input Analog Input Channel 7, Positive.
38 AIN7− Analog input Input Analog Input Channel 7, Negative.
39 AIN6+ Analog input Input Analog Input Channel 6, Positive.
40 AIN6− Analog input Input Analog Input Channel 6, Negative.
41 REF2+ Reference Input Positive Reference Input 2 for Channel 4 to Channel 7, Typical at REF2− + 2.5 V.
42 REF2− Reference Input
Negative Reference Input 2 for Channel 4 to Channel 7, Typical at AVSSx.
Connect all the REFx− pins to the same potential.
Data Sheet AD7779
Rev. D | Page 17 of 101
Pin No. Mnemonic Type Direction Description
43 AVDD1B Supply Supply
Positive Front-End Analog Supply for Channel 4 to Channel 7. Connect this pin
to AVDD1A.
44 AVSS1B Supply Supply
Negative Front-End Analog Supply for Channel 4 to Channel 7, Typical at −1.65 V
(Dual Supply) or AGND (Single Supply). Connect all the AVSSx pins together.
45 AIN5+ Analog input Input Analog Input Channel 5, Positive.
46 AIN5− Analog input Input Analog Input Channel 5, Negative.
47 AIN4+ Analog input Input Analog Input Channel 4, Positive.
48 AIN4− Analog input Input Analog Input Channel 4, Negative.
49 REF_OUT Reference Output
2.5 V Reference Output. Connect a 100 nF capacitor on this pin if using the
internal reference.
50 AVSS2B Supply Supply Negative Analog Supply. Connect all the AVSSx pins together.
51 AREG2CAP Supply Output Analog LDO Output 2. Decouple this pin to AVSS2B with a 1 µF capacitor.
52 AVDD2B Supply Supply Positive Analog Supply. Connect this pin to AVDD2A.
53 AVSS3 Supply Supply Negative Analog Ground. Connect all the AVSSx pins together.
54 FORMAT1 Digital input Input Output Data Frame 1. See Table 17 for more details.
55 FORMAT0 Digital input Input Output Data Frame 0. See Table 17 for more details.
56 CLK_SEL Digital input Input Select Clock Source. See Table 16 for more details.
57 VCM Analog output Output Common-Mode Voltage Output, Typical at (AVDD1 + AVSSx)/2.
58 AVDD2A Supply Input
Analog Supply from 2.2 V to 3.6 V. AVSS2x must not be lower than AREGxCAP.
Connect this pin to AVDD2B.
59 AREG1CAP Supply Output Analog LDO Output 1. Decouple this pin to AVSS with a 1 µF capacitor.
60 AVSS2A Supply Input Negative Analog supply. Connect all the AVSSx pins together.
61 AVSS4 Supply Supply Negative SAR Analog Supply and Reference. Connect all AVSSx pins together.
62 AVDD4 Supply Supply Positive SAR Analog Supply and Reference Source.
63 AUXAIN+ Analog input Input Positive SAR Analog Input Channel.
64 AUXAIN− Analog input Input Negative SAR Analog Input Channel.
EPAD Supply Input Exposed Pad. Connect the exposed pad to AVSSx.
AD7779 Data Sheet
Rev. D | Page 18 of 101
TYPICAL PERFORMANCE CHARACTERISTICS
–8
–6
–4
–2
0
2
4
8
6
–2.48
–2.12
–1.77
–1.41
–1.06
–0.70
–0.35
0
0.35
0.70
1.06
1.41
1.77
2.12
2.48
INL (ppm)
INPUT VOLTAGE (V)
GAIN = 1
TEMPERATURE = 25°C
DIFFERENTIAL INPUT SIGNAL
V
REF
=2.5V
V
CM
= (AVDD1x + AVSSx) ÷ 2
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
13295-016
Figure 8. INL vs. Input Voltage and Channel at 8 kSPS, High Resolution Mode
–6
–4
–2
0
2
4
6
–2.48
–2.12
–1.77
–1.41
–1.06
–0.70
–0.35
0
0.35
0.70
1.06
1.41
1.77
2.12
2.48
INL (ppm)
INPUT VOLTAGE (V)
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
TEMPERATURE = 25°C
V
REF
=2.5V
DIFFERENTIAL V
IN
×GAIN
V
CM
= (AVDD1x + AVSSx) ÷ 2
13295-009
Figure 9. INL vs. Input Voltage and PGA Gain at 8 kSPS, High Resolution Mode
–6
–4
–2
0
2
4
6
–2.48
–2.12
–1.77
–1.41
–1.06
–0.70
–0.35
0
0.35
0.70
1.06
1.41
1.77
2.12
2.48
INL (ppm)
INPUT VOLTAGE (V)
T
A
= –40°C
T
A
= +25°C
T
A
= +105°C
T
A
= +125°C
GAIN = 1
DIFFERENTIAL INPUT SIGNAL
V
REF
= 2.5V
V
CM
= (AVDD1x + AVSSx) ÷ 2
13295-010
Figure 10. INL vs. Input Voltage and Temperature at 8 kSPS,
High Resolution Mode
–8
–6
–4
–2
0
2
4
8
6
–2.48
–2.12
–1.77
–1.41
–1.06
–0.70
–0.35
0
0.35
0.70
1.06
1.41
1.77
2.12
2.48
INL (ppm)
INPUT VOLTAGE (V)
GAIN = 1
TEMPERATURE = 25°C
DIFFERENTIAL INPUT SIGNAL
V
REF
=2.5V
V
CM
= (AVDD1x + AVSSx) ÷ 2
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
13295-019
Figure 11. INL vs. Input Voltage and Channel at 2 kSPS, Low Power Mode
–8
–6
–4
–2
0
2
4
8
6
–2.48
–2.12
–1.77
–1.41
–1.06
–0.70
–0.35
0
0.35
0.70
1.06
1.41
1.77
2.12
2.48
INL (ppm)
INPUT VOLTAGE (V)
DIFFERENTIAL V
IN
× GAIN
TEMPERATURE = 25°C
V
REF
=2.5V
V
CM
= (AVDD1x + AVSSx) ÷ 2
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
13295-012
Figure 12. INL vs. Input Voltage and PGA Gain at 2 kSPS, Low Power Mode
–10
–8
–6
–4
–2
0
2
4
10
8
6
–2.48
–2.12
–1.77
–1.41
–1.06
–0.70
–0.35
0
0.35
0.70
1.06
1.41
1.77
2.12
2.48
INL (ppm)
INPUT VOLTAGE (V)
GAIN = 1
DIFFERENTIAL INPUT SIGNAL
V
REF
=2.5V
V
CM
= (AVDD1x + AVSSx) ÷ 2
T
A
= –40°C
T
A
= +25°C
T
A
= +105°C
T
A
= +125°C
13295-013
Figure 13. INL vs. Input Voltage and Temperature at 2 kSPS,
Low Power Mode
Data Sheet AD7779
Rev. D | Page 19 of 101
INL (ppm)
GAIN = 1
TEMPERATURE = 25°C
DIFFERENTIAL INPUT SIGNAL
VCM = (AVDD1x + AVSSx) ÷ 2
–3.6 –2.6 –1.6 –0.6 0.4 1.4 2.4 3.4
INPUT VOLTAGE (V)
–15
–10
–5
0
5
10
15
VREF = 3.3V
VREF = 3.0V
VREF = 2.5V
VREF = 2.0V
VREF = 1.5V
VREF = 1.0V
13295-014
Figure 14. INL vs. Input Voltage and Reference Voltage (VREF)
at 8 kSPS, High Resolution Mode
–10
–8
–6
–4
–2
0
2
4
10
8
6
–2.48
–2.12
–1.77
–1.41
–1.06
–0.70
–0.35
0
0.35
0.70
1.06
1.41
1.77
2.12
2.48
INL (ppm)
INPUT VOLTAGE (V)
VCM = 1.35V
VCM = 1.95V
VCM = 1.65V
GAIN = 1
TEMPERATURE = 25°C
DIFFERENTIAL INPUT SIGNAL
VREF =2.5V
13295-015
Figure 15. INL vs. Input Voltage and VCM at 8 kSPS, High Resolution Mode
0
200
400
600
800
1000
1200
1400
1600
1800
2000
8388300
8388314
8388328
8388342
8388356
8388370
8388384
8388398
8388412
8388426
8388440
8388454
8388468
8388482
8388496
8388510
8388524
8388538
8388552
8388566
8388580
8388594
SAMPLE COUNT
ADC CODE
V
REF
=2.5V
TEMPERATURE = 25°C
V
CM
= (AVDD1x + AVSSx) ÷ 2
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
13295-022
Figure 16. Noise Histogram at 8 kSPS, High Resolution Mode
INL (ppm)
GAIN = 1
TEMPERATURE = 25°C
DIFFERENTIAL INPUT SIGNAL
V
CM
= (AVDD1x + AVSSx) ÷ 2
–3.6 –2.6 –1.6 –0.6 0.4 1.4 2.4 3.4
INPUT VOLTAGE (V)
–15
–10
–5
0
5
10
15
V
REF
= 3.3V
V
REF
= 3.0V
V
REF
= 2.5V
V
REF
= 2.0V
V
REF
= 1.5V
V
REF
= 1.0V
13295-017
Figure 17. INL vs. Input Voltage and Reference Voltage (VREF)
at 2 kSPS, Low Power Mode
–10
–8
–6
–4
–2
0
2
4
10
8
6
–2.48
–2.12
–1.77
–1.41
–1.06
–0.70
–0.35
0
0.35
0.70
1.06
1.41
1.77
2.12
2.48
INL (ppm)
INPUT VOLTAGE (V)
V
CM
= 1.35V
V
CM
= 1.95V
V
CM
= 1.65V
GAIN = 1
TEMPERATURE = 25°C
DIFFERENTIAL INPUT SIGNAL
V
REF
=2.5V
13295-018
Figure 18. INL vs. Input Voltage and VCM at 2 kSPS, Low Power Mode
0
200
400
600
800
1000
1200
1400
1600
1800
2000
SAMPLE CODE
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
13295-225
8388100
8388142
8388184
8388226
8388268
8388310
8388352
8388394
8388436
8388478
8388520
8388562
8388604
8388646
8388688
8388730
8388772
ADC CODE
V
REF
=2.5V
TEMPERATURE = 25°C
V
CM
= (AVDD1x + AVSSx) ÷ 2
Figure 19. Noise Histogram at 2 kSPS, Low Power Mode
AD7779 Data Sheet
Rev. D | Page 20 of 101
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
–40 25 105 125
NOISE (µV rms)
TEMPERATURE C)
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
VREF =2.5V
VCM = (AVDD1x + AVSSx) ÷ 2
13295-026
Figure 20. Noise vs. Temperature at 8 kSPS, High Resolution Mode
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
596720
1057040
1517360
1977680
2438000
2898320
3358640
3818960
4279280
4739600
5199920
5660240
6120560
6580880
7041200
7501520
7961840
NOISE (µV rms)
CLOCK FREQUENCY (Hz)
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
13295-032
V
REF
=2.5V
TEMPERATURE = 25°C
DECIMATION = 256
V
CM
= (AVDD1x + AVSSx) ÷ 2
Figure 21. Noise vs. Clock Frequency, High Resolution Mode, Decimation = 256
NOISE (nV/
Hz)
ODR (Hz)
13295-097
0
20
40
60
80
100
120
Figure 22. Noise vs. ODR, High Resolution Mode
0
1
2
3
4
5
6
7
8
9
10
–40 25 105 125
NOISE (µV rms)
TEMPERATURE C)
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
V
REF
=2.5V
V
CM
= (AVDD1x + AVSSx) ÷ 2
13295-029
Figure 23. Noise vs. Temperature at 2 kSPS, Low Power Mode
0
1
2
3
4
5
6
298360
528520
758680
988840
1219000
1449160
1679320
1909480
2139640
2369800
2599960
2830120
3060280
3290440
3520600
3750760
3980920
NOISE (µV rms)
CLOCK FREQUENCY (Hz)
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
13295-035
V
REF
=2.5V
TEMPERATURE = 25°C
DECIMATION = 256
V
CM
= (AVDD1x + AVSSx) ÷ 2
Figure 24. Noise vs. Clock Frequency at 2 kSPS, Low Power Mode,
Decimation = 256
0
50
100
150
200
250
300
350
400
500 1000 2000 4000 8000
NOISE (nV/√Hz)
ODR (Hz)
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
13295-098
Figure 25. Noise vs. ODR, Low Power Mode
Data Sheet AD7779
Rev. D | Page 21 of 101
–180
–170
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
0
10
0
58.593750
117.187500
175.781250
234.375000
292.968750
351.562500
410.156250
468.750000
527.343750
585.937500
644.531250
703.125000
761.718750
820.312500
878.906250
937.500000
996.093750
AMPLITUDE (dB)
FREQUENCY (Hz)
V
REF
=2.5V
TEMPERATURE = 25°C
DIFFERENTIAL INPUT = –0.5dBFS
V
CM
= (AVDD1x + AVSSx) ÷ 2
INPUT FREQUENCY = 50Hz
16384 SAMPLES
16kSPS
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
13295-020
Figure 26. FFT Plot at 16 kSPS, High Resolution Mode, Input Frequency (fIN) =
50 Hz (This Plot is a Close Up Perspective of the Original Data)
–180
–170
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
0
10
0
277.343750
554.687500
832.031250
1109.37500
1386.71875
1664.06250
1941.40625
2218.75000
2496.09375
2773.43750
3050.78125
3328.12500
3605.46875
3882.81250
4160.15625
4437.50000
4714.84375
4992.10875
5269.53125
5546.87500
5824.21875
6101.56250
6378.90625
6656.25000
6933.59375
7210.93750
7488.28125
7765.62500
AMPLITUDE (dB)
FREQUENCY (Hz)
V
REF
=2.5V
TEMPERATURE = 25°C
DIFFERENTIAL INPUT = –0.5dBFS
V
CM
= (AVDD1x + AVSSx) ÷ 2
INPUT FREQUENCY = 1kHz
16384 SAMPLES
16kSPS
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
13295-021
Figure 27. FFT Plot, High Resolution Mode, Input Frequency (fIN) = 1 kHz
–135
–130
–125
–120
–115
–110
–105
100
10
90
170
250
330
410
490
570
650
730
810
890
970
1355
1923
2491
3059
3627
4266
4905
5544
6112
6751
7390
7958
THD (dB)
INPUT FREQUENCY (Hz)
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
VIN =–0.5dBFS
VREF =2.5V
TEMPERATURE = 25°C
13295-033
Figure 28. THD vs. Input Frequency at 8 kSPS, High Resolution Mode
–180
–170
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
0
10
0
31.25
62.50
93.75
125.00
156.25
187.50
218.75
250.00
281.25
312.50
343.75
375.00
406.25
437.50
468.75
500.00
531.25
562.50
593.75
625.00
656.25
687.5
718.75
750.00
781.25
812.50
843.75
875.00
906.25
937.50
968.75
AMPLITUDE (dB)
FREQUENCY (Hz)
V
REF
=2.5V
TEMPERATURE = 25°C
DIFFERENTIAL INPUT = –0.5dBFS
V
CM
= (AVDD1x + AVSSx) ÷ 2
INPUT FREQUENCY = 50Hz
8192 SAMPLES
4kSPS
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
13295-023
Figure 29. FFT Plot at 4kSPS, Low Power Mode, Input Frequency (fIN) =
50 Hz, (This Plot is a Close Up Perspective of the Original Data)
–180
–170
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
0
10
0
66.40625
132.81250
199.21875
265.62500
332.03125
398.43750
464.84375
531.25000
597.65625
664.06250
730.46875
796.87500
863.28125
929.68750
996.09375
1062.50000
1128.90625
1195.31250
1261.71875
1328.12500
1394.53125
1460.93750
1527.34375
1593.75000
1660.15625
1726.56250
1792.96875
1859.37500
1925.78125
1992.18750
AMPLITUDE (dB)
FREQUENCY (Hz)
V
REF
= 2.5V
TEMPERATURE = 25°C
DIFFERENTIAL INPUT =
–0.5dBFS
INPUT FREQUENCY = 1kHz
8192 SAMPLES
4kSPS
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
13295-024
V
CM
= (AVDD1x + AVSSx) ÷ 2
Figure 30. FFT Plot, Low Power Mode, Input Frequency (fIN) = 1 kHz
–135
–130
–125
–120
–115
–110
–105
100
10
70
130
190
250
310
370
460
530
590
650
710
770
840
900
960
1066
1198
1352
1484
1616
1748
1880
2012
THD (dB)
INPUT FREQUENCY (Hz)
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
V
REF
=2.5V
V
IN
=–0.5dBFS
TEMPERATURE = 25°C
13295-036
Figure 31. THD vs. Input Frequency at 2 kSPS, Low Power Mode
AD7779 Data Sheet
Rev. D | Page 22 of 101
–140
–135
–130
–125
–120
–115
–110
–105
100
0.172
0.344
0.516
0.688
0.860
1.032
1.204
1.376
1.548
1.720
1.892
2.064
2.236
2.408
2.580
2.752
2.924
3.096
3.268
3.440
3.612
3.784
3.956
4.128
4.300
4.472
4.644
THD (dB)
INPUT VOLTAGE (V)
INPUT FREQUENCY = 50Hz
V
REF
=2.5V
TEMPERATURE = 25°C
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
13295-034
Figure 32. THD vs. Input Voltage at 2 kSPS, High Resolution Mode
(Input Frequency = 50 Hz)
–125
–120
–115
–110
–105
–100
–95
90
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
THD (dB)
REFERENCE VOLTAGE (V)
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
INPUT FREQUENCY = 50Hz
TEMPERATURE = 25°C
INPUT VOLTAGE = ±V
REF
13295-038
Figure 33. THD vs. Reference Voltage at 8 kSPS, High Resolution Mode
(Input Frequency = 50 Hz)
–120
-118
–116
–114
–112
–110
–108
–106
–104
–102
100
655000
1043250
1564770
2086290
2607810
3129330
3650850
4172370
4693890
5215410
5736930
6258450
6779970
7301490
7823010
THD (dB)
MCLK FREQUENCY (Hz)
V
REF
=2.5V
INPUT VOLTAGE = –0.5dBFS
INPUT FREQUENCY = 50Hz
TEMPERATURE = 25°C
DECIMATION = 256
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
13295-039
Figure 34. THD vs. MCLK Frequency, High Resolution Mode,
Input Frequency (fIN) = 50 Hz, Decimation = 256
–140
–135
–130
–125
–120
–115
–110
–105
100
0.172
0.344
0.516
0.688
0.860
1.032
1.204
1.376
1.548
1.720
1.892
2.064
2.236
2.408
2.580
2.752
2.924
3.096
3.268
3.440
3.612
3.784
3.956
4.128
4.300
4.472
4.644
THD (dB)
INPUT VOLTAGE (V)
INPUT FREQUENCY = 50Hz
V
REF
=2.5V
TEMPERATURE = 25°C
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
13295-037
Figure 35. THD vs. Input Voltage at 500 SPS, Low Power Mode
(Input Frequency = 50 Hz)
–125
–120
–115
–110
–105
–100
–95
90
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
THD (dB)
REFERENCE VOLTAGE (V)
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
INPUT FREQUENCY = 50Hz
TEMPERATURE = 25°C
INPUT VOLTAGE = 5V p-p
13295-041
Figure 36. THD vs. Reference Voltage at 2 kSPS, Low Power Mode
(Input Frequency = 50 Hz)
–120
–118
–116
–114
–112
–110
–108
–106
–104
–102
100
235840
665920
1096000
1216000
1336000
1456000
1576000
1696000
1816000
1936000
2056000
2176000
2296000
2416000
2536000
2656000
2776000
2896000
3016000
3136000
3256000
3376000
3496000
3616000
3736000
3856000
3976000
4096000
THD (dB)
FREQUENCY (Hz)
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
DECIMATION = 256
INPUT FREQUENCY = 50Hz
V
REF
=2.5V
INPUT VOLTAGE = 5V p-p
TEMPERATURE = 25°C
13295-042
Figure 37. THD vs. MCLK Frequency, Low Power Mode,
Input Frequency (fIN) = 50 Hz, Decimation = 256
Data Sheet AD7779
Rev. D | Page 23 of 101
124816
SNR (dB)
ODR (kHz)
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
V
REF
=2.5V
V
IN
=0dBFS
TEMPERATURE = 25°C
13295-040
Figure 38. SNR vs. ODR at 8 kSPS, High Resolution Mode
DYNAMIC RANGE (dB)
PGA GAIN
1248
13295-089
Figure 39. Dynamic Range vs. PGA Gain, High Resolution Mode, ODR = 8 kSPS
–60
–50
–40
–30
–20
–10
0
1248
OFFSET ERROR V)
PGA GAIN
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
13295-044
AVDD1x = 3.3V
V
REF
=2.5V
TEMPERATURE = 25°C
V
IN
=0V
Figure 40. Offset Error vs. PGA Gain, High Resolution Mode
0.5 1 2 4 8
SNR (dB)
ODR (kHz)
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
V
REF
=2.5V
TEMPERATURE = 25°C
13295-043
V
IN
= 0dBFS
Figure 41. SNR vs. ODR at 2 kSPS, Low Power Mode
DYNAMIC RANGE (dB)
PGA GAIN
1248
13295-090
Figure 42. Dynamic Range vs. PGA Gain, Low Power Mode, ODR = 2 kSPS
–70
–60
–50
–40
–30
–20
–10
0
1248
OFFSET ERROR V)
PGA GAIN
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
V
REF
=2.5V
TEMPERATURE = 25°C
V
IN
=0V
13295-047
AVDD1x = 3.3V
Figure 43. Offset Error vs. PGA Gain, Low Power Mode
AD7779 Data Sheet
Rev. D | Page 24 of 101
–40
–35
–30
–25
–20
–15
–10
–5
0
OFFSET ERROR V)
AVDD1x SUPPLY (V)
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
V
REF
=2.5V
V
IN
=0V
TEMPERATURE = 25°C
13295-051
Figure 44. Offset Error vs. Supply Setting, High Resolution Mode
OFFSET DRIFT (µV)
TEMPERATURE (°C)
13295-045
–40
–30
–20
–10
0
10
20
30
–37.624
–30.430
–22.232
–13.506
0.073
9.272
18.298
26.714
35.461
45.142
54.035
62.669
70.920
78.593
87.104
95.349
105.439
115.991
124.589
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
AVDD1x = 3.3V
Figure 45. Offset Drift vs. Temperature
–0.043
–0.035
–0.026
–0.017
–0.008
0
0.008
0.017
3.0 3.3 3.6
GAIN ERROR (%)
AVDD1x SUPPLY (V)
TEMPERATURE = 25°C
GAIN = 1
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
13295-056
Figure 46. Gain Error vs. AVDD1x Supply, High Resolution Mode
AVDD1x SUPPLY (V)
TEMPERATURE = 25°C
V
IN
= 0V
V
REF
= 2.5V
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
13295-054
Figure 47. Offset Error vs. Supply Setting, Low Power Mode
13295-058
–20
–15
–10
–5
0
5
10
15
20
25
30
45
40
35
0500168 1000
GAIN ERROR DRIFT (ppm)
TIME (Hours)
Figure 48. Gain Error Drift vs. Time
3.0 3.3 3.6
AVDD1x SUPPLY (V)
TEMPERATURE = 25°C
GAIN = 1
GAIN ERROR (%)
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
13295-059
–0.043
–0.035
–0.026
–0.017
–0.008
0
0.008
0.017
Figure 49. Gain Error vs. AVDD1x Supply, Low Power Mode
Data Sheet AD7779
Rev. D | Page 25 of 101
–40
25 105 125
GAIN ERROR (%)
TEMPERATURE (°C)
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
13295-057
AVDD1x = 3.3V
–0.400
–0.035
–0.029
–0.023
–0.017
–0.011
–0.005
0
0.005
0.011
0.017
Figure 50. Gain Error vs. Temperature, High Resolution Mode, AVDD1x = 3.3 V
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
1248
GAIN ERROR (%)
PGA GAIN
TEMPERATURE = 25°C
HIGH RESOLUTION
LOW POWER
13295-052
AVDD1x = 3.3V
Figure 51. Channel Gain Mismatch, High Resolution Mode
–0.004
–0.002
0
0.002
0.004
0.006
0.008
–40
–30
–20
–10
0
10
20
30
40
50
60
70
80
90
100
110
125
TUE (% OF INPUT)
TEMPERATURE (°C)
V
REF
=2.5V
V
IN
=–0.5dBFS
GAIN = 1
13295-082
AVDD1x = 3.3V
Figure 52. Total Unadjusted Error (TUE) (as % of Input) vs. Temperature,
High Resolution Mode
–0.400
–0.035
–0.029
–0.023
–0.017
–0.011
–0.005
0
0.005
0.011
0.017
–40 25 105 125
GAIN ERROR (%)
TEMPERATURE (°C)
CH 0
CH 1
CH 2
CH 3
CH 4
CH 5
CH 6
CH 7
13295-060
AVDD1x = 3.3V
Figure 53. Gain Error vs. Temperature, Low Power Mode, AVDD1x = 3.3 V
13295-099
25 105 125
REFERENCE VOLTAGE DRIFT (mV)
TEMPERATURE C)
Figure 54. Internal Reference Voltage Drift
–40
–30
–20
–10
10
0
20
30
40
50
60
70
80
90
100
110
125
TEMPERATURE (°C)
–0.004
–0.002
0
0.002
0.004
0.006
0.008
0.010
TUE (% OF INPUT)
V
REF
=2.5V
V
IN
= –0.5dBFS
GAIN = 1
13295-085
AVDD1x = 3.3V
Figure 55. TUE (as % of Input) vs. Temperature, Low Power Mode
AD7779 Data Sheet
Rev. D | Page 26 of 101
INPUT CURRFENT (nA)
DIFFERENTIAL INPUT VOLTAGE ((AINx+)(AINx–))
AINx+, V
CM
= 1.95V
AINx–, V
CM
= 1.95V
AINx+, V
CM
= 1.35V
AINx–, V
CM
= 1.35V
V
REF
= 2.5V
AVDD1 = 3.3V
13295-076
Figure 56. Input Current vs. Differential Input Voltage, High Resolution Mode
–6
–5
–4
–3
–2
–1
0
1
2
4
3
5
–0.073
–8.000
–16.000
–24.000
–32.000
–40.000
9.272
18.298
26.714
35.461
45.142
54.035
62.669
70.920
78.593
87.104
95.349
105.439
115.991
124.589
ABSOLUTE INPUT CURRENT (nA)
TEMPERATURE (°C)
V
REF
=2.5V
V
IN
=2.5V
AVDD1x = 3.3V
AIN0+
AIN0–
AIN2+
AIN2–
13295-080
Figure 57. Absolute Input Current vs. Temperature, High Resolution Mode
–2.5 2.0 –1.5 1.0 –0.5 0 0.5 1.0 1.5 2.52.0
DIFFERENTI
A
L INPUT CURRENT (nA)
DIFFERENTIAL INPUT VOLTAGE ((AINx+) – (AINx–))
AINx+ AINx–; V
CM
= 1.95V
AINx+ AINx–; V
CM
= 1.35V
V
REF
=2.5V
AVDD1x = 3.3V
13295-091
Figure 58. Differential Input Current vs. Differential Input Voltage,
High Resolution Mode
– 2.5 –2.0 –1.5 –1.0 0.5 0 0.5 1 1.5 2 2.5
INPUT CURRENT (nA)
V
REF
=2.5V
AVDD1x = 3.3V
DIFFERENTIAL INPUT VOLTAGE ((AINx+)(AINx–))
AINx+, V
CM
= 1.95V
AINx–, V
CM
= 1.95V
AINx+, V
CM
= 1.35V
AINx–, V
CM
= 1.35V
13295-079
Figure 59. Input Current vs. Differential Input Voltage, Low Power Mode
–6
–5
–4
–3
–2
–1
0
1
2
3
4
–0.073
–8.000
–16.000
–24.000
–32.000
–40.000
9.272
18.298
26.714
35.461
45.142
54.035
62.669
70.920
78.593
87.104
95.349
105.439
115.991
124.589
ABSOLUTE INPUT CURRENT (nA)
TEMPERATURE (°C)
V
REF
=2.5V
V
IN
=2.5V
AVDD1x = 3.3V
AIN0+
AIN0–
AIN2+
AIN2–
13295-083
Figure 60. Absolute Input Current vs. Temperature, Low Power Mode
–0.5
–0.4
–0.3
–0.2
–0.1
–2.5 –2.0 –1.5 –1.0 0.5 0 0.5 1.0 1.5 2.52.0
DIFFERENTI
A
L INPUT CURRENT (nA)
DIFFERENTIAL INPUT VOLTAGE ((AINx+)(AINx–))
13295-093
AINx+ AINx–; V
CM
= 1.95V
AINx+ AINx–; V
CM
= 1.35V
V
REF
=2.5V
AVDD1x = 3.3V
Figure 61. Differential Input Current vs. Differential Input Voltage,
Low Power Mode
Data Sheet AD7779
Rev. D | Page 27 of 101
–0.073
–8.000
–16.000
–24.000
–32.000
–40.000
9.272
18.298
26.714
35.461
45.142
54.035
62.669
70.920
78.593
87.104
95.349
105.439
115.991
124.589
DIFFERENTI
A
L INPUT CURRENT (nA)
TEMPERATURE (°C)
CH 7
CH 6
CH 5
CH 4
CH 3
CH 2
CH 1
CH 0
V
REF
=2.5V
V
IN
=2.5V
AVDD1x = 3.3V
0
1
2
3
4
5
6
7
8
9
10
13295-092
Figure 62. Differential Input Current vs. Temperature, High Resolution Mode
–170
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
0
6903.641
13794.282
20684.924
27575.565
34466.206
41356.847
48247.488
55138.130
62028.771
68919.412
75810.053
82700.694
89591.335
96481.977
103372.618
110263.259
117153.900
124044.541
130935.183
137825.824
144756.066
151646.708
158576.950
165507.193
172437.435
179367.678
186297.920
193228.163
CMRR (dB)
INPUT FREQUENCY (Hz)
GAIN 1
GAIN 2
GAIN 4
GAIN 8
13.000
13295-062
AVDD1x = 3.3V
V
CM
= 1.65V + 100mV p-p
Figure 63. CMRR vs. Input Frequency at 8 kSPS, High Resolution Mode
–180
–160
–140
–120
–100
–80
–60
–40
–20
0
10
380962
761914
1142866
1523818
1904770
2285722
2666674
3047626
3428578
3809530
4190482
4571434
4952386
5333338
5714290
6095242
6476194
6857146
7238098
7619050
8000002
8390478
8790477
9190477
9590477
9990476
AC PSRR (dB)
GAIN 1
GAIN 2
GAIN 4
GAIN 8
INPUT FREQUENCY (Hz)
13295-063
TEMPERATURE = 25°C
AVDD1x = 3.3V + 100mV p-p
