Type 251
TANTALUM SOLID
ELECTROLYTIC CAPACITOR
Face-down terminal structure
PRODUCTS DATA SHEET
No. P-251-007
DATE 2008-10
RoHS COMPLIANT
LEAD FREE
−2−
FEATURES
RATING
To meet the users’ demands for smaller and high-function portable information devices, we developed compact and low profile tantalum
capacitors with appropriately designed mounting area for high-density mounting ahead of other companies.
The capacitors are widely used in portable information and telecommunication equipment, such as mobile phones and PHS, digital video
cameras, digital still cameras and portable AV equipment. The tantalum capacitors designed for high-density mounting will considerably
contribute to miniaturization and improvement of performance of these portable multimedia devices.
1. Using the face-down terminal structure makes it possible to design the land in almost the same size as the terminal. As the result of this, parts
can be downsized, and the mounting area can be reduced to 1/2 to 1/3 of that required by conventional structures.
2. Type 251 in size 1005 to 3528L are applicable to a wide capacitance range from 1 to 330 µF.
3. This type of capacitors is suitable for ultra miniaturized, such as DVC, DSC and PCMCIA cards, and high-function compact portable devices,
such as mobile phones and PHS.
4. Case M (face-down terminal type 1608) and case S (face-down terminal type 2012) of this type are listed in the Surface Mounting Device-
Outline Registration System of Electronic Device Registration Center of JEITA.
5. Lead-free and RoHS Compliant.
DIMENSIONS
Case Code EIA Code Max. height L ± 0.1 W ± 0.1 T ± 0.1 P1 ± 0.1 P2 ± 0.1 C ± 0.1
(mm)[STANDARD PRODUCTS]
L
P1P1P2
W
T
251 M 4001 107 M R 0 S
TYPE SERIES RATED
VOLTAGE
CAPACITANCE CAPACITANCE
TOLERANCE
STYLE
OF REELED
PACKAGE
HEIGHT CASE CODE
ORDERING INFORMATION
C
Capacitance (2)
[Case S (2012)]
MARKING
Rated Voltage (1)
Polarity
(anode notation)
[Case M (1608)]
Polarity (anode notation)
Mark anode notation only.
[Case U (1005)]
[Case A (3216L), Case B (3528L)]
g
U
M
S
A
B
0.55
0.9
1.3
1.2
1.0
1.3
1.2
1.0
0.9
1.2
1.0
Blank
Blank
3
2
0
3
2
0
9
2
0
Max. height
(mm)
Case
code
Height
code
Item
Category Temperature Range (Operating Temperature Range)
Rated Temperature (Max. Operating Temp. at Rated Voltage)
Rated Voltage
Capacitance
Capacitance Tolerance
Failure Rate Level
To be used at derated voltage when temperature
exceeds 85°C (At 125°C, 2/3 × rated voltage)
See CATALOG NUMBERS AND RATING OF STANDARD
PRODUCTS or LOW PROFILE PRODUCTS.
85°C, rated voltage, 1000 hrs., Circuit resistance of 0.5 /V
Rating
-55 ~ +125°C
+85°C
2.0 ~ 35 VDC
1.0 ~ 330 µF
± 20%(M), ± 10%(K)
1%/1000 h
Remarks
Rated voltage
2 VDC
2.5 VDC
3 VDC
4 VDC
6.3 VDC
10 VDC
16 VDC
20 VDC
25 VDC
35 VDC
Marking
2001
2501
3001
4001
6301
1002
1602
2002
2502
3502
Marking
105
155
225
335
475
685
106
156
226
336
476
686
107
157
227
337
Capacitance
1 µF
1.5 µF
2.2 µF
3.3 µF
4.7 µF
6.8 µF
10 µF
15 µF
22 µF
33 µF
47 µF
68 µF
100 µF
150 µF
220 µF
330 µF
Code
R
(Taping specification)
Reel size
f180
Rated voltage (VDC)
Rated voltage code
4
G
2.5
e
6.3
J
10
A
16
C
20
D
25
E
35
V
(1) The rated voltage is indicated with one alphabetic letter.
The rated voltage of case A, B is indicated with a small letter
g (4 V) or j (6.3 V).
EIA Code
1005
1608
2012
3216L
3528L
Case code
U
M
S
A
B
Capacitance (µF)
Code
1
A
1.5
E
2.2
J
3.3
N
4.7
S
6.8
W
To indicate a capacitance not listed above, _ (1/10), _ (10 times)
or = (100 times) is used. (Ex.: J indicates 1/10 of J (2.2), 0.22).
(2) The capacitance is indicated with one alphabetic letter or the
alphabetic letter with an overbar or underbar.
A6
1.0
A7
10
A8
100
E6
1.5
E7
15
E8
150
J6
2.2
J7
22
J8
220
N6
3.3
N7
33
N8
330
S6
4.7
S7
47
S8
470
W6
6.8
W7
68
W8
680
(3) The capacitance is indicated with one alphabetic letter and one
numeral.
Code
Capacitance (µF)
Code
Capacitance (µF)
Code
Capacitance (µF)
Anode notation
Feed hole: –
U
M
S
A
B
1005
1608
2012
3216L
3528L
0.55
0.9
1.2
1.2
1.2
1.05 ± 0.05
1.6
2.0
3.2
3.5
0.55 ± 0.05
0.85
1.25
1.6
2.8
0.5 ± 0.05
0.8
1.1
1.1
1.1
0.3
0.5
0.5
0.8
0.8
0.45
0.65
1.05
1.65
1.95
0.4
0.7
0.9
1.2
2.2
Case Code EIA Code Max. height L ± 0.1 W ± 0.1 T ± 0.1 P1 ± 0.1 P2 ± 0.1 C ± 0.1
(mm)[LOW PROFILE PRODUCTS]
S
A
B
2012
3216L
3528L
1.0
1.0
1.0
2.0
3.2
3.5
1.25
1.6
2.8
0.9
0.9
0.9
0.5
0.8
0.8
1.05
1.65
1.95
0.9
1.2
2.2
The component height varies according to rating. For the details, see CATALOG NUMBERS AND RATING OF STANDARD
PRODUCTS, LOW PROFILE PRODUCTS or CUSTOM PRODUCTS.
