This is information on a product in full production.
January 2017 DocID028312 Rev 3 1/58
AIS1120SX
AIS2120SX
MEMS automotive acceleration sensor:
single/dual-axis with SPI interface
Datasheet - production data
Features
AEC-Q100 qualified
3.3 V single supply operation
14-bit data output
120 g full scale
Slow and fast offset cancellation
Embedded self-test
Selectable low-pass filter
SPI interface
ECOPACK® compliant
Extended temperature range -40 °C to +105 °C
Applications
Airbag systems
Vibrations, impact monitoring
Description
The AIS1120SX / AIS2120SX is a central
acceleration sensor with a single or dual axis
sensing element and an IC interface able to
provide acceleration information to a master
control unit via an SPI protocol.
The sensing element, capable of detecting the
acceleration, is manufactured using a dedicated
process developed by ST to produce inertial
sensors and actuators in silicon.
The IC interface is manufactured using a BCD
process that allows a high level of integration. The
device is factory trimmed to better tune the
characteristics of the sensing element with the
acceleration information to be supplied.
The AIS1120SX / AIS2120SX has a full scale of
120 g. The acquisition chain consists of a C/V
converter, a full-differential charge amplifier, a 2nd
order analog-to-digital converter and a digital
core, which includes filtering, compensation and
interpolation, control logic and SPI protocol
generation.
The differential capacitance of the sensor is
proportional to the proof mass displacement;
thus, by sensing the differential capacitance, the
position of the sensor is determined. Then, since
the mass position is known, and the position is
related to the input acceleration, the input
acceleration can be easily deduced.
The device is available in a plastic SOIC8
package and is guaranteed to operate over a
temperature range extending from -40 °C to
+105 °C.
SOIC8
Table 1. Device summary
Order code g-range Sensitivity
axes
Operating temperature
range [C] Package Packing
AIS1120SXTR 120 gx -40 to +105 SOIC8N Tape and reel
AIS2120SXTR 120 gxy -40 to +105 SOIC8N Tape and reel
www.st.com
Contents AIS1120SX / AIS2120SX
2/58 DocID028312 Rev 3
Contents
1 Block diagrams and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1 Block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.1 Mechanical element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.2 Sigma-Delta converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.3 Filter architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.4 Decimation filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.5 Low-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.6 Signal compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.7 Linear interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.8 Signal delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.9 Offset cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.10 State machine and on-chip-oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.11 Power domain block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2 Customer accessible data arrays (registers) . . . . . . . . . . . . . . . . . . . . 17
2.1 REG_CTRL_0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 REG_CTRL_1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 REG_CONFIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 REG_STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 REG_CHID_REVID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 REG_ACC_CHX_LOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 REG_ACC_CHX_HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.8 REG_ACC_CHY_LOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.9 REG_ACC_CHY_HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.10 REG_OSC_COUNTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.11 REG_ID_SENSOR_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.12 REG_ID_VEH_MANUF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.13 REG_ID_SENSOR_MANUF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.14 REG_ID_LOT_0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.15 REG_ID_LOT_1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.16 REG_ID_LOT_2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
DocID028312 Rev 3 3/58
AIS1120SX / AIS2120SX Contents
58
2.17 REG_ID_LOT_3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.18 REG_ID_WAFER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.19 REG_ID_COOR_X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.20 REG_ID_COOR_Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.21 REG_RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.22 OFF_CHX_HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.23 OFF_CHX_LOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.24 OFF_CHY_HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.25 OFF_CHY_LOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.26 Other addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3 Power-on phase and initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1 Initialization procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Phase1 (T1): Power-up timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Phase2 (T2): configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Phase 3 (T3): fast offset cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Phase 4 (T4): test phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Phase 5 (T5): normal operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4 Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . 36
4.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Digital blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5 Interface description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1 32-bit communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.1 Acceleration commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.2 Non-acceleration commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.3 SPI CRC polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 32-bit SPI bit information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Contents AIS1120SX / AIS2120SX
4/58 DocID028312 Rev 3
6 Recommendations for operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.1 SOIC8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
DocID028312 Rev 3 5/58
AIS1120SX / AIS2120SX List of tables
58
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 3. REG_CTRL_0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 4. REG_CTRL_1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 5. REG_CONFIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 6. REG_STATUS_0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 7. REG_STATUS_1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 8. REG_STATUS_2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 9. REG_CHID_REVID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 10. REG_ACC_CHX_LOW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 11. REG_ACC_CHX_HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 12. REG_ACC_CHY_LOW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 13. REG_ACC_CHY_HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 14. REG_OSC_COUNTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 15. REG_ID_SENSOR_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 16. REG_ID_VEH_MANUF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 17. REG_ID_SENSOR_MANUF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 18. REG_ID_LOT_0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 19. REG_ID_LOT_1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 20. REG_ID_LOT_2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 21. REG_ID_LOT_3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 22. REG_ID_WAFER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 23. REG_ID_COOR_X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 24. REG_ID_COOR_Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 25. REG_RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 26. OFF_CHX_HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 27. OFF_CHX_LOW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 28. OFF_CHY_HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 29. OFF_CHY_LOW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 30. Timing delay by block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 31. Temperature sensor data example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 32. Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 33. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 34. Digital range and levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 35. 400 Hz digital filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 36. 800 Hz digital filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 37. 1600 Hz digital filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 38. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 39. Acceleration data example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 40. Acceleration commands function of SDI bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 41. Acceleration commands function of SDO bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 42. Error codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 43. SDO bit examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 44. Non-acceleration command function of SDI bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 45. Non-acceleration commands function of SDO bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 46. 32-bit SPI command: bits from 31 to 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 47. 32-bit SPI command: bits from 15 to 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 48. Bit decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
List of tables AIS1120SX / AIS2120SX
6/58 DocID028312 Rev 3
Table 49. SPI timing table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 50. Error flags and description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 51. SOIC8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 52. Revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
DocID028312 Rev 3 7/58
AIS1120SX / AIS2120SX List of figures
58
List of figures
Figure 1. AIS1120SX block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 2. AIS2120SX block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3. Differential capacitive system (dual axis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Figure 4. 2nd order sigma-delta modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 5. Filter architecture diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 6. FIR vs. 4th and 6th order Bessel filter for amplitude frequency response . . . . . . . . . . . . . 11
Figure 7. FIR vs. 3rd and 4th order Bessel filter for group delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 8. 8-to-1 interpolation timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 9. Signal delay of reading-chain blocks with 400 Hz filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 10. Signal delay of reading-chain blocks with 800 Hz filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 11. Signal delay of reading-chain blocks with 1600 Hz filter. . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 12. Offset cancellation block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 13. Offset cancellation flag monitoring flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Figure 14. Power domain block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 15. Detectable accelerations and pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Figure 16. Accessible registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 17. Power-up flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 18. Power-up timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 19. Phase 2 state flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 20. Cap-loss detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 21. Phase 3 state flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 22. SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 23. SPI timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 24. Acceleration commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 25. Non-acceleration commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Figure 26. SPI timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 27. Additional SPI timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 28. SOIC8 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 29. SOIC8 package marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 30. SOIC8 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Block diagrams and pin description AIS1120SX / AIS2120SX
8/58 DocID028312 Rev 3
1 Block diagrams and pin description
1.1 Block diagrams
Figure 1. AIS1120SX block diagram
Figure 2. AIS2120SX block diagram
DocID028312 Rev 3 9/58
AIS1120SX / AIS2120SX Block diagrams and pin description
58
1.1.1 Mechanical element
A proprietary process is used to create a surface micromachined accelerometer. This
technology allows processing suspended silicon structures which are attached to the
substrate in few points called anchors and are free to move in the direction of the sensed
acceleration thanks to flexible springs. In order to be compatible with standard packaging
techniques, a cap is placed at wafer level on the top of the sensing element.
From an electrical point of view, the sensor can be represented as a differential capacitive
system (see below for a dual-axis element). When the acceleration is applied to the sensor,
the proof mass displaces from its nominal position, causing an unbalance in the capacitive
half-bridge. This unbalance is measured using charge integration in response to a voltage
pulse applied to the sense capacitor:
Figure 3. Differential capacitive system (dual axis)
The differential capacitive change towards acceleration can be expressed, in small
displacements approximation, as:
Where C0 is the at-rest capacitance, m is the inertial mass, a the acceleration, k stiffness of
the springs and g the distance between capacitor electrodes.
1.1.2 Sigma-Delta converter
A 2nd order sigma-delta modulator is used to convert the differential voltage that comes from
the charge-to-voltage converter to a pulse-density modulated (PDM) data stream. The data
stream will be further processed through on-chip digital filters.
Figure 4. 2nd order sigma-delta modulator
&RPSDUDWRU
,QWHJUDWRU ,QWHJUDWRU
[\
'$&
±
±
]
]
]
]
$
%
$
%
گ
±
گ
±
±
±
Block diagrams and pin description AIS1120SX / AIS2120SX
10/58 DocID028312 Rev 3
1.1.3 Filter architecture
Figure 5. Filter architecture diagram
The architecture of the digital filters allows selecting 3 different cut-off frequencies based on
2 bits in the register map: FIR_BW_SEL[1:0].