Figure 64. AC PSRR vs. Input Frequency at 8 kSPS, High Resolution Mode
–0.073
–8.000
–16.000
–24.000
–32.000
–40.000
9.272
18.298
26.714
35.461
45.142
54.035
62.669
70.920
78.593
87.104
95.349
105.439
115.991
124.589
0
1
2
3
4
5
6
7
8
DIFFERENTI
A
L INPUT CURRENT (nA)
TEMPERATURE (°C)
CH 7
CH 6
CH 5
CH 4
CH 3
CH 2
CH 1
CH 0
V
REF
=2.5V
V
IN
=2.5V
AVDD1x = 3.3V
13295-094
Figure 65. Differential Input Current vs. Temperature, Low Power Mode
–170
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
0
13.000
8250.088
16487.177
24724.265
32961.353
41198.442
49435.530
57672.618
65909.707
74146.795
82383.883
90620.971
98858.060
107095.148
115332.236
123569.325
131806.413
140043.501
148280.590
156517.678
164754.766
172991.855
181228.943
189466.031
197782.322
CMRR (dB)
INPUT FREQUENCY (Hz)
13295-065
GAIN 1
GAIN 2
GAIN 4
GAIN 8
AVDD1x = 3.3V
V
CM
= 1.65V + 100mV p-p
Figure 66. CMRR vs. Input Frequency at 2 kSPS, Low Power Mode
INPUT FREQUENCY (Hz)
–180
–160
–140
–120
–100
–80
–60
–40
–20
0
10
380962
761914
1142866
1523818
1904770
2285722
2666674
3047626
3428578
3809530
4190482
4571434
4952386
5333338
5714290
6095242
6476194
6857146
7238098
7619050
8000002
8390478
8790477
9190477
9590477
9990476
AC PSRR (dB)
TEMPERATURE = 25°C
AVDD1x = 3.3V + 100mV p-p
GAIN 1
GAIN 2
GAIN 4
GAIN 8
13295-066
Figure 67. AC PSRR vs. Input Frequency at 2 kSPS, Low Power Mode
AD7779 Data Sheet
Rev. D | Page 28 of 101
–120
–100
–80
–60
–40
–20
0
25
664
1303
1942
2581
3220
3859
4498
5137
5776
6415
7054
7693
8332
8971
9610
10249
10888
11527
12166
12805
13444
14083
14722
15361
A
TTENU
A
TION (dB)
FREQUENCY (Hz)
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
13295-086
Figure 68. Filter Profiles at 8 kSPS, High Resolution Mode
13295-064
0
2
4
6
8
10
12
14
16
18
20
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
SUPPLY CURRENT (mA)
SUPPLY VOLTAGE (V)
AVDD1
AVDD2
AVDD4
IOVDD
ALL CHANNELS ENABLED
Figure 69. Supply Current vs. Supply Voltage at 8 kSPS, High Resolution Mode
TEMPERATURE (°C)
0
5
10
15
20
25
–40 –20 0 20 40 60 80 100 120
AVDD1
AVDD2
AVDD4
IOVDD
SUPPLY CURRENT (mA)
13295-069
ALL CHANNELS ENABLED
Figure 70. Supply Current vs. Temperature at 8 kSPS, High Resolution Mode
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
0
25
344
663
982
1301
1620
1939
2258
2577
2896
3215
3534
3853
4172
4491
4810
5129
5448
5767
6086
6405
6724
7043
7362
7681
A
TTENU
A
TION (dB)
FREQUENCY (Hz)
GAIN = 1
GAIN = 2
GAIN = 4
GAIN = 8
13295-087
Figure 71. Filter Profiles at 2 kSPS, Low Power Mode
0
1
2
3
4
5
6
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
SUPPLY VOLTAGE (V)
AVDD1
AVDD2
AVDD4
IOVDD
SUPPLY CURRENT (mA)
13295-067
ALL CHANNELS ENABLED
Figure 72. Supply Current vs. Supply Voltage at 2 kSPS, Low Power Mode
TEMPERATURE (°C)
0
1
2
3
4
5
6
7
–40 –20 0 20 40 60 80 100 120
SUPPLY CURRENT (mA)
AVDD1
AVDD2
AVDD4
IOVDD
13295-072
ALL CHANNELS ENABLED
Figure 73. Supply Current vs. Temperature at 2 kSPS, Low Power Mode
Data Sheet AD7779
Rev. D | Page 29 of 101
–800
–600
–400
–200
0
200
400
600
800
–35.263
–29.594
–22.185
–15.223
–7.366
–0.405
7.006
14.429
22.067
29.170
36.646
44.122
52.009
58.557
66.064
74.427
81.446
89.252
96.238
105.348
112.092
119.542
123.075
REFERENCE INPUT CURRENT (nA)
TEMPERATURE (°C)
REF1–
REF1+
REF2–
REF2+
13295-096
Figure 74. Reference Input Current vs. Temperature, High Resolution Mode
13295-074
SHUTDOWN SUPPLY CURRENT (µA)
SUPPLY VOLTAGE (V)
AVDD1
AVDD2
AVDD4
IOVDD
Figure 75. Shutdown Supply Current vs. Supply Voltage
0
10
20
30
40
50
60
70
1.82.02.22.42.62.83.03.23.43.6
POWER CONSUMPTION (mW)
SUPPLY VOLTAGE (V)
AVDD1
AVDD2
AVDD4
IOVDD
13295-068
Figure 76. Power Consumption per Channel vs. Supply Voltage at 8 kSPS,
High Resolution Mode
–35.263
–29.594
–22.185
–15.223
–7.366
–0.405
7.006
14.429
22.067
29.170
36.646
44.122
52.009
58.557
66.064
74.427
81.446
89.252
96.238
105.348
112.092
119.542
123.075
REFERENCE INPUT CURRENT (nA)
TEMPERATURE (°C)
REF1–
REF1+
REF2–
REF2+
–600
–500
–400
–300
–200
–100
0
100
200
300
13295-095
Figure 77. Reference Input Current vs. Temperature, Low Power Mode
13295-078
SHUTDOWN SUPPLY CURRENT (µA)
TEMPERATURE C)
–100
0
100
200
300
400
500
600
–60 –40 –20 0 20 40 60 80 100 120 140
AVDD1
AVDD2
AVDD4
IOVDD
Figure 78. Shutdown Supply Current vs. Temperature
13295-071
0
2
4
6
8
10
12
14
16
18
20
1.82.02.22.42.62.83.03.23.43.6
SUPPLY VOLTAGE (V)
POWER CONSUMPTION (mW)
AVDD1
AVDD2
AVDD4
IOVDD
Figure 79. Power Consumption per Channel vs. Supply Voltage at 2 kSPS,
Low Power Mode
AD7779 Data Sheet
Rev. D | Page 30 of 101
TEMPERATURE (°C)
0
10
20
30
40
50
60
70
80
90
–40 20 0 20 40 60 80 100 120
POWER DISSIP
A
TION (mW)
AVDD1
AVDD2
AVDD4
IOVDD
13295-070
Figure 80. Power Dissipation vs. Temperature at 8 kSPS, High Resolution Mode
TEMPERATURE C)
0
5
10
15
20
25
POWER DISSIP
A
TION (mW)
–40 –20 0 20 40 60 80 100 120
13295-073
AVDD1
AVDD2
AVDD4
IOVDD
Figure 81. Power Dissipation vs. Temperature at 2 kSPS, Low Power Mode
–100
–50
0
50
100
150
200
250
300
350
0
44.5
120.3
224.1
327.6
432.3
535.6
639.9
744.8
847.6
950.6
1061.8
1165.5
1268.4
1372.2
1475.0
VOLTAGE DRIFT (ppm)
ELAPSED TIME (Hours)
13295-482
Figure 82. Internal Reference Long Term Drift from 0 Hours to 1500 Hours
Data Sheet AD7779
Rev. D | Page 31 of 101
TERMINOLOGY
Common-Mode Rejection Ratio (CMRR)
CMRR is the ratio of the power in the ADC output of a
100 mV p-p differential input (AINx+ or AINx−) at a fixed
frequency (f = 1 kHz) to the power of a 100 mV p-p sine wave
applied to the common-mode voltage of AINx+ and AINx− at
frequency fS.
CMRR (dB) = 10 log(Pf/PfS)
where:
Pf is the power at frequency, f, in the ADC output.
PfS is the power at frequency, fS, in the ADC output.
Differential Nonlinearity (DNL) Error
In an ideal ADC, code transitions are 1 LSB apart. Differential
nonlinearity is the maximum deviation from this ideal value. DNL
error is often specified in terms of resolution for which no
missing codes are guaranteed.
Integral Nonlinearity (INL) Error
Integral nonlinearity error refers to the deviation of each individual
code from a line drawn from negative full scale through positive
full scale. The point used as negative full scale occurs ½ LSB before
the first code transition. Positive full scale is a level 1½ LSB beyond
the last code transition. The deviation is measured from the middle
of each code to the true straight line.
Dynamic Range
Dynamic range is the ratio of the rms value of the full-scale
input signal to the rms noise measured for an input. The value
for dynamic range is expressed in decibels.
Channel to Channel Isolation
Channel to channel isolation is a measure of the level of
crosstalk between channels. It is measured by applying a full-scale
frequency sweep sine wave signal to all seven nonselected input
channels and determining how much that signal is attenuated
in the selected channel. The figure is given for worst case
scenarios across all eight channels of the AD7779.
Intermodulation Distortion
With inputs consisting of sine waves at two frequencies, fa and
fb, any active device with nonlinearities creates distortion
products at sum and difference frequencies of mfa and nfb,
where m, n = 0, 1, 2, 3, and so on. Intermodulation distortion
terms are those for which neither m nor n are equal to 0. For
example, the second-order terms include (fa + fb) and (fa − fb),
and the third-order terms include (2fa + fb), (2fa − fb), (fa + 2fb),
and (fa − 2fb). The AD7779 is tested using the CCIF standard,
where two input frequencies near the top end of the input
bandwidth are used. In this case, the second-order terms are
usually distanced in frequency from the original sine waves,
and the third-order terms are usually at a frequency close to
the input frequencies. As a result, the second- and third-order
terms are specified separately. The calculation of the
intermodulation distortion is per the THD specification, where
it is the ratio of the rms sum of the individual distortion products
to the rms amplitude of the sum of the fundamentals, expressed in
decibels.
Gain Error
The first transition (from 100 … 000 to 100 … 001) occurs at a
level ½ LSB above nominal negative full scale (−2.49999 V for the
±2.5 V range). The last transition (from 011 … 110 to 011 …
111) occurs for an analog voltage 1½ LSB below the nominal
full scale (2.49999 V for the ±2.5V range). The gain error is the
deviation of the difference between the actual level of the last
transition and the actual level of the first transition from the
difference between the ideal levels.
Gain Error Drift
Gain error drift is the ratio of the gain error change due to a
temperature change of 1°C and the full-scale range (2N). It is
expressed in parts per million.
Least Significant Bit (LSB)
The least significant bit, or LSB, is the smallest increment that
can be represented by a converter. For a fully differential input
ADC with N bits of resolution, the LSB expressed in volts is
LSB (V) = 2
2
REF
N
V
The LSB referred to the input is
LSB (VIN) = N
GAIN
REF
PGA
V
2
2
Power Supply Rejection Ratio (PSRR)
Variations in power supply affect the full-scale transition but not
the linearity of the converter. PSRR is the maximum change in the
full-scale transition point due to a change in the power supply
voltage from the nominal value.
Signal-to-Noise Ratio (SNR)
SNR is the ratio of the rms value of the actual input signal to the
rms sum of all other spectral components below the Nyquist
frequency, excluding harmonics and dc. The value for SNR is
expressed in decibels.
Signal-to-(Noise + Distortion) Ratio (SINAD)
SINAD is the ratio of the rms value of the actual input signal to
the rms sum of all other spectral components below the
Nyquist frequency, including harmonics but excluding dc. The
value for SINAD is expressed in decibels.
Spurious-Free Dynamic Range (SFDR)
SFDR is the difference, in decibels, between the rms amplitude
of the input signal and the peak spurious signal (including
harmonics).
AD7779 Data Sheet
Rev. D | Page 32 of 101
Total Harmonic Distortion (THD)
THD is the ratio of the rms sum of the first five harmonic
components to the rms value of a full-scale input signal and
is expressed in decibels.
Offset Error
Offset error is the difference between the ideal midscale input
voltage (0 V) and the actual voltage producing the midscale
output code.
Offset Error Drift
Offset error drift is the ratio of the offset error change due to a
temperature change of 1°C and the full-scale code range (2N). It
is expressed in μV/°C.
Data Sheet AD7779
Rev. D | Page 33 of 101
RMS NOISE AND RESOLUTION
Table 10 through Table 12 show the dynamic range (DR), rms
noise (RTI), effective number of bits (ENOB), and effective
resolution (ER) of the AD7779 for various output data rates and
gain settings. The numbers given are for the bipolar input range
with an external 2.5 V reference. These numbers are typical and
are generated with a differential input voltage of 0 V when the
ADC is continuously converting on a single channel.
It is important to note that the effective resolution is calculated
using the rms noise; 16,384 consecutives samples were used to
calculate the rms noise.
Effective Resolution = log2(Input Range/RMS Noise)
ENOB = (DR − 1.78)/6
HIGH RESOLUTION MODE
Table 10. DR (dB) and RTI (μVRMS) for High Resolution Mode
Decimation
Rate Output Data Rate (SPS)
f−3dB
(Hz)
Gain
1 2 4 8
DR RTI DR RTI DR RTI DR RTI
128 16000 5029.99 108.28 6.80 105.13 4.80 101 3.95 95.86 3.46
256 8000 2521.99 112.5 4.12 110.21 2.63 106.8 2.01 102 1.72
512 4000 1267.99 116.12 2.70 114.7 1.59 111.6765 1.11 107.61 0.93
1024 2000 640.99 119.5 1.87 118.3 1.07 115.82 0.70 112 0.57
2048 1000 327.49 122.37 1.33 121.55 0.74 119 0.49 115.5 0.38
Table 11. ENOB and ER for High Resolution Mode
Decimation
Rate Output Data Rate (SPS)
f−3dB
(Hz)
Gain
1 2 4 8
ENOB ER ENOB ER ENOB ER ENOB ER
128 16000 5029.99 17.75 19.49 17.23 18.99 16.54 18.27 15.68 17.46
256 8000 2521.99 18.46 20.21 18.08 19.86 17.51 19.25 16.71 18.47
512 4000 1267.99 19.06 20.82 18.82 20.58 18.32 20.10 17.64 19.36
1024 2000 640.99 19.62 21.35 19.42 21.16 19.01 20.76 18.37 20.08
2048 1000 327.49 20.1 21.84 19.97 21.69 19.54 21.28 18.96 20.66
LOW POWER MODE
Table 12. DR and RTI (μVRMS) for Low Power Mode
Decimation
Rate Output Data Rate (SPS)
f−3dB
(Hz)
Gain
1 2 4 8
DR RTI DR RTI DR RTI DR RTI
64 8000 2521.99 100 19.1 96 13.4 92 11.2 87 10.3
128 4000 1267.99 106 8.82 103 6.18 98.5 5.2 94 4.65
256 2000 640.99 112 4.53 108.5 3.03 106 2.32 100.5 2.05
512 1000 327.49 116 2.89 114 1.77 111 1.24 107 1.04
Table 13. ENOB and ER for Low Power Mode
Decimation
Rate Output Data Rate (SPS)
f−3dB
(Hz)
Gain
1 2 4 8
ENOB ER ENOB ER ENOB ER ENOB ER
64 8000 2521.99 16.37 18.00 15.71 17.51 15.04 16.77 14.21 15.89
128 4000 1267.99 17.37 19.11 16.87 18.63 16.12 17.87 15.37 17.04
256 2000 640.99 18.37 20.07 17.79 19.65 17.37 19.04 16.46 18.22
512 1000 327.49 19.04 20.72 18.71 20.43 18.21 19.94 17.54 19.20
AD7779 Data Sheet
Rev. D | Page 34 of 101
THEORY OF OPERATION
The AD7779 is an 8-channel, simultaneously sampling, low
noise, 24-bit Σ-Δ ADC with integrated digital filtering per
channel and SRC.
The AD7779 offers two operation modes: high resolution mode,
which offers up to 16 kSPS, and low power mode, which offers
up to 8 kSPS. In low power mode, the specifications are guaranteed
up to 4 kSPS, with performance degradation expected at ODRs
higher than 4 kSPS.
The AD7779 employs a Σ-Δ conversion technique to convert
the analog input signal into an equivalent digital word. The
overview of the Σ-Δ technique is that the modulator samples
the input waveform and outputs an equivalent digital word at
the input clock frequency, fCLKIN.
Due to the high oversampling rate, this technique spreads the
quantization noise from 0 to fCLKIN/2 (in the case of the AD7779,
fCLKIN relates to the external clock); therefore, the noise energy
contained in the band of interest is reduced (see Figure 83). To
further reduce the quantization noise, a high order modulator
is employed to shape the noise spectrum so that most of the
noise energy is shifted out of the band of interest (see Figure 84).
The digital filter that follows the modulator removes the large
out of band quantization noise (see Figure 85).
For more information on basic and advanced concepts of Σ-Δ
ADCs, see the MT-022 and MT-023.
Digital filtering has certain advantages over analog filtering.
Because digital filtering occurs after the analog-to-digital
conversion process, it can remove noise injected during the
conversion. Analog filtering cannot remove noise injected
during conversion.
QUANTIZATION NOISE
f
ICLK
\2
BAND OF INTEREST
13295-100
Figure 83. Σ-Δ ADC Operation, Reduction of Noise Energy Contained in the
Band of Interest (Linear Scale X-Axis)
f
ICLK
\2
NOISE SHAPING
BAND OF INTEREST
13295-101
Figure 84. Σ-Δ ADC Operation, Majority of Noise Energy Shifted Out of the
Band of Interest (Linear Scale X-Axis)
f
ICLK
\2
BAND OF INTEREST
DIGITAL FILTER CUTOFF FREQUENCY
13295-102
Figure 85. Σ-Δ ADC Operation, Removal of Noise Energy from the Band of
Interest (Linear Scale X-Axis)
The Σ-Δ ADC starts the conversions of the input signal after
the supplies generated by the internal LDOs become stable. An
external signal is not required to generate the conversions.
ANALOG INPUTS
The AD7779 can be operated in bipolar or unipolar modes and
accepts true differential, pseudo differential, and single-ended
input signals, as shown in Figure 86 through Figure 89.
Table 14 summarizes the maximum differential input signal
and dynamic range for the different input modes.
Table 14. Input Signal Modes
Input Signal Mode PGA Gain Maximum Differential Signal Maximum Peak-to-Peak Signal
True Differential All gains ±(VREF/PGAGAIN) 2 × VREF/PGAGAIN
Pseudo Differential All gains ±(VREF/PGAGAIN) 2 × VREF/PGAGAIN
Single-Ended All gains VREF/PGAGAIN V
REF/PGAGAIN
Data Sheet AD7779
Rev. D | Page 35 of 101
BIPOLAR OR UNIPOLAR
TRUE DIFFERENTI
A
L
AVDD1x – 0.1V
AINx+
AINx+
AVSSx + 0.1V
VCM
VREF/PGAGAIN
13295-103
Figure 86. Σ-∆ ADC Input Signal Configuration, True Differential
BIPOLAR OR UNIPOLAR
PSEUDO DIFFERENTI
A
L
AVDD1x – 0.1V
AINx+
AINx+
AVSSx + 0.1V
VCM
V
REF
/PGA
GAIN
13295-104
Figure 87. Σ-∆ ADC Input Signal Configuration, Pseudo Differential
BIPOLAR
SINGLE-ENDED
AINx+
AINx+
AVSSx + 0.1V
V
REF
/PGA
GAIN
13295-105
Figure 88. Σ-∆ ADC Input Signal Configuration, Single-Ended Bipolar
V
REF
/PGA
GAIN
UNIPOLAR
SINGLE-ENDED
AINx+
AINx+
+ 0.1V
13295-106
Figure 89. Σ-∆ ADC Input Signal Configuration, Single-Ended Unipolar
The input signal common mode is not limited, but keep the
absolute input signal voltage on any AINx± pin between AVSSx +
100 mV and AVDD1x – 100 mV; otherwise, the input signal
linearity degrades and, if the signal voltage exceeds the absolute
maximum signal rating, damages the device.
Figure 90 shows the maximum and minimum voltage common-
mode range at different PGA gains for a maximum differential
input voltage.
COMMON-MODE VOLTAGE (V)
1.6500
1.2375
0.8250
0.4125
(AVDD1x + AVSSx)/2
–0.4125
PGA GAIN
2481
–0.8250
–1.2375
–1.6500
TRUE DIFFERENTIAL
PSEUDO DIFFERENTIAL
V
REF
= 2.5V
AVDD1x = 1.65V
AVSSx = –1.65V
13295-107
Figure 90. Maximum Common-Mode Voltage Range for a Maximum
Differential Input Signal
The AD7779 provides a common-mode voltage pin (AVDD1x +
AVSSx)/2), VCM, for the single-supply, pseudo differential, or
true differential input configurations.
TRANSFER FUNCTION
The AD7779 can operate with up to a 3.6 V reference, typical at
2.5 V, and converts the differential voltage between the analog
inputs (AINx+ and AINx−) into a digital output. e ADC
converts the voltage difference between the analog input pins
(AINx+ − AINx−) into a digital code on the output. e 24-bit
conversion result is in MSB first, twos complement format, as
shown in Table 15 and Figure 91.
Table 15. Output Codes and Ideal Input Voltages for PGA = 1×
Condition
Analog Input
(AINx+ − AINx−),
VREF = 2.5 V
Digital Output Code,
Twos Complement
(Hex)
FS − 1 LSB +2.499999702 V 0x7FFFFF
Midscale + 1 LSB +298 nV 0x000001
Midscale 0 V 0x000000
Midscale − 1 LSB −298 nV 0xFFFFFF
−FS + 1 LSB −2.499999702 V 0x800001
−FS −2.5 V 0x800000
100 ... 000
100 ... 001
100 ... 010
011 ... 101
011 ... 110
011 ... 111
ADC CODE (TWOS COMPLEMENT)
ANALOG INPUT
+FSR – 1.5LSB
+FSR – 1LSB
–FSR + 1LSB
–FSR
–FSR + 0.5LSB
13295-108
Figure 91. Transfer Function
AD7779 Data Sheet
Rev. D | Page 36 of 101
MCLK START
Σ-Δ
MODULATOR
SIGNAL CHAIN FOR CHANNEL x
CONTROL BLOCK
PIN CONTROL
CONTROL
OPTION
PIN OR SPI
DIGITAL
FILTER
SINC3
SRC
GAIN
SCALING
AND
OFFSET
CORRECTION
CONVERSION
DATA INTERFACE
MODE0 TO MODE3 CS SCLK SDO SDI
SYNC_OUT SYNC_IN RESET
DRDY
DOUTx
SCLK
FORMAT0
AND
FORMAT1
A
INx+
PGA
GAIN 1, 2, 4, 8
ESD
PROTECTION
AINx–
SPI CONTROL
13295-109
Figure 92. Top Level Core Signal Chain
CORE SIGNAL CHAIN
Each Σ-Δ ADC channel on the AD7779 has an identical signal
path from the analog input pins to the digital output pins.
Figure 92 shows a top level implementation of this signal chain.
Prior to each Σ-Δ ADC, a PGA maps sensor outputs into the
ADC inputs, providing low input current in dc (±4 nA, input
current, and ±1.5 nA differential input current), an 8 pF input
capacitance in ac, and configurable gains of 1, 2, 4, and 8. Each
ADC channel has its own Σ-Δ modulator, which oversamples
the analog input and passes the digital representation to the
digital filter block. The data is filtered, scaled for gain and
offset, and is then output on the data interface.
To minimize power consumption, individually disable the channels.
CAPACITIVE PGA
Each Σ-Δ ADC has a dedicated PGA, offering gain ranges of 1,
2, 4, and 8. This PGA reduces the need for an external input buffer
and allows the user to amplify small sensor signals to use the full
dynamic range of the AD7779.
The PGA maximize the signal chain dynamic range for small
sensor output signals.
The AD7779 uses chopping of the PGA to minimize offset and
offset drift in the input amplifier, reducing the 1/f noise as well.
For the AD7779, the chopping frequency is set to 64 kHz for
high resolution mode, and 16 kHz for low power mode. See the
AN-1392 Application Note for more information. The
chopping tone is rejected by the SINC filter.
To minimize intermodulation effects that may cause image in
the band of interest, it is recommended to limit the input signal
bandwidth to 2/3 of the chop frequency.
The capacitive PGA common-mode voltage does not depend
on the gain, and can be any value as long as the input signal
voltage is within AVSSx + 100 mV to AVDD1x – 100 mV. See
Figure 90 for the maximum common-mode voltage at
maximum differential input signals.
INTERNAL REFERENCE AND REFERENCE BUFFERS
The AD7779 integrates a 2.5 V, 10 ppm/°C typical, voltage
reference that is disabled at power-up. The buffered reference is
available at Pin 49 and offers up to 10 mA of continuous current.
A 100 nF capacitor is required if the reference is enabled.
In applications where a low noise reference is required, it is
recommended to add a low-pass filter (LPF) with a cutoff
frequency (fCUTOFF) below 10 Hz to the REF_OUT pin. Connect
the output of this filter to REFx+, and connect AVSSx to REFx−.
In this scenario, configure the Σ-Δ reference externally by
configuring the reference buffers in enable or precharge mode.
An example of performance with and without the output filter
is shown in Figure 93.
115
105
95
85
75
SNR (dB)
0.05 0.50 1.00 2.00 2.50
DIFFERENTIAL INPUT VOLTAGE (V)
V
REF
= INTERNAL REFERENCE
f
CUTOFF
= 10Hz
13295-110
Figure 93. SNR Adding External LPF with VREF = Internal Reference and
fCUTOFF = 10 Hz
The AD7779 can be used with an external reference connected
between the REFx+ and REFx− pins. Recommended reference
voltage sources for the AD7779 include the ADR441 and
ADR4525 family of low noise, high accuracy voltage references.