Case Code EIA Code Max. height L ± 0.1 W ± 0.1 T ± 0.1 P1 ± 0.1 P2 ± 0.1 C ± 0.1
(mm)[CUSTOM PRODUCTS]
S
A
2012
3216L
1.3
0.9
1.3
2.0
3.2
3.2
1.25
1.6
1.6
1.2
0.8
1.2
0.5
0.8
0.8
1.05
1.65
1.65
0.9
1.2
1.2
Capacitance (3)
Rated Voltage (1)
Capacitance Tolerance
Polarity (anode notation)
Withoutbar:±20%
Withbar:±10%
Capacitance Tolerance
Withoutbar:±20%
Withbar:±10%
Rated Voltage (1)
Polarity (anode notation)
−3−
CATALOG NUMBERS AND RATING OF STANDARD PRODUCTS
CATALOG NUMBERS AND RATING OF LOW PROFILE PRODUCTS
251 M 2001 475 M _
2
U
251 M 2001 106 M _
2
U
251 M 2501 106 M _
2
U
251 M 2501 107 M _
2
2S
251 M 2501 157 M _
2
2S
251 M 2501 227 M _
2
2S
251 M 2501 337 M _
2
2A
251 M 3001 225 M _
2
U
251 M 3001 106 M _
2
U
251 M 4001 105 M _
2
M
251 M 4001 155 M _
2
M
251 M 4001 225 M _
2
M
251 M 4001 335 M _
2
M
251 M 4001 475 _
1
_
2
U
251 M 4001 475 M _
2
M
251 M 4001 685 M _
2
U
251 M 4001 685 M _
2
M
251 M 4001 106 M _
2
U
251 M 4001 106 M _
2
M
251 M 4001 156 M _
2
M
251 M 4001 226 _
1
_
2
M
251 M 4001 336 M _
2
M
251 M 4001 476 M _
2
2S
251 M 4001 686 M _
2
2S
251 M 4001 107 M _
2
2S
251 M 4001 157 M _
2
2A
251 M 4001 227 _
1
_
2
2A
251 M 4001 227 M _
2
2B
251 M 6301 105 _
1
_
2
U
251 M 6301 105 M _
2
M
251 M 6301 155 M _
2
M
251 M 6301 225 M _
2
U
251 M 6301 225 M _
2
M
251 M 6301 335 M _
2
U
251 M 6301 335 M _
2
M
251 M 6301 475 M _
2
U
251 M 6301 475 M _
2
M
251 M 6301 685 M _
2
M
251 M 6301 106 M _
2
M
251 M 6301 156 M _
2
M
251 M 6301 226 M _
2
M
251 M 6301 226 M _
2
2S
251 M 6301 336 M _
2
2S
251 M 6301 476 M _
2
2S
251 M 6301 686 M _
2
2S
251 M 6301 107 M _
2
2A
251 M 6301 157 M _
2
2B
251 M 1002 105 _
1
_
2
U
251 M 1002 105 M _
2
M
251 M 1002 155 M _
2
U
251 M 1002 155 M _
2
M
251 M 1002 225 M _
2
U
251 M 1002 225 M _
2
M
251 M 1002 335 M _
2
M
251 M 1002 475 M _
2
M
251 M 1002 685 M _
2
M
251 M 1002 106 M _
2
M
251 M 1002 106 M _
2
2S
251 M 1002 156 M _
2
2S
251 M 1002 226 M _
2
2S
251 M 1002 336 M _
2
2A
251 M 1002 476 M _
2
2A
251 M 1002 107 M _
2
2B
251 M 1602 105 M _
2
M
251 M 1602 155 M _
2
M
251 M 1602 225 M _
2
M
251 M 1602 685 M _
2
2S
251 M 1602 106 M _
2
2S
251 M 2002 105 M _
2
2S
251 M 2002 155 M _
2
2S
251 M 2002 225 M _
2
2S
251 M 2002 335 M _
2
2A
251 M 2002 475 M _
2
2A
251 M 2502 105 M _
2
2S
251 M 2502 155 M _
2
2S
251 M 2502 225 M _
2
2A
251 M 2502 335 M _
2
2A
251 M 2502 475 M _
2
2A
251 M 3502 105 M _
2
2S
251 M 3502 225 M _
2
2A
2
2.5
3
4
6.3
10
16
20
25
35
2.3
2.8
3.45
4.6
7.2
11.5
18.4
23
28.7
40.2
1.5
1.9
2.3
3
4.8
7.6
12.2
15.3
19.1
26.8
4.7
10
10
100
150
220
330
2.2
10
1
1.5
2.2
3.3
4.7
4.7
6.8
6.8
10
10
15
22
33
47
68
100
150
220
220
1
1
1.5
2.2
2.2
3.3
3.3
4.7
4.7
6.8
10
15
22
22
33
47
68
100
150
1
1
1.5
1.5
2.2
2.2
3.3
4.7
6.8
10
10
15
22
33
47
100
1
1.5
2.2
6.8
10
1
1.5
2.2
3.3
4.7
1
1.5
2.2
3.3
4.7
1
2.2
20
20
20
20
20
20
20
20
20
20
20
20
20
10,20
20
20
20
20
20
20
10,20
20
20
20
20
20
10,20
20
10,20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
10,20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
U
U
U
S
S
S
A
U
U
M
M
M
M
U
M
U
M
U
M
M
M
M
S
S
S
A
A
B
U
M
M
U
M
U
M
U
M
M
M
M
M
S
S
S
S
A
B
U
M
U
M
U
M
M
M
M
M
S
S
S
A
A
B
M
M
M
S
S
S
S
S
A
A
S
S
A
A
A
S
A
0.5
0.5
0.5
2.5
3.7
5.5
8.2
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.6
0.9
1.3
1.9
2.7
4.0
6.0
8.8
8.8
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.6
0.9
1.4
1.4
2.1
3.0
4.2
6.3
9.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.7
1.0
1.0
1.5
2.2
3.3
4.7
10
0.5
0.5
0.5
1.1
1.6
0.5
0.5
0.5
0.7
0.9
0.5
0.5
0.6
0.8
1.2
0.5
0.8
5
5
5
50
75
110
165
5
5
5
5
5
5
5
5
5
5
5
8
12
18
26
38
54
80
120
176
176
5
5
5
5
5
5
5
5
5
5
6
19
28
14
42
59
85
126
189
5
5
5
5
5
5
5
5
14
20
10
15
44
66
94
200
5
5
5
22
32
5
5
5
6.6
9.4
5
5
5.5
8
12
5
8
6.3
6.3
6.3
62
93
137
206
6.3
6.3
6.3
6.3
6.3
6.3
6.3
6.3
6.3
6.3
6.3
10
15
22
33
47
68
100
150
220
220
6.3
6.3
6.3
6.3
6.3
6.3
6.3
6.3
6.3
6.3
7.9
24
35
17
52
74
107
157
236
6.3
6.3
6.3
6.3
6.3
6.3
6.3
6.3
17
25
13
19
55
82
117
250
6.3
6.3
6.3
27
40
6.3
6.3
6.3
8.3
12
6.3
6.3
6.9
10
15
6.3
9.6
0.36
0.45
0.45
0.40
0.60
0.18
0.45
0.16
0.36
0.12
0.36
0.15
0.45
0.15
0.30
0.40
0.30
0.40
0.48
0.32
0.18
0.16
0.18
0.16
0.30
0.16
0.36
0.12
0.15
0.30
0.40
0.30
0.36
0.28
0.18
0.16
0.18
0.16
0.18
0.16
0.12
0.30
0.16
0.30
0.24
0.28
0.20
0.16
0.14
0.10
0.12
0.12
0.10
0.12
0.12
0.15
0.15
0.20
0.30
0.06
0.15
0.08
0.12
0.06
0.12
0.08
0.15
0.08
0.20
0.106
0.20
0.15
0.20
0.24
0.16
0.06