The cut-off frequencies are 400 Hz, 800 Hz, and 1600 Hz. For the 1600 Hz filter, the noise
level is higher and the ENOB is 10/11 bits, and not 12 bits.
The cut-off frequency has to be selected for each axis during the initialization phase. Once
the initialization phase is finished and the end of the initialization bit is set, the cut-off
frequency is locked and any attempt to change it during normal mode will generate an SPI
error.
The cut-off frequencies can be selected as described below:
FIR_BW_SEL[1:0]:
= "00" FIR with F3DB = 400 Hz is selected (default);
= "01" FIR with F3DB = 800 Hz is selected;
= "10" FIR with F3DB = 1600 Hz is selected (ENOB is 10/11bits in this mode);
= "11" FIR with F3DB = 400 Hz is selected.
1.1.4 Decimation filter
Differential delay: D=1
Number of sections: N=3
Decimation factor:
M = 32 if FIR_BW_SEL[1:0] = "00" (400 Hz)
M = 16 if FIR_BW_SEL[1:0] = "01" (800 Hz)
M = 8 if FIR_BW_SEL[1:0] = "10" (1600 Hz)
DocID028312 Rev 3 11/58
AIS1120SX / AIS2120SX Block diagrams and pin description
58
1.1.5 Low-pass filter
H_LPF (Z) is a FIR digital filter with 26 coefficients (K = 25):
Figure 6 and Figure 7 shows the comparison between the FIR filter and an analog Bessel
filter when the cut-off frequency is 400 Hz.
Figure 6. FIR vs. 4th and 6th order Bessel filter for amplitude frequency response
Figure 7. FIR vs. 3rd and 4th order Bessel filter for group delay
Block diagrams and pin description AIS1120SX / AIS2120SX
12/58 DocID028312 Rev 3
1.1.6 Signal compensation
On-chip EEPROM bits are used to compensate sensitivity error and offset error.
1.1.7 Linear interpolation
The device features an L-to-1 linear data interpolation computed from the present and the
previous samples. L depends on the cut-off frequency selected:
Interpolation factor:
L = 16 if FIR_BW_SEL[1:0] = "00" or “11”
L = 8 if FIR_BW_SEL[1:0] = "01"
L = 4 if FIR_BW_SEL[1:0] = "10"
The data interpolation helps reduce sample jitter. The digital result will have a latency of one
sample time before being sent to the SPI bus.
The maximum jitter will be 62.5 s/16 = 3.9 s.
Figure 8 shows an interpolation example.
Figure 8. 8-to-1 interpolation timing
DocID028312 Rev 3 13/58
AIS1120SX / AIS2120SX Block diagrams and pin description
58
1.1.8 Signal delays
Figure 9. Signal delay of reading-chain blocks with 400 Hz filter
Figure 10. Signal delay of reading-chain blocks with 800 Hz filter
Figure 11. Signal delay of reading-chain blocks with 1600 Hz filter
1.1.9 Offset cancellation
The offset cancellation is performed in the last step of the digital signal processing and
includes two modes:
1. Slow offset cancellation
2. Fast offset cancellation
The digital low-pass filter with selectable bandwidth (fast, slow cancellation) is controlled by
a state machine. Fast offset cancellation is used after power-on. Slow offset cancellation, for
continuously running offset cancellation, operates in normal mode.
Offset cancellation uses a moving average filter with a fixed update limit. Fast offset
cancellation occurs after power up while EOI = 0. Slow offset cancellation occurs after EOI
is set to 1.
The Offset Cancellation Error Flag is set when the offset is outside the offset correction
range (±1020 LSB) during slow offset cancellation. A hardware error is indicated based on
this flag being set for the affected axis. The flow chart for the offset cancellation block is
shown in the following figure.
Block diagrams and pin description AIS1120SX / AIS2120SX
14/58 DocID028312 Rev 3
Figure 12. Offset cancellation block diagram
Figure 13. Offset cancellation flag monitoring flow
1.1.10 State machine and on-chip-oscillator
There is an on-chip oscillator implemented. The clock frequency is trimmed to 16.384 MHz
at room temp. This clock is used for the digital core. One 1024 KHz clock divided from this
main clock is used for the sigma-delta convertor and digital signal processing module
(DSP).
1.1.11 Power domain block diagram
Figure 14 shows the power domain of the device. A pre-regulator is implemented to improve
power supply sensitivity and PSRR of the device. The pre-regulator provides power to an
on-chip bandgap reference and the EEPROM.
325
<)DVW
2IIVHW
&DQFHOODWLRQ
;)DVW
2IIVHW
&DQFHOODWLRQ
(2,
<6ORZ
2IIVHW
&DQFHOODWLRQ
;6ORZ
2IIVHW
&DQFHOODWLRQ
<)/$*
0$;
6(767B<6 7B< 
6(72))B&$1&B&+<B(55 
6(76)B< 
5HFRYHU"
6325RU
&<&/(
32:(5
6(767B;67B; 
6(72))B&$1&B&+;B(55 
6(76)B; 
5HFRYHU"
6325RU
&<&/(
32:(5
;)/$*
0$;
(2,
<(6
<(6
<(6
<(6
<(6 <(6
12 12
12
12
12 12
12
<(6 <(6
DocID028312 Rev 3 15/58
AIS1120SX / AIS2120SX Block diagrams and pin description
58
Figure 14. Power domain block diagram
Key blocks of the power section are:
1. Pre-regulator: based on a self-biased supply-thermal independent structure, which is
able to produce an internal stable voltage of 2.8 V ±15%, with a maximum output
current of 3 mA. The architecture is based on a bandgap cell, which produces a
thermal-independent reference, which is used in turn to produce the voltage pre-
regulator output; the pre-regulator is powered by VDD, and is designed to supply only
some internal low-power blocks.
2. Regulator: an on-chip 2.8 V regulator supplies internal power for the device; it should
not be used to power other devices via the VREG terminal. A bypass capacitor is
required on the VREG pin to keep the regulator stable.
3. Bandgap reference: the voltage bandgap is powered by the voltage pre-regulator and
is used as voltage reference for all other circuits including the front-end, supervision
circuits and A/D converter.
4. Charge-to-voltage converter: the C/V converter consists of a fully differential charge
integrator with a continuous time ICMFB (Input Common Mode Feedback) control loop,
discrete time ICMFB, and a Switched Capacitor OCMFB (Output Common Mode
Feedback) control loop. Furthermore the C/V converter has one 9-bit DAC in order to
trim the offset of the measurement chain and mechanical element.
5. Self-test charge pump: the self-test charge pump internally generates a voltage
higher than the 2.8 V regulated supply voltage. The charge pump is activated when the
self-test mode is enabled and provides an excitation voltage of 6.6 V. During the self-
test the voltage is applied and disconnected to the sensor according to a duty cycle
which allows simulating a well-known force on the sensor.
Block diagrams and pin description AIS1120SX / AIS2120SX
16/58 DocID028312 Rev 3
1.2 Pin description
Figure 15. Detectable accelerations and pinout
C1 = 1 μF ± 10%, 10 V (ceramic, VREG capacitor)
C2 = 0.1 μF ± 10%, 10 V (ceramic, power supply decoupling capacitor)
Note: An acceleration of the device in the "+X" or “+Y” directions results in a positive output
change, a deceleration in this direction (or acceleration to the opposite side) results in a
negative output signal.
Table 2. Pin description
Pin# Name Function
1 SCL SPI clock
2 SDI SPI data in
3 SDO SPI data out
4 CS SPI chip select
5 GND Power supply return pin (ground level)
6 VREG
Voltage regulator output. A ceramic capacitor of 1.0 μF ± 10%
10 V must be connected to this pin, which should not be used to
power other devices.
7 VDD This pin provides power to the device. A ceramic capacitor of
0.1 μF ± 10% 10 V must be connected to this pin.