Data Sheet AD7779
Rev. D | Page 37 of 101
ADC
MODULATOR SINC
FILTER
DATA
INTERFACE
CONTROL
MCLK DIVIDER
HIGH RESOLUTION MODE: MCLK/4
LOW POWER MODE: MCLK/8
DCLK DIVIDER
1, 2, 4, 8, 16, 32, 64, 128
DEC RATES = ×128, ×256, ×512, ×1024, ×2048, ×4095.99
MOD_MCLK
DCLKx
DRDY
DOUT3
TO
DOUT0
PGA
AINx+
MCLK
AINx–
13295-111
Figure 94. Clock Generation on the AD7779
The reference buffers can be operated in three different modes:
buffer enabled mode, buffer bypassed mode, and buffer
precharged mode.
In buffer enabled mode, the buffer is fully enabled, minimizing
the current requirements from the external references. Note
that the buffer output voltage headroom is ±100 mV from the
rails.
In buffer bypassed mode, the external reference is directly
connected to the ADC reference capacitors; the reference must
provide enough current to correctly charge the internal ADC
reference capacitors. In this mode of operation, a degradation
in crosstalk is expected because the ADC channels are not
isolated from each other.
Buffer precharged (pre-Q) mode is the default operation mode.
It is a hybrid mode where the internal reference buffers are
connected during the initial acquisition time to precharge the
internal ADC reference capacitors. During the final phase of
the acquisition, the reference is connected directly to the ADC
capacitors. This mode has some benefits compared to the buffer
enabled and buffer bypassed modes. In buffer precharged
mode, the reference current requirements are minimized
compared to buffer bypassed mode the noise contribution from
the internal reference buffers is removed (compared to buffer
enabled mode).
In buffer precharged mode, the headroom/footroom of the
buffer reference is not applicable because the reference sets the
final voltage in the ADC reference capacitors.
INTEGRATED LDOs
The AD7779 has three internal LDOs to regulate the internal
supplies: two LDOs for the analog block and one LDO for the
digital core. The internal LDOs requires an external 1 μF
decoupling capacitor on the DREGCAP, AREG1CAP, and
the AREG2CAP pins. The LDO slew rate may be low because
it depends on the main supply slew rate; therefore, a hardware
reset generated by pulsing the RESET pin at power-up is required
to guarantee that the digital block initializes correctly.
CLOCKING AND SAMPLING
The AD7779 includes eight Σ-Δ ADC cores. Each ADC receives
the same master clock signal. The AD7779 requires a maximum
external MCLK frequency of 8192 kHz for high resolution mode
and 4096 kHz for low power mode. The MCLK is internally
divided by 4 in high resolution mode and by 8 in low power
mode to produce the modulator MCLK (MOD_MCLK) signal
used as the modulator sampling clock for the ADCs. The MCLK
can be decreased to accommodate lower ODRs if the minimum
ODR selected by the SINC filter is not low enough. If the external
clock is lower than 250 kHz, set the CLK_QUAL_DIS bit (in
SPI control mode only).
The AD7779 integrates an internal oscillator clock that initializes
the internal registers at power-up. The CLK_SEL pin defines
the external clock used after initialization (see Table 16).
Table 16. Clock Sources
CLK_SEL State Clock Source Connection
0 CMOS
Input to XTAL2/MCLK, IOVDD
logic level. XTAL1 must be
tied to DGND.
1 Crystal
Connected between XTAL1
and XTAL2/MCLK.
The MCLK signal generates the DCLK output signal, which in
turn clocks the Σ-Δ conversion data from the AD7779, as
shown in Figure 94.
DIGITAL RESET AND SYNCHRONIZATION PINS
An external pulse in the SYNC_IN pin generates the internal
reset of the digital block; this pulse does not affect the data
programmed in the internal registers. A pulse in this pin is
required in two cases as follows:
After updating one or more registers directly related to the
sinc3 filter. These are power mode, offset, gain, and phase
compensation.
To synchronize multiple devices, the pulse in the
SYNC_IN pin must be synchronous with MCLK.
AD7779 Data Sheet
Rev. D | Page 38 of 101
There are two different ways to achieve a synchronous pulse if
the controller/processor cannot generate it, as follows:
Applying an asynchronous pulse on the START pin, which
is then internally synchronized with the external MCLK
clock, and the resulting synchronous signal is output on
the SYNC_OUT pin.
Triggering the SYNC_OUT internally. When the AD7779
is configured in SPI control mode, toggling Bit 0 in the
GEN_USER_CONFIG_2 register generates a synchronous
pulse that is output on the SYNC_OUT pin.
The SYNC_IN and SYNC_OUT pins must be externally
connected if internal synchronization is used.
If multiple AD7779 devices must be synchronized, the
SYNC_OUT pin of one device can be connected to multiple
devices. This synchronization method requires the use of a
common MCLK signal for all the AD7779 devices connected,
as shown in Figure 95.
If the START pin is not used, tie it to IOVDD.
START
SYNC_IN
IOVDD
MCLK SYNC_OUT
START
SYNC_IN
MCLK SYNC_OUT NC
START
SYNC_IN
MCLK SYNC_OUT NC
AD7779
AD7779
AD7779
SYNCHRONIZATION
LOGIC
ASYNCHRONOUS
PULSE
DIGITAL FILTER
SYNCHRONIZATION
LOGIC
DIGITAL FILTER
SYNCHRONIZATION
LOGIC
DIGITAL FILTER
MCLK
IOVDD
13295-112
Figure 95. Multiple AD7779 Synchronization
DIGITAL FILTERING
The AD7779 offers a low latency sinc3 filter. Most precision
Σ-Δ ADCs use sinc3 filters because the sinc3 filter offers a low
latency path for applications requiring low bandwidth signals,
for example, in control loops or where application specific post
processing is required. The digital filter adds notches at multiples
of the sampling frequency.
The digital filter implements three main notches, one at the
maximum ODR (16 kHz or 8 kHz, depending on the power
mode) and another two at the ODR frequency selected to stop
noise aliasing into the pass band.
Figure 96 shows the typical filter transfer function for the high
resolution and low power modes using a decimation rate of
256 samples.
FREQUENCY (kHz)
GAIN (dB)
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100 0 8 16 24 32
LOW POWER MODE DECIMATION = 256
HIGH RESOLUTION MODE DECIMATION = 256
13295-113
Figure 96. Sinc3 Frequency Response
The sample rate converter featured allows fine tuning of the
decimation rate, even for noninteger multiples of the decimation
rate. See the Sample Rate Converter (SRC) section for more
information on filter profiles for noninteger decimation rates.
SHUTDOWN MODE
The AD7779 can be placed in shutdown mode by pulling
AVDD2 to ground and connecting 1 MΩ resistance, pulled
low, to XTAL2. In this mode, the average current consumption
is reduced to 1 mA, as shown in Figure 97.
–40
–0.5
0
0.5
1.0
10
TEMPERATURE (°C)
60 125
I
AVDD1x
I
AVDD2x
I
AVDD4x
I
IOVDD
AVDDx = 3.3V
IOVDD = 3.3V
SUPPLY CURRENT (mA)
13295-114
Figure 97. Shutdown Current
Data Sheet AD7779
Rev. D | Page 39 of 101
CONTROLLING THE AD7779
The AD7779 can be controlled using either pin control mode
or SPI control mode.
Pin control mode allows the AD7779 to be hardwired to
predefined settings that offer a subset of the overall functionality
of the AD7779. In this mode, the SRC and diagnostic features or
extended errors source are not available.
Controlling the AD7779 over the SPI interface allows the user
access to the full monitoring, diagnostic, and Σ-Δ control
functionality. SPI control offers additional functionality such
as offset, gain, and phase correction per channel, in addition to
access to the flexible SRC to achieve a coherent sampling.
See Table 17 for more details about these different configurations.
PIN CONTROL MODE
In pin control mode, the AD7779 is configured at power-up
based on the level of the mode pins, MODE 0, MODE1, MODE2,
and MODE3. These four pins set the following functions on the
AD7779: the mode of operation, the decimation rate/ODR, the
PGA gain, and the reference source, as shown in Table 18.
Due to the limited number of mode pins and the number of
options available, the PGA gain control is grouped into blocks
of 4, and the ODR is selected for the maximum value defined
by the decimation rate; ODR (kSPS) = 2048/decimation for
high resolution mode, and ODR (kSPS) = 512/decimation for low
power mode.
Depending on the mode selected, the device is configured to
use an external or an internal reference.
The conversion data can be read back using the SPI interface or
the data output interface, as shown in Table 17. If the data output
interface is used to read back the data from the conversions, the
number of DOUTx lines enabled and the number of clocks
required for the Σ-Δ data transfer are determined by the logic level
of the CONV_SAR, FORMAT0, and FORMAT1 pins. In this
case, the DCLK2, DCLK1, and DCLK0 pins select the Σ-Δ
output interface and control the DCLKx divide function, which
is a submultiple of MCLK, as shown in Table 19. The DCLKx
divide function sets the frequency of the data output interface
DCLKx signal. The DCLK minimum frequency depends on the
decimation rate and operation mode. See the Data Output
Interface section for more details about the minimum DCLKx
frequency.
All the pins that define the AD7779 configuration mode are
reevaluated each time the SYNC_IN pin is pulsed. The typical
connection diagram for pin control mode is shown in Figure 98.
Table 17. Format of the Data Interface
CONV_SAR State FORMAT1 FORMAT0 Control Mode Data Output Mode
1 0 0 Pin SPI output
0 1 Pin SPI output
1 0 Pin SPI output
1 1 SPI Defined in Register 0x013 and/or Register 0x014
0 0 0 Pin DOUT0, Channel 0 to Channel 1
DOUT1, Channel 2 to Channel 3
DOUT2, Channel 4 to Channel 5
DOUT3, Channel 5 to Channel 7
0 1 Pin DOUT0, Channel 0 to Channel 3
DOUT1, Channel 4 to Channel 7
1 0 Pin DOUT0, Channel 0 to Channel 7
1 1 SPI Defined in Register 0x013 and/or Register 0x014
Table 18. Pin Mode Options
Pin State PGA Gain Channel
Reference Type
MODE3 MODE2 MODE1 MODE0 Decimation Rate Power Mode 0 to 3 4 to 7
0 0 0 0 1024 High resolution 1 1 External
0 0 0 1 512 High resolution 1 1 External
0 0 1 0 256 High resolution 1 1 External
0 0 1 1 128 High resolution 1 1 External
0 1 0 0 256 High resolution 1 2 External
0 1 0 1 512 High resolution 1 4 External
0 1 1 0 256 High resolution 1 4 External
0 1 1 1 128 High resolution 1 4 External
AD7779 Data Sheet
Rev. D | Page 40 of 101
Pin State PGA Gain Channel
Reference Type
MODE3 MODE2 MODE1 MODE0 Decimation Rate Power Mode 0 to 3 4 to 7
1 0 0 0 512 High resolution 1 1 Internal
1 0 0 1 256 High resolution 1 1 Internal
1 0 1 0 128 High resolution 1 1 Internal
1 0 1 1 512 Low power 1 1 External
1 1 0 0 256 Low power 1 1 External
1 1 0 1 128 Low power 1 1 External
1 1 1 0 128 Low power 1 1 Internal
1 1 1 1 256 Low power 1 1 Internal
Table 19. DCLKx Selection for Pin Control Mode
State
DCLK2/SCLK DCLK1/SDI DCLK0/SDO MCLK Divider
0 0 0 1
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 32
1 1 0 64
1 1 1 128
ADC
DATA
SERIAL
INTERFACE
SPI
CONTROL
INTERFACE
FPGA
OR
DSP
AVDD 3.3V
EXTERN
A
L
REFERENCE
AVSSx
AVSSx
AIN7+
AIN7–
AIN0+
AIN0–
PGA
VCM
AVDD1x
BUFFER
BUFFER
AD7779
DREGCAP
CONVST_SAR
MODE3
TO
MODE0
REFx+ REFx– REF_OUTAVDD4
AVSSxAVSSx
AVDD2x
AVDD3.3V AVDD3.3V IOVDD 2V TO 3.6V
AVSSx
AREGxCAP
AVSSxAVSSx
IOVDD
24-BIT
Σ-Δ
ADC
SINC3/SRC
SYNC_IN
DRDY
SYNC_OUT
START
RESET
DCLK
CS
SCLK
SDO
CLK_SEL
XTAL2 DCLK2
TO
DCLK0
XTAL1
DOUT0
DOUT1
SPI/SPORT
SLAVE
INTERFACE
DOUT2
DOUT3
SPI
MASTER
INTERFACE
PGA
13295-115
VCM
SDI
FORMAT1
AND
FORMAT0
CLOCK
SOURCE
Figure 98. Pin Mode Connection Diagram with External Reference
Data Sheet AD7779
Rev. D | Page 41 of 101
ADC
DATA
SERIAL
INTERFACE
SPI
CONTROL
INTERFACE
FPGA
OR
DSP
A
V
DD 3.3V
AVSSx
AVSSx
AIN7+
AIN7–
AIN0+
AIN0–
PGA
VCM
AVDD1x
BUFFER
FULL BUFFER
BUFFER AD7779
DREGCAP
CONVST_SAR
GPIO2
TO
GPIO0
REFx+ REFx– REF_OUT AVDD4
AVSSx
AVDD2x
A
V
DD 3.3V IOVDD 2
V
TO 3.6V
AVSSx
AREGxCAP
AVSSxAVSSx
IOVDD
AUXAIN+
AUXAIN–
24-BIT
Σ-Δ
ADC
12-BIT
SAR ADC
MUX
DIAGNOSTIC
INPUTS
SINC3/SRC
SYNC_IN
DRDY
SYNC_OUT
START
RESET
DCLK
CS
SCLK
SDO
SDI
CONVST_SAR
FORMAT0XTAL2 FORMAT1
IOVDD IOVDD
XTAL1
DOUT0
DOUT1
SPI/SPORT
SLAVE
INTERFACE
DOUT2
DOUT3
SPI
MASTER
INTERFACE
PGA
13295-116
VCM
CLOCK
SOURCE
Figure 99. SPI Control Mode Connection Diagram with Internal Reference
SPI CONTROL
The second option for control and monitoring the AD7779 is via
the SPI interface. This option allows access to the full functionality
on the AD7779, including access to the SAR converter, phase
synchronization, offset and gain adjustment, diagnostics and
the SRC. To use the SPI control, set the FORMAT0 and
FORMAT1 pins to logic high.
In this mode, the SPI interface can also be used to read the Σ-Δ
conversation data by setting the SPI_SLAVEMODE_EN bit.
The typical connection diagram for SPI control mode is shown
in Figure 99.
Functionality Available in SPI Mode
SPI control of the AD7779 offers the super set of the functions
and diagnostics. The SPI Control Functionality section describes
the functionality and diagnostics offered when in SPI control
mode.
Offset and Gain Correction
Offset and gain registers are available for system calibration.
The gain register is preprogrammed during final production for
a PGA gain of 1, but can be overwritten with a new value if
required.
The gain register is 24 bits long and is split across three registers,
CHx_GAIN_UPPER_BYTE, CHx_GAIN_MID_BYTE, and
CHx_GAIN_LOWER_BYTE, which set the gain on a per
channel basis.
The gain value is relative to 0x555555, which represents a gain of 1.
The offset register is 24 bits long and is spread across three byte
registers, CHx_OFFSET_UPPER_BYTE, CHx_OFFSET_MID_
BYTE, and CHx_OFFSET_LOWER_BYTE. The default value is
0x000000 at power-up. Program the offset as a twos complement,
signed 24-bit number. If the channel gain is set to its nominal
value of 0x555555, an LSB of offset register adjustment changes
the digital output by −4/3 LSBs.
As an example of calibration, the offset measured is −200 LSB
(with both AINx± pins connected to the same potential).
An offset adjustment of −150 changes the digital output by
−150 × (−4/3) = 200 LSBs (gain value = 0x555555),
representing this number as two complement, 0xFFFFFF –
0x96 + 1 = 0xFFFF70.
CHx_OFFSET_UPPER_BYTE = 0xFF
CHx_OFFSET_MID_BYTE = 0xFF
CHx_OFFSET_LOWER_BYTE = 0x70
Note that the offset compensation is performed before the gain
compensation. The gain is programmed during final testing for
PGAGAIN = 1. The gain register values can be overwritten; however,
after a reset or power cycle, the gain register values revert to the
hard coded programmed factory setting.
If the gain required is 0.75 of the nominal value (0x555555), the
value that must be programmed is
0x555555 × 0.75 = 0x400000
AD7779 Data Sheet
Rev. D | Page 42 of 101
Then, an LSB of the offset register adjustment changes the
digital output by −4/3 × 0.75 = 1 LSB.
CHx_GAIN_UPPER_BYTE = 0x40
CHx_GAIN_MID_BYTE = 0x00
CHx_GAIN_LOWER_BYTE = 0x00
SPI Control Functionality
Global Control Functions
The following list details the global control functions of the
AD7779:
High resolution and low power modes of operation
Output data rate: sample rate converter (SRC)
VCM buffer power-down
Internal/external reference selection
Enable, precharged, or bypassed reference buffer modes
Internal reference power-down
SAR diagnostic mux
SAR power-down
GPIO write/read
SPI SAR conversion readback
SPI slave mode—read Σ-Δ results
SDO and DOUT drive strength
DOUT mode
DCLK division
Internal LDO bypassed
CRC protection: enabled or disabled
Per Channel Functions
The following list details the per channel functions of the
AD7779:
PGA gain.
Σ-Δ channel power-down.
Phase delay: synchronization phase offset per channel.
Calibration of offset.
Calibration of gain.
Σ-Δ input signal mux.
Channel error register.
PGA gain.
Phase Adjustment
The AD7779 phase delay can be adjusted to compensate for phase
mismatches between channels due to sensors or signal channel
phase errors connected to the AD7779. Achieve phase adjustment
by programming the CHx_SYNC_OFFSET register. This
programming delays the synchronization signal by a certain
number of modulator clocks, MOD_CLKs, to individually
initiate the digital filter for each Σ-Δ ADC. In other words,
program the channel with a higher phase to Phase 0 and delay the
channel with a lower phase to compensate the phase mismatch.
The phase adjustment register is read after a pulse on the
SYNC_IN pin. Any further changes on the register have no effect
unless another pulse is generated. See the Digital Reset and
Synchronization Pins section for more information on how to
generate a pulse in the pin.
The phase offset register is multiplied internally by a factor (n),
that depends on the decimation rate, as shown in Table 20.
Table 20. Phase Adjustment vs. Decimation Rate
Phase Adjustment Compensation (n) Decimation Rate
×1 ≤255
×2 ≤511
×4 ≤1023
×8 ≤2047
×16 ≤4095
The maximum phase delay cannot be equal to or greater than
the decimation rate. If this is the case, the value changes
internally to the decimation rate value minus 1.
When the CHx_SYNC_OFFSET register is written it automatically
overwrites itself multiplied by the corresponding factor (n), as
defined in Table 20. As CHx_SYNC_OFFSET is only 8 bits
long, the resulting value will be scaled down to fit 8 bits. To know
whether the phase adjustment has clipped or not, see Table 21.
Table 21.
CHx_SYNC_OFFSET × n CHx_SYNC_OFFSET Overwrite
≤255 CHx_SYNC_OFFSET × n
≤511 CHx_SYNC_OFFSET × n/2
≤1023 CHx_SYNC_OFFSET × n/4
≤2047 CHx_SYNC_OFFSET × n/8
≤4095 CHx_SYNC_OFFSET × n/16
As an example, the phase mismatch between Channel 0 and
Channel 1 is 5°, and the ODR is 5 kSPS in high resolution mode. In
this case, the decimation rate is 2048 kHz/5 kHz = 409.6, which
means that the offset register value is multiplied internally by 2.
Assuming an input signal of 50 Hz, the number of MOD_
MCLK pulses required to sample a full period is 2048 kHz/
50 Hz = 40960 > 360°/40960 = 0.00878°.
If a 5° delay is required, the number of MOD_MCLK delays
must be 569 (5°/0.00878°) because the offset register is multiplied
by 2; the final offset register value is 409.6/2 − 569/2, which gives a
negative value. In this case, if the offset value programmed to the
register is higher than 204 (for example, 210 × 2 = 420), the value is
internally changed to 408, resulting in a phase compensation of
408 × 0.00878° = 3.58°.
Data Sheet AD7779
Rev. D | Page 43 of 101
PGA Gain
The PGA gain can be selected individually by appropriately
selecting Bits[7:6] in the CHx_CONFIG register, see Table 22.
Table 22. PGA Gain Settings via CHx_CONFIG
CHx_CONFIG, Bits[7:6] Setting PGA Gain Setting
00 ×1
01 ×2
10 ×4
11 ×8
If the Σ-Δ reference is updated, it is recommended to apply a
pulse on the SYNC_IN pin to remove invalid samples during
the transition of the reference.
Decimation
The decimation defines the sampling frequency as follows:
In high resolution mode, the sampling frequency = MCLK/
(4 × decimation)
In low power mode, the sampling frequency = MCLK/
(8 × decimation)
Refer to the Sample Rate Converter (SRC) section for more
information.
GPIO Pins
If the AD7779 operates in SPI control mode, the mode pins
operate as GPIO pins, as shown in Figure 100. The GPIO pins
can be configured as inputs or outputs in any order.
REGISTER
MAP
GPIO0
GPIO1
GPIO2
13295-117
Figure 100. GPIO Pin Functionality
Configuration control and readback of the GPIO pins are dealt
with by Bits[2:0] in the GPIO_CONFIG register (0 = input, 1 =
output) and the GPIO_DATA register. Among other uses, the
GPIOs can control an external mux connected to the auxiliary
inputs of the SAR ADC. Use this mux to verify the results on
the Σ-Δ ADCs.
In addition, the GPIO pins can be used to externally trigger a
new decimation rate. Refer to the Sample Rate Converter (SRC)
section for more information about this functionality.
Σ-Δ Reference Configuration
The AD7779 can operate with internal or external references.
In addition, for diagnostic purposes, the analog supply can be
used as a reference, as shown in Table 23.
Table 23. Σ-Δ References
Setting for
ADC_MUX_CONFIG,
Bits[7:6]
Channel 0 to
Channel 3
Channel 4 to
Channel 7
00 REF1+/REF1− REF2+/REF2−
01 Internal reference Internal reference
10 AVDD1A/AVSS1A AVDD1B/AVSS1B
11 REF1−/REF1+ REF2−/REF2+
Reference buffer operation is described in Table 24. The selected
reference and buffer operation mode affect all channels.
If the Σ-Δ reference is updated, it is recommended to apply a
pulse on the SYNC_IN pin to remove invalid samples during
the transition of the reference.
Table 24. Reference Buffer Operation Modes
Reference Buffer
Operation Mode REFx+ REFx−
Enabled BUFFER_CONFIG_1, Bit 4 = 1; BUFFER_CONFIG_2, Bit 7 = 0 BUFFER_CONFIG_1, Bit 3 = 1; BUFFER_CONFIG_2, Bit 6 = 0
Precharged BUFFER_CONFIG_1, Bit 4 = 1; BUFFER_CONFIG_2, Bit 7 = 1 BUFFER_CONFIG_1, Bit 3 = 1; BUFFER_CONFIG_2, Bit 6 = 1
Disabled BUFFER_CONFIG_1, Bit 4 = 0 BUFFER_CONFIG_1, Bit 3 = 0
Table 25. Additional Disable Power-Down Blocks
Block Register Notes
VCM GENERAL_USER_CONFIG_1, Bit 5 Enable by default
Reference Buffer BUFFER_CONFIG_1, Bits[4:3] Precharge mode by default
Internal Reference Buffer GENERAL_USER_CONFIG_1, Bit 4 Disable by default
Σ-Δ Channel CH_DISABLE, Bits[7:0] All channels enable
SAR GENERAL_USER_CONFIG_1, Bit 3 Disable by default
Internal Oscillator GENERAL_USER_CONFIG_1, Bit 2 Enable by default
AD7779 Data Sheet
Rev. D | Page 44 of 101
Power Modes
The AD7779 offers different power modes to improve the
power efficiency, high resolution and low power mode, which
can be controlled via GENERAL_USER_CONFIG_1, Bit 6. To
further reduce the power, additional blocks can be disabled
independently, as described in Table 25.
If the power mode changes, a pulse on the SYNC_IN pin is
required.
LDO Bypassing
The internal LDOs can be individually bypassed and an external
supply can be applied directly to AREG1CAP, AREG2CAP, or
DREGCAP pins. Table 26 shows the absolute minimum and
maximum supplies for these pins, as well as the associated
register used to bypass the regulator.
Table 26. LDO Bypassing
LDO
BUFFER_CONFIG_2,
Bits[2:0]1
Supply
Max (V) Min (V)
AREG1CAP 1XX 1.9 1.85
AREG2CAP X1X 1.9 1.85
DREGCAP XX1 1.98 1.65
1 X means don’t care.
DIGITAL SPI INTERFACE
The SPI serial interface on the AD7779 consists of four signals:
CS, SDI, SCLK, and SDO. A typical connection diagram of the
SPI interface is shown in Figure 101.
DSP/FPGA
AD7779
CS
SCLK
SDI
SDO
13295-118
Figure 101. SPI Control Interface—AD7779 is the SPI Slave, Digital Signal
Processor (DSP)/Field Programmable Gate Array (FPGA) is the Master
The SPI interfaces operates in Mode 0 and Mode 3, CPOL = 0,
CPHA = 0 (Mode 0) or CPOL = 1, CPHA = 1 (Mode 3).
In pin control mode, the SDO can be used to read back the Σ-Δ
results, depending on the level of the CONV_SAR pin, as
described in Table 17.
In SPI control mode, the SPI interface transfers data into the
on-chip registers while the SDO pin reads back data from the
on-chip registers or reads the SAR or the Σ-Δ conversions
results, depending on the selected operation mode.
The SDO data source in SPI control mode is defined by the
GENERAL_USER_CONFIG_2 and GENERAL_USER_
CONFIG_3 registers, as described in Table 27.
Table 27. SPI Operation Mode in SPI Control Mode
GENERAL_USER_
CONFIG_2, Bit 5
Setting
GENERAL_USER_
CONFIG_3, Bit 4
Setting Mode
0 0 Internal register
0 1 Σ-Δ data conversion
1 X SAR conversion
In SPI control mode, there are four different levels of I/O strength
on the SDO pin, which can be selected in GENERAL_USER_
CONFIG_2, Bits[4:3], as described in Table 28.
Table 28. SDO Strength
GENERAL_USER_CONFIG_2, Bits[4:3] Setting Mode
0 0 Nominal
0 1 Strong
1 0 Weak
1 1 Extra strong
SCLK is the serial clock input for the device. All data transfers
(on either SDO or SDI) occur with respect to this SCLK signal.
Data Sheet AD7779
Rev. D | Page 45 of 101
The SPI interface can operate in multiples of eight bits. For
example, in SPI control mode, if the SDO pin is used to read
back the data from the internal register or the SAR ADC, the data
frame is 16 bits wide (CRC disabled), as shown in Figure 102,
or 24 bits wide (CRC enabled), as shown in Figure 103. In this
case, the controller can generate one frame of 16 bits/24 bits
(with and without the CRC enabled), or 2/3 frames of 8 bits
(with and without the CRC enabled). When the SDO pin is
used to read back the data from the Σ-Δ channels, 64 bits must
be read back from the controller (in this case, the controller can
generate a frame of 64 bits: either 2 × 32 bits, 4 × 16 bits, or 8 ×
8 bits).
SPI CRC—Checksum Protection (SPI Control Mode)
The AD7779 has a checksum mode that improves SPI interface
robustness in SPI control mode. Using the checksum ensures
that only valid data is written to a register and allows data read
from the device to be validated. The SPI CRC can be enabled by
setting the SPI_CRC_TEST_EN bit. If an error occurs during a
register write, the SPI_CRC_ERR is set in the error register.
Enabling the SPI_CRC_TEST_EN bit results in a CRC checksum
being performed on all the R/W operations. When SPI_
CRC_TEST_EN is enabled, an 8-bit CRC word is appended
to every SPI transaction for SAR and register map operations.
For more information on Σ readback operations, see the
CRC Header section.
To ensure that the register write is successful, it is recommended
to read back the register and verify the checksum.
For CRC checksum calculations, the following polynomial is
always used: x8 + x2 + x + 1. See the SPI Control Mode
Checksum section for more information.
SPI Read/Write Register Mode (SPI Control Mode)
The AD7779 has on-board registers to configure and control
the device.
The registers have 7-bit addresses—the 7-bit register address on
the SDI line selects the register for the read/write function. The
7-bit register address follows the R/W bit in the SDI data. The
8 bits on the SDI line following the 7-bit register address are the
data to be written to the selected register if the SPI is a write
transfer. Data on the SDI line is clocked into the AD7779 on the
rising edge of SCLK, as shown in Figure 3.