0.08
0.06
0.08
0.10
0.08
0.12
0.06
0.08
0.20
0.15
0.18
0.14
0.06
0.08
0.06
0.08
0.06
0.08
0.06
0.20
0.08
0.15
0.12
0.14
0.10
0.08
0.10
0.05
0.06
0.06
0.05
0.06
0.24
0.30
0.30
0.36
0.40
0.12
0.30
0.16
0.24
0.12
0.24
0.15
0.30
0.15
0.30
0.32
0.12
0.16
0.12
0.16
0.20
0.16
0.24
0.12
0.15
0.30
0.32
0.28
0.12
0.16
0.12
0.16
0.12
0.16
0.12
0.30
0.16
0.30
0.24
0.28
0.20
0.16
0.10
0.10
0.12
0.12
0.10
0.12
0.24
0.30
0.30
0.36
0.40
0.12
0.30
0.16
0.24
0.12
0.24
0.15
0.30
0.15
0.30
0.32
0.12
0.16
0.12
0.16
0.20
0.16
0.24
0.12
0.15
0.30
0.32
0.28
0.12
0.16
0.12
0.16
0.12
0.16
0.12
0.30
0.16
0.30
0.24
0.28
0.20
0.16
0.12
0.10
0.12
0.12
0.10
0.12
-55°C20°C85°C125°C
C/C% C/C%
15
15
4
2
1
15
15
10
15
8
15
8
4
4
2
1
15
10
8
4
0.8
2
1
15
10
8
4
2
1
15
2
8
6
4
6
4
8
6
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-15/0
-15/0
-15/0
-15/0
-30/0
-15/0
-30/0
-15/0
-30/0
-15/0
-30/0
-15/0
-30/0
-15/0
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-15/0
-15/0
-30/0
-15/0
-30/0
-15/0
-30/0
-15/0
-15/0
-15/0
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-15/0
-30/0
-15/0
-30/0
-15/0
-15/0
-15/0
-30/0
-30/0
-15/0
-30/0
-30/0
-30/0
-30/0
-30/0
-15/0
-15/0
-15/0
-15/0
-30/0
-15/0
-15/0
-15/0
-15/0
-15/0
-15/0
-15/0
-15/0
-15/0
-15/0
-15/0
-15/0
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+10
0/+10
0/+10
0/+10
0/+20
0/+10
0/+20
0/+10
0/+20
0/+10
0/+20
0/+10
0/+20
0/+10
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+10
0/+10
0/+20
0/+10
0/+20
0/+10
0/+20
0/+10
0/+10
0/+10
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+10
0/+20
0/+10
0/+20
0/+10
0/+10
0/+10
0/+20
0/+20
0/+10
0/+20
0/+20
0/+20
0/+20
0/+20
0/+10
0/+10
0/+10
0/+10
0/+20
0/+10
0/+10
0/+10
0/+10
0/+10
0/+10
0/+10
0/+10
0/+10
0/+10
0/+10
0/+10
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+15
0/+15
0/+15
0/+15
0/+20
0/+15
0/+20
0/+15
0/+20
0/+15
0/+20
0/+15
0/+20
0/+15
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+15
0/+15
0/+20
0/+15
0/+20
0/+15
0/+20
0/+15
0/+15
0/+15
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+15
0/+20
0/+15
0/+20
0/+15
0/+15
0/+15
0/+20
0/+20
0/+15
0/+20
0/+20
0/+20
0/+20
0/+20
0/+15
0/+15
0/+15
0/+15
0/+20
0/+15
0/+15
0/+15
0/+15
0/+15
0/+15
0/+15
0/+15
0/+15
0/+15
0/+15
0/+15
Catalog number
(1) (2)
Rated
voltage
(VDC)
Capacitance
(µF)
ESR
Surge voltage
(VDC)
B
B
B
B
B
B
B
B
B
A
A
A
A
B
A
B
A
B
A
B
A
B
A
B
B
B
B
B
B
A
A
B
A
B
A
B
A
A
A
B
B
A
B
B
B
B
B
B
A
B
A
B
A
A
A
B
B
A
A
B
B
B
B
A
A
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
B
B
B
A
B
B
B
B
B
A
A
A
A
B
A
B
A
B
A
B
A
B
A
B
B
B
B
B
B
A
A
B
A
B
A
B
A
A
A
B
B
A
B
B
B
B
B
B
A
B
A
B
A
A
A
B
B
A
A
B
B
B
B
A
A
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 15
± 15
± 15
± 15
± 20
± 15
± 20
± 15
± 20
± 15
± 20
± 15
± 20
± 15
± 20
± 20
± 20
± 20
± 20
± 20
± 15
± 15
± 20
± 15
± 20
± 15
± 20
± 15
± 15
± 15
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 15
± 20
± 15
± 20
± 15
± 15
± 15
± 20
± 20
± 15
± 20
± 20
± 20
± 20
± 20
± 15
± 15
± 15
± 15
± 20
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 15
± 15
± 15
± 15
± 20
± 15
± 20
± 15
± 20
± 15
± 20
± 15
± 20
± 15
± 20
± 20
± 20
± 20
± 20
± 20
± 15
± 15
± 20
± 15
± 20
± 15
± 20
± 15
± 15
± 15
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 15
± 20
± 15
± 20
± 15
± 15
± 15
± 20
± 20
± 15
± 20
± 20
± 20
± 20
± 20
± 15
± 15
± 15
± 15
± 20
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
C/C
%
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 15
± 15
± 15
± 15
± 20
± 15
± 20
± 15
± 20
± 15
± 20
± 15
± 20
± 15
± 20
± 20
± 20
± 20
± 20
± 20
± 15
± 15
± 20
± 15
± 20
± 15
± 20
± 15
± 15
± 15
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 15
± 20
± 15
± 20
± 15
± 15
± 15
± 20
± 20
± 15
± 20
± 20
± 20
± 20
± 20
± 15
± 15
± 15
± 15
± 20
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 30
± 30
± 30
± 30
± 30
± 30
± 30
± 30
± 30
± 15
± 15
± 15
± 15
± 30
± 15
± 30
± 15
± 30
± 15
± 30
± 15
± 30
± 15
± 30
± 30
± 30
± 30
± 30
± 30
± 15
± 15
± 30
± 15
± 30
± 15
± 20
± 15
± 15
± 15
± 30
± 30
± 30
± 30
± 30
± 30
± 30
± 30
± 30
± 15
± 30
± 15
± 30
± 15
± 15
± 15
± 30
± 30
± 15
± 30
± 30
± 30
± 30
± 30
± 15
± 15
± 15
± 15
± 30
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
Resistance to
soldering heat
Rapid change of
temperature high
temperature/Moisture
Tolerance
(±%)
Case
code
Max. Dissipation factorLct. (µA)
100 kHz
Capacitance change
(C/C) (%)
October, 2008
Surge
Lct.