8 MP Connect to GND
AIS1120SX / AIS2120SX Customer accessible data arrays (registers)
DocID028312 Rev 3 17/58
2 Customer accessible data arrays (registers)
Figure 16. Accessible registers
$GGUHVV 1DPH E>@ E>@ E>@ E>@ E>@ E>@ E>@ E>@
ϬdžϬϬ Z'ͺdZ>ͺϬ Ϭ Ϭ Ϭ Ϭ Ϭ Ϭ Ϭ EͺK&ͺ/E/d
ϬdžϬϭ Z'ͺdZ>ͺϭ Ϭ Ϭ Ϭ Ϭ Ϭ
ϬdžϬϮ Z'ͺKE&/' /^ͺK&&ͺDKEͺ,z /^ͺK&&ͺDKEͺ,y /^ͺK&&ͺEͺ,z /^ͺK&&ͺEͺ,y
ϬdžϬϯ Z'ͺ^dd h^ͺϬ d^dDKͺE> Z'ͺdZ>ͺϬͺtZͺZZͺ>d, Ϭ >K^^WͺZZͺ>d, EͺK&ͺWtZhWͺ>d, Z^dͺd/sͺ>d,
ϬdžϬϰ Z'ͺ^dd h^ͺϭ ^W/ͺZZ WZKDͺZZͺ>d, Ϭ Ϭ K&&ͺEͺ,zͺZZ K&&ͺEͺ,yͺZZ Z'ͺKE&/'ͺtZͺZZͺ>d, Z'ͺdZ>ͺϭͺtZͺZZͺ>d,
ϬdžϬϱ Z'ͺ^dd h^ͺϮ Ϯͺ^dͺ,zͺZZ Ϯͺ^dͺ,yͺZZ Ϭ ,Z'ͺWhDWͺZZͺ>d, sZ'ͺ>KtͺZZ sZ'ͺ,/',ͺZZ sͺ>KtͺZZ sͺ,/',ͺZZ
ϬdžϬϲ Z'ͺ,/ͺZs/ Ϭ Ϭ ,zͺd/s ,yͺd/s Ϭ
ϬdžϬϳ Z'ͺͺ,yͺ>Kt
ϬdžϬϴ Z'ͺͺ,yͺ,/', $FFHO'DWD;/DWFK Ϭ
ϬdžϬϵ Z'ͺͺ,zͺ>Kt
ϬdžϬ Z'ͺͺ,zͺ,/', $FFHO'DWD</DWFK Ϭ
ϬdžϬ Z'ͺK^ͺKhEdZ
ϬdžϬ Z'ͺ/ͺ^E^KZͺdzW
ϬdžϬ Z'ͺ/ͺs,ͺDEh& Ϭ ϬϬ Ϭ
ϬdžϬ Z'ͺ/ͺ^E^KZͺDEh&
ϬdžϬ& Z'ͺ/ͺ>KdͺϬ
ϬdžϭϬ Z'ͺ/ͺ>Kdͺϭ
Ϭdžϭϭ Z'ͺ/ͺ>KdͺϮ
ϬdžϭϮ Z'ͺ/ͺ>Kdͺϯ Ϭ Ϭ
Ϭdžϭϯ Z'ͺ/ͺt&Z Ϭ ϬϬ
Ϭdžϭϰ Z'ͺ/ͺKKZͺy
Ϭdžϭϱ Z'ͺ/ͺKKZͺz
Ϭdžϭϲ Z'ͺZ^d Ϭ Ϭ Ϭ Ϭ Ϭ Ϭ
Ϭdžϭϳ K&&ͺ,yͺ,/',
Ϭdžϭϴ K&&ͺ,yͺ>Kt KĨĨĂƚĂy>ĂƚĐŚ Ϭ Ϭ Ϭ Ϭ
Ϭdžϭϵ K&&ͺ,zͺ,/',
Ϭdžϭ K&&ͺ,zͺ>Kt KĨĨĂƚĂz>ĂƚĐŚ Ϭ Ϭ Ϭ Ϭ
Ϭdžϭ EŽƚƵƐĞĚ Ϭ Ϭ Ϭ Ϭ Ϭ Ϭ Ϭ Ϭ
Ϭdžϭ EŽƚƵƐĞĚ Ϭ Ϭ Ϭ Ϭ Ϭ Ϭ Ϭ Ϭ
Ϭdžϭ EŽƚƵƐĞĚ Ϭ Ϭ Ϭ Ϭ Ϭ Ϭ Ϭ Ϭ
Ϭdžϭ ZĞƐĞƌǀĞĚ
Ϭdžϭ& ZĞƐĞƌǀĞĚ
^>&ͺd^dͺD΀ϮϬ΁
&/Zͺtͺ^>ͺ,y΀ϭϬ΁&/Zͺtͺ^>ͺ,z΀ϭϬ΁
^dd h^΀ϭϬ΁
/ͺ^E^KZͺDEh&΀ϳϬ΁
K^ͺKhEdZ΀ϳϬ΁
/ͺ^E^KZͺdzW΀ϳϬ΁
Zs/΀ϮϬ΁
Z'ͺͺ,y΀ϳϬ΁
/ͺs,ͺDEh&΀ϯϬ΁
Z'ͺͺ,z΀ϳϬ΁
/ͺ>Kd΀ϮϵϮϰ΁
Z'ͺͺ,z΀ϭϯϴ΁
/ͺ>Kd΀Ϯϯϭϲ΁
/ͺ>Kd΀ϳϬ΁
/ͺ>Kd΀ϭϱϴ΁
Ͳ
K&&ͺ,y΀ϮϬ΁
K&&ͺ,z΀ϮϬ΁
Ͳ
Z'ͺͺ,y΀ϭϯϴ΁
/ͺKKZͺz΀ϳϬ΁
^K&dͺZ^d΀ϭϬ΁
/ͺt&Z΀ϰϬ΁
/ͺKKZͺy΀ϳϬ΁
K&&ͺ,y΀ϭϬϯ΁
K&&ͺ,z΀ϭϬϯ΁
Customer accessible data arrays (registers) AIS1120SX / AIS2120SX
18/58 DocID028312 Rev 3
2.1 REG_CTRL_0
Table 3. REG_CTRL_0
REG_CTRL_0 (address: 0x00)
Name Bit# R/W Reset
state Description
0 [7:1] R 0
END_OF_INIT 0 R/W 0
End of initialization: Initialization
is the time interval from reset to
Self-test end:
=”0” then device is in
Initialization Phase
= “1” then the device is in end of
initialization phase (device is in
normal mode)
Rules :
-When END_OF_BIT="1" then
writing operations of
REG_CTRL_1 and
REG_CONFIG bits do not have
effect and generate error flags
CTRL_REG_1_WR_ERR="1"/C
ONFIG_REG_WR_ERR="1".
-Cannot write EOI='1' if there is
EE or HE error.
-Cannot write EOI='1' if device is
in +ve or -ve self-test (either
CHX or CHY).
Doing so, RE error (and
CONFIG_REG_0_WR_ERR='1')
will be produced
DocID028312 Rev 3 19/58
AIS1120SX / AIS2120SX Customer accessible data arrays (registers)
58
2.2 REG_CTRL_1
Table 4. REG_CTRL_1
REG_CTRL_1 (address: 0x01)
Name Bit# R/W Reset
state Description
0 [7:3] R 0
SELF_TEST_CMD [2:0] R/W 0
Self-test commands:
= "000" then device is in 0 g self-test if EOI='0';
= "001" then device starts self-test on channel X
with positive voltage;
= "010" then device starts self-test on channel X
with negative voltage;
= "011" then device is in 0 g self-test if EOI='0'
= "100" then device is in 0 g self-test if EOI='0'
= "101" then device starts self-test on channel Y
with positive voltage;
= "110" then device starts self-test on channel Y
with negative voltage;
= "111" then device is in 0 g self-test if EOI='0'
Rules :
-Cannot write if EOI='1'
-Cannot start a self-test on CHX/CHY if the
channel is not enabled
-Cannot switch from non-0g(-ve/+ve) self_test to
another non-0g self_test(-ve/+ve) without going to
0g self-test
Note:
When starting channel X self-test:
Channel X acceleration command will read
channel X self-test value
Channel Y acceleration command will read
temperature sensor value for self-test temperature
compensation algorithm.
When starting channel Y self-test:
Channel X acceleration command will read
temperature sensor value for self-test temperature
compensation algorithm.
Channel Y acceleration command will read
channel Y self-test value
Customer accessible data arrays (registers) AIS1120SX / AIS2120SX
20/58 DocID028312 Rev 3
2.3 REG_CONFIG
Table 5. REG_CONFIG
REG_CONFIG (address: 0x02)
Name Bit# R/W Reset
state Description
FIR_BW_SEL_CHY[1:0] [7:6] R/W 00
Channel Y FIR bandwidth selection bits:
if = "00" FIR with F3DB = 400 Hz is selected;
if = "01" FIR with F3DB = 800 Hz is selected;
if = "10" FIR with F3DB = 1600 Hz is selected
(resolution is 10/11bits in this mode);
if = "11" FIR with F3DB = 400 Hz is selected.
FIR_BW_SEL_CHY[1:0] is writable if
END_OF_INIT="0".
Writing FIR_BW_SEL_CHY[1:0] when
END_OF_INIT="1" or when Channel Y self-test is
activated, does not have effect and generates an
error:
CONFIG_REG_WR_ERR="1".
FIR_BW_SEL_CHX[1:0] [5:4] R/W 00
Channel X FIR bandwith selection bits:
if = "00" FIR with F3DB = 400 Hz is selected;
if = "01" FIR with F3DB = 800 Hz is selected;
if = "10" FIR with F3DB = 1600 Hz is selected
(resolution is 10/11bits in this mode);
if = "11" FIR with F3DB = 400 Hz is selected.
FIR_BW_SEL_CHX[1:0] is writable if
END_OF_INIT="0".
Writing FIR_BW_SEL_CHX[1:0] when
END_OF_INIT="1" or when Channel X self-test is
activated does not have effect and generates an
error:
CONFIG_REG_WR_ERR="1".
DIS_OFF_MON_CHY 3 R/W 0
Offset monitor channel Y disable bit.
if = "0" then channel Y offset monitor is on;
if = "1" then channel Y offset monitor is off.
DIS_OFF_MON_CHY is writable if
END_OF_INIT="0".
Writing DIS_OFF_MON_CHY when
END_OF_INIT="1" does not have effect and
generates an error:
CONFIG_REG_WR_ERR="1"
DocID028312 Rev 3 21/58
AIS1120SX / AIS2120SX Customer accessible data arrays (registers)
58
DIS_OFF_MON_CHX 2 R/W 0
Offset monitor channel X disable bit.