The data on the SDO line during the SPI transfer contains the
8-bit 0010 0000 header: 8 bits of register data in the case of a read
(R) operation, or 8 zeros in the case of a write (W) operation.
With the CRC disabled, the basic data frame on the SDI line
during the transfer is 16 bits long, as shown in Figure 102.
When the CRC is enabled, a minimum frame length of 24 SCLKs
is required on SPI transfers. The 24 bits of data on the SDO line
consist of an 8-bit header (0010 0000), 8 bits of data, and an 8-bit
CRC (see Figure 103).
R/WA6A5A4A3A2A1A0 D6D7 D5 D4 D3 D2 D1 D0
0
SDO
CS
SCLK
SDI
0 1 0 0 0 0 0 R7 R6 R5 R4 R3 R2 R1 R0
13295-119
Figure 102. 16-Bit SPI Transfer—CRC Disabled
R/WA6A5A4A3A2A1A0 D6D7 D5 D4 D3 D2 D1 D0 I
CRC7
I
CRC6
I
CRC5
I
CRC4
I
CRC3
I
CRC2
I
CRC1
I
CRC0
0
SDO
CS
SCLK
SDI
0 1 0 0 0 0 0 R7R6 R5R4R3R2R1R0
I
CRC7
I
CRC6
I
CRC5
I
CRC4
I
CRC3
I
CRC2
I
CRC1
I
CRC0
13295-120
Figure 103. 24-Bit SPI Transfer—CRC Enabled
AD7779 Data Sheet
Rev. D | Page 46 of 101
SPI SAR Diagnostic Mode (SPI Control Mode)
Setting Bit 5 in the GENERAL_USER_CONFIG_2 register
configures the SDO line to shift out data from the SAR ADC
conversions, as described in Table 27. The SAR ADC is
disabled at power-up. To enable this ADC, set the PDB_SAR
bit.
In SAR mode, the AD7779 internal registers can be written to,
but any readback command is ignored because the SDO data
frame is dedicated to shift out the conversion results from the
SAR ADC.
To exit this mode of operation, reset Bit 5 in the GENERAL_
USER_CONFIG_2 register.
The data on the SDO line during the SPI transfer contains a
4-bit 0010 header and 12 bits of the SAR conversion result if the
CRC is disabled.
When the CRC is enabled, a minimum frame length of 24 SCLKs
is required on SPI transfers. The 24 bits of data on the SDO line
consist of a 4-bit header (0010), 12 bits of data, and an 8-bit
CRC, as shown in Figure 104.
Per the SPI read/write register mode (see the SPI Read/Write
Register Mode section), the SDI line contains the R/W bit, a 7-bit
register address, 8 bits of data, and an 8-bit CRC (if enabled).
To avoid unwanted writes to the internal register while the
SAR conversions are read back through the SDO line, it is
recommended to send a readback command, for example,
0x8000, to the device, which is ignored because the SDO pin is
used to shift out the content of the SAR ADC.
If consecutives conversion are performed in the SAR ADC,
read back the result from the previous conversion before a new
conversion is generated. Otherwise, the results are corrupted.
Σ-Δ Data, ADC Mode
In pin control mode, the SPI interface can be used to read back
the Σ-Δ conversions as described in Table 17. In SPI control
mode, the SPI interface reads back the Σ-Δ conversions by setting
GENERAL_USER_CONFIG_3, Bit 4, as described in Table 27;
in this mode, the AD7779 internal register can be written to, but
any readback command is ignored because the SDO data frame
is dedicated to shifting out the conversion results from the Σ-Δ
ADCs. To avoid unwanted writes to the internal register, it is
recommended to send a readback command, for example, 0x8000,
to the device, which is ignored because the SDO pin is used to
shift out the content of the Σ-Δ ADC.
The SDO pin data can be read back in any multiple of 8 bits, for
example, as 64 bits, 2 × 32 bits, 4 × 16 bits, or 8 × 8 bits.
SPI Software Reset
Keeping the SDI pin high during 64 consecutives clocks
generates a software reset.
R/WA6A5A4A3A2A1A0 D6D7 D5 D4 D3 D2 D1 D0 I
CRC7
I
CRC6
I
CRC5
I
CRC4
I
CRC3
I
CRC2
I
CRC1
I
CRC0
0
SDO
CS
SCLK
SDI
010
SAR
11 SAR
10 SAR
9SAR
8SAR
6
SAR
7SAR
5SAR
4SAR
3SAR
2SAR
1SAR
0I
CRC7
I
CRC6
I
CRC5
I
CRC4
I
CRC3
I
CRC2
I
CRC1
I
CRC0
13295-121
Figure 104. SAR ADC/Diagnostic Mode—CRC Enabled
13295-201
DRDY
CS
SCLK
SDI
SDO
0x800000 0x800000
HEADERCH0 D7CH0 TO D0CH0 HEADERCH1 D23CH1 TO D16CH1
D23CH0 TO D8CH0
Figure 105. SPI Used to Read Back the Σ- ADC Data, in 24-Bit Frames
Data Sheet AD7779
Rev. D | Page 47 of 101
DIAGNOSTICS AND MONITORING
SELF DIAGNOSTICS ERROR
The AD7779 includes self diagnostic features to guarantee the
correct operation. If an error is detected, the ALERT pin is
pulled high to generate an external interruption to the controller.
In addition, the header of the Σ-Δ output data contains a bit
used to inform the controller of a chip error (see the ADC
Conversion Output—Header and Data section).
Both the ALERT pin and the bit (status header) are automatically
cleared if the error is no longer present. The errors related to the
SPI interface do not recover automatically; read back the
appropriate register to clear the error, resetting both the
ALERT pin and the bit.
If an error detector is manually disabled, it does not generate an
internal error and, consequently, the register map or the
ALERT pin and bit are not triggered.
There are different sources of errors, as described in Table 29.
In pin control mode, it is not possible to check the error source,
and some sources of error are not enabled. In SPI control mode,
check the source of an error by reading the appropriate register bit.
The STATUS_REG_x register bits identify the register that
generates an error, as summarized in Table 29.
Table 29. Register Error Source
Bit Name Register Source
ERR_LOC_GEN2 GEN_ERR_REG_2
ERR_LOC_GEN1 GEN_ERR_REG_1
ERR_LOC_CH7 CH7_ERR_REG
ERR_LOC_CH6 CH6_ERR_REG
ERR_LOC_CH5 CH5_ERR_REG
ERR_LOC_CH4 CH4_ERR_REG
ERR_LOC_CH3 CH3_ERR_REG
ERR_LOC_CH2 CH2_ERR_REG
ERR_LOC_CH1 CH1_ERR_REG
ERR_LOC_CH0 CH0_ERR_REG
ERR_LOC_SAT_CH6_7 CH6_7_SAT_ERR
ERR_LOC_SAT_CH4_5 CH4_5_SAT_ERR
ERR_LOC_SAT_CH2_3 CH2_3_SAT_ERR
ERR_LOC_SAT_CH0_1 CH0_1_SAT_ERR
In addition, STATUS_REG_x has a bit that indicates if any
internal error bit is set. This bit clears if the error is no longer
present and the register is read back.
The INIT_COMPLETE bit in the STATUS_REG_3 indicates that
the device is initialized correctly. This bit is not an error but an
indicator.
General Errors
MCLK Switch Error (SPI Control Mode)
After power-up, the AD7779 initiates a clocking handover
sequence to pass clocking control to the external oscillator, or
the CMOS clock. In SPI mode, if an error occurs in the handover,
the EXT_MCLK_SWITCH_ERR bit is set in the general error
register, GEN_ERR_REG_2.
If EXT_MCLK_SWITCH_ERR is set, this means that the
device is operating off the internal oscillator.
To use a slow external clock (<265 kHz), set the CLK_QUAL_
DIS bit. Setting this bit also clears the error bit.
If the external clock is between 132 kHz and 265 kHz, depending
on the internal synchronization between internal oscillator and
external clock, the error may not trigger. However, it is still
recommended to set the CLK_QUAL_DIS bit.
If a slow clock is not in use and the error triggers, a reset is required.
Reset Detection
The AD7779 general error register contains a RESET_DETEC-
TED bit. This bit is asserted if a reset pulse is applied to the
AD7779 and is cleared by reading the general error register. This
bit indicates that the power-on reset (POR) initialized correctly
on the device. In addition, this pin can be used to detect an
unexpected device reset or glitch on the RESET pin. To reset this
error signal in SPI control mode, toggle the SYNC_IN pin or read
from the general error register, GEN_ERR_REG_2. To reset this
error signal in pin control mode, toggle the SYNC_IN pin.
Internal LDO Status
The AD7779 has three internal LDOs to regulate the internal
analog and digital supply rails. The LDOs have internal power
supply monitors. Internal comparators monitor and flag errors
with these supplies after they pass a predetermined limit.
The ALDO1_PSM_ERR, ALDO2_PSM_ERR, and DLDO_PSM_
ERR bits indicate either an LDO malfunction, or, if the LDOs
are bypassed, an incorrect external supply.
The internal analog and digital voltage monitors can be disabled by
appropriately selecting the LDO_PSM_TEST_EN bits.
Use the SAR ADC to verify the error.
Additionally, the levels of the internal monitors can be
manually triggered to check if the detector works correctly by
appropriately setting the bits in the LDO_PSM_TRIP_TEST_EN
register. These bits increase the comparator window threshold
above the LDO outputs, forcing the comparator to trigger.
ROM and MEMMAP CRC
If an error is found at power-up during the ROM verification,
or if the internal memory map is corrupted, the AD7779
generates an error and sets MEMMAP_CRC_ERR or ROM_
CRC_ERR, depending on the source of the error.
The checker can be disabled by clearing the MEMMAP_
CRC_TEST_EN and ROM_CRC_TEST_EN bits.
The device must be reset if any of these errors trigger.
AD7779 Data Sheet
Rev. D | Page 48 of 101
Σ-Δ ADC Errors
Reference Detect (SPI Control Mode)
In SPI control mode, the AD7779 includes on-chip circuitry to
detect if there is a valid reference for conversions or calibrations.
If the voltage between the selected REFx+ and REFx– pins goes
below 0.7 V, the AD7779 detects that it no longer has a valid
reference. CHx_ERR_REF_DET can be interrogated to identify
the affected channel, which clears the bit register if the error is
no longer present. The voltage detector can be disabled by clearing
the REF_DET_TEST_EN bit.
Use the Σ-Δ ADC diagnostic or the SAR ADC to verify the error.
Overvoltage and Undervoltage Events
The AD7779 includes on-chip overvoltage/undervoltage circuitry
on each analog input pin. When the voltage on an analog input
pin goes above AVDD1x + 40 mV, the CHx_ERR_AINx_OV
bit is set. The error disappears if the input voltage falls below
AVDD1x – 40 mV.
If an undervoltage event occurs (AVSSx – 40 mV), the CHx_
ERR_AINx_UV bit is set. The error disappears if the input
voltage increases to AVSSx + 40 mV.
The CHx_ERR_AINM_UV, CHx_ERR_AINM_OV, CHx_ERR_
AINP_UV, and CHx_ERR_AINP_OV bits can be read back to
verify the affected channel input, which clears the bit register if
the error is no longer present. The overvoltage and undervoltage
detection can be disabled independently by clearing the
AINM_UV_TEST_EN, AINM_OV_TEST_EN,
AINP_UV_TEST_EN, or AINP_OV_TEST_EN bits.
The input voltage can be checked independently with the SAR ADC.
Modulator Saturation
The AD7779 includes modulator saturation detection on each
of the Σ-Δ ADCs. If 20 consecutive codes for the modulator are
either all 1s or 0s, this is flagged as a modulator saturation event.
Reading the CHx_ERR_MOD_SAT register clears the bit if the
error corrects itself.
Modulator saturation detection can be disabled by clearing the
MOD_SAT_TEST_EN bit.
The modulator input voltage is attenuated internally, which means
that a modulator output of all 1s or 0s represents a modulator that
is out of bounds and that a RESET pulse is required.
Filter Saturation
TheAD7779 includes digital filter saturation detection on each
Σ-Δ ADC channel. This detection indicates that the filter output is
out of bounds, which represents an output code approximately
20% higher than positive or negative full scale. Reading the CHx_
ERR_FILTER_SAT bit clears the bit if the error corrects itself.
Clear the FILTER_SAT_TEST_EN bit to disable the detection.
Output Saturation
An output saturation event can occur when gain and offset
calibration causes the output from the digital filter to clip at either
positive or negative full scale. The output does not wrap. Reading
the CHx_ERR_OUTPUT_SAT bit clears the bit if the error
corrects itself.
The detection can be disabled by clearing OUTPUT_SAT_
TEST_EN bit.
SPI Transmission Errors (SPI Control Mode)
All SPI errors clear after reading GEN_ERR_REG_1, which
contains the SPI errors. These errors are not recovered auto-
matically and, consequently, the ALERT pin and the ALERT bit
remain set until the error register is read back, and new SPI
frame is generated.
CRC Checksum Error
If the CRC checksum is enabled by setting the SPI_CRC_
TEST_EN bit, an error bit, SPI_CRC_ERR, is raised if the CRC
message does not match the message computed by the AD7779
internal CRC block. If the CRC message does not match the
internally computed message, the register is not updated.
SCLK Counter
If the number of clocks generated by the controller is not a
multiple of 8 after CS is pulled high, an error bit, SPI_CLK_
COUNT_ERR is raised. The last command multiple of 8 is
executed; however, the SCLK counter can be disabled by setting
the SPI_CLK_COUNT_TEST_EN bit.
Invalid Read
When an invalid register is trying to read back, the
SPI_INVALID_READ_ERR bit is set.
The invalid readback address detection can be disabled by
setting the SPI_INVALID_READ_TEST_EN bit.
Invalid Write
When an invalid register is trying to write, the SPI_INVALID_
WRITE_ERR bit is set.
The invalid write address detection can be disabled by setting
the SPI_INVALID_WRITE_TEST_EN bit.
MONITORING USING THE AD7779 SAR ADC
(SPI CONTROL MODE)
The AD7779 contains an on-chip SAR ADC for chip diagnostics,
system diagnostics, or measurement verification. The SAR ADC
has a 12-bit resolution. The AVDD4 and AVSS4 pins operate in
complete independence of the Σ-Δ ADC supplies and, therefore,
can be used for chip diagnostics in systems where functional
safety is important. The reference for the SAR conversion process
is taken from the SAR ADC supply voltage (AVDD4/AVSS4)
and, therefore, the SAR analog input range is from AVSS4 to
AVDD4.
Data Sheet AD7779
Rev. D | Page 49 of 101
The SAR ADC has a maximum throughput rate of 256 kSPS.
The CONVST_SAR pin initiates a conversion on the SAR
ADC. The maximum allowable frequency of the CONVST_SAR
pin is 256 kHz. If consecutives conversion are performed in the
SAR ADC, read back the result from the previous conversion
before a new conversion is generated. Otherwise, the results are
corrupted.
The SAR ADC is only available in SPI control mode. To read
conversion results from the SAR ADC, set the SAR_DIAG_
MODE_EN bit. After this bit is set, all data shift out from the
SDO pin are from the SAR ADC register, as shown in Figure 106.
The CONVST_SAR signal can be internally deglitched to avoid
false triggers.
Table 30. SAR Synchronization and Deglitching
CONVST_
DEGLITCH_DIS Effect on CONVST_SAR
11 CONVST_SAR goes directly to the SAR
10 CONVST_SAR reaches the SAR when it is
1.5 MCLK cycles wide
Increase the acquisition time by 1.5/MCLK when the deglitch
circuitry is enabled.
Prior to the SAR ADC, the AD7779 contains an internal
multiplexer. This multiplexer can be configured over the SPI
interface to set the inputs to the SAR ADC to be either internal
circuit nodes in the case of diagnostics or to select the external
AUXAIN+ and AUXAIN− pins.
Along with converting external voltages, the SAR ADC can be
used to monitor the internal nodes on the AVDD, IOVDD, and
DGND pins, and can monitor the DLDO and ALDO outputs.
Some voltages are internally attenuated by 6, and the resulting
voltage is applied to the SAR ADC, as shown in Table 31. This
is useful because variations in the power supply voltage can be
monitored.
The input multiplexer of the SAR is controlled by the GLOBAL_
MUX_CONFIG register, and the different inputs available are
described in Table 31.
The SAR ADC also contains an ADC driver amplifier, as shown
in Figure 107. This amplifier settles the SAR input to 12-bit
accuracy within the t33 time. This driver amplifier helps
minimize the kickback from the SAR converter to the global
diagnostic mux input circuit nodes.
Use the auxiliary inputs, AUXAIN+ and AUXAIN−, to validate
the Σ-Δ measurements. While operating in SPI control mode,
the AD7779 has three available GPIO ports controlled via the
SPI interface. The GPIO pins can be used to control an
external, dual 8:1 multiplexer, which in turn is used to sample
the eight Σ-Δ channels. Use this diagnostic in applications where
functional safety is required. This diagnostic aids in removing
the need for a secondary external ADC to validate primary
measurements on the Σ-Δ channels.
Temperature Sensor
The internal die temperature can be measured with an error of
±2°C. DVBE is proportional to the temperature measured
referred to 25°C.
DVBE =

1
12
2
n
CODE
n
AVDD4 AVSS4 ADC
Temperature (°C) = 0.6
25 0.002
BE
DV
Table 31. SAR Mux Inputs
Signal
SAR Input Positive Negative Attenuation ÷ 6
0 AUXAIN+ AUXAIN− No
1 DVBE AVSSx No
2 REF1+ REF1− No
3 REF2+ REF2− No
4 REF_OUT AVSSx No
5 VCM AVSSx No
6 AREG1CAP AVSSx Yes
7 AREG2CAP AVSSx Yes
8 DREGCAP DGND Yes
9 AVDD1A AVSSx Yes
10 AVDD1B AVSSx Yes
11 AVDD2A AVSSx Yes
12 AVDD2B AVSSx Yes
13 IOVDD DGND Yes
14 AVDD4 AVSSx No
15 DGND AVSSx Yes
16 DGND AVSSx Yes
17 DGND AVSSx Yes
18 AVDD4 AVSSx Yes
19 REF1+ AVSSx No
20 REF2+ AVSSx No
21 AVSSx AVDD4 Yes
CS
SDI
SDO
SET BIT 5
GENERAL_USER_CONFIG_2 REG WRITE TO ADC MUX REGISTER WRITE TO ADC MUX REGISTER
ADC CONVERSION RESULT REG ADC CONVERSION RESULT REG
13295-123
Figure 106. Configuring the AD7779 to Operate the SPI to Read from the SAR ADC
AD7779 Data Sheet
Rev. D | Page 50 of 101
SAR DRIVER
CONTROL LOGIC
FIFO
ON-CHIP
DIAGNOSTICS
SPI
AUXAIN+
AUXAIN–
A
V
DD4
AVSS4
CONVST_SAR
MUX
DEGLITCH
SAR ADC
REF
13295-122
Figure 107. SAR ADC Configuration and Control
Table 32. Σ-Δ Diagnostic
Input Voltage Recommended Voltage Reference Notes/Result
0 Floating Not applicable Not applicable
1 Floating Not applicable Not applicable
2 280 mV differential signal Internal/External PGA gain calibration
3 External reference, positive/negative External Positive full scale
4 External reference, negative/positive External Negative full scale
5 External reference, negative/ negative External Zero scale
6 Internal reference, positive/negative Internal Positive Full scale
7 Internal reference, negative/positive Internal Negative full scale
8 Internal reference, positive/ positive Internal Zero scale
9 External reference, positive/ positive External Zero scale
Σ-Δ ADC DIAGNOSTICS (SPI CONTROL MODE)
The AD7779 Σ-Δ ADC diagnostic functions are accessible
through the SPI interface. The internal mux placed before the
PGA has different inputs, allowing the user to select a zero-scale,
positive full-scale, or negative full-scale input to the Σ-Δ ADC,
which can be converted to verify the correct operation of the
Σ-Δ ADC channel.
The diagnostic mux control signals are shared across all the Σ-
Δ channels. Depending on the diagnostic selected, connect the Σ-
Δ ADC reference to a different reference source to guarantee
that the conversion is within the measurable range.
There are two different ways to enable the diagnostic mux:
Setting the CHx_RX bit. This bit enables the input Σ-Δ
mux. The multiplexer inputs are described in Table 32.
The reference used during the conversions are controlled
by the REF_MUX_CTRL bits.
Setting CHx_REF_MONITOR. This bit has the same effect
as enabling the CHx_RX bit and selects the
VDD1x/AVSSx supplies as the main reference.
If the AINx± pin is connected to AVSSx, the input range is
outside range (AVSSx + 100 mV); therefore, results may differ
slightly from the expected value.
The inputs can be used alternatively to calibrate gain and offset
errors.
Data Sheet AD7779
Rev. D | Page 51 of 101
Σ-Δ OUTPUT DATA
ADC CONVERSION OUTPUT—HEADER AND DATA
The AD7779 Σ-Δ conversion results are output on the DOUT0
to DOUT3 pins or over the SPI, depending on the selected
interface. If the DOUTx interface is selected, the AD7779 acts
as the master in the transmission. If the SPI interface is selected,
the controller is the master.
The DRDY signal indicates the end of conversion independently
of the interface selected to read back the Σ-Δ conversion. When
the SPI is used to read back the Σ-Δ conversion, if a new conversion
is completed (DRDY falling edge) before the previous conversion is
read back, the results from previous conversion are overwritten
and, consequently, the previous conversion data is corrupted.
For each channel, the width is 32 bits long: 8 bits for the header
and 24 bits for the Σ-Δ conversion, as shown in Figure 108.
ADC DATA N
N – 1
24-BITS8-BITS
DOUTx
DRDY
HEADER N
13295-124
Figure 108. ADC Output—8-Bit Header + 24-Bit Conversion Data
In pin control mode, the header is fixed to the CRC while in
SPI mode, and can be selected between CRC or error headers.
CRC Header
The CRC header is the header generated in pin control mode or
in SPI mode if DOUT_HEADER_FORMAT is set.
As shown in Figure 109, the header consists of an alert bit,
three bits for the ADC channel, as shown in Table 33, and
four bits for the CRC.
The alert bit is set high if an error is detected in any channel, as
explained in the General Errors section. The alert bit remains 1
until the error disappears.
ALERT CHANNEL
NUMBER
CHANNEL
NUMBER
CHANNEL
NUMBER CRC CRC CRC CRC
13295-200
Figure 109. CRC Header
Table 33. Channel ID
Channel Channel ID 2 Channel ID 1 Channel ID 0
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1
The CRC generated is eight bits long; the CRC 4 MSBs are placed
on the header for the first channel in the pairing and the 4 LSBs
on the header of the second channel in the pairing, as shown in
Table 34. If a channel is disabled, the 24-bit output data for this
channel is 0x000000.
Table 34. 8-Bit CRC, Header Configuration (Channel 2)
Channel 2 Header
Alert 0 1 0 CRC7 CRC6 CRC5 CRC4
Table 35. 8-Bit CRC, Header Configuration (Channel 3)
Channel 3 Header
Alert 0 1 1 CRC3 CRC2 CRC1 CRC0
ERROR Header (SPI Control Mode)
In SPI control mode, the default header can be replaced by an
error header. If the Σ-Δ conversion is read back through the
SPI interface, disable the CRC by clearing the SPI_CRC_TEST_EN
bit. If the DOUTx interface is used, clear the
DOUT_HEADER_FORMAT bit.
The error header provides information of common error sources
specific for each channel, as shown in Table 36. Modulator and
filter errors are indicated even if the checker for this error has been
specifically disabled, as described in the Σ-Δ ADC Errors section.
Table 36. Status Header Output
Bits Name Description
7 Alert This bit is set high if any of the enabled diagnostic functions have detected an error, including an
external clock not detected, a memory map bit flip, or an internal CRC error. This bit is not channel specific.
The bit clears if the error is no longer present.
[6:4] CH_ID_[2:0] These bits indicate which ADC channel the following conversion data came from (see Table 33).
3 RESET_DETECTED This bit indicates if a reset condition occurs. This bit is not channel specific.
2 MODULATOR_SATURATE
This bit indicates that the modulator output 20 consecutive 0s or 1s. The bit resets automatically after
the error is no longer present.
1 FILTER_SATURATE This bit indicates that the filter output is out of bounds. The bit resets automatically after the error is no
longer present.
0 AIN_OV_UVERROR This bit indicates that there is an AINx± overvoltage/undervoltage condition on the inputs. This bit is set
until the appropriate register is read back and the error is no longer present.
AD7779 Data Sheet
Rev. D | Page 52 of 101
SAMPLE RATE CONVERTER (SRC) (SPI CONTROL
MODE)
The AD7779 implements a patented featured called the SRC on
each Σ-∆ channel, which allows the user to configure the
output data rate or sampling frequency to any desired value,
including noninteger values. The SRC achieves fine resolution
control over the decimation ratio, up to 15.26 × 10−6. In
applications where the ODR must change based on changes in
the input signal to maintain sampling coherency, the SRC
provides fine control over the ODR. For example, to achieve
the highest classification standard, Class A, in power quality
applications, coherency must be maintained for 0.01 Hz
changes in the input power line. The SRC can be used to
achieve this sampling frequency accuracy.
In the pin control mode, the ODR is fixed per the predefined
pin control options. Consequently, a noninteger number
cannot be selected, as shown in Table 17.
To set the ODR, the user must program up to four registers,
depending on the decimation value: two registers to program
the integer value, N (the effective decimation rate), and two
registers to program the decimal value, IF (the interpolation
factor).
The integer value registers are SRC_N_MSB, Bits[3:0] and
SRC_N_LSB, Bits[7:0]. The decimal part value registers are
SRC_IF_MSB, Bits[7:0] and SRC_IF_LSB, Bits[7:0].
As an example, if an output data rate of 2.8 kSPS is required,
the decimation rate is as follows:
In HR mode = (8192/4)/2.8 = 731.428
In LP mode = (4096/8)/2.8 = 182.857
The register values for HR mode are as follows:
731d = 0x2DB
SRC_N_MSB[3:0] = 0x02
SRC_N_LSB[7:0] = 0xDB
0.428d = 0.428 × 216 = 28049d = 0x6D91
SRC_IF_MSB[7:0] = 0x6D
SRC_IF_LSB[7:0] = 0x91
The ODR can be updated on the fly, but a new ODR is effective
in three conversion cycles of the Σ-∆ ADCs. This guarantees a
smooth transition with no conversion results out of range.
There are two different ways to change the ODR after a new
value is written in the SRC registers: via software or via
hardware, depending on SRC_UPDATE, Bit 7.
If the SRC_LOAD_SOURCE bit is clear, the new ODR value is
updated by setting the SRC_LOAD_UPDATE bit to 1. This bit
must be held high for at least two MLCK periods; return the bit
to 0 before attempting another update.
If SRC_LOAD_SOURCE is set, the ODR update is controlled
externally by the GPIO0 pin. Apply a pulse in the GPIO2 pin,
which is then internally synchronized with the external MCLK,
and the resultant synchronous signal is output on the GPIO1 pin.
The GPIO1 and GPIO0 pins must be externally connected.
If multiple AD7779 must be synchronized, the GPIO1 pin of one
device can be connected to multiple devices. This synchronization
method requires the use of a common MCLK signal for all the
AD7779 devices connected, as shown in Figure 110.
GPIO2
GPIO0
GPIO0
GPIO0
MCLK GPIO1
GPIO2
MCLK GPIO1 NC
GPIO2
MCLK GPIO1 NC
AD7779
AD7779
AD7779
SYNCHRONIZATION
LOGIC
PULSE
DIGITAL FILTER
SYNCHRONIZATION
LOGIC
DIGITAL FILTER
SYNCHRONIZATION
LOGIC
DIGITAL FILTER
MCLK
13295-125
Figure 110. Hardware ODR
SRC Bandwidth
The SINC filter architecture allows the user to select a noninteger
value as the decimation range. This versatility means that the
filter notches must be adjusted dynamically: two notches at the
variable frequency, and one fixed notch to remove the PGA
chopping tone. Consequently, the traditional formula for the
−0.1 dB and −3 dB bandwidth must be adjusted depending on
the selected decimation rate.
The bandwidth transfer function is not linear but can be
approximated by using a linear function.