(3)
C/C
%
Lct.
(3)
Endurance
85°C
20°C85°C125°C-55°C85°C125°C
125°C
251 M 2501 107 M _
2
0S
251 M 4001 476 M _
2
0S
251 M 4001 686 M _
2
0S
251 M 4001 107 M _
2
0S
251 M 4001 107 M _
2
0A
251 M 4001 157 M _
2
0A
251 M 4001 227 M _
2
0A
251 M 6301 226 M _
2
0S
251 M 6301 336 M _
2
0S
251 M 6301 476 M _
2
0S
251 M 6301 476 M _
2
0A
251 M 6301 686 M _
2
0A
251 M 6301 107 M _
2
0A
251 M 1002 106 M _
2
0S
251 M 1002 156 M _
2
0S
251 M 1002 226 M _
2
0S
251 M 1002 336 M _
2
0A
251 M 1002 476 M _
2
0A
251 M 1602 685 M _
2
0S
251 M 1602 106 M _
2
0S
251 M 2002 335 M _
2
0A
251 M 2002 475 M _
2
0A
251 M 2502 225 M _
2
0A
251 M 2502 335 M _
2
0A
251 M 2502 475 M _
2
0A
251 M 2502 685 M _
2
0B
251 M 2502 106 M _
2
0B
251 M 3502 225 M _
2
0A
2.5
4
6.3
10
16
20
25
35
2.8
4.6
7.2
11.5
18.4
23
28.7
40.2
1.9
3
4.8
7.6
12.2
15.3
19.1
26.8
100
47
68
100
100
150
220
22
33
47
47
68
100
10
15
22
33
47
6.8
10
3.3
4.7
2.2
3.3
4.7
6.8
10
2.2
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
S
S
S
S
A
A
A
S
S
S
A
A
A
S
S
S
A
A
S
S
A
A
A
A
A
B
B
A
2.5
1.9
2.7
4.0
4.0
6.0
8.8
1.4
2.1
3.0
3.0
4.2
6.3
1.0
1.5
2.2
3.3
4.7
1.1
1.6
0.7
0.9
0.6
0.8
1.2
1.7
2.5
0.8
50
38
54
80
80
120
176
28
42
59
59
85
126
20
30
44
66
94
22
32
6.6
9.4
5.5
8
12
17
25
8
62
47
68
100
100
150
220
35
52
74
74
107
157
25
38
55
82
117
27
40
8.3
12
6.9
10
15
21
31
9.6
0.40
0.30
0.40
0.36
0.48
0.30
0.28
0.32
0.36
0.30
0.24
0.28
0.14
0.12
0.12
0.12
0.20
0.15
0.20
0.18
0.24
0.15
0.14
0.16
0.18
0.15
0.12
0.14
0.10
0.06
0.06
0.06
0.30
0.30
0.30
0.28
0.32
0.30
0.24
0.28
0.10
0.12
0.12
0.12
0.30
0.30
0.30
0.28
0.32
0.30
0.24
0.28
0.12
0.12
0.12
0.12
4
4
2
4
2
4
2
4
2
6
4
6
4
1
6
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-15/0
-15/0
-15/0
-15/0
-15/0
-15/0
-15/0
-15/0
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+10
0/+10
0/+10
0/+10
0/+10
0/+10
0/+10
0/+10
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+15
0/+15
0/+15
0/+15
0/+15
0/+15
0/+15
0/+15
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
A
A
A
A
A
A
A
A
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
A
A
A
A
A
A
A
A
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 20
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 30
± 30
± 30
± 30
± 30
± 30
± 30
± 30
± 30
± 30
± 30
± 30
± 30
± 30
± 30
± 30
± 30
± 30
± 30
± 30
± 15
± 15
± 15
± 15
± 15
± 15
± 15
± 15
October, 2008
-55°C20°C85°C125°C
C/C% C/C%
Catalog number
(1) (2)
Rated
voltage
(VDC)
Capacitance
(µF)
ESR
Surge voltage
(VDC)
C/C
%
Resistance to
soldering heat
Rapid change of
temperature high
temperature/Moisture
Tolerance
(±%)
Case
code
Max. Dissipation factorLct. (µA)
100 kHz
Capacitance change
(C/C) (%)
Surge
Lct.
(3)
C/C
%
Lct.
(3)
Endurance
85°C
20°C85°C125°C-55°C85°C125°C
125°C
Endurance
Notes (1) _
1
: Permissible tolerance K (± 10%) or M (± 20%)
(2) _
2
: No code for single item. “R” for taping specification.
(3) Lct. A: Not exceeding the initial specification, B: Not exceeding twice the initial specification
Notes (1) _
1
: Permissible tolerance K (± 10%) or M (± 20%)
(2) _
2
: No code for single item. “R” for taping specification.