= "0" then channel X offset monitor is on;
= "1" then channel X offset monitor is off.
DIS_OFF_MON_CHX is writable if
END_OF_INIT="0".
Writing DIS_OFF_MON_CHX when
END_OF_INIT="1" does not have effect and
generates an error: CONFIG_REG_WR_ERR="1"
DIS_OFF_CANC_CHY 1 R/W 0
Offset cancellation channel Y disable bit.
= "0" then channel Y offset cancellation circuit is
on;
= "1" then channel Y offset cancellation circuit is
off.
DIS_OFF_CANC_CHY is writable if
END_OF_INIT="0".
Writing DIS_OFF_CANC_CHY when
END_OF_INIT="1" does not have effect and
generates an error: CONFIG_REG_WR_ERR="1"
DIS_OFF_CANC_CHX 0 R/W 0
Offset cancellation channel X disable bit.
= "0" then channel X offset cancellation circuit is
on;
= "1" then channel X offset cancellation circuit is
off.
DIS_OFF_CANC_CHX is writable if
END_OF_INIT="0".
Writing DIS_OFF_CANC_CHX when
END_OF_INIT="1" does not have effect and
generates an error: CONFIG_REG_WR_ERR="1"
Table 5. REG_CONFIG (continued)
REG_CONFIG (address: 0x02)
Name Bit# R/W Reset
state Description
Customer accessible data arrays (registers) AIS1120SX / AIS2120SX
22/58 DocID028312 Rev 3
2.4 REG_STATUS
Table 6. REG_STATUS_0
REG_STATUS_0 (address: 0x03)
Name Bit# R/W Reset
state Description
STATUS [1:0] [7:6] R 00
Status Error bits:
if = "00" device is in initialization phase (power-up,
configuration, fast offset cancellation);
if = "01" device is in normal mode (EOI = 1);
if = "10" device is test phase (0 g test or active self
test); EOI = 0;
if = "11" device is in initialization phase or normal
mode and some errors are detected: acceleration
data are disregarded due to errors in device.
TESTMODE_ENABLED 5 R 0 “0”: normal mode;
“1”: test mode
REG_CTRL_0_WR_ERR(1) 4R 0
Will be set to '1' if write EOI = '1' attempt is made
with the device in +ve or -ve self-test (either CHX
or CHY).
Not used 3 R 0 “0” always
LOSS_CAP 2 R 0
Loss of capacitor:
if = "0" then loss of capacitor is not detected
(correct behavior);
if = "1" then loss of capacitor is detected (wrong
behavior).
Note:
1.LOSS_CAP check is done during the power-up
stage (~400 μs after POR) only.
2.Recommended VDD ramp rate >1 V/ms
3.It is recommended that LOSS_CAP flag (and all
other hardware flags) be reconfirmed with soft
POR after power up (END_OF_PWRUP='1').
END_OF_PWRUP 1 R 0 ="1": end of power-up sequence; ready for self-
test.
RST_ACTIVE 0 R 0
Reset Active bit:
if = "0" then device is out of reset;
if = "1" then device has undergone a soft reset
sequence. Cleared by a read.
1. Bit not latched (cleared by any read command).
DocID028312 Rev 3 23/58
AIS1120SX / AIS2120SX Customer accessible data arrays (registers)
58
Table 7. REG_STATUS_1
REG_STATUS_1 (address: 0x04)
Name Bit# R/W Reset
state Description
SPI_ERR(1) 7R 0
SPI error:
if = "0" then SPI format data is compliant with
specifications (correct behavior);
if = "1" then SPI format data is not complaint with
specifications (wrong behavior).
EEPROM_ERR 6 R 0
EEPROM Error: CRC error reading EEPROM.
if = "0" EEPROM reading is correct.
if = "1" EEPROM reading is wrong.
The bit can be cleared by a READ if NVM bit
ErrFlgCfg='1'. If ErrFlgCfg='0', then this bit can't
be cleared.
Not used 5:4 R 0 "0" always
OFF_CANC_CHY_ERR 3 R 0
The sensor sets this flag when the offset is outside
the offset monitoring threshold (±1020 LSB)
during slow offset cancellation for channel Y; this
also creates hardware failure. When the offset is
within the threshold, the flag will be '0' (not
latched)
OFF_CANC_CHX_ERR 2 R 0
The sensor sets this flag when the offset is outside
the offset monitoring threshold (±1020 LSB)
during slow offset cancellation for channel X; this
also creates hardware failure. When the offset is
within the threshold, the flag will be '0' (not
latched)
REG_CONFIG_WR_ERR(1) 1R 0
Configuration register writing operation error:
if = "0" then a writing operation is not addressed
by the SPI on REG_CONFIG register when
END_OF_INIT=1 (correct behavior);
if = "1" then a writing operation is addressed by
the SPI on REG_CONFIG register when
END_OF_INIT=1 (wrong behavior).
REG_CTRL_1_WR_ERR(1) 0R 0
Control register 1 writing operation error:
if = "0" then a writing operation is not addressed
by the SPI on REG_CNTR_1 register when
END_OF_INIT=1 (correct behavior);
if = "1" then a writing operation is addressed by
the SPI on REG_CNTR_1 register when
END_OF_INIT=1 (wrong behavior).
1. Bit not latched (cleared by any read command).
Customer accessible data arrays (registers) AIS1120SX / AIS2120SX
24/58 DocID028312 Rev 3
Table 8. REG_STATUS_2
REG_STATUS_2 (address: 0x05)
Name Bit# R/W Reset
state Description
A2D_SAT_CHY 7 R 0 if = "1" then CHY ADC saturation detected (wrong
behavior).
A2D_SAT_CHX 6 R 0 if = "1" then CHY ADC saturation detected (wrong
behavior).
Not used 5 R 0
CHARGE_PUMP_ERR 4 R 0
Charge pump error:
if = "0" then charge pump error is not detected
(correct behavior);
if = "1" charge pump error is detected (wrong
behavior).
VREG_LOW_VOLT_DET 3 R 0
VREG low-voltage detection:
if = "0" then regulated voltage VREG is over the
minimum supply voltage (correct behavior);
= "1" then regulated voltage VREG is under the
minimum supply voltage (wrong behavior).
This also creates hardware failure (not latched).
VREG_HIGH_VOLT_DET 2 R 0
VREG high-voltage detection:
if = "0" then regulated voltage VREG is under the
maximum supply voltage (correct behavior);
if = "1" then regulated voltage VREG is over the
maximum supply voltage (wrong behavior).
This also creates hardware failure (not latched).
VDD_LOW_VOLT_DET 1 R 0
VDD low-voltage detection:
if = "0" then supply voltage VDD is over the
minimum supply voltage (correct behavior);
if = "1" then supply voltage VDD is under the
minimum supply voltage (wrong behavior).
This also creates hardware failure (not latched).
VDD_HIGH_VOLT_DET 0 R 0
VDD high-voltage detection:
if = "0" then supply voltage VDD is under the
maximum supply voltage (correct behavior);
if = "1" then supply voltage VDD is over the
maximum supply voltage (wrong behavior).
This also creates hardware failure (not latched).
DocID028312 Rev 3 25/58
AIS1120SX / AIS2120SX Customer accessible data arrays (registers)
58
2.5 REG_CHID_REVID
Table 9. REG_CHID_REVID
2.6 REG_ACC_CHX_LOW
Table 10. REG_ACC_CHX_LOW
2.7 REG_ACC_CHX_HIGH
Table 11. REG_ACC_CHX_HIGH
REG_CHID_REVID (address: 0x06)
Name Bit# R/W Reset
state Description
Not used 7 R 0
Not used 6 R 0
CHY_ACTIVE 5 R 0 = “1”: CHY reading chain enabled (copied NVM
bit)
CHX_ACTIVE 4 R 0 = “1”: CHX reading chain enabled (copied NVM
bit)
Not used 3 R 0
REVID [2:0] R 0
Copied NVM bits 0x7C: bit 7 to bit 5
011 for A3
100 for A4
REG_ACC_CHX_LOW (address: 0x07)
Name Bit# R/W Reset
state Description
REG_ACC_CHX [7:0] R 0x00 Channel X acceleration data LSBs register
REG_ACC_CHX_HIGH (address: 0x08)
Name Bit# R/W Reset
state Description
AccelDataXLatch 7 R 0
Reading REG_ACC_CHX_LOW register sets the
bit to '1' and REG_ACC_CHX_HIGH is locked to
its corresponding LOW byte i.e
REG_ACC_CHX_LOW;
Cleared when it is read.
Not used 6 R 0
REG_ACC_CHX [5:0] R 0 Channel X acceleration data MSBs register
Customer accessible data arrays (registers) AIS1120SX / AIS2120SX
26/58 DocID028312 Rev 3
2.8 REG_ACC_CHY_LOW
Table 12. REG_ACC_CHY_LOW
2.9 REG_ACC_CHY_HIGH
Table 13. REG_ACC_CHY_HIGH
2.10 REG_OSC_COUNTER
Table 14. REG_OSC_COUNTER
REG_ACC_CHY_LOW (address: 0x09)
Name Bit# R/W Reset
state Description
REG_ACC_CHY [7:0] R 0x00 Channel Y acceleration data LSBs register
REG_ACC_CHY_HIGH (address: 0x0A)
Name Bit# R/W Reset
state Description
AccelDataYLatch 7 R 0
Reading REG_ACC_CHY_LOW register sets the
bit to '1' and REG_ACC_CHY_HIGH is locked to
its corresponding LOW byte, i.e.