Data Sheet AD7779
Rev. D | Page 53 of 101
Figure 111 and Figure 112 show the correction factor for the
−0.1 dB and −3 dB bandwidth, respectively in high resolution
and low power modes. For example, when the ODR = 1000 in
HR mode, the −0.1 dB point is BW = 0.0474 × 1000 + 31.667 =
79.067 Hz.
0
200
400
600
800
1000
0 5000 10000 2000015000
y = 0.0474x + 31.667
–0.1dB FREQUEN
C
Y
ODR (Hz)
13295-209
Figure 111. −0.1 dB Correction Factor, HR Mode
–3dB FREQUENCY
ODR (Hz)
13295-210
0
500
1000
1500
2000
2500
3000
3500
4000
4500
1000 3000 5000 7000 9000 11000 13000 15000 17000
y = 0.2571x + 166.17
Figure 112. −3 dB Correction Factor, HR Mode
0 2000 40000 100006000 8000
0
100
200
300
400
500
–0.1dB FREQUEN
C
Y
ODR (Hz)
y = 0.0481x + 11.932
13295-212
Figure 113. −0.1 dB Correction Factor, LP Mode
ODR (Hz)
13295-312
0
500
1000
1500
2000
2500
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
–3dB FREQUENCY
y = 0.2608x + 62.267
Figure 114. −3 dB Correction Factor, LP Mode
SRC Group Delay and Latency
The SRC group delay depends on the selected ODR and the
power mode, and is defined by the following equation:
Group Delay = ODRNSRC
N
SRCPM
_
_
where:
PM is a value that depends on the power mode, either 64 for
high resolution mode or 32 for low power mode.
SRC_N is the integer value of the programmed ODR.
ODR is the programmed output data rate.
The latency is the contribution of the group delay and the
calibration time.
Latency = Group Delay + tCAL
where tCAL = 62 × tMCLK, with a maximum error of 2 × tMCLK, in
high resolution mode; or 121 × tMCLK, with a maximum error of
4 × tMCLK, in low power mode.
tMCLK is the modulator period, MCLK/4 in high resolution mode
and MCLK/8 in low power mode.
Settling Time
The settling time is defined by the contribution of all the
internal stages, the filter delay, and the block calibration.
The filter delay is defined as 3/ODR. In some extreme cases, as
when an external pulse is applied, this value may increase to
4/ODR.
AD7779 Data Sheet
Rev. D | Page 54 of 101
DATA OUTPUT INTERFACE
The Σ-∆ output data interface is defined by the CONV_SAR,
FORMAT0, and FORMAT1 pins in pin control mode at power-up.
The FORMATx pins cannot be changed dynamically. Table 18
shows the available options for pin control mode. If the device is
configured in SPI control mode, the SPI_SLAVE_MODE_EN bit
enables the SPI interface to transmit the Σ-∆ ADC conversion
results, as shown in Table 27.
DOUT3 to DOUT0 Data Interface
Standalone Mode
In standalone mode, the AD7779 interface acts as a master.
There are three different DOUT configurations, configurable
through the FORMATx pins in pin control mode, as shown in
Figure 115 through Figure 117, or via the DOUT_FORMAT bits,
Bits[7:6], in SPI control mode, as described in Table 37.
Figure 118, Figure 119, and Figure 120 show the expected data
outputs for different DOUTx output modes.
Table 37. DOUTx Channels
DOUT_FORMAT Bits/FORMATx Pins Number of DOUTx Lines Enabled Associated Channels
00 4 DOUT0—Channel 0 and Channel 1
DOUT1—Channel 2 and Channel 3
DOUT2—Channel 4 and Channel 5
DOUT3—Channel 6 and Channel 7
01 2 DOUT0—Channel 0, Channel 1, Channel 2, and Channel 3
DOUT1—Channel 4, Channel 5, Channel 6, and Channel 7
10 1
DOUT0—Channel 0, Channel 1, Channel 2, Channel 3,
Channel 4, Channel 5, Channel 6, and Channel 7
DOUT0
DOUT1
DOUT2
DOUT3
DCLK
DRDY
FORMAT1
DAISY-CHAINING IS
NOT POSSIBLE IN THIS FORMAT
FORMAT0
AD7779
CH 0 CH 1
CH 2 CH 3
CH 4 CH 5
CH 6 CH 7
13295-128
DGND
0
0
Figure 115. FORMATx Pin Configuration—FORMAT0 = 0, FORMAT1 = 0
DOUT0
DOUT1
DCLK
DRDY
FORMAT1
IOVDD
DAISY-CHAINING IS
POSSIBLE IN THIS FORMAT
DGND
FORMAT0
1
0
AD7779
CH 4 CH 5 CH 6 CH 7
CH 0 CH 1 CH 2 CH 3
13295-129
Figure 116. FORMATx Pin Configuration—FORMAT0 = 1, FORMAT1 = 0
DOUT0
DCLK
DRDY
FORMAT1
IOVDD
DAISY-CHAINING IS
POSSIBLE IN THIS FORMAT
DGND
FORMAT0
0
1
AD7779
CH 0 CH 1 CH 2 CH 3 CH 4 CH 5 CH 6 CH 7
13295-130
Figure 117. FORMATx Pin Configuration—FORMAT0 = 0, FORMAT1 = 1
Data Sheet AD7779
Rev. D | Page 55 of 101
CH0-S0 CH1-S0
CH2-S0 CH3-S0
CH0-S1 CH1-S1
CH2-S1 CH3-S1
DCLK
DRDY
DOUT0
SAMPLE N SAMPLE N + 1
DOUT1
CH4-S0 CH5-S0
CH6-S0 CH7-S0
CH4-S1 CH5-S1
CH6-S1 CH7-S1
DOUT0
DOUT1
13295-131
Figure 118. FORMAT0 = 0, FORMAT1 = 0—Each DOUTx Outputs Two ADC Conversions (S0 Means Sample 0 and S1 Means Sample 1)
CH0-S0 CH1-S0 CH2-S0 CH3-S0
CH7-S0CH4-S0 CH5-S0 CH6-S0
CH0-S1 CH1-S1 CH2-S1 CH3-S1
CH7-S1CH4-S1 CH5-S1 CH6-S1
DCLK
DRDY
DOUT0
SAMPLE N SAMPLE N + 1
DOUT1
DOUT3
DOUT2
13295-132
Figure 119. FORMAT0 = 0, FORMAT1 = 1—Channel 0 to Channel 3 Share DOUT0, and Channel 4 to Channel 7 Share DOUT1 (S0 Means Sample 0 and S1 Means Sample 1)
DCLK
DRDY
DOUT0
SAMPLE N SAMPLE N + 1 SAMPLE N + 2
DOUT3
DOUT2
DOUT1
CH0-S0 CH1-S0 CH2-S0 CH...-S0 CH6-S0 CH7-S0 CH0-S1 CH0-S2 CH0-S3CH1-S1 CH2-S1 CH...-S1 CH6-S1 CH7-S2 CH1-S2 CH2-S2 CH...-S2 CH6-S2 CH7-S2
13295-133
Figure 120. FORMAT0 = 1, FORMAT1 = 0—Channel 0 to Channel 7 Output on DOUT0 Only (S0 Means Sample 0 and S1 Means Sample 1)
AD7779 Data Sheet
Rev. D | Page 56 of 101
Daisy-Chain Mode
Daisy-chaining devices allows numerous devices to use the
same data interface lines by cascading the outputs of multiple
ADCs from separate AD7779 devices. In daisy-chain config-
uration, only one device has direct connection between the
DOUTx interface and the digital host. For the AD7779, daisy-
chain capability is implemented by cascading DOUT0 and
DOUT1 through a number of devices, or by just using DOUT0
(this depends on the selected DOUTx mode). The ability to
daisy chain devices and the limit on the number of devices that
can be handled by the chain is dependent on the selected
DOUTx mode and the decimation rate employed.
When operating in daisy-chain mode, it is required that all
AD7779 devices in the chain are correctly synchronized. See
the Digital Reset and Synchronization Pins section for more
information.
This feature is especially useful for reducing the component
count and wiring connections in, for example, isolated
multiconverter applications or for systems with a limited
interfacing capacity.
For daisy-chain operation, there are two different configurations
possible, as described in Table 38.
Using the DOUTx = 10 mode DOUT2 acts as input pins, as
shown in Figure 121. In this case, the DOUT0 pin of the
AD7779 devices is cascaded to the DOUT2 pin of the next
device in the chain. Data readback is analogous to clocking a
shift register where data is clocked on the rising edge of DCLK.
Table 38. DOUTx Modes in Daisy-Chain Operation
DOUT_FORMAT Bits/
FORMATx Pins Number of DOUTx Lines Enabled Associated Channels
01 2 DOUT0—Channel 0 to Channel 3 and DOUT2
DOUT1—Channel 4 to Channel 7 and DOUT3
DOUT2—input channel
DOUT3—input channel
10 1 DOUT0—Channel 0 to Channel 7 and DOUT2
DOUT2—input Channel
U2 S0 CH0 TO CH7
U2 S0 CH0 TO CH7
U1 S0 CH0 TO CH7
0
0
0
U2 S0 CH0 TO CH7
0
U2 S1 CH0 TO CH7
U2 S1 CH0 TO CH7
U1 S1 CH0 TO CH7
0
0
0
U2 S1 CH0 TO CH7
0
U2 S2 CH0 TO CH7
U2 S2 CH0 TO CH7
U1 S2 CH0 TO CH7
0
U2 DOUT0
U1 DOUT2/DIN0
U1 DOUT0
U2 DOUT2/DIN0
DRDY
DCLK
U2
DOUT2/DIN0 DOUT0
U1
DOUT2/DIN0 DOUT0
13295-134
Figure 121. Daisy-Chain Connection Mode, FORMAT0 = 1, FORMAT1 = 0 (S0 Means Sample 0 and S1 Means Sample 1); When Connected in Daisy-Chain Mode,
DOUT2 Acts as an Input Pin, Represented by DIN0
Data Sheet AD7779
Rev. D | Page 57 of 101
Minimum DCLKx Frequency
Select the DCLKx frequency ratio in such a way that the data is
completely shifted out before a new conversion is completed,
otherwise the previous conversion is overwritten and the trans-
mission becomes corrupt. The minimum DCLKx frequency ratio
is defined by the decimation rate, the operation mode, and the
lines enabled on the DOUT3 to DOUT0 data interface as
described in the following equations:
In standalone mode,
High Resolution Mode − DCLKMIN_RATIO < Decimation/
(8 × CHANNELS_PER_DOUT)
Low Power Mode − DCLKMIN_RATIO < Decimation/
(4 × CHANNELS_PER_DOUT)
In daisy-chain mode,
High Resolution Mode − DCLKMIN_RATIO< Decimation/
(8 × Devices × DOUTx Channels)
Low Power Mode − DCLKMIN_RATIO< Decimation/
(4 × Devices × DOUTx Channels)
As an example, when operating in master interface mode,
DOUTx = 01, the DOUT0 and DOUT1 pins shift out four Σ-
channels each and, assuming a maximum output rate in high
resolution mode, the decimation = 128.
DCLKMIN < 128/ (8 × 4) = 4
If the DCLKMIN_RATIO is selected above the necessary minimum,
a Logic 0 is continuously transmitted until a new sample is
available.
An example in daisy-chain mode, assuming DOUTx = 01, and
with three devices connected and a decimation rate of 256 in
high resolution mode, is as follows:
DCLKMIN_RATIO < 256/(8 × 3 × 4) = 2.66 = 2
The different ratios are summarized in Table 39.
Table 39. Available DCLK Ratios
DCLK_CLK_DIV (SPI Control Mode),
DCLKx (Pin Control Mode) DCLKx Ratio
000 1
001 2
010 4
011 8
100 16
101 32
110 64
111 128
There are maximum achievable ODRs and minimum DCLKx
frequencies required for a given DOUTx pin configuration, as
shown in Table 40 and Table 41.
Table 40. Maximum ODRs and Minimum DCLKx
Frequencies in High Resolution Mode
Decimation
Rate
ODR
(kSPS)
Minimum DCLKx (kHz)
1 DOUTx 2 DOUTx 4 DOUTx
4095 0.500122 128 64 32
2048 1 256 128 64
1024 2 512 256 128
512 4 1024 512 256
256 8 2048 1024 512
128 16 4096 2048 1024
Table 41. Maximum ODRs and Minimum DCLK
Frequencies in Low Power Mode
Decimation
Rate
ODR
(kSPS)
Minimum DCLK (kHz)
1 DOUT 2 DOUT 4 DOUT
2048 0.25 64 32 16
1024 0.5 128 64 32
512 1 256 128 64
256 2 512 256 128
128 4 1024 512 256
64 8 2048 1024 512
If the AD7779 operates in SPI control mode, it is possible to
adjust the DOUTx strength, which can be selected in the
DOUT_DRIVE_STR bits, as described in Table 42.
Table 42. DOUTx Strength
GENERAL_USER_CONFIG2, Bits[2:1] Mode
0 0 Nominal
0 1 Strong
1 0 Weak
1 1 Extra strong
SPI Interface
The SPI interfaces gives the user flexibility to read the
conversion from the Σ-∆ ADC where the processor or
microcontroller is the master.
When a new conversion is completed, the DRDY signal is
toggled to indicate that data can be accessed. When DRDY
toggles, the internal channel counter is reset and the next SPI
read is from Channel 0 again. Conversely, after the last channel
data is read, all succeeding reads before the next DRDY signal
are from Channel 7 (LSB).
AD7779 Data Sheet
Rev. D | Page 58 of 101
CH0_HEADER _+_CH0_8_BITS_MSB CH0_16_BITS_LSB
13295-135
CS
SDO
Figure 122. SPI Readback, 16 Bits per Frame
CS
SDO
CH0_HEADER _+_CH0_16_BITS_MSB CH0_8_BITS_LSB_+_CH1_HEADER_+CH1_8_BITS_MSB
13295-136
Figure 123. SPI Readback, 24 Bits per Frame
The SPI operates in multiples of 8 bits per frame; Figure 122 shows
a readback example in 16 bits per frames, whereas Figure 123
shows a readback in 24 bits per frame.
Note that if the device is configured in SPI control mode, the
AD7779 generates a software reset if the SDI pin is sampled
high for 64 consecutive clocks. To avoid a reset or unwanted
register writes, it is recommended to transfer a 0x8000 command,
which generates a readback command that is ignored by the
device, as explained in the SPI Software Reset section.
CALCULATING THE CRC CHECKSUM
The AD7779 implements two different CRC checksum generators,
one for the Σ-∆ results and another for the SPI control mode.
The AD7779 uses a CRC polynomial to calculate the CRC
checksum value. The 8-bit CRC polynomial used is x8 + x2 + x + 1.
To replicate the polynomial division in the hardware, the data
is left shifted by eight bits to create a number ending in eight
Logic 0s. The polynomial is aligned so that its MSB is adjacent
to the leftmost Logic 1 of the data. An XOR (exclusive OR)
function is applied to the data to produce a new, shorter
number. The polynomial is again aligned so that its MSB is
adjacent to the leftmost Logic 1 of the new result, and the
procedure is repeated. This process is repeated until the
original data is reduced to a value less than the polynomial.
This is the 8-bit checksum.
Note that the AD7779 CRC block presets the input shift registers
to 1, which means that the 8 MSBs of user data must be
inverted before computing the algorithm.
As an example of CRC calculation for 16-bit data using the
XOR is shown in Table 43.
Table 43. Example CRC Calculation for 16-Bit Data1, 2
Data 0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0 N/A N/A N/A N/A N/A N/A N/A N/A
Process Data 1 1 1 1 1 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0
Polynomial 1 0 0 0 0 0 1 1 1
1 1 1 1 0 1 0 1 1
1 0 0 0 0 0 1 1 1
1 1 1 0 1 1 0 0 0
1 0 0 0 0 0 1 1 1
1 1 0 1 1 1 1 1 0
1 0 0 0 0 0 1 1 1
1 0 1 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1
1 1 1 0 1 0 0 1 1
1 0 0 0 0 0 1 1 1
1 1 0 1 0 1 0 0 0
1 0 0 0 0 0 1 1 1
1 0 1 0 1 1 1 1 0
1 0 0 0 0 0 1 1 1
1 0 1 1 0 0 1 0 0
1 0 0 0 0 0 1 1 1
1 1 0 0 0 1 1 0 0
1 0 0 0 0 0 1 1 1
1 0 0 0 1 0 1 1 0
1 0 0 0 0 0 1 1 1
CRC 0 1 0 0 0 1 0 0
1 This table represents the division of the data; blank cells are for formatting purposes.
2 N/A means not applicable.
Data Sheet AD7779
Rev. D | Page 59 of 101
Σ-Δ CRC Checksum
The CRC message is calculated internally by the AD7779 on
ADC pairs. The CRC is calculated using the ADC output data
from two ADCs and Bits[7:4] from the header. Therefore, 56 bits
are used to calculate the 8-bit CRC. This CRC is split between
the two channel headers. The CRC data covers channel pairings
as follows: Channel 0 and Channel 1, Channel 2 and Channel 3,
Channel 4 and Channel 5, Channel 6 and Channel 7.
The CRC is calculated from 56 bits across two consecutive/
channel pairings (Channel 0 and Channel 1, Channel 2 and
Channel 3, Channel 4 and Channel 5, Channel 6 and Channel 7).
The 56 bits consist of the chip error, the 3 bits for the first ADC
pairing channel, and the 24 bits of data of each pairing channel.
For example, for the second channel pairing, Channel 2 and
Channel 3,
56 Bits = Chip Error + 3 ADC Channel Bits (010) + 24 Data Bits
(Channel 2) + Chip Error + 3 ADC Channel Bits (011) +
24 Data Bits (Channel 3)
SPI Control Mode Checksum
The CRC message is calculated internally by the AD7779. The
data transferred to the AD7779 uses the R/W bit, a 7-bit address,
and 8 bits of data for the CRC calculation.
The CRC calculated and appended to the data that it is shifted
out uses the previously transmitted R/W bit, the 7-bit register
address, and the 8 bits of data from the readback register.
If the SAR ADC is read back, the CRC algorithm uses the b0000
header and the 12 bits of SAR conversion data.
AD7779 Data Sheet
Rev. D | Page 60 of 101
REGISTER SUMMARY
Table 44. AD7779 Register Summary
Reg. Name Bits Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset R/W
0x000 CH0_CONFIG [7:0] CH0_GAIN CH0_REF_
MONITOR
CH0_RX RESERVED 0x00 /W R
0x001 CH1_CONFIG [7:0] CH1_GAIN CH1_REF_
MONITOR
CH1_RX RESERVED 0x00 R/W
0x002 CH2_CONFIG [7:0] CH2_GAIN CH2_REF_
MONITOR
CH2_RX RESERVED 0x00 R/W
0x003 CH3_CONFIG [7:0] CH3_GAIN CH3_REF_
MONITOR
CH3_RX RESERVED 0x00 R/W
0x004 CH4_CONFIG [7:0] CH4_GAIN CH4_REF_
MONITOR
CH4_RX RESERVED 0x00 R/W
0x005 CH5_CONFIG [7:0] CH5_GAIN CH5_REF_
MONITOR
CH5_RX RESERVED 0x00 R/W
0x006 CH6_CONFIG [7:0] CH6_GAIN CH6_REF_
MONITOR
CH6_RX RESERVED 0x00 R/W
0x007 CH7_CONFIG [7:0] CH7_GAIN CH7_REF_
MONITOR
CH7_RX RESERVED 0x00 R/W
0x008 CH_DISABLE [7:0] CH7_
DISABLE
CH6_
DISABLE
CH5_DISABLE CH4_DISABLE CH3_
DISABLE
CH2_
DISABLE
CH1_
DISABLE
CH0_
DISABLE
0x00 R/W
0x009 CH0_SYNC_
OFFSET
[7:0] CH0_SYNC_OFFSET 0x00 R/W
0x00A CH1_SYNC_
OFFSET
[7:0] CH1_SYNC_OFFSET 0x00 R/W
0x00B CH2_SYNC_
OFFSET
[7:0] CH2_SYNC_OFFSET 0x00 R/W
0x00C CH3_SYNC_
OFFSET
[7:0] CH3_SYNC_OFFSET 0x00 R/W
0x00D CH4_SYNC_
OFFSET
[7:0] CH4_SYNC_OFFSET 0x00 R/W
0x00E CH5_SYNC_
OFFSET
[7:0] CH5_SYNC_OFFSET 0x00 R/W
0x00F CH6_SYNC_
OFFSET
[7:0] CH6_SYNC_OFFSET 0x00 R/W
0x010 CH7_SYNC_
OFFSET
[7:0] CH7_SYNC_OFFSET 0x00 R/W
0x011 GENERAL_
USER_
CONFIG_1
[7:0] ALL_
CH_DIS_
MCLK_
EN
POWER-
MODE
PDB_VCM PDB_
REFOUT_
BUF
PDB_
SAR
PDB_
RC_OSC
SOFT_RESET 0x24 R/W
0x012 GENERAL_
USER_
CONFIG_2
[7:0] RESERVED SAR_DIAG_
MODE_EN
SDO_DRIVE_STR DOUT_DRIVE_STR SPI_SYNC 0x09 R/W
0x013 GENERAL_
USER_
CONFIG_3
[7:0] CONVST_
DEGLITCH_DIS
RESERVED SPI_SLAVE_
MODE_EN
RESERVED CLK_
QUAL_DIS
0x80 R/W
0x014 DOUT_
FORMAT
[7:0] DOUT_FORMAT DOUT_
HEADER_
FORMAT
RESERVED DCLK_CLK_DIV RESERVED 0x20 R/W
0x015 ADC_MUX_
CONFIG
[7:0] REF_MUX_CTRL MTR_MUX_CTRL RESERVED 0x00 R/W
0x016 GLOBAL_MUX_
CONFIG
[7:0] GLOBAL_MUX_CTRL RESERVED 0x00 R/W
0x017 GPIO_CONFIG [7:0] RESERVED GPIO_OP_EN 0x00 R/W
0x018 GPIO_DATA [7:0] RESERVED GPIO_READ_DATA GPIO_WRITE_DATA 0x00 R/W
0x019 BUFFER_
CONFIG_1
[7:0] RESERVED REF_BUF_
POS_EN
REF_
BUF_
NEG_EN
RESERVED 0x38 R/W
Data Sheet AD7779
Rev. D | Page 61 of 101
Reg. Name Bits Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset R/W
0x01A BUFFER_
CONFIG_2
[7:0] REF-
BUFP_
PREQ
REF-
BUFN_
PREQ
RESERVED PDB_ALDO
1_OVRDRV
PDB_
ALDO2_
OVRDRV
PDB_
DLDO_
OVRDRV
0xC0 R/W
0x01C CH0_OFFSET_
UPPER_BYTE
[7:0] CH0_OFFSET_ALL[23:16] 0x00 R/W
0x01D CH0_OFFSET_
MID_BYTE
[7:0] CH0_OFFSET_ALL[15:8] 0x00 R/W
0x01E CH0_OFFSET_
LOWER_BYTE
[7:0] CH0_OFFSET_ALL[7:0] 0x00 R/W
0x01F CH0_GAIN_
UPPER_BYTE
[7:0] CH0_GAIN_ALL[23:16] 0x00 R/W
0x020 CH0_GAIN_
MID_BYTE
[7:0] CH0_GAIN_ALL[15:8] 0x00 R/W
0x021 CH0_GAIN_
LOWER_BYTE
[7:0] CH0_GAIN_ALL[7:0] 0x00 R/W
0x022 CH1_OFFSET_
UPPER_BYTE
[7:0] CH1_OFFSET_ALL[23:16] 0x00 R/W
0x023 CH1_OFFSET_
MID_BYTE
[7:0] CH1_OFFSET_ALL[15:8] 0x00 R/W
0x024 CH1_OFFSET_
LOWER_BYTE
[7:0] CH1_OFFSET_ALL[7:0] 0x00 R/W
0x025 CH1_GAIN_
UPPER_BYTE
[7:0] CH1_GAIN_ALL[23:16] 0x00 R/W
0x026 CH1_GAIN_
MID_BYTE
[7:0] CH1_GAIN_ALL[15:8] 0x00 R/W
0x027 CH1_GAIN_
LOWER_BYTE
[7:0] CH1_GAIN_ALL[7:0] 0x00 R/W
0x028 CH2_OFFSET_
UPPER_BYTE
[7:0] CH2_OFFSET_ALL[23:16] 0x00 R/W
0x029 CH2_OFFSET_
MID_BYTE
[7:0] CH2_OFFSET_ALL[15:8] 0x00 R/W
0x02A CH2_OFFSET_
LOWER_BYTE
[7:0] CH2_OFFSET_ALL[7:0] 0x00 R/W
0x02B CH2_GAIN_
UPPER_BYTE
[7:0] CH2_GAIN_ALL[23:16] 0x00 R/W
0x02C CH2_GAIN_
MID_BYTE
[7:0] CH2_GAIN_ALL[15:8] 0x00 R/W
0x02D CH2_GAIN_
LOWER_BYTE
[7:0] CH2_GAIN_ALL[7:0] 0x00 R/W
0x02E CH3_OFFSET_
UPPER_BYTE
[7:0] CH3_OFFSET_ALL[23:16] 0x00 R/W
0x02F CH3_OFFSET_
MID_BYTE
[7:0] CH3_OFFSET_ALL[15:8] 0x00 R/W
0x030 CH3_OFFSET_
LOWER_BYTE
[7:0] CH3_OFFSET_ALL[7:0] 0x00 R/W
0x031 CH3_GAIN_
UPPER_BYTE
[7:0] CH3_GAIN_ALL[23:16] 0x00 R/W
0x032 CH3_GAIN_
MID_BYTE
[7:0] CH3_GAIN_ALL[15:8] 0x00 R/W
0x033 CH3_GAIN_
LOWER_BYTE
[7:0] CH3_GAIN_ALL[7:0] 0x00 R/W
0x034 CH4_OFFSET_
UPPER_BYTE
[7:0] CH4_OFFSET_ALL[23:16] 0x00 R/W
0x035 CH4_OFFSET_
MID_BYTE
[7:0] CH4_OFFSET_ALL[15:8] 0x00 R/W
0x036 CH4_OFFSET_
LOWER_BYTE
[7:0] CH4_OFFSET_ALL[7:0] 0x00 R/W
0x037 CH4_GAIN_
UPPER_BYTE
[7:0] CH4_GAIN_ALL[23:16] 0x00 R/W
AD7779 Data Sheet
Rev. D | Page 62 of 101
Reg. Name Bits Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset R/W
0x038 CH4_GAIN_
MID_BYTE
[7:0] CH4_GAIN_ALL[15:8] 0x00 R/W
0x039 CH4_GAIN_
LOWER_BYTE
[7:0] CH4_GAIN_ALL[7:0] 0x00 R/W
0x03A CH5_OFFSET_
UPPER_BYTE
[7:0] CH5_OFFSET_ALL[23:16] 0x00 R/W
0x03B CH5_OFFSET_
MID_BYTE
[7:0] CH5_OFFSET_ALL[15:8] 0x00 R/W
0x03C CH5_OFFSET_
LOWER_BYTE
[7:0] CH5_OFFSET_ALL[7:0] 0x00 R/W
0x03D CH5_GAIN_
UPPER_BYTE
[7:0] CH5_GAIN_ALL[23:16] 0x00 R/W
0x03E CH5_GAIN_
MID_BYTE
[7:0] CH5_GAIN_ALL[15:8] 0x00 R/W
0x03F CH5_GAIN_
LOWER_BYTE
[7:0] CH5_GAIN_ALL[7:0] 0x00 R/W
0x040 CH6_OFFSET_
UPPER_BYTE
[7:0] CH6_OFFSET_ALL[23:16] 0x00 R/W
0x041 CH6_OFFSET_
MID_BYTE
[7:0] CH6_OFFSET_ALL[15:8] 0x00 R/W
0x042 CH6_OFFSET_
LOWER_BYTE
[7:0] CH6_OFFSET_ALL[7:0] 0x00 R/W
0x043 CH6_GAIN_
UPPER_BYTE
[7:0] CH6_GAIN_ALL[23:16] 0x00 R/W
0x044 CH6_GAIN_
MID_BYTE
[7:0] CH6_GAIN_ALL[15:8] 0x00 R/W
0x045 CH6_GAIN_
LOWER_BYTE
[7:0] CH6_GAIN_ALL[7:0] 0x00 R/W
0x046 CH7_OFFSET_
UPPER_BYTE
[7:0] CH7_OFFSET_ALL[23:16] 0x00 R/W
0x047 CH7_OFFSET_
MID_BYTE
[7:0] CH7_OFFSET_ALL[15:8] 0x00 R/W
0x048 CH7_OFFSET_
LOWER_BYTE
[7:0] CH7_OFFSET_ALL[7:0] 0x00 R/W
0x049 CH7_GAIN_
UPPER_BYTE
[7:0] CH7_GAIN_ALL[23:16] 0x00 R/W
0x04A CH7_GAIN_
MID_BYTE
[7:0] CH7_GAIN_ALL[15:8] 0x00 R/W
0x04B CH7_GAIN_
LOWER_BYTE
[7:0] CH7_GAIN_ALL[7:0] 0x00 R/W
0x04C CH0_ERR_REG [7:0] RESERVED CH0_ERR_
AINM_UV
CH0_
ERR_
AINM_
OV
CH0_
ERR_AINP_
UV
CH0_ERR_
AINP_OV
CH0_ERR_
REF_DET
0x00 R
0x04D CH1_ERR_REG [7:0] RESERVED CH1_ERR_
AINM_UV
CH1_
ERR_
AINM_
OV
CH1_
ERR_AINP_
UV
CH1_ERR_
AINP_OV
CH1_ERR_
REF_DET
0x00 R
0x04E CH2_ERR_REG [7:0] RESERVED CH2_ERR_
AINM_UV
CH2_
ERR_
AINM_
OV
CH2_
ERR_AINP_
UV
CH2_ERR_
AINP_OV
CH2_ERR_
REF_DET
0x00 R
0x04F CH3_ERR_REG [7:0] RESERVED CH3_ERR_
AINM_UV
CH3_
ERR_
AINM_
OV
CH3_
ERR_AINP_
UV
CH3_ERR_
AINP_OV
CH3_ERR_
REF_DET
0x00 R
0x050 CH4_ERR_REG [7:0] RESERVED CH4_ERR_
AINM_UV
CH4_ER
R_
AINM_O
V
CH4_
ERR_AINP_
UV
CH4_ERR_A
INP_OV
CH4_ERR_
REF_DET
0x00 R
Data Sheet AD7779
Rev. D | Page 63 of 101
Reg. Name Bits Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset R/W
0x051 CH5_ERR_REG [7:0] RESERVED CH5_ERR_
AINM_UV
CH5_
ERR_
AINM_
OV
CH5_
ERR_AINP_
UV
CH5_ERR_
AINP_OV
CH5_ERR_
REF_DET
0x00 R
0x052 CH6_ERR_REG [7:0] RESERVED CH6_ERR_
AINM_UV
CH6_
ERR_
AINM_
OV
CH6_
ERR_AINP_
UV
CH6_ERR_
AINP_OV
CH6_ERR_
REF_DET
0x00 R
0x053 CH7_ERR_REG [7:0] RESERVED CH7_ERR_
AINM_UV
CH7_
ERR_
AINM_
OV
CH7_
ERR_
AINP_UV
CH7_ERR_
AINP_OV
CH7_ERR_
REF_DET
0x00 R
0x054 CH0_1_SAT_
ERR
[7:0] RESERVED CH1_ERR_
MOD_SAT
CH1_ERR_
FILTER_SAT
CH1_
ERR_
OUT-
PUT_
SAT
CH0_ERR_
MOD_SAT
CH0_ERR_
FILTER_SAT
CH0_ERR_
OUTPUT_
SAT
0x00 R
0x055 CH2_3_SAT_
ERR
[7:0] RESERVED CH3_ERR_
MOD_SAT
CH3_ERR_
FILTER_SAT
CH3_
ERR_
OUT-
PUT_
SAT
CH2_ERR_
MOD_SAT
CH2_ERR_
FILTER_SAT
CH2_ERR_
OUTPUT_
SAT
0x00 R
0x056 CH4_5_SAT_
ERR
[7:0] RESERVED CH5_ERR_
MOD_SAT
CH5_ERR_
FILTER_SAT
CH5_
ERR_
OUT-
PUT_
SAT
CH4_ERR_
MOD_SAT
CH4_ERR_
FILTER_SAT
CH4_ERR_
OUTPUT_
SAT
0x00 R
0x057 CH6_7_SAT_
ERR
[7:0] RESERVED CH7_ERR_
MOD_SAT
CH7_ERR_
FILTER_SAT
CH7_
ERR_
OUT-
PUT_
SAT
CH6_ERR_
MOD_SAT
CH6_ERR_
FILTER_SAT
CH6_ERR_
OUTPUT_
SAT
0x00 R
0x058 CHX_ERR_
REG_EN
[7:0] OUTPUT_
SAT_
TEST_
EN
FILTER_
SAT_
TEST_EN
MOD_SAT_
TEST_EN
AINM_UV_
TEST_EN
AINM_
OV_
TEST_EN
AINP_UV_
TEST_EN
AINP_OV_
TEST_EN
REF_DET_
TEST_EN
0xFE R/W
0x059 GEN_ERR_
REG_1
[7:0] RESERVED MEMMAP_
CRC_ERR
ROM_CRC_
ERR
SPI_
CLK_
COUNT_
ERR
SPI_
INVALID_
READ_ERR
SPI_
INVALID_
WRITE_ERR
SPI_CRC_
ERR
0x00 R
0x05A GEN_ERR_
REG_1_EN
[7:0] RESERVED MEMMAP_
CRC_TEST_EN
ROM_CRC_
TEST_EN
SPI_
CLK_
COUNT_
TEST_EN
SPI_
INVALID_
READ_
TEST_EN
SPI_
INVALID_
WRITE_
TEST_EN
SPI_CRC_
TEST_EN
0x3E R/W
0x05B GEN_ERR_
REG_2
[7:0] RESERVED RESET_
DETECTED
EXT_MCLK_
SWITCH_ERR
RE-
SERVED
ALDO1_
PSM_ERR
ALDO2_
PSM_ERR
DLDO_
PSM_ERR
0x00 R
0x05C GEN_ERR_
REG_2_EN
[7:0] RESERVED RESET_
DETECT_EN
RESERVED LDO_PSM_TEST_EN LDO_PSM_TRIP_TEST_EN 0x3C R/W
0x05D STATUS_REG_1 [7:0] RESERVED CHIP_ERROR ERR_LOC_
CH4
ERR_
LOC_
CH3
ERR_
LOC_CH2
ERR_LOC_
CH1
ERR_LOC_
CH0
0x00 R
0x05E STATUS_REG_2 [7:0] RESERVED CHIP_ERROR ERR_LOC_
GEN2
ERR_
LOC_
GEN1
ERR_
LOC_CH7
ERR_LOC_
CH6
ERR_LOC_
CH5
0x00 R
0x05F STATUS_REG_3 [7:0] RESERVED CHIP_ERROR INIT_
COMPLETE
ERR_
LOC_
SAT_
CH6_7
ERR_
LOC_SAT_
CH4_5
ERR_
LOC_SAT_
CH2_3
ERR_LOC_
SAT_CH0_1
0x00 R
AD7779 Data Sheet
Rev. D | Page 64 of 101
Reg. Name Bits Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset R/W
0x060 SRC_N_MSB [7:0] RESERVED SRC_N_ALL[11:8] 0x00 R/W
0x061 SRC_N_LSB [7:0] SRC_N_ALL[7:0] 0x80 R/W
0x062 SRC_IF_MSB [7:0] SRC_IF_ALL[15:8] 0x00 R/W
0x063 SRC_IF_LSB [7:0] SRC_IF_ALL[7:0] 0x00 R/W
0x064 SRC_UPDATE [7:0] SRC_
LOAD_
SOURCE
RESERVED SRC_
LOAD_
UPDATE
0x00 R/W
Data Sheet AD7779
Rev. D | Page 65 of 101
REGISTER DETAILS
CHANNEL 0 CONFIGURATION REGISTER
Address: 0x000, Reset: 0x00, Name: CH0_CONFIG
A
FE Gain
11: Gain 8.