(3) Lct. A: Not exceeding the initial specification, B: Not exceeding twice the
initial specification
STANDARD RATING October, 2008
2.5 3 4 6.3 10 16
M
M
M
M
U, M
U, M
U, M
M
M
M
S
S
S
A
A, B
U
UU
S
S
S
A
2
U
U
U, M
M
U, M
U, M
U, M
M
M
M
M, S
S
S
S
A
B
U, M
U, M
U, M
M
M
M
M, S
S
S
A
A
B
M
M
M
S
S
S
S
S
A
A
20 25
S
S
A
A
A
35
S
A
R.V. (VDC)
Cap. (µF)
1.0
1.5
2.2
3.3
4.7
6.8
10
15
22
33
47
68
100
150
220
330
CATALOG NUMBERS AND RATING OF CUSTOM PRODUCTS
STRUCTURE (TYPICAL)
Cathode terminal
Conductive
adhesive
Tantalum
element
Cathode layer
Insulating resin
Anode terminal
Resin case
−4−
RECOMMENDED PAD DIMENSIONS
ca
b
Case
size EIA
Code bc
Mask
Thickness
U
M
S
A
B
1005
1608
2012
3216L
3528L
0.3
0.65
0.8
1.1
2.1
0.45
0.65
1.05
1.65
1.95
100µm
(mm)
LOW PROFILE PRODUCT RATING October, 2008
The parenthesized values show the component heights (maximum values in mm).
R.V. (VDC)
Cap. (µF) 22.53 46.31016202535
S(1.0)
S(1.0)
S(1.0)
S(1.0), A(1.0)
A(1.0)
A(1.0)
S(1.0)
S(1.0)
S(1.0), A(1.0)
A(1.0)
A(1.0)
S(1.0)
S(1.0)
S(1.0)
A(1.0)
A(1.0)
S(1.0)
S(1.0)
A(1.0)
A(1.0)
A(1.0)
A(1.0)
A(1.0)
B(1.0)
B(1.0)
A(1.0)
1.0
1.5
2.2
3.3
4.7
6.8
10
15
22
33
47
68
100
150
220
330
CUSTOM PRODUCTS RATING October, 2008
The parenthesized values show the component heights (maximum values in mm).
R.V. (VDC)
Cap. (µF) 22.53 46.31016202535
S(1.3)
S(1.3), A(1.3)
S(1.3)
S(1.3)
A(1.3)
S(1.3)
A(0.9)
2.2
3.3
4.7
6.8
10
15
22
33
47
68
100
150
220
330
a
More than 0.30
More than 0.50
More than 0.50
More than 0.80
More than 0.80
100µm
100µm
100µm
100µm
Tantalum
wire
Auxiliary
electrode
In order to expect the self alignment effect, it is recommended that land width is almost
the same size as terminal
of capacitor, and space between lands (c) nearly equal to the space between terminals
for appropriate soldering.
251 M 4001 157 M _
2
3S
251 M 4001 227 M _
2
3S
251 M 4001 227 M _
2
3A
251 M 6301 107 M _
2
3S
251 M 1002 336 M _
2
3S
251 M 1002 686 M _
2
3A
251 M 1602 156 M _
2
3S
251 M 2502 475 M _
2
9A
4
6.3
10
16
25
4.6
7.2
11.5
18.4
28.7
3
4.8
7.6
12.2
19.1
150
220
220
100
33
68
15
4.7
20
20
20
20
20
20
20
20
S
S
A
S
S
A
S
A
6.0
44
8.8
6.3
3.3
6.8
2.4
1.2
120
176
176
126
66
136
48
12
150
220
220
157
82.5
170
60
15
0.48
0.80
0.48
0.48
0.30
0.18
0.12
0.24
0.40
0.24
0.30
0.15
0.12
0.12
0.06
0.30
0.50
0.30
0.30
0.30
0.24
0.12
0.12
0.30
0.50
0.30
0.30
0.30
0.24
0.14
0.12
2
2
4
2
1.5
4
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-30/0
-15/0
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+10
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+20
0/+15
B
B
B
B
B
B
B
A
B
B
B
B
B
B
B
A
± 20
± 40
± 20
± 20
± 20
± 20
± 20
± 15
± 20
± 40
± 20
± 30
± 20
± 20
± 20
± 15
± 20
± 40
± 20
± 20
± 20
± 20
± 20
± 15
± 30
± 40
± 20
± 35
± 30
± 30
± 30
± 15
October, 2008
-55°C20°C85°C125°C
C/C% C/C%
Catalog number
(1) (2)
Rated
voltage
(VDC)
Capacitance
(µF)
ESR
Surge voltage
(VDC)
C/C
%
Resistance to
soldering heat
Rapid change of
temperature high
temperature/Moisture
Tolerance
(±%)
Case
code
Max. Dissipation factorLct. (µA)
100 kHz
Capacitance change
(C/C) (%)
Surge
Lct.
(3)
C/C
%
Lct.
(3)
Endurance
85°C
20°C85°C125°C-55°C85°C125°C
125°C
Notes (1) _1: Permissible tolerance K (± 10%) or M (± 20%)
(2) _2: No code for single item. “R” for taping specification.
(3) Lct. A: Not exceeding the initial specification, B: Not exceeding twice the initial
specification
−5−
PERFORMANCE
Leakage Current (µA)
Leakage Current
Capacitance
Change
Dissipation Factor
Appearance
Step
1
Step
6
Step
2
JIS C 5101-1, 4.9
Applied voltage : Rated voltage
Duration : 5 min
Measuring temperature : Room temperature
1
Capacitance (µF)2
Dissipation Factor3
Characteristics at
High and Low
Temperature
4
Surge (Surge Voltage)5
Shear Test6
Substrate Bending Test
(Terminal Strength)
7
Vibration
(Vibration Resistance)
8
Shock9
Solderability10
Resistance to
Soldering Heat
11
Rapid Change of
Temperature
(Temperature Cycle)
12
14
Shall be within any of the following ranges and specified according to CATALOG
NUMBERS AND RATING OF STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
• Within % of the value at Step 1 • Within % of the value at Step 1
Shall not exceed the values shown in CATALOG NUMBERS AND RATING OF STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
Shall not exceed twice the value in No.1.