REG_ACC_CHY_LOW;
Cleared when it is read.
Not used 6 R 0
REG_ACC_CHY [5:0] R 0 Channel Y acceleration data MSBs register
REG_OSC_COUNTER (address: 0x0B)
Name Bit# R/W Reset
state Description
OSC_COUNTER [7:0] R 0x00
Free run oscillator counter to verify oscillator is
running. The counter is updated every 8 kHz.
To verify oscillator frequency, the ECU can
compare the oscillator counter by reading the
ECU clock.
DocID028312 Rev 3 27/58
AIS1120SX / AIS2120SX Customer accessible data arrays (registers)
58
2.11 REG_ID_SENSOR_TYPE
Table 15. REG_ID_SENSOR_TYPE
2.12 REG_ID_VEH_MANUF
Table 16. REG_ID_VEH_MANUF
2.13 REG_ID_SENSOR_MANUF
Table 17. REG_ID_SENSOR_MANUF
2.14 REG_ID_LOT_0
REG_ID_SENSOR_TYPE (address: 0x0C)
Name Bit# R/W Reset
state Description
ID_SENSOR_TYPE [7:0] R 0x00 0x1A for single axis sensor;
0x2A for dual axis sensor.
REG_ID_VEH_MANUF (address: 0x0D)
Name Bit# R/W Reset
state Description
Not used [7:4] R 0
ID_VEH_MANUF [3:0] R 0x00 Vehicle manufacturer ID number “0x00”
REG_ID_SENSOR_MANUF (address: 0x0E)
Name Bit# R/W Reset
state Description
ID_SENSOR_MANUF [7:0] R 0x00 Sensor manufacturer ID number LSBs (“0x00”)
Table 18. REG_ID_LOT_0
REG_ID_LOT_0 (address: 0x0F)
Name Bit# R/W Reset state Description
ID_LOT[7:0] [7:0] R 0 ASIC lot ID number [7:0]
Customer accessible data arrays (registers) AIS1120SX / AIS2120SX
28/58 DocID028312 Rev 3
2.15 REG_ID_LOT_1
2.16 REG_ID_LOT_2
2.17 REG_ID_LOT_3
2.18 REG_ID_WAFER
Table 19. REG_ID_LOT_1
REG_ID_LOT_1 (address: 0x10)
Name Bit# R/W Reset state Description
ID_LOT[15:8] [7:0] R 0 ASIC lot ID number [15:8]
Table 20. REG_ID_LOT_2
REG_ID_LOT_2 (address: 0x11)
Name Bit# R/W Reset state Description
ID_LOT[23:16] [7:0] R 0 ASIC lot ID number [23:16]
Table 21. REG_ID_LOT_3
REG_ID_LOT_3 (address: 0x12)
Name Bit# R/W Reset state Description
Not used [7:6] R 0
ID_LOT[29:24] [5:0] R 0 ASIC lot ID number [29:24]
Table 22. REG_ID_WAFER
REG_ID_WAFER (address: 0x13)
Name Bit# R/W Reset state Description
Not used [7:5] R 0
ID_WAFER [4:0] R 0 ASIC wafer ID
number
DocID028312 Rev 3 29/58
AIS1120SX / AIS2120SX Customer accessible data arrays (registers)
58
2.19 REG_ID_COOR_X
2.20 REG_ID_COOR_Y
Table 24. REG_ID_COOR_Y
2.21 REG_RESET
Table 25. REG_RESET
2.22 OFF_CHX_HIGH
Table 26. OFF_CHX_HIGH
Table 23. REG_ID_COOR_X
REG_ID_COOR_X (address: 0x14)
Name Bit# R/W Reset state Description
ID_COOR_X [7:0] R 0x00 Die coordinate X
REG_ID_COOR_Y (address: 0x15)
Name Bit# R/W Reset state Description
ID_COOR_Y [7:0] R 0x00 Die coordinate Y
REG_RESET (address: 0x16)
Name Bit# R/W Reset state Description
Not used [7:3] R 0
SOFT_RST [1:0] R/W 00
Software reset: device is caused to go under reset if
3 consecutive SPI write operations are executed in
the following sequence:
1. SOFT_RST[1:0]=10;
2. SOFT_RST[1:0]=01;
3. SOFT_RST[1:0]=10.
OFF_CHX_HIGH (address: 0x17)
Name Bit# R/W Reset state Description
OFF_CHX[10:3] [7:0] R 0x00 Channel X offset correction
data MSB register
Customer accessible data arrays (registers) AIS1120SX / AIS2120SX
30/58 DocID028312 Rev 3
2.23 OFF_CHX_LOW
Table 27. OFF_CHX_LOW
2.24 OFF_CHY_HIGH
Table 28. OFF_CHY_HIGH
2.25 OFF_CHY_LOW
Table 29. OFF_CHY_LOW
2.26 Other addresses
0x1B: not used
0x1C: not used
0x1D: not used
0x1E: Reserved
0x1F: Reserved
OFF_CHX_LOW (address: 0x18)
Name Bit# R/W Reset state Description
OFFDataXLatch 7 R 0
Reading OFF_CHX_HIGH register sets the bit
to “1” and OFF_CHX_LOW is locked to its
corresponding HIGH byte i.e. OFF_CHX_HIGH;
Cleared when it is read.
Not used [6:3] R 0
OFF_CHX[2:0] [2:0] R 0 Channel X offset correction data LSB register
OFF_CHY_HIGH (address: 0x19)
Name Bit# R/W Reset state Description
OFF_CHY[10:3] [7:0] R 0x00 Channel Y offset correction data MSB register
OFF_CHY_LOW (address: 0x1A)
Name Bit# R/W Reset state Description
OFFDataYLatch 7 R 0
Reading OFF_CHY_HIGH register sets the bit
to “1” and OFF_CHY_LOW is locked to its
corresponding HIGH byte i.e.
OFF_CHY_HIGH;
Cleared when it is read.
Not used [6:3] R 0
OFF_CHY[2:0] [2:0] R 0 Channel Y offset correction data LSB register
DocID028312 Rev 3 31/58
AIS1120SX / AIS2120SX Power-on phase and initialization
58
3 Power-on phase and initialization
3.1 Initialization procedure
Figure 17. Power-up flowchart
1. User initiated
9''3RZHUXS
935(6WDUWXS
((3520GRZQORDGLQJ
%$1'*$35HDG\
95(*6WDUWXS
325QDVVHUWHGORZUHVHW
9HULI\2IIVHWJWHVW
9HULI\3RVLWLYH6HOI7HVW
 JWHVW
9HULI\2IIVHWJWHVW
9HULI\1HJDWLYH6HOI7HVW
 JWHVW
9HULI\2IIVHWJWHVW
6HW(QGRI,QLWLDOL]HELW
1RUPDO2SHUDWLRQ
7
3RZHU8S7LPH
7
&RQILJXUDWLRQ
7
)DVW2IIVHW
&DQHOODWLRQ
7
7HVW3KDVH

7
1RUPDO2SHUDWLRQ
6XSHUYLVRU\&LUFXLW(QDEOHG
325B935(DVVHUWHG
)DVW2IIVHW&DQFHOODWLRQ(QDEOHG
6ORZRIIVHW&DQFHOODWLRQ(QDEOHG
'LJLWDO&RUHVWDUW
%$1'*$395(*DGMXVW
,QLWLDOL]H5HJLVWHUVWR'HIDXOW
26&VWDUW
26&$GMXVW
63,IXQFWLRQVWDUW
95(* S9UHDFKHG
Power-on phase and initialization AIS1120SX / AIS2120SX
32/58 DocID028312 Rev 3
3.2 Phase1 (T1): Power-up timing
The power domain block diagram is shown in section 1.1.11. Power-up timing and sequence
are shown in Figure 18. Once VDD has ramped up, VPRE follows that. After VPRE reaches
a threshold value, internal signal nPOR_VPRE is asserted. The signal resets the EEPROM
registers. Therefore, EEPROM settings are ready for bandgap and regulator output
(VREG). Then, another POR circuit will monitor the output VREG. If it reaches a target
threshold, nPOR will be asserted. nPOR is used to reset all the registers of the main digital
core.
The device waits for regulator and bandgap to be at appropriate levels (regulator >2.6 V,
bandgap >1.1 V) before it starts executing its state machine (starting with EEPROM
download). The device starts its state machine approximately 5 μs (deglitch time) after the
bandgap and regulator reach their threshold levels.
Figure 18. Power-up timing
Table 30 shows the typical timing delay for each block:
Table 30. Timing delay by block
Timing Condition (VDD rising time of 100µs) Delay [μs]
tpre VPRE settles down to 90% 90
tBG VREF settles down to 90% 250
tPOR 190
tREG VREG settles down to 90% 250
tEEPROM 450
tOSC 195
DocID028312 Rev 3 33/58
AIS1120SX / AIS2120SX Power-on phase and initialization
58
3.3 Phase2 (T2): configuration
Once nPOR is asserted, the device will initialize the registers to the default settings and
start ASIC diagnostic procedure. If an error is detected, the corresponding error bit will be
set in DEVSTAT register. This phase is characterized by (ST1:ST0 = "00").