10: Gain 4.
01: Gain 2.
00: Gain 1.
Channel used as Reference monitor
Channel Meter Mux RX Mode
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] CH0_GAIN (R/W ) [2:0] RESERVED
[5] CH0_REF_MONITOR (R/W)
[3] RESERVED
[4] CH0_RX (R/W)
Table 45. Bit Descriptions for CH0_CONFIG
Bits Bit Name Settings Description Reset Access
[7:6] CH0_GAIN AFE Gain 0x0 R/W
00 Gain 1
01 Gain 2
10 Gain 4
11 Gain 8
5 CH0_REF_MONITOR Channel Used as Reference Monitor 0x0 R/W
4 CH0_RX Channel Meter Mux Rx Mode 0x0 R/W
[3:0] RESERVED Reserved 0x0 R/W
CHANNEL 1 CONFIGURATION REGISTER
Address: 0x001, Reset: 0x00, Name: CH1_CONFIG
A
FE Gain
11: Gain = 8.
10: Gain = 4.
01: Gain = 2.
00: Gain = 1.
Channel used as Reference monitor
Channel Meter Mux RX Mode
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] CH1_GAIN (R/W ) [2:0] RESERVED
[5] CH1_REF_MONITOR (R/W)
[3] RESERVED
[4] CH1_RX (R/W)
Table 46. Bit Descriptions for CH1_CONFIG
Bits Bit Name Settings Description Reset Access
[7:6] CH1_GAIN AFE Gain 0x0 R/W
00 Gain = 1
01 Gain = 2
10 Gain = 4
11 Gain = 8
5 CH1_REF_MONITOR Channel Used as Reference Monitor 0x0 R/W
4 CH1_RX Channel Meter Mux Rx Mode 0x0 R/W
[3:0] RESERVED Reserved 0x0 R/W
AD7779 Data Sheet
Rev. D | Page 66 of 101
CHANNEL 2 CONFIGURATION REGISTER
Address: 0x002, Reset: 0x00, Name: CH2_CONFIG
A
FE Gain
11: Gain 8.
10: Gain 4.
01: Gain 2.
00: Gain 1.
Channel used as Reference monitor
Channel Meter Mux RX Mode
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] CH2_GAIN (R/W ) [2:0] RESERVED
[5] CH2_REF_MONITOR (R/W)
[3] RESERVED
[4] CH2_RX (R/W)
Table 47. Bit Descriptions for CH2_CONFIG
Bits Bit Name Settings Description Reset Access
[7:6] CH2_GAIN AFE Gain 0x0 R/W
00 Gain 1
01 Gain 2
10 Gain 4
11 Gain 8
5 CH2_REF_MONITOR Channel Used as Reference Monitor 0x0 R/W
4 CH2_RX Channel Meter Mux Rx Mode 0x0 R/W
[3:0] RESERVED Reserved 0x0 R/W
CHANNEL 3 CONFIGURATION REGISTER
Address: 0x003, Reset: 0x00, Name: CH3_CONFIG
A
FE Gain
11: Gain 8.
10: Gain 4.
01: Gain 2.
00: Gain 1.
Channel used as Reference monitor
Channel Meter Mux RX Mode
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] CH3_GAIN (R/W ) [2:0] RESERVED
[5] CH3_REF_MONITOR (R/W)
[3] RESERVED
[4] CH3_RX (R/W)
Table 48. Bit Descriptions for CH3_CONFIG
Bits Bit Name Settings Description Reset Access
[7:6] CH3_GAIN AFE Gain 0x0 R/W
00 Gain 1
01 Gain 2
10 Gain 4
11 Gain 8
5 CH3_REF_MONITOR Channel Used as Reference Monitor 0x0 R/W
4 CH3_RX Channel Meter Mux Rx Mode 0x0 R/W
[3:0] RESERVED Reserved 0x0 R/W
Data Sheet AD7779
Rev. D | Page 67 of 101
CHANNEL 4 CONFIGURATION REGISTER
Address: 0x004, Reset: 0x00, Name: CH4_CONFIG
A
FE Gain
11: Gain 8.
10: Gain 4.
01: Gain 2.
00: Gain 1.
Channel used as Reference monitor
Channel Meter Mux RX Mode
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] CH4_GAIN (R/W ) [2:0] RESERVED
[5] CH4_REF_MONITOR (R/W)
[3] RESERVED
[4] CH4_RX (R/W)
Table 49. Bit Descriptions for CH4_CONFIG
Bits Bit Name Settings Description Reset Access
[7:6] CH4_GAIN AFE Gain 0x0 R/W
00 Gain 1
01 Gain 2
10 Gain 4
11 Gain 8
5 CH4_REF_MONITOR Channel Used as Reference Monitor 0x0 R/W
4 CH4_RX Channel Meter Mux Rx Mode 0x0 R/W
[3:0] RESERVED Reserved 0x0 R/W
CHANNEL 5 CONFIGURATION REGISTER
Address: 0x005, Reset: 0x00, Name: CH5_CONFIG
A
FE Gain
11: Gain 8.
10: Gain 4.
01: Gain 2.
00: Gain 1.
Channel used as Reference monitor
Channel Meter Mux RX Mode
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] CH5_GAIN (R/W ) [2:0] RESERVED
[5] CH5_REF_MONITOR (R/W)
[3] RESERVED
[4] CH5_RX (R/W)
Table 50. Bit Descriptions for CH5_CONFIG
Bits Bit Name Settings Description Reset Access
[7:6] CH5_GAIN AFE Gain 0x0 R/W
00 Gain 1
01 Gain 2
10 Gain 4
11 Gain 8
5 CH5_REF_MONITOR Channel Used as Reference Monitor 0x0 R/W
4 CH5_RX Channel Meter Mux Rx Mode 0x0 R/W
[3:0] RESERVED Reserved 0x0 R/W
AD7779 Data Sheet
Rev. D | Page 68 of 101
CHANNEL 6 CONFIGURATION REGISTER
Address: 0x006, Reset: 0x00, Name: CH6_CONFIG
A
FE Gain
11: Gain 8.
10: Gain 4.
01: Gain 2.
00: Gain 1.
Channel used as Reference monitor
Channel Meter Mux RX Mode
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] CH6_GAIN (R/W ) [2:0] RESERVED
[5] CH6_REF_MONITOR (R/W)
[3] RESERVED
[4] CH6_RX (R/W)
Table 51. Bit Descriptions for CH6_CONFIG
Bits Bit Name Settings Description Reset Access
[7:6] CH6_GAIN AFE Gain 0x0 R/W
00 Gain 1
01 Gain 2
10 Gain 4
11 Gain 8
5 CH6_REF_MONITOR Channel Used as Reference Monitor 0x0 R/W
4 CH6_RX Channel Meter Mux Rx Mode 0x0 R/W
[3:0] RESERVED Reserved 0x0 R/W
CHANNEL 7 CONFIGURATION REGISTER
Address: 0x007, Reset: 0x00, Name: CH7_CONFIG
A
FE Gain
11: Gain 8.
10: Gain 4.
01: Gain 2.
00: Gain 1.
Channel used as Reference monitor
Channel Meter Mux RX Mode
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] CH7_GAIN (R/W ) [2:0] RESERVED
[5] CH7_REF_MONITOR (R/W)
[3] RESERVED
[4] CH7_RX (R/W)
Table 52. Bit Descriptions for CH7_CONFIG
Bits Bit Name Settings Description Reset Access
[7:6] CH7_GAIN AFE Gain 0x0 R/W
00 Gain 1
01 Gain 2
10 Gain 4
11 Gain 8
5 CH7_REF_MONITOR Channel Used as Reference Monitor 0x0 R/W
4 CH7_RX Channel Meter Mux Rx Mode 0x0 R/W
[3:0] RESERVED Reserved 0x0 R/W
Data Sheet AD7779
Rev. D | Page 69 of 101
DISABLE CLOCKS TO ADC CHANNEL REGISTER
Address: 0x008, Reset: 0x00, Name: CH_DISABLE
Channel 7 Disable Channel 0 Disable
Channel 6 Disable Channel 1 Disable
Channel 5 Disable Channel 2 Disable
Channel 4 Disable Channel 3 Disable
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7] CH7_DISABLE (R/W ) [0] CH0_DISABLE (R/W )
[6] CH6_DISABLE (R/W ) [1] CH1_DISABLE (R/W )
[5] CH5_DISABLE (R/W ) [2] CH2_DISABLE (R/W )
[4] CH4_DISABLE (R/W ) [3] CH3_DISABLE (R/W )
Table 53. Bit descriptions for CH_DISABLE
Bits Bit Name Settings Description Reset Access
7 CH7_DISABLE Channel 7 Disable 0x0 R/W
6 CH6_DISABLE Channel 6 Disable 0x0 R/W
5 CH5_DISABLE Channel 5 Disable 0x0 R/W
4 CH4_DISABLE Channel 4 Disable 0x0 R/W
3 CH3_DISABLE Channel 3 Disable 0x0 R/W
2 CH2_DISABLE Channel 2 Disable 0x0 R/W
1 CH1_DISABLE Channel 1 Disable 0x0 R/W
0 CH0_DISABLE Channel 0 Disable 0x0 R/W
CHANNEL 0 SYNC OFFSET REGISTER
Address: 0x009, Reset: 0x00, Name: CH0_SYNC_OFFSET
Channel Sync Offset
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH0_SYNC_OFFSET (R/W)
Table 54. Bit Descriptions for CH0_SYNC_OFFSET
Bits Bit Name Settings Description Reset Access
[7:0] CH0_SYNC_OFFSET Channel Sync Offset 0x0 R/W
CHANNEL 1 SYNC OFFSET REGISTER
Address: 0x00A, Reset: 0x00, Name: CH1_SYNC_OFFSET
Channel Sync Offset
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH1_SYNC_OFFSET (R/W)
Table 55. Bit Descriptions for CH1_SYNC_OFFSET
Bits Bit Name Settings Description Reset Access
[7:0] CH1_SYNC_OFFSET Channel Sync Offset 0x0 R/W
AD7779 Data Sheet
Rev. D | Page 70 of 101
CHANNEL 2 SYNC OFFSET REGISTER
Address: 0x00B, Reset: 0x00, Name: CH2_SYNC_OFFSET
Channel Sync Offset
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH2_SYNC_OFFSET (R/W)
Table 56. Bit Descriptions for CH2_SYNC_OFFSET
Bits Bit Name Settings Description Reset Access
[7:0] CH2_SYNC_OFFSET Channel Sync Offset 0x0 R/W
CHANNEL 3 SYNC OFFSET REGISTER
Address: 0x00C, Reset: 0x00, Name: CH3_SYNC_OFFSET
Channel Sync Offset
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH3_SYNC_OFFSET (R/W)
Table 57. Bit Descriptions for CH3_SYNC_OFFSET
Bits Bit Name Settings Description Reset Access
[7:0] CH3_SYNC_OFFSET Channel Sync Offset 0x0 R/W
CHANNEL 4 SYNC OFFSET REGISTER
Address: 0x00D, Reset: 0x00, Name: CH4_SYNC_OFFSET
Channel Sync Offset
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH4_SYNC_OFFSET (R/W)
Table 58. Bit Descriptions for CH4_SYNC_OFFSET
Bits Bit Name Settings Description Reset Access
[7:0] CH4_SYNC_OFFSET Channel Sync Offset 0x0 R/W
CHANNEL 5 SYNC OFFSET REGISTER
Address: 0x00E, Reset: 0x00, Name: CH5_SYNC_OFFSET
Channel Sync Offset
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH5_SYNC_OFFSET (R/W)
Table 59. Bit Descriptions for CH5_SYNC_OFFSET
Bits Bit Name Settings Description Reset Access
[7:0] CH5_SYNC_OFFSET Channel Sync Offset 0x0 R/W
Data Sheet AD7779
Rev. D | Page 71 of 101
CHANNEL 6 SYNC OFFSET REGISTER
Address: 0x00F, Reset: 0x00, Name: CH6_SYNC_OFFSET
Channel Sync Offset
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH6_SYNC_OFFSET (R/W)
Table 60. Bit Descriptions for CH6_SYNC_OFFSET
Bits Bit Name Settings Description Reset Access
[7:0] CH6_SYNC_OFFSET Channel Sync Offset 0x0 R/W
CHANNEL 7 SYNC OFFSET REGISTER
Address: 0x010, Reset: 0x00, Name: CH7_SYNC_OFFSET
Channel Sync Offset
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH7_SYNC_OFFSET (R/W)
Table 61. Bit Descriptions for CH7_SYNC_OFFSET
Bits Bit Name Settings Description Reset Access
[7:0] CH7_SYNC_OFFSET Channel Sync Offset 0x0 R/W
GENERAL USER CONFIGURATION 1 REGISTER
Address: 0x011, Reset: 0x24, Name: GENERAL_USER_CONFIG_1
If all SD channels are disabled, setting
this bit high allows DCLK to continue
toggling
Soft Reset
11: 1st write.
10: 2nd write.
01: No Effect.
00: No Effect.
Power Mode
1: High Resolution.
0: Low Power (1/4)
PowerDown signal for internal oscillator
.
Active Low
PowerDown VCM Buffer. Active Low
PowerDown SA. Active Low
PowerDown Internal Reference Output
Buffer. Active Low
0
0
1
0
2
1
3
0
4
0
5
1
6
0
7
0
[7] ALL_CH_DIS__MCLK_EN (R/W) [1:0] SOFT_RESET (R/W)
[6] POWERMODE (R/W)
[2] PDB_RC_OSC (R/W)
[5] PDB_VCM (R/W)
[3] PDB_SAR (R/W)
[4] PDB_REFOUT_BUF (R/W)
Table 62. Bit Descriptions for GENERAL_USER_CONFIG_1
Bits Bit Name Settings Description Reset Access
7 ALL_CH_DIS_MCLK_EN If all Σ-Δ channels are disabled, setting this bit high allows DCLK to
continue toggling.
0x0 R/W
6 POWERMODE Power Mode. 0x0 R/W
0 Low power (1/4).
1 High resolution.
5 PDB_VCM Power Down VCM Buffer. Active low. 0x1 R/W
4 PDB_REFOUT_BUF Power Down Internal Reference Output Buffer. Active low. 0x0 R/W
3 PDB_SAR Power Down SAR. Active low. 0x0 R/W
2 PDB_RC_OSC Power Down Signal for Internal Oscillator. Active low. 0x1 R/W
AD7779 Data Sheet
Rev. D | Page 72 of 101
Bits Bit Name Settings Description Reset Access
[1:0] SOFT_RESET Soft Reset 0x0 R/W
00 No effect
01 No effect
10 2nd write
11 1st write
GENERAL USER CONFIGURATION 2 REGISTER
Address: 0x012, Reset: 0x09, Name: GENERAL_USER_CONFIG_2
SYNC pulse generated thru SPI
1:
STARTb pin in the control module.
This bit is ANDed with the value on
0:
generate a pulse in /SYNC_IN pin.
on STARTb pin in the control module
,
This signal is ANDed with the value
DOUT Drive Strength
11: Extra Strong.
10: Weak.
01: Strong.
00: Nominal.
Sets SPI interface to read back SAR
res ult on SDO
SDO Drive Strength
11: Extra Strong.
10: Weak.
01: Strong.
00: Nominal.
0
1
1
0
2
0
3
1
4
0
5
0
6
0
7
0
[7] RESERVED [0] SPI_SYNC (R/W)
[6] RESERVED
[2:1] DOUT_DRIVE_STR (R/W )
[5] SAR_DIAG_MODE_EN (R/W )
[4:3] SDO_DRIVE_STR (R/W)
Table 63. Bit Descriptions for GENERAL_USER_CONFIG_2
Bits Bit Name Settings Description Reset Access
[7:6] RESERVED Reserved. 0x0 R/W
5 SAR_DIAG_MODE_EN Sets SPI Interface to Read Back SAR Result on SDO. 0x0 R/W
[4:3] SDO_DRIVE_STR SDO Drive Strength. 0x1 R/W
00 Nominal.
01 Strong.
10 Weak.
11 Extra strong.
[2:1] DOUT_DRIVE_STR DOUTx Drive Strength. 0x0 R/W
00 Nominal.
01 Strong.
10 Weak.
11 Extra strong.
0 SPI_SYNC SYNC Pulse Generated Through SPI. 0x1 R/W
0
This signal is AND’ed with the value on the START pin in the control module
and generates a pulse in the SYNC_IN pin.
1 This bit is AND’ed with the value on START pin in the control module.
Data Sheet AD7779
Rev. D | Page 73 of 101
GENERAL USER CONFIGURATION 3 REGISTER
Address: 0x013, Reset: 0x80, Name: GENERAL_USER_CONFIG_3
Disable deglitching of CONVST pin
11: No deglitch circuit.
10: CONVST_SAR Deglitch 1.5 MCLK.
01: Reserved.
00: Reserved.
Disables the clock qualifier check
if the user requires to use an MCLK
signal < 265kHz.
Enable to SPI slave mode to read
back ADC on SDO
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
1
[7:6] CONVST_DEGLITCH_DIS (R/W) [0] CLK_QUAL_DIS (R/W)
[5] RESERVED
[1] RESERVED
[4] SPI_SLAVE_MODE_EN (R/W)
[3:2] RESERVED
Table 64. Bit descriptions for GENERAL_USER_CONFIG_3
Bits Bit Name Settings Description Reset Access
[7:6] CONVST_DEGLITCH_DIS Disable deglitching of CONVST_SAR pin 0x2 R/W
00 Reserved.
01 Reserved.
10 CONVST_SAR Deglitch 1.5 MCLK.
11 No deglitch circuit.
5 RESERVED Reserved. 0x0 R/W
4 SPI_SLAVE_MODE_EN Enable to SPI slave mode to read back ADC on SDO 0x0 R/W
[3:2] RESERVED Reserved. 0x0 R/W
1 RESERVED Reserved. 0x0 R/W
0 CLK_QUAL_DIS Disables the clock qualifier check if the user requires to use an MCLK
signal <265 kHz.
0x0 R/W
DATA OUTPUT FORMAT REGISTER
Address: 0x014, Reset: 0x20, Name: DOUT_FORMAT
Data out form at
11: 1 DOUT Lines.
10: 1 DOUT Lines.
01: 2 DOUT Lines.
00: 4 DOUT Lines.
Dout header format
1: CRC Header.
0: Status Header.
Divide MCLK
111: Divide by 128.
110: Divide by 64.
101: Divide by 32.
100: Divide by 16.
011: Divide by 8.
010: Divide by 4.
001: Divide by 2.
000: Divide by 1.
0
0
1
0
2
0
3
0
4
0
5
1
6
0
7
0
[7:6] DOUT_FORMAT (R/W) [0] RESERVED
[5] DOUT_HEADER_FORMAT (R/W )
[3:1] DCLK_CLK_DIV (R/W)
[4] RESERVED
Table 65. Bit Descriptions for DOUT_FORMAT
Bits Bit Name Settings Description Reset Access
[7:6] DOUT_FORMAT Data Out Format. 0x0 R/W
00 4 DOUT lines
01 2 DOUT lines
10 1 DOUT lines
11 1 DOUT lines
AD7779 Data Sheet
Rev. D | Page 74 of 101
Bits Bit Name Settings Description Reset Access
5 DOUT_HEADER_FORMAT DOUT Header Format 0x1 R/W
0 Status header
1 CRC header
4 RESERVED Reserved. 0x0 R/W
[3:1] DCLK_CLK_DIV Divide MCLK 0x0 R/W
000 Divide by 1
001 Divide by 2
010 Divide by 4
011 Divide by 8
100 Divide by 16
101 Divide by 32
110 Divide by 64
111 Divide by 128
0 RESERVED Reserved. 0x0 R/W
MAIN ADC METER AND REFERENCE MUX CONTROL REGISTER
Address: 0x015, Reset: 0x00, Name: ADC_MUX_CONFIG
SD ADC Reference Mux
11: External Reference REFx-/REFx+.
10: External Supply AVDD1x/AVSSx.
01: Internal Reference.
00: External Reference REFx+/REFx-
SD ADC Meter Mux
1001: External Reference REFx+/REFx+.
1000: Internal Reference +/+.
0111: Internal Reference -/+.
0110: Internal Reference +/-
0101: External Reference REFx-/REFx-
0100: External Reference REFx-/REFx+.
0011: External Reference REFx+/REFx-
0010: 280mV.
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] REF_MUX_CTRL (R/W) [1:0] RESERVED
[5:2] MTR_MUX_CTRL (R/W)
Table 66. Bit Descriptions for ADC_MUX_CONFIG
Bits Bit Name Settings Description Reset Access
[7:6] REF_MUX_CTRL SD ADC Reference Mux 0x0 R/W
00 External reference REFx+/REFx−
01 Internal reference.
10 External supply AVDD1x/AVSSx.
11 External reference REFx−/REFx+.
[5:2] MTR_MUX_CTRL SD ADC Meter Mux 0x0 R/W
0010 280 mV
0011 External reference REFx+/REFx−
0100 External reference REFx−/REFx+
0101 External reference REFx−/REFx−
0110 Internal reference +/−
Data Sheet AD7779
Rev. D | Page 75 of 101
Bits Bit Name Settings Description Reset Access
0111 Internal reference −/+
1000 Internal reference +/+
1001 External reference REFx+/REFx+
[1:0] RESERVED Reserved. 0x0 R/W
GLOBAL DIAGNOSTICS MUX REGISTER
Address: 0x016, Reset: 0x00, Name: GLOBAL_MUX_CONFIG
Global SAR diagnos tics m ux control
10101: AVSSx AVDD4. Attenuated.