Shall be within any of the following ranges and specified according to CATALOG
NUMBERS AND RATING OF STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
• Within ± 15% of the value before test • Within ± 30% of the value before test
Shall not exceed 150% of the values shown in CATALOG NUMBERS AND
RATING OF STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
There shall be no evidence of mechanical damage, and marking shall be legible.
Shall not exceed twice the value in No.1.
Shall be within any of the following ranges and specified according to CATALOG
NUMBERS AND RATING OF STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
• Within ± 15% of the value before test • Within ± 20% of the value before test
Shall not exceed 150% of the values shown in CATALOG NUMBERS AND
RATING OF STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
There shall be no evidence of mechanical damage.
Shall be within any of the following ranges and specified according to CATALOG
NUMBERS AND RATING OF STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
• Not exceeding the value in No.1 : Leakage current code A
• Not exceeding twice the value in No.1 : Leakage current code B
Shall be within any of the following ranges and specified according to CATALOG
NUMBERS AND RATING OF STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
• Within ± 15% of the value before test • Within ± 20% of the value before test
Shall not exceed the values shown in CATALOG NUMBERS AND RATING OF
STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
There shall be no evidence of mechanical damage.
Solder shall completely cover the terminal surface (there shall be no pin holes,
nonwetting or solder repelling).
There shall be no intermittent contact of 0.5 ms or greater, short, or open. Nor shall
there be any spark discharge, insulation breakdown, or evidence of mechanical
damage.
Initial value to remain steady during measurement.
There shall be no evidence of mechanical damage.
Initial value to remain steady during measurement.
There shall be no evidence of mechanical damage.
There shall be no evidence of mechanical damage.
Larger value of 0.01 CV or 0.5 µA
Shall be within the specified tolerance.
Shall not exceed the values shown in CATALOG NUMBERS AND RATING OF
STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
Shall not exceed the value in No.1.
Shall be within the specified tolerance.
Shall not exceed the values shown in CATALOG NUMBERS AND RATING OF STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
JIS C 5101-1, 4.23
Test temperature and applied voltage : 85 ± 2°C and rated voltage or
125 ± 3°C and 2/3 × rated voltage
Duration : 2000 hrs
Power supply impedance : 3 or less
JIS C 5101-1, 4.16
Step 1 : -55 ± 3°C, 30 ± 3 min
Step 2 : 25 °C, 3 min or less
Step 3 : 125 ± 2°C, 30 ± 3 min
Step 4 : 25 °C, 3 min or less
Number of cycles : 5
IR reflow method
Preheating : 130 ~ 160°C for about 60 sec
Reflow : 200°C, less than 60 sec, 260°C max.
Number of cycles : 2
JIS C 5101-1, 4.15
Solder temperature : 235 ± 5°C
Dipping time : 2 ± 0.5 sec
Dipping depth : Terminal shall be dipped into melted solder.
JIS C 5101-1, 4.19
Peak acceleration : 490 m/s2 Duration : 11 ms
Wave form : Half-sine
JIS C 5101-1, 4.17
Frequency range : 10 ~ 55 Hz Swing width : 1.5 mm
Vibration direction : 3 directions with mutually right-angled
Duration : 2 hours in each of these mutually perpendicular directions (total 6 hours)
Mounting : Solder terminal to the printed board
JIS C 5101-1, 4.35
Bending : 1 mm
JIS C 5101-1, 4.34
Capacitors mounted under the following conditions are used as specimens.
• Indirect heating method (reflow)
Temperature : 240 ± 10°C / Time : Less than 10 sec
Pressure : Case U : 2N Case M, S, A, B : 5N
Duration : 10 ± 1 sec
JIS C 5101-1, 4.26
Test temperature and applied voltage : To each half of specimens
• 85 ± 2°C, rated voltage × 1.15
• 125 ± 2°C, 2/3 × rated voltage × 1.15
Series protective resistance : 1000
Discharge resistance : 1000
Measuring temperature : 20 ± 2°C
Measuring temperature : 125 ± 2°C
Measuring voltage : Derated voltage at 125°C
Measuring temperature : 85 ± 2°C
Measuring temperature : 20 ± 2°C
Measuring temperature : -55 ± 3°C
Measuring temperature : 20 ± 2°C
JIS C 5101-1, 4.7
Measuring frequency : 120 Hz ± 20%
Measuring voltage : 0.5 Vrms +1.5 ~ 2 VDC
Measuring temperature : Room temperature
JIS C 5101-1, 4.8
Measuring frequency : 120 Hz ± 20%
Measuring voltage : 0.5 Vrms +1.5 ~ 2 VDC
Measuring temperature : Room temperature
JIS C 5101-1, 4.29
Shall be within any of the following ranges and specified according to CATALOG
NUMBERS AND RATING OF STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
• Not exceeding the value in No.1 : Leakage current code A
• Not exceeding twice the value in No.1 : Leakage current code B
Shall be within any of the following ranges and specified according to CATALOG
NUMBERS AND RATING OF STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
• Within ± 15% of the value before test • Within ± 20% of the value before test
Shall not exceed the values shown in CATALOG NUMBERS AND RATING OF STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
There shall be no evidence of mechanical damage.
Shall not exceed the value in No.1.
Shall be within ± 2% of the value at Step 1.
Shall not exceed the values shown in CATALOG NUMBERS AND RATING OF STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
Shall be within any of the following ranges and specified according to CATALOG
NUMBERS AND RATING OF STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
• Larger value of 0.125 CV or 6.3 µA
• 0.25 CV or less
Shall be within any of the following ranges and specified according to CATALOG
NUMBERS AND RATING OF STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
• Within % of the value at Step 1 • Within % of the value at Step 1
Shall not exceed the values shown in CATALOG NUMBERS AND RATING OF STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
Shall be within any of the following ranges and specified according to CATALOG
NUMBERS AND RATING OF STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
• Larger value of 0.1 CV or 5 µA
• 0.2 CV or less
Shall be within any of the following ranges and specified according to CATALOG
NUMBERS AND RATING OF STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
• Within % of the value at Step 1 • Within % of the value at Step 1
Shall not exceed the values shown in CATALOG NUMBERS AND RATING OF
STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
Shall not exceed the value in No.1.
Shall be within ± 2% of the value at Step 1.