Figure 19. Phase 2 state flow
The diagnostic procedure in this stage includes cap-loss detection, charge pump check for
self-test, and VREG/VCC low-voltage monitoring. Cap-loss mode is initiated after EEPROM
download where the regulator is disabled 1 μs. Without a load cap the regulator voltage
would fall below the UV threshold and the device latches it as cap-loss flag.
Figure 20. Cap-loss detection
Power-on phase and initialization AIS1120SX / AIS2120SX
34/58 DocID028312 Rev 3
3.4 Phase 3 (T3): fast offset cancellation
After the configuration/initialization phase (t2), the device will start fast offset cancellation
which takes max. 345 ms. Also there is 6 ms window for self-test calibration. During phase 3
(t3), sensor data is still available through the SPI but the ND flag (see Section 5.1.1:
Acceleration commands) will be used and ST1:ST0 is still kept "00" if no error occurs until
phase T4.
Figure 21. Phase 3 state flow
3.5 Phase 4 (T4): test phase
After phase 3 the device is still in the programming phase. Offset is close to 0. This phase is
characterized by (ST1:ST0 = "10"). The device can be programmed to execute the active
self-test. The actuation of transducer will be controlled through SPI command.
The active self-test applies an electrostatic force to the mechanical sensor. When the self-
test mode is activated, the voltage between the rotor and stator is changed. This generates
an attractive electrostatic force and causes the rotor to move towards the stator. The
displacement of the rotor will be measured at the output of the ADC.
Note: For the 2-axis version the self-test has to be executed sequentially.
When starting channel X self-test:
a) Channel X acceleration command will read channel X self-test value
b) Channel Y acceleration command will read temperature sensor value for self-test
temperature compensation algorithm.
When starting channel Y self-test:
a) Channel X acceleration command will read temperature sensor value for self-test
temperature compensation algorithm.
b) Channel Y acceleration command will read channel Y self-test value
The acceleration data is given in 14-bit format (bit 25-12 of SDO data frame). Its MSB (D13)
represents the sign bit and the negative value is in two's complementary format.
DocID028312 Rev 3 35/58
AIS1120SX / AIS2120SX Power-on phase and initialization
58
When configured/read as a temperature sensor value, the 14-bit output is unsigned data. Its
value could be estimated as:
ADC_out = -16 x (Temp - 25) + 7280
The following table shows a few examples of temperature sensor data.
Temperature compensation is only enabled during the active self-test phase.
3.6 Phase 5 (T5): normal operation
After the programming phase the ECU will set the End-of-Initialization (EOI) bit and the
device will start normal operation. ST1:ST0 is switched to "01".
Table 31. Temperature sensor data example
Temp. (°C) D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
-40 10000010000000
25 01110001110000
105 01011101110000
Mechanical and electrical specifications AIS1120SX / AIS2120SX
36/58 DocID028312 Rev 3
4 Mechanical and electrical specifications
4.1 Mechanical characteristics
3.13 V VDD 3.47 V, -40°C TOP 105°C, acceleration = 0 g, over lifetime, unless
otherwise noted.
Table 32. Mechanical characteristics
Symbol Parameter Test conditions Min. Typ. Max. Unit
FS Full-scale range(1) Offset cancellation ON ±114 ±120 g
S0Sensitivity 68 LSB/g
SESensitivity Error
VDD = 3.3 V
T = 25°C
Frequency = 0 Hz
At time t = 0
Including ratiometric error
-5 +5 %
SRE Sensitivity ratiometricity error VDD = 3.6 V to PD
threshold -1 +1 %
TCSo
Sensitivity change vs
temperature -40°C TOP 105°C ±0.02 LSB/g/°C
SO_drift Sensitivity drift Over lifetime 1 %
DNL Differential non linearity 4 LSB
Off_Raw1Zero-g level offset(2)
Including ratiometric
error, excluding noise
effects, offset cxl disabled
-680 680 LSB
Off_Cxl1Zero-g level offset
Including ratiometric
error, excluding noise
effects, offset cxl enabled
-2 2 LSB
Off_Mon_
Th Offset monitor threshold Signed value -1020 1020 LSB
Off_Mon_
HdD Offset monitor Headroom -400 400 LSB
NL Non linearity of sensitivity(1) Best fit straight line +2 % FS
CrAx Cross axis(1) Package alignment error -5 +5 %
Cut_Off MEMS cutoff frequency (-3 dB) 13.7 15.86 18.94 kHz
F0MEMS resonant frequency 10.25 11.34 12.45 kHz
Gclip g-cell clipping 951 1108 1231 g
Top Operating temperature range -40 +105 °C
1. Guaranteed by design, verified at characterization level
2. 14-bit data, equivalent to ±170 LSB on 12 bits
DocID028312 Rev 3 37/58
AIS1120SX / AIS2120SX Mechanical and electrical specifications
58
4.2 Electrical characteristics
3.13 V VDD 3.47 V, -40°C TOP 105°C, acceleration = 0 g, over lifetime, unless
otherwise noted.
Table 33. Electrical characteristics
Symbol Parameter Test conditions Min. Typ. Max. Unit
VDD Supply voltage -5% 3.3 +5% V
Vreg -5% 2.8 +5% V
ISS Supply current Single axis 3 6 mA
ISD Supply current Dual axis 4 8 mA
Offset cancellation(1)
AVG Averaging period -5% 1024 +5% ms
Off_CVU Offset correction value per
update -1 +1 LSb
Off_DSPE Default startup phase enable
time
Time to guarantee the
internal offset is removed 317 334 351(2) ms
Off_Fast Fast offset cancellation -5% 8000 +5% LSb/s
Off_Slow Slow offset cancellation 0.8 1 1.2 LSb/s
Self-test
ST Self-test output change VDD = 3.30 V, T = 25°C,
Frequency = 0 Hz 1632 LSb
ST_TOL Self-test tolerance Across temp, over life time -15 15 %
ST_TON_
TOFF Self-test turn-on/off time Specification reached for a
400 Hz 3-pole filter 2ms
Noise
Nois_RMS Output noise RMS +4 LSb
Nois_P2P Output noise peak-to-peak +16 LSb
Angular acceleration sensitivity(3)
AAS Angular acceleration sensitivity 5*10-6 g*s2/ rad
SDO pin load(4)
LOAD Capacitive load drive 60 pF
Oscillator frequency
Fosc Oscillator frequency -5% 16.384 +5% MHz
Power supply rejection ratio
PSRR Power supply RR 1*Fsw, 2*Fsw, 3*Fsw,
4*Fsw, 5*Fsw, 6*Fsw 0.5 LSb/mV
Mechanical and electrical specifications AIS1120SX / AIS2120SX
38/58 DocID028312 Rev 3
Clipping
Dig_Clip Digital output -5% 120 +5% g
Low-pass filter
Cut_off Cut-off frequency (400 Hz filter) 370 400 430 Hz
1. Offset cancellation can vary with oscillator frequency
2. Internal offset is removed in max. 345 ms; another 6 ms are needed for self-test calibration. During this phase, SPI will
report ND flag if acceleration command being sent.
3. Based on simulation and characterization
4. Guaranteed by design
Table 33. Electrical characteristics (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
DocID028312 Rev 3 39/58
AIS1120SX / AIS2120SX Mechanical and electrical specifications
58
4.3 Digital blocks
Table 34. Digital range and levels
Symbol Parameter Conditions Min Typ Max Unit
Bit ADC resolution 14 bit
ACC_RNG Range for acceleration data -8192 +8191 LSb
Out_Hi Logic output high (SDO pin) Max static current = 2 mA VDD-0.6 VDD V
Out_Low Logic output low (SDO pin) Max static current = 2 mA 0.0 0.6 V
In_Hi Logic input high (all inputs) 2 VDD V
In_Low Logic input low (all inputs) 0.0 1 V
CIN1
Input capacitance at high impedence
(SDO pin) 2pF
CIN2 Input capacitance at CS/SDI/SCK pin 10 pF
I_Pull_D Internal pull-down current (SDI, SCK) Vin = Vcc to 0 V 10 27 50 μA
I_Pull_U Internal pull-up current (CS) Vin = Vcc to 0 V 10 27 50 μA
UVT_VDD Undervoltage threshold (VDD) 2.7 2.9 3.1 V
UVT_VREG Undervoltage threshold (VREG) 2.1 2.3 2.5 V
UV_DET1 Under/overvoltage detection time VDD below threshold
VREG below threshold
6
1.5
25
5
40
10.5
μs
μs
Hard_Res Hard reset threshold (VREG) 1.8 2.1 2.2 V
Res_t Reset activation time After SPI command 1.5 2 μs
Rec_t Reset recovery time Reset to first SPI
access 1ms
Mechanical and electrical specifications AIS1120SX / AIS2120SX
40/58 DocID028312 Rev 3
Table 37. 1600 Hz digital filter
Table 35. 400 Hz digital filter
Symbol Parameter Conditions Min Typ Max Unit
Signal delay(1)
Overall signal delay 0.84 0.976 1.0 ms
Sampling rate(1)
Interpolation output 256 kHz
1. Based on simulations
Table 36. 800 Hz digital filter
Symbol Parameter Conditions Min Typ Max Unit
Signal delay(1)
Overall signal delay 0.4 0.507 0.6 ms
Sampling rate(1)
Interpolation output 256 kHz
1. Based on simulations
Symbol Parameter Conditions Min Typ Max Unit
Signal delay(1)
1. Based on simulations
Overall signal delay 0.19 0.273 0.32 ms
Sampling rate(1)
Interpolation output 256 kHz
DocID028312 Rev 3 41/58
AIS1120SX / AIS2120SX Mechanical and electrical specifications
58
4.4 Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
This device is sensitive to mechanical shock, improper handling can cause
permanent damage to the part.