10100: REF2+ AVSSx.
10011: REF1+ AVSSx.
...
00010: REF1P REF1N.
00001: DVBE AVSSx.
00000: AUXAin+ AUXAin-
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:3] GLOBAL_MUX_CTRL (R/W) [2:0] RESERVED
Table 67. Bit Descriptions for GLOBAL_MUX_CONFIG
Bits Bit Name Settings Description Reset Access
[7:3] GLOBAL_MUX_CTRL Global SAR Diagnostics Mux Control. 0x0 R/W
00000 AUXAIN+/AUXAIN−.
00001 DVBE/AVSSx.
00010 REF1+/REF1−.
00011 REF2+/REF2−.
00100 REF_OUT/AVSSx.
00101 VCM/AVSSx.
00110 AREG1CAP/AVSSx.
00111 AREG2CAP/AVSSx.
01000 DREGCAP/DGND.
01001 AVDD1A/AVSSx.
01010 AVDD1B/AVSSx.
01011 AVDD2A/AVSSx.
01100 AVDD2B/AVSSx.
01101 IOVDD/DGND.
01110 AVDD4/AVSSx.
01111 DGND/AVSS1A.
10000 DGND/AVSS1B.
10001 DGND/AVSSx.
10010 AVDD4/AVSSx.
10011 REF1+/AVSSx.
10100 REF2+/AVSSx.
10101 AVDD4/AVSSx. Attenuated.
[2:0] RESERVED Reserved. 0x0 R/W
AD7779 Data Sheet
Rev. D | Page 76 of 101
GPIO CONFIGURATION REGISTER
Address: 0x017, Reset: 0x00, Name: GPIO_CONFIG
GPIO input/output
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:3] RESERVED [2:0] GPIO_OP_EN (R/W)
Table 68. Bit Descriptions for GPIO_CONFIG
Bits Bit Name Settings Description Reset Access
[7:3] RESERVED Reserved. 0x0 R/W
[2:0] GPIO_OP_EN GPIO Input/Output 0x0 R/W
GPIO DATA REGISTER
Address: 0x018, Reset: 0x00, Name: GPIO_DATA
Value s ent to GPIO pins
Data read from GPIO pins
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] RESERVED [2:0] GPIO_WRITE_DATA (R/W
)
[5:3] GPIO_READ_DATA (R)
Table 69. Bit Descriptions for GPIO_DATA
Bits Bit Name Settings Description Reset Access
[7:6] RESERVED Reserved. 0x0 R/W
[5:3] GPIO_READ_DATA Data Read from the GPIO Pins 0x0 R
[2:0] GPIO_WRITE_DATA Value Sent to the GPIO Pins 0x0 R/W
BUFFER CONFIGURATION 1 REGISTER
Address: 0x019, Reset: 0x38, Name: BUFFER_CONFIG_1
Reference buffer positive enable Reference buffer negative enable
0
0
1
0
2
0
3
1
4
1
5
0
6
0
7
0
[7] RESERVED [0] RESERVED
[6] RESERVED [1] RESERVED
[5] RESERVED [2] RESERVED
[4] REF_BUF_POS_EN (R/W) [3] REF_BUF_NEG_EN (R/W)
Table 70. Bit Descriptions for BUFFER_CONFIG_1
Bits Bit Name Settings Description Reset Access
[7:5] RESERVED Reserved 0x0 R/W
4 REF_BUF_POS_EN Reference Buffer Positive Enable 0x1 R/W
3 REF_BUF_NEG_EN Reference Buffer Negative Enable 0x1 R/W
[2:0] RESERVED Reserved 0x0 R/W
Data Sheet AD7779
Rev. D | Page 77 of 101
BUFFER CONFIGURATION 2 REGISTER
Address: 0x01A, Reset: 0xC0, Name: BUFFER_CONFIG_2
Reference buffer positive precharge
enable
DRegCap Overdrive Enable.
Reference buffer negative precharge
enable
AReg2Cap Overdrive Enable
AReg1Cap Overdrive Enable
0
0
1
0
2
0
3
0
4
0
5
0
6
1
7
1
[7] REFBUFP_PREQ (R/W) [0] PDB_DLDO_OVRDRV (R/W)
[6] REFBUFN_PREQ (R/W)
[1] PDB_ALDO2_OVRDRV (R/W)
[5:3] RESERVED
[2] PDB_ALDO1_OVRDRV (R/W)
Table 71. Bit Descriptions for BUFFER_CONFIG_2
Bits Bit Name Settings Description Reset Access
7 REFBUFP_PREQ Reference Buffer Positive Precharge Enable 0x1 R/W
6 REFBUFN_PREQ Reference Buffer Negative Precharge Enable 0x1 R/W
[5:3] RESERVED Reserved. 0x0 R/W
2 PDB_ALDO1_OVRDRV AREG1CAP Overdrive Enable 0x0 R/W
1 PDB_ALDO2_OVRDRV AREG2CAP Overdrive Enable 0x0 R/W
0 PDB_DLDO_OVRDRV DREGCAP Overdrive Enable 0x0 R/W
CHANNEL 0 OFFSET UPPER BYTE REGISTER
Address: 0x01C, Reset: 0x00, Name: CH0_OFFSET_UPPER_BYTE
Combined Offs et regis ter Channel 0
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH0_OFFSET_ALL[23:16] (R/W)
Table 72. Bit Descriptions for CH0_OFFSET_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH0_OFFSET_ALL[23:16] Combined Offset Register Channel 0 0x0 R/W
CHANNEL 0 OFFSET MIDDLE BYTE REGISTER
Address: 0x01D, Reset: 0x00, Name: CH0_OFFSET_MID_BYTE
Com bined Offset register Channel 0
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH0_OFFSET_ALL[15:8] (R/W)
Table 73. Bit Descriptions for CH0_OFFSET_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH0_OFFSET_ALL[15:8] Combined Offset Register Channel 0 0x0 R/W
AD7779 Data Sheet
Rev. D | Page 78 of 101
CHANNEL 0 OFFSET LOWER BYTE REGISTER
Address: 0x01E, Reset: 0x00, Name: CH0_OFFSET_LOWER_BYTE
Combined Offset register Channel 0
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH0_OFFSET_ALL[7:0] (R/W)
Table 74. Bit Descriptions for CH0_OFFSET_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH0_OFFSET_ALL[7:0] Combined Offset Register Channel 0 0x0 R/W
CHANNEL 0 GAIN UPPER BYTE REGISTER
Address: 0x01F, Reset: 0x00, Name: CH0_GAIN_UPPER_BYTE
Combined gain register Channel 0
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH0_GAIN_ALL[23:16] (R/W)
Table 75. Bit Descriptions for CH0_GAIN_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH0_GAIN_ALL[23:16] Combined Gain Register Channel 0 0x0 R/W
CHANNEL 0 GAIN MIDDLE BYTE REGISTER
Address: 0x020, Reset: 0x00, Name: CH0_GAIN_MID_BYTE
Combined gain register Channel 0
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH0_GAIN_ALL[15:8] (R/W)
Table 76. Bit Descriptions for CH0_GAIN_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH0_GAIN_ALL[15:8] Combined Gain Register Channel 0 0x0 R/W
CHANNEL 0 GAIN LOWER BYTE REGISTER
Address: 0x021, Reset: 0x00, Name: CH0_GAIN_LOWER_BYTE
Combined gain register Channel 0
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH0_GAIN_ALL[7:0] (R/W)
Table 77. Bit Descriptions for CH0_GAIN_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH0_GAIN_ALL[7:0] Combined Gain Register Channel 0 0x0 R/W
Data Sheet AD7779
Rev. D | Page 79 of 101
CHANNEL 1 OFFSET UPPER BYTE REGISTER
Address: 0x022, Reset: 0x00, Name: CH1_OFFSET_UPPER_BYTE
Combined offset register Channel 1
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH1_OFFSET_ALL[23:16] (R/W)
Table 78. Bit Descriptions for CH1_OFFSET_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH1_OFFSET_ALL[23:16] Combined Offset Register Channel 1 0x0 R/W
CHANNEL 1 OFFSET MIDDLE BYTE REGISTER
Address: 0x023, Reset: 0x00, Name: CH1_OFFSET_MID_BYTE
Com bined offs et register Channel 1
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH1_OFFSET_ALL[15:8] (R/W)
Table 79. Bit Descriptions for CH1_OFFSET_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH1_OFFSET_ALL[15:8] Combined Offset Register Channel 1 0x0 R/W
CHANNEL 1 OFFSET LOWER BYTE REGISTER
Address: 0x024, Reset: 0x00, Name: CH1_OFFSET_LOWER_BYTE
Combined offset register Channel 1
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH1_OFFSET_ALL[7:0] (R/W)
Table 80. Bit Descriptions for CH1_OFFSET_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH1_OFFSET_ALL[7:0] Combined Offset Register Channel 1 0x0 R/W
CHANNEL 1 GAIN UPPER BYTE REGISTER
Address: 0x025, Reset: 0x00, Name: CH1_GAIN_UPPER_BYTE
Combined gain register Channel 1
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH1_GAIN_ALL[23:16] (R/W)
Table 81. Bit Descriptions for CH1_GAIN_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH1_GAIN_ALL[23:16] Combined Gain Register Channel 1 0x0 R/W
AD7779 Data Sheet
Rev. D | Page 80 of 101
CHANNEL 1 GAIN MIDDLE BYTE REGISTER
Address: 0x026, Reset: 0x00, Name: CH1_GAIN_MID_BYTE
Combined gain register Channel 1
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH1_GAIN_ALL[15:8] (R/W)
Table 82. Bit Descriptions for CH1_GAIN_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH1_GAIN_ALL[15:8] Combined Gain Register Channel 1 0x0 R/W
CHANNEL 1 GAIN LOWER BYTE REGISTER
Address: 0x027, Reset: 0x00, Name: CH1_GAIN_LOWER_BYTE
Combined gain register Channel 1
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH1_GAIN_ALL[7:0] (R/W)
Table 83. Bit Descriptions for CH1_GAIN_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH1_GAIN_ALL[7:0] Combined Gain Register Channel 1 0x0 R/W
CHANNEL 2 OFFSET UPPER BYTE REGISTER
Address: 0x028, Reset: 0x00, Name: CH2_OFFSET_UPPER_BYTE
Combined offset register Channel 2
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH2_OFFSET_ALL[23:16] (R/W)
Table 84. Bit Descriptions for CH2_OFFSET_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH2_OFFSET_ALL[23:16] Combined Offset Register Channel 2 0x0 R/W
CHANNEL 2 OFFSET MIDDLE BYTE REGISTER
Address: 0x029, Reset: 0x00, Name: CH2_OFFSET_MID_BYTE
Com bined offs et register Channel 2
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH2_OFFSET_ALL[15:8] (R/W)
Table 85. Bit Descriptions for CH2_OFFSET_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH2_OFFSET_ALL[15:8] Combined Offset Register Channel 2 0x0 R/W
Data Sheet AD7779
Rev. D | Page 81 of 101
CHANNEL 2 OFFSET LOWER BYTE REGISTER
Address: 0x02A, Reset: 0x00, Name: CH2_OFFSET_LOWER_BYTE
Combined offset register Channel 2
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH2_OFFSET_ALL[7:0] (R/W)
Table 86. Bit Descriptions for CH2_OFFSET_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH2_OFFSET_ALL[7:0] Combined Offset Register Channel 2 0x0 R/W
CHANNEL 2 GAIN UPPER BYTE REGISTER
Address: 0x02B, Reset: 0x00, Name: CH2_GAIN_UPPER_BYTE
Combined gain register Channel 2
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH2_GAIN_ALL[23:16] (R/W)
Table 87. Bit Descriptions for CH2_GAIN_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH2_GAIN_ALL[23:16] Combined Gain Register Channel 2 0x0 R/W
CHANNEL 2 GAIN MIDDLE BYTE REGISTER
Address: 0x02C, Reset: 0x00, Name: CH2_GAIN_MID_BYTE
Combined gain register Channel 2
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH2_GAIN_ALL[15:8] (R/W)
Table 88. Bit Descriptions for CH2_GAIN_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH2_GAIN_ALL[15:8] Combined Gain Register Channel 2 0x0 R/W
CHANNEL 2 GAIN LOWER BYTE REGISTER
Address: 0x02D, Reset: 0x00, Name: CH2_GAIN_LOWER_BYTE
Combined gain register Channel 2
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH2_GAIN_ALL[7:0] (R/W)
Table 89. Bit Descriptions for CH2_GAIN_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH2_GAIN_ALL[7:0] Combined Gain Register Channel 2 0x0 R/W
AD7779 Data Sheet
Rev. D | Page 82 of 101
CHANNEL 3 OFFSET UPPER BYTE REGISTER
Address: 0x02E, Reset: 0x00, Name: CH3_OFFSET_UPPER_BYTE
Combined offset register Channel 3
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH3_OFFSET_ALL[23:16] (R/W)
Table 90. Bit descriptions for CH3_OFFSET_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH3_OFFSET_ALL[23:16] Combined Offset Register Channel 3 0x0 R/W
CHANNEL 3 OFFSET MIDDLE BYTE REGISTER
Address: 0x02F, Reset: 0x00, Name: CH3_OFFSET_MID_BYTE
Com bined offs et register Channel 3
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH3_OFFSET_ALL[15:8] (R/W)
Table 91. Bit Descriptions for CH3_OFFSET_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH3_OFFSET_ALL[15:8] Combined Offset Register Channel 3 0x0 R/W
CHANNEL 3 OFFSET LOWER BYTE REGISTER
Address: 0x030, Reset: 0x00, Name: CH3_OFFSET_LOWER_BYTE
Combined offset register Channel 3
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH3_OFFSET_ALL[7:0] (R/W)
Table 92. Bit Descriptions for CH3_OFFSET_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH3_OFFSET_ALL[7:0] Combined Offset Register Channel 3 0x0 R/W
CHANNEL 3 GAIN UPPER BYTE REGISTER
Address: 0x031, Reset: 0x00, Name: CH3_GAIN_UPPER_BYTE
Combined gain register Channel 3
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH3_GAIN_ALL[23:16] (R/W)
Table 93. Bit Descriptions for CH3_GAIN_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH3_GAIN_ALL[23:16] Combined Gain Register Channel 3 0x0 R/W
Data Sheet AD7779
Rev. D | Page 83 of 101
CHANNEL 3 GAIN MIDDLE BYTE REGISTER
Address: 0x032, Reset: 0x00, Name: CH3_GAIN_MID_BYTE
Combined gain register Channel 3
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH3_GAIN_ALL[15:8] (R/W)
Table 94. Bit Descriptions for CH3_GAIN_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH3_GAIN_ALL[15:8] Combined Gain Register Channel 3 0x0 R/W
CHANNEL 3 GAIN LOWER BYTE REGISTER
Address: 0x033, Reset: 0x00, Name: CH3_GAIN_LOWER_BYTE
Combined gain register Channel 3
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH3_GAIN_ALL[7:0] (R/W)
Table 95. Bit Descriptions for CH3_GAIN_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH3_GAIN_ALL[7:0] Combined Gain Register Channel 3 0x0 R/W
CHANNEL 4 OFFSET UPPER BYTE REGISTER
Address: 0x034, Reset: 0x00, Name: CH4_OFFSET_UPPER_BYTE
Combined offset register Channel 4
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH4_OFFSET_ALL[23:16] (R/W)
Table 96. Bit Descriptions for CH4_OFFSET_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH4_OFFSET_ALL[23:16] Combined Offset Register Channel 4 0x0 R/W
CHANNEL 4 OFFSET MIDDLE BYTE REGISTER
Address: 0x035, Reset: 0x00, Name: CH4_OFFSET_MID_BYTE
Com bined offs et register Channel 4
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH4_OFFSET_ALL[15:8] (R/W)
Table 97. Bit Descriptions for CH4_OFFSET_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH4_OFFSET_ALL[15:8] Combined Offset Register Channel 4 0x0 R/W
AD7779 Data Sheet
Rev. D | Page 84 of 101
CHANNEL 4 OFFSET LOWER BYTE REGISTER
Address: 0x036, Reset: 0x00, Name: CH4_OFFSET_LOWER_BYTE
Combined offset register Channel 4
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH4_OFFSET_ALL[7:0] (R/W)
Table 98. Bit Descriptions for CH4_OFFSET_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH4_OFFSET_ALL[7:0] Combined Offset Register Channel 4 0x0 R/W
CHANNEL 4 GAIN UPPER BYTE REGISTER
Address: 0x037, Reset: 0x00, Name: CH4_GAIN_UPPER_BYTE
Combined gain register Channel 4
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH4_GAIN_ALL[23:16] (R/W)
Table 99. Bit Descriptions for CH4_GAIN_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH4_GAIN_ALL[23:16] Combined Gain Register Channel 4 0x0 R/W
CHANNEL 4 GAIN MIDDLE BYTE REGISTER
Address: 0x038, Reset: 0x00, Name: CH4_GAIN_MID_BYTE
Combined gain register Channel 4
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH4_GAIN_ALL[15:8] (R/W)
Table 100. Bit Descriptions for CH4_GAIN_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH4_GAIN_ALL[15:8] Combined Gain Register Channel 4 0x0 R/W
CHANNEL 4 GAIN LOWER BYTE REGISTER
Address: 0x039, Reset: 0x00, Name: CH4_GAIN_LOWER_BYTE
Combined gain register Channel 4
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH4_GAIN_ALL[7:0] (R/W)
Table 101. Bit Descriptions for CH4_GAIN_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH4_GAIN_ALL[7:0] Combined Gain Register Channel 4 0x0 R/W
Data Sheet AD7779
Rev. D | Page 85 of 101
CHANNEL 5 OFFSET UPPER BYTE REGISTER
Address: 0x03A, Reset: 0x00, Name: CH5_OFFSET_UPPER_BYTE
Combined offset register Channel 5
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH5_OFFSET_ALL[23:16] (R/W)
Table 102. Bit Descriptions for CH5_OFFSET_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH5_OFFSET_ALL[23:16] Combined Offset Register Channel 5 0x0 R/W
CHANNEL 5 OFFSET MIDDLE BYTE REGISTER
Address: 0x03B, Reset: 0x00, Name: CH5_OFFSET_MID_BYTE
Com bined offs et register Channel 5
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH5_OFFSET_ALL[15:8] (R/W)
Table 103. Bit Descriptions for CH5_OFFSET_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH5_OFFSET_ALL[15:8] Combined Offset Register Channel 5 0x0 R/W
CHANNEL 5 OFFSET LOWER BYTE REGISTER
Address: 0x03C, Reset: 0x00, Name: CH5_OFFSET_LOWER_BYTE
Combined offset register Channel 5
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH5_OFFSET_ALL[7:0] (R/W)
Table 104. Bit Descriptions for CH5_OFFSET_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH5_OFFSET_ALL[7:0] Combined Offset Register Channel 5 0x0 R/W
CHANNEL 5 GAIN UPPER BYTE REGISTER
Address: 0x03D, Reset: 0x00, Name: CH5_GAIN_UPPER_BYTE
Combined gain register Channel 5
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH5_GAIN_ALL[23:16] (R/W)
Table 105. Bit Descriptions for CH5_GAIN_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH5_GAIN_ALL[23:16] Combined Gain Register Channel 5 0x0 R/W
AD7779 Data Sheet
Rev. D | Page 86 of 101
CHANNEL 5 GAIN MIDDLE BYTE REGISTER
Address: 0x03E, Reset: 0x00, Name: CH5_GAIN_MID_BYTE
Combined gain register Channel 5
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH5_GAIN_ALL[15:8] (R/W)
Table 106. Bit Descriptions for CH5_GAIN_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH5_GAIN_ALL[15:8] Combined Gain Register Channel 5 0x0 R/W
CHANNEL 5 GAIN LOWER BYTE REGISTER
Address: 0x03F, Reset: 0x00, Name: CH5_GAIN_LOWER_BYTE
Combined gain register Channel 5
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH5_GAIN_ALL[7:0] (R/W)
Table 107. Bit Descriptions for CH5_GAIN_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH5_GAIN_ALL[7:0] Combined Gain Register Channel 5 0x0 R/W
CHANNEL 6 OFFSET UPPER BYTE REGISTER
Address: 0x040, Reset: 0x00, Name: CH6_OFFSET_UPPER_BYTE
Combined offset register Channel 6
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH6_OFFSET_ALL[23:16] (R/W)
Table 108. Bit Descriptions for CH6_OFFSET_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH6_OFFSET_ALL[23:16] Combined Offset Register Channel 6 0x0 R/W
CHANNEL 6 OFFSET MIDDLE BYTE REGISTER
Address: 0x041, Reset: 0x00, Name: CH6_OFFSET_MID_BYTE
Com bined offs et register Channel 6
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH6_OFFSET_ALL[15:8] (R/W)
Table 109. Bit Descriptions for CH6_OFFSET_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH6_OFFSET_ALL[15:8] Combined Offset Register Channel 6 0x0 R/W
Data Sheet AD7779
Rev. D | Page 87 of 101
CHANNEL 6 OFFSET LOWER BYTE REGISTER
Address: 0x042, Reset: 0x00, Name: CH6_OFFSET_LOWER_BYTE
Combined offset register Channel 6
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH6_OFFSET_ALL[7:0] (R/W)
Table 110. Bit Descriptions for CH6_OFFSET_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH6_OFFSET_ALL[7:0] Combined Offset Register Channel 6 0x0 R/W
CHANNEL 6 GAIN UPPER BYTE REGISTER
Address: 0x043, Reset: 0x00, Name: CH6_GAIN_UPPER_BYTE
Combined gain register Channel 6
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH6_GAIN_ALL[23:16] (R/W)
Table 111. Bit Descriptions for CH6_GAIN_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH6_GAIN_ALL[23:16] Combined Gain Register Channel 6 0x0 R/W
CHANNEL 6 GAIN MIDDLE BYTE REGISTER
Address: 0x044, Reset: 0x00, Name: CH6_GAIN_MID_BYTE
Combined gain register Channel 6
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH6_GAIN_ALL[15:8] (R/W)
Table 112. Bit Descriptions for CH6_GAIN_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH6_GAIN_ALL[15:8] Combined Gain Register Channel 6 0x0 R/W
CHANNEL 6 GAIN LOWER BYTE REGISTER
Address: 0x045, Reset: 0x00, Name: CH6_GAIN_LOWER_BYTE
Combined gain register Channel 6
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH6_GAIN_ALL[7:0] (R/W)
Table 113. Bit Descriptions for CH6_GAIN_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH6_GAIN_ALL[7:0] Combined Gain Register Channel 6 0x0 R/W
AD7779 Data Sheet
Rev. D | Page 88 of 101
CHANNEL 7 OFFSET UPPER BYTE REGISTER
Address: 0x046, Reset: 0x00, Name: CH7_OFFSET_UPPER_BYTE
Combined offset register Channel 7
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH7_OFFSET_ALL[23:16] (R/W)
Table 114. Bit Descriptions for CH7_OFFSET_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH7_OFFSET_ALL[23:16] Combined Offset Register Channel 7 0x0 R/W
CHANNEL 7 OFFSET MIDDLE BYTE REGISTER
Address: 0x047, Reset: 0x00, Name: CH7_OFFSET_MID_BYTE
Com bined offs et register Channel 7
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH7_OFFSET_ALL[15:8] (R/W)
Table 115. Bit Descriptions for CH7_OFFSET_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH7_OFFSET_ALL[15:8] Combined Offset Register Channel 7 0x0 R/W
CHANNEL 7 OFFSET LOWER BYTE REGISTER
Address: 0x048, Reset: 0x00, Name: CH7_OFFSET_LOWER_BYTE
Combined offset register Channel 7
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH7_OFFSET_ALL[7:0] (R/W)
Table 116. Bit Descriptions for CH7_OFFSET_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH7_OFFSET_ALL[7:0] Combined Offset Register Channel 7 0x0 R/W
CHANNEL 7 GAIN UPPER BYTE REGISTER
Address: 0x049, Reset: 0x00, Name: CH7_GAIN_UPPER_BYTE
Combined gain register Channel 7
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH7_GAIN ALL[23:16] (R/W)
Table 117. Bit Descriptions for CH7_GAIN_UPPER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH7_GAIN ALL[23:16] Combined Gain Register Channel 7 0x0 R/W
Data Sheet AD7779
Rev. D | Page 89 of 101
CHANNEL 7 GAIN MIDDLE BYTE REGISTER
Address: 0x04A, Reset: 0x00, Name: CH7_GAIN_MID_BYTE
Combined gain register Channel 7
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH7_GAIN ALL[15:8] (R/W)
Table 118. Bit Descriptions for CH7_GAIN_MID_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH7_GAIN ALL[15:8] Combined Gain Register Channel 7 0x0 R/W
CHANNEL 7 GAIN LOWER BYTE REGISTER
Address: 0x04B, Reset: 0x00, Name: CH7_GAIN_LOWER_BYTE
Combined gain register Channel 7
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] CH7_GAIN ALL[7:0] (R/W)
Table 119. Bit Descriptions for CH7_GAIN_LOWER_BYTE
Bits Bit Name Settings Description Reset Access
[7:0] CH7_GAIN ALL[7:0] Combined Gain Register Channel 7 0x0 R/W
CHANNEL 0 STATUS REGISTER
Address: 0x04C, Reset: 0x00, Name: CH0_ERR_REG
Channel 0 - Reference detect error
A
IN0- undervoltage erro
r
AIN0+ overvoltage error
A
IN0- overvoltage error
AIN0+ undervoltage error
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:5] RESERVED [0] CH0_ERR_REF_DET (R)
[4] CH0_ERR_AINM_UV (R)
[1] CH0_ERR_AINP_OV (R)
[3] CH0_ERR_AINM_OV (R)
[2] CH0_ERR_AINP_UV (R)
Table 120. Bit Descriptions for CH0_ERR_REG
Bits Bit Name Settings Description Reset Access
[7:5] RESERVED Reserved 0x0 R/W
4 CH0_ERR_AINM_UV Channel 0—AIN0− Undervoltage Error 0x0 R
3 CH0_ERR_AINM_OV Channel 0—AIN0− Overvoltage Error 0x0 R
2 CH0_ERR_AINP_UV Channel 0—AIN0+ Undervoltage Error 0x0 R
1 CH0_ERR_AINP_OV Channel 0—AIN0+ Overvoltage Error 0x0 R
0 CH0_ERR_REF_DET Channel 0—Reference Detect Error 0x0 R
AD7779 Data Sheet
Rev. D | Page 90 of 101
CHANNEL 1 STATUS REGISTER
Address: 0x04D, Reset: 0x00, Name: CH1_ERR_REG
Channel 1 - Reference detect error
A
IN1- undervoltage erro
r
AIN1+ overvoltage error
A
IN1- overvoltage error