Shall not exceed the values shown in CATALOG NUMBERS AND RATING OF
STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
Leakage Current
Capacitance
Dissipation Factor
Capacitance
Change
Dissipation Factor
Leakage Current
Capacitance Change
Dissipation Factor
Leakage Current
Capacitance
Change
Dissipation Factor
Leakage Current
Capacitance
Change
Dissipation Factor
Leakage Current
Capacitance Change
Dissipation Factor
Leakage Current
Capacitance
Change
Dissipation Factor
Appearance
Capacitance
Appearance
Capacitance
Appearance
Leakage Current
Capacitance
Change
Dissipation Factor
Appearance
Leakage Current
Capacitance
Change
Dissipation Factor
Appearance
No. Item (1)Performance Test method
13 Shall not exceed twice the value in No.1.
Shall be within any of the following ranges and specified according to CATALOG
NUMBERS AND RATING OF STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
• Within ± 15% of the value before test • Within ± 20% of the value before test
Shall not exceed 150% of the values shown in CATALOG NUMBERS AND
RATING OF STANDARD PRODUCTS or LOW PROFILE PRODUCTS.
There shall be no evidence of mechanical damage, and marking shall be legible.
JIS C 5101-1, 4.22
Temperature : 40 ± 2°C
Moisture : 90 ~ 95%RH
Duration : 500 hrs
Leakage Current
Capacitance
Change
Dissipation Factor
Appearance
Endurance
(High Temperature
Load)
High Temperature/
Moisture
(Moisture Resistance)
Step
5
Step
4
Step
3
0
-15 0
-30
+15
0+20
0
+10
0+20
0
+10
-5
+10
-5
+24
0
+72
0
−6−
Capacitance
change (%)
Dissipation factor
12
10
8
6
4
2
0
-2
-4
-6
-8
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00
-60
-60 -40 -20 0 20 40 60 80 100 120
020406080100 120
-40 -20 0 20 40
Temperature (°C)
Temperature (°C)
Leakage current (µA)
Temperature (°C)
60 80 100 120
100
10
1
0.1
0.01
0.001
Max.
Mean
Min.
251 M 6.3 VDC-10 µF M-case, Sample : 12 pcs.
251 M 6.3 VDC-10 µF M-case, Sample : 5 pcs.
0.1 1 10 100 1000 10000
Frequency (kHz)
Impedance & ESR ()
0.01
0.1
1
10
100
1000
10000
FREQUENCY CHARACTERISTICS
TEMPERATURE CHARACTERISTICS
ESR
Impedance
−7−
8
4
0
-4
-8
-12
0.1
0.08
0.06
0.04
0.02
0
100
10
1
0.1
Leakage current (µA)
Dissipation
factor
Capacitance
change (%)
0.01
100
251 M 6.3 VDC-10 µF M-case, Sample : 12 pcs.
1000 10000
INITIAL
VALUE
REFLOW
260°C peak
-16
-20
Cycles
Max.
Mean
Min.
Cycles
8
4
0
-4
-8
-12
-16
-20
0.1
0.08
0.06
0.04
0.02
0
100
10
1
0.1
0.01
INITIAL
VALUE
REFLOW
260°C peak
100 1000
251 M 6.3 VDC-10 µF M-case, Sample : 10 pcs.
Max.
Mean
Min.
Capacitance
change (%)
Dissipation
factor
Leakage current (µA)
8
4
0
-4
-8
-12
0.1
0.08
0.06
0.04
0.02
0
100
10
1
0.1
Leakage current (µA) Dissipation
factor
Capacitance
change (%)
0.01
100
251 M 6.3 VDC-10 µF M-case, Sample : 10 pcs.
1000 10000
INITIAL
VALUE
REFLOW
260°C peak
Hours
-16
-20
Max.
Mean
Min.
Max.
Mean
Min.
8
4
0
-4
-8
-12
0.1
0.08
0.06
0.04
0.02
0
100
10
1
0.1
Leakage current (µA) Dissipation
factor
Capacitance
change (%)
0.01
100
251 M 6.3 VDC-10 µF M-case, Sample : 24 pcs.
1000 10000
INITIAL
VALUE
REFLOW
260°C peak
Hours
-16
-20
THERMAL SHOCK –55/+125°C
HIGH TEMPERATURE LOAD 85°C, RATED VOLTAGE
MOISTURE RESISTANCE 40°C, 95%RH
SURGE VOLTAGE 85°C, RATED VOLTAGE 1.15
Specifications on this catalog are subject to change without prior notice. Please inquire of our Sales
Department to confirm specifications prior to use.
Overseas Sales Dep.:
USA:
Head Office:
URL:
3-5, 3-Chome, Sennari-cho, Toyonaka-shi, Osaka 561-8558, Japan
Matsuo Electronics of America, Inc. 2134 Main Street, Suite 200,
Huntington Beach, CA 92648
3-5, 3-Chome, Sennari-cho, Toyonaka-shi, Osaka 561-8558, Japan
http://www.ncc-matsuo.co.jp/
Please feel free to ask our Sales Department for more information on the Tantalum Solid Electrolytic Capacitor.
Te l : 06-6332-0883
Te l : 714-969-2491
Te l : 06-6332-0871
Fax : 06-6332-0920
Fax : 714-960-6492
Fax : 06-6331-1386
Application Notes for Tantalum Solid Electrolytic Capacitor
1. Operating Voltage
Tantalum Solid Electrolytic Capacitor shall be operated at the rated voltage or lower.
Rated voltage: The “rated voltage” refers to the maximum DC voltage that is allowed to be
continuously applied between the capacitor terminals at the rated temperature.
Surge voltage: The “surge voltage” refers to the voltage that is allowed to be
instantaneously applied to the capacitor at the rated temperature or the maximum working
temperature. The capacitor shall withstand the voltage when a 30-second cycle of
application of the voltage through a 1000 series resistance is repeated 1000 times in 6-
minute periods.
When designing the circuit, the equipment’s required reliability must be considered and
appropriate voltage derating must be performed.
2. Application that contain AC Voltage
Special attention to the following 3 items.
(1) The sum of the DC bias voltage and the positive peak value of the AC voltage should
not exceed the rated voltage.
(2) Reverse voltage should not exceed the allowable values of the negative peak AC
voltage.
(3) Ripple voltage should not exceed the allowable values.
3. Permissible Reverse Voltage
If reverse voltage exceeding the value shown in the following table is applied to the capacitor,
there is a fear of a fluctuation of leakage current and an increase in failure rate.
To avoid the permissible reverse voltage, use the capacitor under bias voltage as required.
The above specifications apply for accidental reverse voltage. If reverse voltage is
constantly applied to the capacitor, use it with non-polar connection.
4. Permissible Ripple Voltage
Permissible ripple voltage is determined by the loss of element and heat radiation of case
and lead wire.
This is influenced by capacitance, frequency of ripple, ESR and operating temperature.
The permissible ripple voltage values are shown in our technical document.
5. Application on low-impedance circuit
The failure rate of low impedance circuit at 0.1 /V is about five times greater than that of a
1 /V circuit. To curtail this higher failure rate, tantalum capacitors used in low impedance
circuits, such as filters for power supplies, particularly switching power supplies, or for
noise by-passing, require that operating voltage be derated to less than half of the rated
voltage. Actually, 1/3 of the rated voltage is recommended.
6. Non Polar Application
Tantalum capacitors can be used as a non-polar unit if two capacitors are connected
“BACK-TO-BACK” when reserve voltage is applied at a more than permissible value,
or in
a purely AC circuit. The two capacitors should both be of the same rated voltage and
capacitance tolerance, and they should both be twice the required capacitance value.
Ripple Voltage: Permissible Ripple Voltage shall not exceed the value allowed for either
C1 or C2 (This will be the same, as the capacitors should be identical.)
Capacitance: C1 × C2
C1 + C2
Leakage Current: If terminal A is (+), the Leakage Current will be equal to C1’s Leakage
Current.
If terminal B is (+), the Leakage Current will be equal to C2’s Leakage
Current.
7. Soldering
7.1. Preheating
To obtain optimal reliability and solderability conditions, capacitors should be pre-heated at
170 to 190°C for approximately 1 minute.
7.2. Soldering
The body of the capacitor shall not exceed 260°C during soldering.
(1) Reflow Soldering
Reflow soldering is a process in which the capacitors are mounted on a printed board with
solder paste. There are two methods of Reflow Soldering: Direct and Atmospheric Heat.
· Direct Heat (Hot plate)
During the Direct Heat method, the capacitor has been positioned on a printed board,
which is then placed upon a hot plate. The capacitor maintains a lower temperature
than the substrate, which in turn stays at a lower temperature than the hot plate.
· Atmospheric Heat
a) VPS (Vapor Phase Soldering)
During VPS,the substrate is heated by an inert liquid with a high boiling point. The
temperature of the capacitor’s body and the temperature of the substrate are about
the same as the atmosphere. This temperature should be below 240°C.
b) Near and Far IR Ray
Due to the heat absorption of the capacitor’s body, the internal temperature of the
capacitors may be 20 ~ 30°C higher than the setting temperature and may exceed
260°C.
Te mperature control is crucial in maintaining a temperature of 260°C or lower.
c) Convention Oven
An infrared ray is the main source of heat in this process. The temperature of the
substrate and the capacitors can be maintained at a similar level by the circulation of
heated air, or an inert gas.
(3) Soldering with a Soldering Iron
Soldering with a soldering iron cannot be recommended due to the lack of consistency in
maintaining temperatures and process times. If this method should be necessary, the iron
should never touch the capacitor’s terminals, and the temperature of the soldering iron should
never exceed 290°C. The application of the iron should not exceed 3 seconds.
(4) Please consult us for other methods.
8. Solvent cleaning
Cleaning by organic solvent may damage capacitor’s appearance and performance.
However, our capacitors are not effected even when soaked at 20 ~ 30°C 2-propanol for 5
minutes. When introducing new cleaning methods or changing the cleaning term, please
consult us.
9. Protective Resin Coating
After components are assembled to substrate, a protective resin coating is sometimes applied. As
this resin coating cures, it gives mechanical and thermal stress to Tantalum capacitors. This stress
can cause damage to the capacitors, which affects their reliability.
Before using a resin coating, proper research must be done in regards to the material and process
to insure that excessive stress will not be applied to capacitors and other components.
10. Vibration
Approximately 300 G shall be applied to a capacitor, when dropped from 1 meter to a
concrete floor.
Although capacitors are made to withstand this drop test, stress from shock due to falling
or striking does cause damage to the capacitors and increases failure rates.
Do not subject capacitors to this type of mechanical stress.
11. Ultrasonic cleaning
Matsuo does not recommend Ultrasonic cleaning. This may cause damage to the capacitors,
and may even cause broken terminals. If the Ultrasonic cleaning process will be used, please
note the following:
(1)The solvent should not be boiled. (Lower the ultrasonic wave output or use solvent with
the high boiling point.)
(2)The recommended wattage is less than 0.5 watts per cm2.
(3)The cleaning time should be kept to a minimum. Also, samples must be swang in the
solvlent. Please consult us.
12. Additional Notes
· When more than one capacitor is connected in series, a resistor that can distribute the
voltage equally to the capacitors shall be connected in parallel.
· The capacitor cases shall not be cut even if the mounting space is insufficient.
· During a customers aging process, voltage should remain under the rated voltage at all
times.
· Capacitors should never be touched or manipulated while operating.
· Capacitors are not meant to be dismantled.
· When testing capacitors, please examine the power source before conducting test to
insure the tester’s polarity and applied voltage.
· In the event of a capacitor burning, smoking, or emitting an offensive smell during
operation, please turn the circuit “off and keep hands and face away from the burning
capacitor.
· If a capacitor be electrical shorted, it becomes hot, and the capacitor element may ignite.
In this case, the printed board may be burnt out.
· Capacitors should be stored at room temperature under low humidity. Capacitors should
never be stored under direct sunlight, and should be stored in an environment containing
dust.
· If the capacitors will be operated in a humid environment, they should be sealed with a
compound under proper conditions.
· Capacitors should not be stored or operated in environments containing acids, alkalis or
active gasses.
· When capacitors are disposed of as “scrap” or waste, they should be treated as Industrial
Waste since they contain various metals and polymers.
· Capacitors submitted as samples should not be used for production purposes.
These application notes are prepared based on “Guideline of notabilia for fixed tantalum
electrolytic capacitors with solid electrolyte for use in electronic equipment” (EIAJ RCR-2386)
issued by Japan Electronics and Information Technology Industries Association (EIAJ). For
the details of the instructions (explanation, reasons and concrete examples), please refer to
this guideline, or consult our Sales Department.
Ambient temperature 25°C
The above voltage or 0.5 V, whichever is greater.
10% of rated voltage
55°C
6% of rated voltage
85°C
3% of rated voltage
125°C
Permissible reverse
voltage
1% of rated
voltage
AC1C2B
++
--
−8−