This device is sensitive to electrostatic discharge (ESD), improper handling can
cause permanent damage to the part.
4.5 Factory calibration
The IC interface is factory calibrated for sensitivity (S0) and Zero-g level (Off_Raw).
The trimming values are stored inside the device in a non-volatile structure. When the
device is turned on, the trimming parameters are downloaded into the registers to be
employed during normal operation which allows the device to be used without further cali-
bration.
Table 38. Absolute maximum ratings
Symbol Ratings Value Unit
VDD Supply voltage -0.3 to 7.0(1)
1. Not for continued operation
V
VREG -03. to 3.0 V
SCK,SDI -0.3 to VDD V
AUNP Mechanical shock with device unpowered 2000 g
hDROP Drop shock survivability (concrete floor) 1.2 m
ESD
ESD protection HBM (low-voltage pins) 2 kV
CDM 750 V
TSTG Storage temperature range -55 to +150 °C
TjOperating temperature range -40 to +105 °C
Interface description AIS1120SX / AIS2120SX
42/58 DocID028312 Rev 3
5 Interface description
The AIS1120SX / AIS2120SX provides a bi-directional 3.3 V SPI interface for
communication with the MCU at a 32-bit data word size. Each transfer consists of two
frames of 32 clocks per frame.
The sensor always operates in slave mode whereas the MCU provides the master function.
The interface consists of 4 ports as shown below.
Figure 22. SPI
Serial clock (SCK): input for master clock signal. This clock determines the speed of data
transfer and all receiving and sending is done synchronous to this clock.
Chip Select (CS): CS activates the SPI interface. As long as CS is high, the IC does not
accept the clock signal or data and the output SDO is in high impedance. Whenever CS is in
a low logic state, data can be transferred from and to the microcontroller.
Serial Input (SDI): accelerometer data in is latched by the rising edge of SCL (see
Figure 23: SPI timings).
Serial Output (SDO): accelerometer data out is set by the falling edge of SCL (see
Figure 23: SPI timings).
5.1 32-bit communication protocol
The communication between slave and master is transmitted by 32-bit data word, MSB first.
An off-frame protocol is used meaning that each transfer is completed through a sequence
of 2 phases.
The answer of a given request is sent within the very next frame.
The acceleration data for the x-axis, y-axis channel will be frozen at the rising edge of CS of
the Request and submitted during the Response (see Figure 23).
DocID028312 Rev 3 43/58
AIS1120SX / AIS2120SX Interface description
58
Figure 23. SPI timings
CS is the Chip Select and it is controlled by the SPI master. It goes low at the start of the
transmission and goes back high at the end of a phase. SCL is the Serial port Clock and it is
controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI is
Serial Data Input and SDO is Serial Data Output. SDI is captured at the rising edge of SCL
and SDO is driven at the falling edge of SCL.
The SPI instructions used can be subdivided into two classes, acceleration and non-
acceleration commands.
5.1.1 Acceleration commands
These commands are used to request sensor data for channel X or Y. The acceleration data
is given in 14-bit format (bit 25-12 of SDO data frame). The MSB (D13) represents the sign
bit and the negative value is in two's complementary format.
The following table shows a few examples of full range and 0 g offset:
Table 39. Acceleration data example
Each 32-bit frame can request one of two channels (X or Y), see definition of bits CH1:CH0.
00 x data
01 y data
Accel
[g]D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
120.4 01111111111111
-120.5 10000000000000
0.015 00000000000001
-0.015 11111111111111
Interface description AIS1120SX / AIS2120SX
44/58 DocID028312 Rev 3
The format of the acceleration commands is shown below.
Figure 24. Acceleration commands
The function of the individual bits of SDI and SDO is shown in Table 40 and Table 41.
Table 40. Acceleration commands function of SDI bits
Name Bit position Description Definition
CH1:CH0 [31:30] Channel select
Sensor channel source for data:
00: X-data (CH1)
01: Y -data (CH2)
10: CH3
11: CH4
SEN 29 SEN bit
Identifies sensor data request:
1: sensor data
0: non-sensor data
P 28 Parity bit Odd parity bit, cover bit 31-8
Not used [27:8] N/A Always 0
C7:C0 [7:0] CRC CRC bits for SDI
Table 41. Acceleration commands function of SDO bits
Name Bit position Description Definition
SEN 31 SEN bit
Identifies sensor data request:
1: sensor data
0: non-sensor data
CH1-CH0 [30:29] Channel select
Sensor channel source for data:
00: X-data (CH1)
01: Y -data (CH2)
10: CH3
11: CH4
P 28 Parity bit Odd parity bit, cover bit 31-8
DocID028312 Rev 3 45/58
AIS1120SX / AIS2120SX Interface description
58
Error codes are to be interpreted as follows:
EEPROM Error (EE): any error related to internal EEPROM e.g. mismatch of internal CRC.
SPI Error (SE): any violation of SPI format e.g. incorrect number of clocks during the frame,
or parity mismatch of SDI, or CRC mismatch of SDI.
Request Error (RE): set when unexpected or invalid command is received by sensor,
locked registers are read or written during any undefined state of sensor.
Condition Not Correct (CNC): set when data for undefined channel (for single axis
sensor), CH3 or CH4 are requested.
No Data available (ND): set when data is requested during power-up sequence (cap-
loss/charge pump/fast offset cancel).
X channel Hardware Error (X_HE): Set when there is cap-loss error, charge pump error,
VDD_low, VREG_low or X offset cancel saturate (after EOI) occurs.
Y channel Hardware Error (Y_HE): Set when there is cap loss error, charge pump error,
VDD_low, VREG_low or Y offset cancel saturate (after EOI) occurs.
Test mode (TE): Set when the part is in test mode.
Priority of error codes: EE (Highest) -> SE -> RE -> CNC -> ND -> HE -> TE (lowest)
ST1:ST0 [27:26] Status
Type of data:
00: Initialization
01: Normal mode
10: Self-test mode
11: Error data
D13:D0 [25:12] Data Sensor data / self-test data (14 bit)
SF3-SF0 [11:8] Status flag bits
0000: No error
0001: EEPROM Error (EE)
0010: SPI Error (SE)
0011: Request Error (RE)
0100: Condition Not Correct (CNC)
0101: No Data available (ND)
0110: Hardware Error (HE)
1000: ADC saturation error (AS)
1111: In test mode (TE)
C7:C0 [7:0] CRC CRC error bits for SDO
Table 42. Error codes
ST1:ST0 SF flags
11 EE = 0001 NVM CRC error
11 SE = 0010 frame CRC error
11 RE = 0011 request error (register 03, bit4 shows this error also)
Table 41. Acceleration commands function of SDO bits (continued)
Name Bit position Description Definition
Interface description AIS1120SX / AIS2120SX
46/58 DocID028312 Rev 3
Table 43 provides some examples of SDO bit sequence interpretation.
Notes:
1.Once the device finishes fast offset cancellation (and self-test calibration), it automatically
enters into the programming phase (ST1:ST0 status "10") until the EOI command has been
sent. During this phase, if there is not any self-test initialization command from SPI, 0 g in
self-test phase on both channels could be read from the acceleration commands.
2.When starting channel X self-test:
a.Channel X acceleration command will read channel X self-test value
b.Channel Y acceleration command will read temperature sensor value for self-test
temperature compensation algorithm.
3.When starting channel Y self-test:
c.Channel X acceleration command will read temperature sensor value for self-test
temperature compensation algorithm.
d.Channel Y acceleration command will read channel Y self-test value
11 CNC = 0100 condition not correct error
11 ND = 0101 no data error
11 HE = 0110 (cap loss error + charge pump error + VDD undervoltage +
VREG undervoltage + VDD overvoltage + VREG overvoltage + SLOW
offset max)
00 AS = 1000 (ADC internal > 160G)
Table 43. SDO bit examples
31 30 29 28 27 26 [25:12] [11:8] [7:0] Definition
SEN CH1 CH0 P ST1 ST2 D11:D2/error SF3:SF0 CRC Device status
1 0 0 0 0 X, Init no ST 0101 CRC INIT, self test off
1 0 1 0 0 Y, Init no ST 0101 CRC INIT, self test off
1 0 0 0 1 X data 0000 CRC Normal mode
1 0 1 0 1 Y data 0000 CRC Normal mode
1 0 0 1 0 X data 0000 CRC Self-test mode
1 0 1 1 0 Y data 0000 CRC Self-test mode
1 0 0 1 1 X data Status flag CRC Error response
1 0 1 1 1 Y data Status flag CRC Error response
Table 42. Error codes (continued)
DocID028312 Rev 3 47/58
AIS1120SX / AIS2120SX Interface description
58
5.1.2 Non-acceleration commands
These commands are used to write/read control and status registers.