AIN1+ undervoltage error
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:5] RESERVED [0] CH1_ERR_REF_DET (R)
[4] CH1_ERR_AINM_UV (R)
[1] CH1_ERR_AINP_OV (R)
[3] CH1_ERR_AINM_OV (R)
[2] CH1_ERR_AINP_UV (R)
Table 121. Bit Descriptions for CH1_ERR_REG
Bits Bit Name Settings Description Reset Access
[7:5] RESERVED Reserved 0x0 R/W
4 CH1_ERR_AINM_UV Channel 1—AIN1− Undervoltage Error 0x0 R
3 CH1_ERR_AINM_OV Channel 1—AIN1− Overvoltage Error 0x0 R
2 CH1_ERR_AINP_UV Channel 1—AIN1+ Undervoltage Error 0x0 R
1 CH1_ERR_AINP_OV Channel 1—AIN1+ Overvoltage Error 0x0 R
0 CH1_ERR_REF_DET Channel 1—Reference Detect Error 0x0 R
CHANNEL 2 STATUS REGISTER
Address: 0x04E, Reset: 0x00, Name: CH2_ERR_REG
Channel 2 - Reference detect error
A
IN2- undervoltage erro
r
AIN2+ overvoltage error
A
IN2- overvoltage error
AIN2+ undervoltage error
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:5] RESERVED [0] CH2_ERR_REF_DET (R)
[4] CH2_ERR_AINM_UV (R)
[1] CH2_ERR_AINP_OV (R)
[3] CH2_ERR_AINM_OV (R)
[2] CH2_ERR_AINP_UV (R)
Table 122. Bit Descriptions for CH2_ERR_REG
Bits Bit Name Settings Description Reset Access
[7:5] RESERVED Reserved 0x0 R/W
4 CH2_ERR_AINM_UV Channel 2—AIN2− Undervoltage Error 0x0 R
3 CH2_ERR_AINM_OV Channel 2—AIN2− Overvoltage Error 0x0 R
2 CH2_ERR_AINP_UV Channel 2—AIN2+ Undervoltage Error 0x0 R
1 CH2_ERR_AINP_OV Channel 2—AIN2+ Overvoltage Error 0x0 R
0 CH2_ERR_REF_DET Channel 2—Reference Detect Error 0x0 R
Data Sheet AD7779
Rev. D | Page 91 of 101
CHANNEL 3 STATUS REGISTER
Address: 0x04F, Reset: 0x00, Name: CH3_ERR_REG
Channel 3 - Reference detect error
A
IN3- undervoltage erro
r
AIN3+ overvoltage error
A
IN3- overvoltage error
AIN3+ undervoltage error
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:5] RESERVED [0] CH3_ERR_REF_DET (R)
[4] CH3_ERR_AINM_UV (R)
[1] CH3_ERR_AINP_OV (R)
[3] CH3_ERR_AINM_OV (R)
[2] CH3_ERR_AINP_UV (R)
Table 123. Bit Descriptions for CH3_ERR_REG
Bits Bit Name Settings Description Reset Access
[7:5] RESERVED Reserved 0x0 R/W
4 CH3_ERR_AINM_UV Channel 3—AIN3− Undervoltage Error 0x0 R
3 CH3_ERR_AINM_OV Channel 3—AIN3− Overvoltage Error 0x0 R
2 CH3_ERR_AINP_UV Channel 3—AIN3+ Undervoltage Error 0x0 R
1 CH3_ERR_AINP_OV Channel 3—AIN3+ Overvoltage Error 0x0 R
0 CH3_ERR_REF_DET Channel 3—Reference Detect Error 0x0 R
CHANNEL 4 STATUS REGISTER
Address: 0x050, Reset: 0x00, Name: CH4_ERR_REG
Channel 4 - Reference detect error
A
IN4- undervoltage erro
r
AIN4+ overvoltage error
A
IN4- overvoltage error
AIN4+ undervoltage error
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:5] RESERVED [0] CH4_ERR_REF_DET (R)
[4] CH4_ERR_AINM_UV (R)
[1] CH4_ERR_AINP_OV (R)
[3] CH4_ERR_AINM_OV (R)
[2] CH4_ERR_AINP_UV (R)
Table 124. Bit Descriptions for CH4_ERR_REG
Bits Bit Name Settings Description Reset Access
[7:5] RESERVED Reserved 0x0 R/W
4 CH4_ERR_AINM_UV Channel 4—AIN4− Undervoltage Error 0x0 R
3 CH4_ERR_AINM_OV Channel 4—AIN4− Overvoltage Error 0x0 R
2 CH4_ERR_AINP_UV Channel 4—AIN4+ Undervoltage Error 0x0 R
1 CH4_ERR_AINP_OV Channel 4—AIN4+ Overvoltage Error 0x0 R
0 CH4_ERR_REF_DET Channel 4—Reference Detect Error 0x0 R
AD7779 Data Sheet
Rev. D | Page 92 of 101
CHANNEL 5 STATUS REGISTER
Address: 0x051, Reset: 0x00, Name: CH5_ERR_REG
Channel 5 - Reference detect error
A
IN5- undervoltage erro
r
AIN5+ overvoltage error
A
IN5- overvoltage error
AIN5+ undervoltage error
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:5] RESERVED [0] CH5_ERR_REF_DET (R)
[4] CH5_ERR_AINM_UV (R)
[1] CH5_ERR_AINP_OV (R)
[3] CH5_ERR_AINM_OV (R)
[2] CH5_ERR_AINP_UV (R)
Table 125. Bit Descriptions for CH5_ERR_REG
Bits Bit Name Settings Description Reset Access
[7:5] RESERVED Reserved 0x0 R/W
4 CH5_ERR_AINM_UV Channel 5—AIN5− Undervoltage Error 0x0 R
3 CH5_ERR_AINM_OV Channel 5—AIN5− Overvoltage Error 0x0 R
2 CH5_ERR_AINP_UV Channel 5—AIN5+ Undervoltage Error 0x0 R
1 CH5_ERR_AINP_OV Channel 5—AIN5+ Overvoltage Error 0x0 R
0 CH5_ERR_REF_DET Channel 5—Reference Detect Error 0x0 R
CHANNEL 6 STATUS REGISTER
Address: 0x052, Reset: 0x00, Name: CH6_ERR_REG
Channel 6 - Reference detect error
A
IN6- undervoltage erro
r
AIN6+ overvoltage error
A
IN6- overvoltage error
AIN6+ undervoltage error
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:5] RESERVED [0] CH6_ERR_REF_DET (R)
[4] CH6_ERR_AINM_UV (R)
[1] CH6_ERR_AINP_OV (R)
[3] CH6_ERR_AINM_OV (R)
[2] CH6_ERR_AINP_UV (R)
Table 126. Bit Descriptions for CH6_ERR_REG
Bits Bit Name Settings Description Reset Access
[7:5] RESERVED Reserved 0x0 R/W
4 CH6_ERR_AINM_UV Channel 6—AIN6− Undervoltage Error 0x0 R
3 CH6_ERR_AINM_OV Channel 6—AIN6− Overvoltage Error 0x0 R
2 CH6_ERR_AINP_UV Channel 6—AIN6+ Undervoltage Error 0x0 R
1 CH6_ERR_AINP_OV Channel 6—AIN6+ Overvoltage Error 0x0 R
0 CH6_ERR_REF_DET Channel 6—Reference Detect Error 0x0 R
Data Sheet AD7779
Rev. D | Page 93 of 101
CHANNEL 7 STATUS REGISTER
Address: 0x053, Reset: 0x00, Name: CH7_ERR_REG
Channel 7 - Reference detect error
A
IN7- undervoltage erro
r
AIN7+ overvoltage error
A
IN7- overvoltage erro
r
AIN7+ undervoltage error
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:5] RESERVED [0] CH7_ERR_REF_DET (R)
[4] CH7_ERR_AINM_UV (R)
[1] CH7_ERR_AINP_OV (R)
[3] CH7_ERR_AINM_OV (R)
[2] CH7_ERR_AINP_UV (R)
Table 127. Bit Descriptions for CH7_ERR_REG
Bits Bit Name Settings Description Reset Access
4 CH7_ERR_AINM_UV Channel 7—AIN7− Undervoltage Error 0x0 R
3 CH7_ERR_AINM_OV Channel 7—AIN7− Overvoltage Error 0x0 R
2 CH7_ERR_AINP_UV Channel 7—AIN7+ Undervoltage Error 0x0 R
1 CH7_ERR_AINP_OV Channel 7—AIN7+ Overvoltage Error 0x0 R
0 CH7_ERR_REF_DET Channel 7—Reference Detect Error 0x0 R
CHANNEL 0/CHANNEL 1 DSP ERRORS REGISTER
Address: 0x054, Reset: 0x00, Name: CH0_1_SAT_ERR
Channel 0 - ADC conversion has
exceeded limits and has been clamped
Channel 1 - Modulator output saturation
error
Channel 0 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
Channel 1 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
Channel 0 - Modulator output saturation
error
Channel 1 - ADC conversion has
exceeded limits and has been clamped
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] RESERVED [0] CH0_ERR_OUTPUT_SAT (R)
[5] CH1_ERR_MOD_SAT (R)
[1] CH0_ERR_FILTER_SAT (R)
[4] CH1_ERR_FILTER_SAT (R)
[2] CH0_ERR_MOD_SAT (R)
[3] CH1_ERR_OUTPUT_SAT (R)
Table 128. Bit Descriptions for CH0_1_SAT_ERR
Bits Bit Name Settings Description Reset Access
5 CH1_ERR_MOD_SAT Channel 1—Modulator Output Saturation Error 0x0 R
4 CH1_ERR_FILTER_SAT Channel 1—Filter result has exceeded a reasonable level, before offset
and gain calibration has been applied
0x0 R
3 CH1_ERR_OUTPUT_SAT Channel 1—ADC conversion has exceeded limits and has been clamped 0x0 R
2 CH0_ERR_MOD_SAT Channel 0—Modulator Output Saturation Error 0x0 R
1 CH0_ERR_FILTER_SAT Channel 0—Filter result has exceeded a reasonable level, before offset
and gain calibration has been applied
0x0 R
0 CH0_ERR_OUTPUT_SAT Channel 0—ADC conversion has exceeded limits and has been clamped 0x0 R
AD7779 Data Sheet
Rev. D | Page 94 of 101
CHANNEL 2/CHANNEL 3 DSP ERRORS REGISTER
Address: 0x055, Reset: 0x00, Name: CH2_3_SAT_ERR
Channel 2 - ADC conversion has
exceeded limits and has been clamped
Channel 3 - Modulator output saturation
error
Channel 2 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
Channel 3 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
Channel 2 - Modulator output saturation
error
Channel 3 - ADC conversion has
exceeded limits and has been clamped
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] RESERVED [0] CH2_ERR_OUTPUT_SAT (R)
[5] CH3_ERR_MOD_SAT (R)
[1] CH2_ERR_FILTER_SAT (R)
[4] CH3_ERR_FILTER_SAT (R)
[2] CH2_ERR_MOD_SAT (R)
[3] CH3_ERR_OUTPUT_SAT (R)
Table 129. Bit Descriptions for CH2_3_SAT_ERR
Bits Bit Name Settings Description Reset Access
5 CH3_ERR_MOD_SAT Channel 3—Modulator Output Saturation Error 0x0 R
4 CH3_ERR_FILTER_SAT Channel 3—Filter result has exceeded a reasonable level, before offset
and gain calibration has been applied
0x0 R
3 CH3_ERR_OUTPUT_SAT Channel 3—ADC conversion has exceeded limits and has been clamped 0x0 R
2 CH2_ERR_MOD_SAT Channel 2—Modulator Output Saturation Error 0x0 R
1 CH2_ERR_FILTER_SAT Channel 2—Filter result has exceeded a reasonable level, before offset
and gain calibration has been applied
0x0 R
0 CH2_ERR_OUTPUT_SAT Channel 2—ADC conversion has exceeded limits and has been clamped 0x0 R
CHANNEL 4/CHANNEL 5 DSP ERRORS REGISTER
Address: 0x056, Reset: 0x00, Name: CH4_5_SAT_ERR
Channel 4 - ADC conversion has
exceeded limits and has been clamped
Channel 5 - Modulator output saturation
error
Channel 4 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
Channel 5 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
Channel 4 - Modulator output saturation
error
Channel 5 - ADC conversion has
exceeded limits and has been clamped
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] RESERVED [0] CH4_ERR_OUTPUT_SAT (R)
[5] CH5_ERR_MOD_SAT (R)
[1] CH4_ERR_FILTER_SAT (R)
[4] CH5_ERR_FILTER_SAT (R)
[2] CH4_ERR_MOD_SAT (R)
[3] CH5_ERR_OUTPUT_SAT (R)
Table 130. Bit Descriptions for CH4_5_SAT_ERR
Bits Bit Name Settings Description Reset Access
5 CH5_ERR_MOD_SAT Channel 5—Modulator Output Saturation Error 0x0 R
4 CH5_ERR_FILTER_SAT Channel 5—Filter result has exceeded a reasonable level, before offset
and gain calibration has been applied
0x0 R
3 CH5_ERR_OUTPUT_SAT Channel 5—ADC conversion has exceeded limits and has been clamped 0x0 R
2 CH4_ERR_MOD_SAT Channel 4—Modulator Output Saturation Error 0x0 R
1 CH4_ERR_FILTER_SAT Channel 4—Filter result has exceeded a reasonable level, before offset
and gain calibration has been applied
0x0 R
0 CH4_ERR_OUTPUT_SAT Channel 4—ADC conversion has exceeded limits and has been clamped 0x0 R
Data Sheet AD7779
Rev. D | Page 95 of 101
CHANNEL 6/CHANNEL 7 DSP ERRORS REGISTER
Address: 0x057, Reset: 0x00, Name: CH6_7_SAT_ERR
Channel 6 - ADC conversion has
exceeded limits and has been clamped
Channel 7 - Modulator output saturation
error
Channel 6 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
Channel 7 - Filter result has exceeded
a reasonable level, before offset and
gain calibration has been applied.
Channel 6 - Modulator output saturation
error
Channel 7 - ADC conversion has
exceeded limits and has been clamped
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] RESERVED [0] CH6_ERR_OUTPUT_SAT (R)
[5] CH7_ERR_MOD_SAT (R)
[1] CH6_ERR_FILTER_SAT (R)
[4] CH7_ERR_FILTER_SAT (R)
[2] CH6_ERR_MOD_SAT (R)
[3] CH7_ERR_OUTPUT_SAT (R)
Table 131. Bit descriptions for CH6_7_SAT_ERR
Bits Bit Name Settings Description Reset Access
5 CH7_ERR_MOD_SAT Channel 7—Modulator Output Saturation Error 0x0 R
4 CH7_ERR_FILTER_SAT Channel 7—Filter result has exceeded a reasonable level, before offset
and gain calibration has been applied
0x0 R
3 CH7_ERR_OUTPUT_SAT Channel 7—ADC conversion has exceeded limits and has been clamped 0x0 R
2 CH6_ERR_MOD_SAT Channel 6—Modulator Output Saturation Error 0x0 R
1 CH6_ERR_FILTER_SAT Channel 6—Filter result has exceeded a reasonable level, before offset
and gain calibration has been applied
0x0 R
0 CH6_ERR_OUTPUT_SAT Channel 6—ADC conversion has exceeded limits and has been clamped 0x0 R
CHANNEL 0 TO CHANNEL 7 ERROR REGISTER ENABLE REGISTER
Address: 0x058, Reset: 0xFE, Name: CHX_ERR_REG_EN
A
DC convers ion error tes t enable Reference detect tes t enable
Filter s aturation error tes t enable AINx+ overvoltage tes t enable
Enable error flag for Modulator saturation AINx+ undervoltage test enable
A
INx- undervoltage tes t enable AINx- overvoltage test enable
0
0
1
1
2
1
3
1
4
1
5
1
6
1
7
1
[7] OUTPUT_SAT_TEST_EN (R/W) [0] REF_DET_TEST_EN (R/W)
[6] FILTER_SAT_TEST_EN (R/W) [1] AINP_OV_TEST_EN (R/W)
[5] MOD_SAT_TEST_EN (R/W) [2] AINP_UV_TEST_EN (R/W)
[4] AINM_UV_TEST_EN (R/W) [3] AINM_OV_TEST_EN (R/W)
Table 132. Bit Descriptions for CHX_ERR_REG_EN
Bits Bit Name Settings Description Reset Access
7 OUTPUT_SAT_TEST_EN ADC Conversion Error Test Enable 0x1 R/W
6 FILTER_SAT_TEST_EN Filter Saturation Test Enable 0x1 R/W
5 MOD_SAT_TEST_EN Enable Error Flag for Modulator Saturation 0x1 R/W
4 AINM_UV_TEST_EN AINx− Undervoltage Test Enable 0x1 R/W
3 AINM_OV_TEST_EN AINx− Overvoltage Test Enable 0x1 R/W
2 AINP_UV_TEST_EN AINx+ Undervoltage Test Enable 0x1 R/W
1 AINP_OV_TEST_EN AINx+ Overvoltage Test Enable 0x1 R/W
0 REF_DET_TEST_EN Reference Detect Test Enable 0x0 R/W
AD7779 Data Sheet
Rev. D | Page 96 of 101
GENERAL ERRORS REGISTER 1
Address: 0x059, Reset: 0x00, Name: GEN_ERR_REG_1
SPI CRC error
A
CRC of the memory map contents
is run periodically to check for errors SPI invalid write addres s
A
CRC of the fus e contents is run
periodically to check for errors in
the fus es
SPI invalid read address
SPI clock counter error
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] RESERVED [0] SPI_CRC_ERR (R)
[5] MEMMAP_CRC_ERR (R)
[1] SPI_INVALID_WRITE_ERR (R
)
[4] ROM_CRC_ERR (R) [2] SPI_INVALID_READ_ERR (R)
[3] SPI_CLK_COUNT_ERR (R)
Table 133. Bit Descriptions for GEN_ERR_REG_1
Bits Bit Name Settings Description Reset Access
5 MEMMAP_CRC_ERR A CRC of the memory map contents is run periodically to check for errors 0x0 R
4 ROM_CRC_ERR A CRC of the fuse contents is run periodically to check for errors in the fuses 0x0 R
3 SPI_CLK_COUNT_ERR SPI clock counter error 0x0 R
2 SPI_INVALID_READ_ERR SPI invalid read address 0x0 R
1 SPI_INVALID_WRITE_ERR SPI invalid write address 0x0 R
0 SPI_CRC_ERR SPI CRC error 0x0 R
GENERAL ERRORS REGISTER 1 ENABLE
Address: 0x05A, Reset: 0x3E, Name: GEN_ERR_REG_1_EN
Table 134. Bit Descriptions for GEN_ERR_REG_1_EN
Bits Bit Name Settings Description Reset Access
5 MEMMAP_CRC_TEST_EN Memory Map CRC Test Enable 0x1 R/W
4 ROM_CRC_TEST_EN Fuse CRC Test Enable 0x1 R/W
3 SPI_CLK_COUNT_TEST_EN SPI Clock Counter Test Enable 0x1 R/W
2 SPI_INVALID_READ_TEST_EN SPI Invalid Read Address Test Enable 0x1 R/W
1 SPI_INVALID_WRITE_TEST_EN SPI Invalid Write Address Test Enable 0x1 R/W
0 SPI_CRC_TEST_EN SPI CRC Error Test Enable 0x0 R/W
Data Sheet AD7779
Rev. D | Page 97 of 101
GENERAL ERRORS REGISTER 2
Address: 0x05B, Reset: 0x00, Name: GEN_ERR_REG_2
DRegCap power supply error
Res et detected
AReg2Cap power supply error
Clock not switched over
AReg1Cap power supply error
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] RESERVED [0] DLDO_PSM_ERR (R)
[5] RESET_DETECTED (R)
[1] ALDO2_PSM_ERR (R)
[4] EXT_MCLK_SWITCH_ERR (R)
[2] ALDO1_PSM_ERR (R)
[3] RESERVED
Table 135. Bit Descriptions for GEN_ERR_REG_2
Bits Bit Name Settings Description Reset Access
5 RESET_DETECTED Reset Detected 0x0 R
4 EXT_MCLK_SWITCH_ERR Clock Not Switched Over 0x0 R
2 ALDO1_PSM_ERR AREG1CAP Power Supply Error 0x0 R
1 ALDO2_PSM_ERR AREG2CAP Power Supply Error 0x0 R
0 DLDO_PSM_ERR DREGCAP Power Supply Error 0x0 R
GENERAL ERRORS REGISTER 2 ENABLE
Address: 0x05C, Reset: 0x3C, Name: GEN_ERR_REG_2_EN
LDO PSM trip test enable
11: 11 - Run trip detect test on DRegCap.
10: 10 - Run trip detect test on AReg2Cap
.
1: 01 - Run trip detect test on AReg1Cap
.
0: 00 - No trip detect tes t enabled.
Reset detect enable
LDO PSM test EN
11:
on all LDOs.
11 - Run power supply monitor test
10:
on DRegCap.
10 - Run power supply monitor test
1:
on ARegxCap.
01 - Run power supply monitor test
0:
enabled.
00 - No power supply monitor test
0
0
1
0
2
1
3
1
4
0
5
1
6
0
7
0
[7:6] RESERVED [1:0] LDO_PSM_TRIP_TEST_EN (R/W)
[5] RESET_DETECT_EN (R/W)
[3:2] LDO_PSM_test_EN (R/W)
[4] RESERVED
Table 136. Bit Descriptions for GEN_ERR_REG_2_EN
Bits Bit Name Settings Description Reset Access
5 RESET_DETECT_EN Reset Detect Enable 0x1 R/W
4 RESERVED Reserved 0x1 R/W
[3:2] LDO_PSM_TEST_EN LDO PSM Test EN 0x3 R/W
0 00—no power supply monitor test enabled.
1 01—run power supply monitor test on AREGxCAP
10 10—run power supply monitor test on DREGCAP
11 11—run power supply monitor test on all LDOs
[1:0] LDO_PSM_TRIP_TEST_EN LDO PSM Trip Test Enable 0x0 R/W
0 00—no trip detect test enabled
1 01—run trip detect test on AREG1CAP
10 10—run trip detect test on AREG2CAP
11 11—run trip detect test on DREGCAP
AD7779 Data Sheet
Rev. D | Page 98 of 101
ERROR STATUS REGISTER 1
Address: 0x05D, Reset: 0x00, Name: STATUS_REG_1
An error specific to CH0_ERR_REG
is active
Set high if any error bit is high
An error specific to CH1_ERR_REG
is active
A
n error specific to CH4_ERR_REG
is active
An error specific to CH2_ERR_REG
is active
A
n error specific to CH3_ERR_REG
is active
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] RESERVED [0] ERR_LOC_CH0 (R)
[5] CHIP_ERROR (R)
[1] ERR_LOC_CH1 (R)
[4] ERR_LOC_CH4 (R)
[2] ERR_LOC_CH2 (R)
[3] ERR_LOC_CH3 (R)
Table 137. Bit Descriptions for STATUS_REG_1
Bits Bit Name Settings Description Reset Access
5 CHIP_ERROR Set this bit high if any error bit is high 0x0 R
4 ERR_LOC_CH4 An error specific to CH4_ERR_REG is active 0x0 R
3 ERR_LOC_CH3 An error specific to CH3_ERR_REG is active 0x0 R
2 ERR_LOC_CH2 An error specific to CH2_ERR_REG is active 0x0 R
1 ERR_LOC_CH1 An error specific to CH1_ERR_REG is active 0x0 R
0 ERR_LOC_CH0 An error specific to CH0_ERR_REG is active 0x0 R
ERROR STATUS REGISTER 2
Address: 0x05E, Reset: 0x00, Name: STATUS_REG_2
An error s pecific to CH5_ERR_REG
is active
Set high if any error bit is high
An error s pecific to CH6_ERR_REG
is active
A
n error specific to GEN_ERR_REG_2
is active
An error s pecific to CH7_ERR_REG
is active
A
n error specific to GEN_ERR_REG_1
is active
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] RESERVED [0] ERR_LOC_CH5 (R)
[5] CHIP_ERROR (R)
[1] ERR_LOC_CH6 (R)
[4] ERR_LOC_GEN2 (R)
[2] ERR_LOC_CH7 (R)
[3] ERR_LOC_GEN1 (R)
Table 138. Bit Descriptions for STATUS_REG_2
Bits Bit Name Settings Description Reset Access
5 CHIP_ERROR Set high if any error bit is high 0x0 R
4 ERR_LOC_GEN2 An error specific to GEN_ERR_REG_2 is active 0x0 R
3 ERR_LOC_GEN1 An error specific to GEN_ERR_REG_1 is active 0x0 R
2 ERR_LOC_CH7 An error specific to CH7_ERR_REG is active 0x0 R
1 ERR_LOC_CH6 An error specific to CH6_ERR_REG is active 0x0 R
0 ERR_LOC_CH5 An error specific to CH5_ERR_REG is active 0x0 R
Data Sheet AD7779
Rev. D | Page 99 of 101
ERROR STATUS REGISTER 3
Address: 0x05F, Reset: 0x00, Name: STATUS_REG_3
An error specific to CH0_1_SAT_ER
R
reg is active
Set high if any error bit is high
An error specific to CH2_3_SAT_ER
R
reg is active
Fuse initialization is complete. Device
is ready to receive commands
An error specific to CH4_5_SAT_ER
R
reg is active
A
n error specific to CH6_7_SAT_ERR
reg is active
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:6] RESERVED [0] ERR_LOC_SAT_CH0_1 (R)
[5] CHIP_ERROR (R)
[1] ERR_LOC_SAT_CH2_3 (R)
[4] INIT_COMPLETE (R)
[2] ERR_LOC_SAT_CH4_5 (R)
[3] ERR_LOC_SAT_CH6_7 (R)
Table 139. Bit Descriptions for STATUS_REG_3
Bits Bit Name Settings Description Reset Access
5 CHIP_ERROR Set high if any error bit is high. 0x0 R
4 INIT_COMPLETE Fuse initialization is complete. Device is ready to receive commands. 0x0 R
3 ERR_LOC_SAT_CH6_7 An error specific to CH6_7_SAT_ERR register is active. 0x0 R
2 ERR_LOC_SAT_CH4_5 An error specific to CH4_5_SAT_ERR register is active. 0x0 R
1 ERR_LOC_SAT_CH2_3 An error specific to CH2_3_SAT_ERR register is active. 0x0 R
0 ERR_LOC_SAT_CH0_1 An error specific to CH0_1_SAT_ERR register is active. 0x0 R
DECIMATION RATE (N) MSB REGISTER
Address: 0x060, Reset: 0x00, Name: SRC_N_MSB
SRC N Combined
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:4] RESERVED [3:0] SRC_N_ALL[11:8] (R/W
)
Table 140. Bit Descriptions for SRC_N_MSB
Bits Bit Name Settings Description Reset Access
[3:0] SRC_N_ALL[11:8] SRC N Combined 0x0 R/W
DECIMATION RATE (N) LSB REGISTER
Address: 0x061, Reset: 0x80, Name: SRC_N_LSB
SRC N Combined
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
1
[7:0] SRC_N_ALL[7:0] (R/W )
Table 141. Bit Descriptions for SRC_N_LSB
Bits Bit Name Settings Description Reset Access
[7:0] SRC_N_ALL[7:0] SRC N Combined 0x0 R/W
AD7779 Data Sheet
Rev. D | Page 100 of 101
DECIMATION RATE (IF) MSB REGISTER
Address: 0x062, Reset: 0x00, Name: SRC_IF_MSB
SRC IF ALL
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] SRC_IF_ALL[15:8] (R/W)
Table 142. Bit Descriptions for SRC_IF_MSB
Bits Bit Name Settings Description Reset Access
[7:0] SRC_IF_ALL[15:8] SRC IF All 0x0 R/W
DECIMATION RATE (IF) LSB REGISTER
Address: 0x063, Reset: 0x00, Name: SRC_IF_LSB
SRC IF ALL
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7:0] SRC_IF_ALL[7:0] (R/W)
Table 143. Bit Descriptions for SRC_IF_LSB
Bits Bit Name Settings Description Reset Access
[7:0] SRC_IF_ALL[7:0] SRC IF All 0x0 R/W
SRC LOAD SOURCE AND LOAD UPDATE REGISTER
Address: 0x064, Reset: 0x00, Name: SRC_UPDATE
Select which option to load an SRC
update
Assert bit to load SRC registers into
SRC
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
[7] SRC_LOAD_SOURCE (R/W ) [0] SRC_LOAD_UPDATE (R/W )
[6:1] RESERVED
Table 144. Bit Descriptions for SRC_UPDATE
Bits Bit Name Settings Description Reset Access
7 SRC_LOAD_SOURCE Selects which option to load an SRC update 0x0 R/W
0 SRC_LOAD_UPDATE Asserts bit to load SRC registers into SRC 0x0 R/W
Data Sheet AD7779
Rev. D | Page 101 of 101
OUTLINE DIMENSIONS
0.50
BSC
BOTTOM VIEW
TOP VIEW
7.70
7.60 SQ
7.50
0.45
0.40
0.35
0.80
0.75
0.70 0.05 MAX
0.02 NOM
0.203 REF
COPLANARITY
0.08
0.30
0.25
0.18
09-25-2018-A
9.10
9.00 SQ
8.90
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
0.20 MIN
7.50 REF
COMPLIANT TO JEDEC STANDARDS MO-220-WMMD
1
64
16
17
49
48
32
33
PKG-004396
SIDE VIEW
EXPOSED
PAD
SEATING
PLANE
PIN 1
INDICATOR
AREA
DETAIL A
(JEDEC 95)
PIN 1
INDICATORAREAOPTIONS
(SEEDETAILA)
Figure 124. 64-Lead Lead Frame Chip Scale Package [LFCSP]
9 mm × 9 mm Body and 0.75 mm Package Height
(CP-64-15)
Dimensions shown in millimeters
ORDERING GUIDE
Model1 Temperature Range Package Description Package Option
AD7779ACPZ −40°C to +125°C 64-Lead Lead Frame Chip Scale Package [LFCSP] CP-64-15
AD7779ACPZ-RL −40°C to +125°C 64-Lead Lead Frame Chip Scale Package [LFCSP] CP-64-15
EVAL-AD7779FMCZ Evaluation Board
EVAL-SDP-CH1Z SDP Controller Board
1 Z = RoHS Compliant Part.
©2016–2020 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D13295-5/20(D)