Figure 25. Non-acceleration commands
The function of the individual bits of SDI and SDO are shown in Table 44 and Table 45.
Table 44. Non-acceleration command function of SDI bits
Name Bit position Description Definition
OP1:OP0 [31:30] Opcode
Operation type:
00: N/A
01: Write
10: N/A
11: Read
SEN 29 SEN bit
Sensor data request type:
1: sensor data
0: non-sensor data
P 28 Parity bit Odd parity bit, cover bit 31-8
Not used [27:26] N/A Always 0
A4:A0 [25:21] Address Register address for R/W operations
D7:D0 [20:13] Data Data for write
Not used [12:8] N/A Always 0
C7:C0 [7:0] CRC CRC bits for SDI
Interface description AIS1120SX / AIS2120SX
48/58 DocID028312 Rev 3
Table 45. Non-acceleration commands function of SDO bits
Error codes are to be interpreted as follows:
EEPROM Error (EE): any error related to internal EEPROM e.g. mismatch of internal CRC.
SPI Error (SE): any violation of SPI format e.g. incorrect number of clocks during the frame,
parity mismatch of SDI, or CRC mismatch of SDI.
Request Error (RE): set when unexpected or invalid command is received by sensor,
locked registers are read or written during any undefined state of sensor.
Test mode (TE): set when the part is in test mode
Priority of error codes: EE (Highest) -> SE -> RE -> TE (lowest)
5.1.3 SPI CRC polynomial
To check the integrity of the sensor signals (SO) and commands (SI) to the sensor, an 8-bit
CRC (Cyclic Redundancy Check, Baicheva C2) is used.
The applied polynomial is: X8+X5+X3+X2+X+1 = 0x97
with:
HD = 4 for 32-bit data
Initial value = 0000 0000b
Target value = 0x00
Name Bit position Description Definition
SEN 31 SEN bit
Sensor data request type:
1: sensor data
0: non-sensor data
OP1:OP0 [30:29] Opcode
Copied from SDI request if accepted
00: N/A
01: Write
10: N/A
11: Read
P 28 Parity bit Odd parity bit, cover bit 31-8
Not used [27:26] N/A Always 0
A4:A0 25:21 Address Register address for R/W operations
D7:D0 20:13 Data Read data / error code
Not used 12 N/A Always 0
SF3:SF0 [11:8] Status flag bits
0000: No error
0001: EEPROM Error (EE)
0010: SPI Error (SE)
0011: Request Error (RE)
1111: In test mode (TE)
C7:C0 [7:0] CRC CRC bits for SDO
DocID028312 Rev 3 49/58
AIS1120SX / AIS2120SX Interface description
58
5.2 32-bit SPI bit information
Table 47. 32-bit SPI command: bits from 15 to 0
Table 46. 32-bit SPI command: bits from 31 to 16
Acceleration
BIT 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
SDI CH1 CH0 SEN P 0 0 0 0 0 0 0 0 0 0 0 0
SDO SEN CH1 CH0 P ST1 ST0 D13 D12 D1
1D10 D9 D8 D7 D6 D5 D4
Non-acceleration
BIT 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
SDI OP1 OP0 SEN P 0 0 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3
SDO SEN OP1 OP0 P 0 0 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3
Acceleration
BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SDI 0 0 0 0 0 0 0 0 C7 C6 C5 C4 C3 C2 C1 C0
SDO D3 D2 D1 D0 SF3 SF2 SF1 SF0 C7 C6 C5 C4 C3 C2 C1 C0
Non-acceleration
BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SDI D2D1 D0 0 0 0 0 0 C7C6C5C4C3C2C1C0
SDO D2 D1 D0 0 SF3 SF2 SF1 SF0 C7 C6 C5 C4 C3 C2 C1 C0
Table 48. Bit decoding
CH[1:0] OP[1:0] SEN ST[1:0] SF[3:0]
000 X Data N/A Non-sensor Initialization No error
001 Y Data Write Sensor Normal mode EEPROM error
010 N/A N/A Selt-test mode SPI error (SE)
011 N/A Read Error data Request error (RE)
100 Condition not correct (CNC)
101 No data (ND)
110 Hardware error (HE)
1000 ADC saturation (AS)
1111 In test mode (TE)
Interface description AIS1120SX / AIS2120SX
50/58 DocID028312 Rev 3
5.3 Timing parameters
Figure 26. SPI timing parameters
Figure 27. Additional SPI timing parameters
DocID028312 Rev 3 51/58
AIS1120SX / AIS2120SX Interface description
58
Timing reference: 0.2 Vs - 0.8 Vs (Vs = VVDDD-DGND)
Explanation:
c) Q: SCK stable (low or high) before CS falling
d) P: SCK stable (low or high) after CS rising
Table 49. SPI timing table
No. Parameter Symbol Min. Max. Unit
- SPI operating frequency fOP - 5 MHz
A Clock (SCK) high time tWSCKh 49 - ns
B Clock (SCK) low time tWSCKl 95 - ns
C SCK period tSCK 200 - ns
D Clock (SCK) and CS fall time tf5.5 50 ns
E Clock (SCK) and CS rise time tr5.5 50 ns
F Data input (MOSI) setup time tsu 10 - ns
G Data input (MOSI) hold time thi 10 - ns
H Data output (MISO) access time ta- 60 ns
I Data output (MISO) valid after SCK tv- 60 ns
K Data output (MISO) disable time tdis - 100 ns
L Enable (SS) lead time tlead 10 - ns
M Enable (SS) lag time tlag 25 - ns
N Sequential transfer delay ttd 1.9 - μs
P Clock enable time tCLE 10 - ns
Q Clock disable time tCLD 10 - ns
Interface description AIS1120SX / AIS2120SX
52/58 DocID028312 Rev 3
5.4 Error management
The device replies with an error response if one of the following errors has occurred:
Table 50. Error flags and description
Flags Description
REG_CTRL_0_WR_ERR ‘1’: when there is a request error writing the REG_CTRL_0(Address=0x00) register
LOSSCAP ‘1’: when there a loss of cap on VREG PAD (set only during power-up)
END_OF_PWRUP ‘1’: when power-up sequencer has finished initialization (completed charge pump test,
cap-loss test, fast offset cancel);
RST_ACTIVE ‘1’: when soft reset is issued
SPI_ERR ‘1’: when SPI error occurs
EEPROM_ERR ‘1’: when EEPROM error (e.g mismatch in CRC) occurs during power-up
OFF_CANC_CHY_ERR ‘1’: when offset cancellation error for CHY occur
OFF_CANC_CHX_ERR ‘1’: when offset cancellation error for CHX occurs
REG_CONFIG_WR_ERR ‘1’:when there is a request error writing the REG_CONFIG (Address=0x012) register
REG_CTRL_1_WR_ERR ‘1’: when there is a request error writing the REG_CTRL_1 (Address=0x01) register
A2D_SAT_CHY ‘1’: when A2D saturates for CHY
A2D_SAT_CHX ‘1’: when A2D saturates for CHX
CHARGE_PUMP_ERR ‘1’: when charge pump test fails at power-up
VREG_LOW_ERR ‘1’: when VREG falls below its LOW threshold
VREG_HIGH_ERR ‘1’: when VREG goes above its HIGH threshold
VDD_LOW_ERR ‘1’: when VDD falls below its LOW threshold
VDD_HIGH_ERR ‘1’: when VDD goes above its HIGH threshold
DocID028312 Rev 3 53/58
AIS1120SX / AIS2120SX Recommendations for operation
58
6 Recommendations for operation
1. It's recommended to power up VDD first, then provide SPI logic signals. This is
recommended to avoid the potential of powering the device via the SPI pins when VDD
is not in the specified operating range.
2. Recommended VDD ramp rate > 1 V/ms
3. It is recommended that all flags be reconfirmed with soft POR after power-up.
Package information AIS1120SX / AIS2120SX
54/58 DocID028312 Rev 3
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1 SOIC8 package information
Figure 28. SOIC8 package outline
B
DocID028312 Rev 3 55/58
AIS1120SX / AIS2120SX Package information
58
Figure 29. SOIC8 package marking
Table 51. SOIC8 package mechanical data
Ref.
Databook (mm)
Min. Typ. Max.
A 1.75
A1 0.10 0.25
A2 1.25
b 0.31 0.51
c 0.10 0.25
D 4.80 4.90 5.00
E 5.80 6.00 6.20
E1 3.80 3.90 4.00
e 1.27
h 0.25 0.50
L 0.40 1.27
L1 1.04
L2 0.25
k0 8°
ccc 0.10
Package information AIS1120SX / AIS2120SX
56/58 DocID028312 Rev 3
Figure 30. SOIC8 recommended footprint
B
DocID028312 Rev 3 57/58
AIS1120SX / AIS2120SX Revision history
58
8 Revision history
Table 52. Revision history
Date Revision Changes
18-Sep-2015 1 Initial release
19-Aug-2016 2 Updated Section 5.1.3: SPI CRC polynomial
20-Jan-2017 3
Document status promoted to production data
Updated SDO pin load in Table 33: Electrical characteristics
Updated tSCK and tv in Table 49: SPI timing table
AIS1120SX / AIS2120SX
58/58 DocID028312 Rev 3
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved