AMMC-6640
DC-50 GHz Variable Attenuator
Data Sheet
Description
The AMMC-6640 MMIC is a monolithic, voltage variable,
GaAs IC attenuator that operates from DC-50 GHz. It is
fabricated using Avago Technologies enhancement mode
MMIC process with backside ground vias, and gate lengths
of approximately 0.25um. The attenuator has a distribut-
ed topology and it helps to absorb parasitic eects of its
series and shunt FETs to make it broadband.
AMMC-6640 MMIC
RoHS-Exemption
Please refer to hazardous substances table on page 11.
Features
x Wide Frequency Range : DC-50 GHz
x I.L. : 4dB @ 50GHz
x Attenuation Range : >20dB
x IIP3 : >25dBm
x P1dB : >26dBm
x Dual Positive Control Voltages
Applications
x Microwave Radio Systems
x Satellite VSAT, DBS Up / Down Link
x LMDS & Pt – Pt mmW Long Haul
x Broadband Wireless Access (including 802.16 and
802.20 WiMax)
x WLL and MMDS loops
Attention: Observe Precautions for
handling electrostatic sensitive devices.
ESD Machine Model (Class A): 50V
ESD Human Body Model (Class 1A): 250V
Refer to Avago Application Note A004R:
Electrostatic Discharge Damage and Control.
Chip Size: 1955 Pm x 790 Pm (80 x 31.1 mils)
Chip Size Tolerance: ±10 Pm (±0.4 mils)
Chip Thickness: 100 ± 10 Pm (4 ±0.4 mils)
Pad Dimensions: 87 x 122 Pm (3.4 x 4 mils)
2
Table 1. AMMC-6640 Absolute Maximum Ratings [1]
Symbol Parameters Unit Minimum Maximum
VC Voltage to Control VSWR V 0 2.5
Pin RF Input Power dBm 30
Tch Operating Channel Temperature °C +150
Tstg Storage Temperature °C -40 +150
Tmax Maximum Assembly Temperature °C +260 for 60s
Note:
1. Operation in excess of any one of these conditions may result in permanent damage to this device. The absolute maximum ratings for VC and Pin
were determined at an ambient temperature of 25°C unless noted otherwise.
Table 2. AMMC-6640 DC Specications [1, 2]
Symbol Parameters Test Conditions Unit Min Typical Max
Ic_Vse Vse Control Current (Min Attenuation) Vse=1.2 V, Vsh=0 PA 10.0
Ic _Vse Vse Control Current (Max Attenuation) Vse=0 V, Vsh=1.2V mA 1.5
Ic_Vsh Vsh Control Current (Min Attenuation) Vsh=0 V, Vse=1.2V PA 10.0
Ic_Vsh Vsh Control Current (Max Attenuation) Vsh=1.2V, Vse=0 mA 1.5
Notes:
1. Ambient operation temperature TA = 25°C unless otherwise noted.
2. Data obtained from on-wafer measurements.
Table 3. AMMC-6640 RF Specications [1, 2]
Small/Large -signal data measured on-wafer at TA = 25°C, Zo = 50:
Symbol Parameters and Test Conditions Units Freq. [GHz] Minimum Typical Maximum
Minimum Attenuation
(Reference State)
Small-signal S21
Vse = 1.2 V, Vsh = 0
dB 6 1.5 2.5
28 2.5 3.5
26 3 4
38 3.35 4.5
50 4 5.3
Maximum Attenuation Small-signal S21
Vse = 0 V, Vsh = 1.2V
dB 6 23 25.5
18 23 25.5
26 23 26
38 23 26
50 24 28
RLin and RLout
At Minimum Attenuation
Vse = 1.2V, Vsh = 0V dB <50 12
RLin and RLout
At Maximum Attenuation
Vse = 0V, Vsh = 1.2V dB <50 10
IIP3
at Minimum Attenuation
dBm <38 30
P1dB (input)
at Minimum Attenuation
dBm <40 27
P1dB (input)
at Maximum Attenuation
dBm <40 27
3
Figure 1. Min Attenuation @ 6GHz, Nominal=-1.9, LSL=-3.0 Figure 2. Min Attenuation @ 18GHz, Nominal=-2.2, LSL=-3.0
Figure 3. Min Attenuation @ 26GHz, Nominal=-2.2, LSL=-3.0 Figure 4. Max Attenuation @ 6GHz, Nominal=-26, USL=-23.0
Typical Distribution Charts
Figure 5. Max Attenuation @ 18GHz, Nominal=-25.8, USL=-23.0 Figure 6. Max Attenuation @ 26GHz, Nominal=-25.6, USL=-23.0
Notes:
1. Attenuation is a positive number; whereas, S21 as measured on a Network Analyzer would be a negative number.
2. Data obtained from on-wafer measurements.
3. Distribution data based on 5000 part sample size from two wafer lots during initial characterization of this product. Future wafers allocated to this
product may have nominal values anywhere between upper and lower limits.
-2.5 -2.4 -2.3 -2.1 -2 -1.9 -1.8 -1.6 -1.5 -2.8 -2.6 -2.4 -2.2 -1.8 -1.6-3 -2
-28 -27 -26 -25-3 -2.9 -2.8 -2.6 -2.5 -2.4 -2.3 -2.1 -2
-34 -33 -31 -27-29 -25 -23-36 -34 -32 -30 -26-28 -24 -22
4
Figure 7a and 7b. Attenuation vs Frequency and Insertion Loss vs Frequency
Figure 8. S11 vs Frequency
AMMC-6640 Typical Performance (TA = 25°C, Zin = Zout = 50 :)
Figure 9. S22 vs Frequency
Attenuation
(dB)
0
2
4
6
8
10
12
14
16
18
20
22
max
(V)
0
0.325
0.383
0.416
0.440
0.465
0.480
0.505
0.535
0.575
0.650
0.845
1.2
VshuntVseries
(V)
1.2
0.440
0.435
0.430
0.420
0.410
0.400
0.385
0.375
0.360
0.350
0.346
0
5 1015202530354045050
2
4
6
8
10
12
14
16
18
20
22
24
0
26
Attenuation (dB)
Frequency (GHz)
5 1015202530354045050
-30
-25
-20
-15
-10
-5
-35
0
freq, GHz
Forward Transmission, dB
5 1015202530354045050
-30
-25
-20
-15
-10
-5
-35
0
freq, GHz
Forward Transmission, dB
5 1015202530354045050
-28
-26
-24
-22
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
-30
0
Insertion Loss (dB)
Frequency (GHz)
MIN
MAX
MIN
MAX
5
Figure 10. Insertion Loss vs Frequency
Figure 12a. Attenuation vs Input Power (Frequency = 6 GHz)
Figure 11. IIP3 vs Attenuation Input Power = 0dBm
Figure 12b. Attenuation vs Input Power (Frequency = 18 GHz)
Figure 12c. Attenuation vs Input Power (Frequency = 26 GHz) Figure 12d. Attenuation vs Input Power (Frequency = 40GHz)
5 1015202530354045050
-25
-20
-15
-10
-5
-30
0
freq, GHz
Forward Transmission, dB
-30
-25
-20
-15
-10
-5
0
-5 0 5 10 15 20
Input Power (dBm)
Attenuation (dB)
-30
-25
-20
-15
-10
-5
0
-5 0 5 10 15 20
Input Power (dBm)
Attenuation (dB)
10
15
20
25
30
35
40
45
6 1014182226303438
Frequency (GHz)
dBm
0dB
10dB
-30
-25
-20
-15
-10
-5
0
-5 0 5 10 15 20
Input Power (dBm)
Attenuation (dB)
-30
-25
-20
-15
-10
-5
0
-5 0 5 10 15 20
Input Power (dBm)
Attenuation (dB)
MAX
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
MIN
6
Figure 13. Minimum Attenuation vs Frequency (Over Temp)
Figure 15. Minimum Attenuation vs Input P1dB
Figure 14. Maximum Attenuation vs Frequency (Over Temp)
Figure 16. Mid (10dB) Attenuation vs Input P1dB
Figure 17. Maximum Attenuation vs Input P1dB
Pin(dBm)
Pin(dBm)
Pin(dBm)
-6.0
-5.0
-4.0
-3.0
-2.0
-1.0
0.0
0 5 10 15 20 25 30 35 40 45 50
Frequency (GHz)
Insertion Loss dB
26
27
28
29
30
31
6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Frequency (GHz)
Pin (dBm)
26
27
28
29
30
31
6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Frequency (GHz)
Pin (dBm)
-29
-28
-27
-26
-25
-24
-23
-22
0 5 10 15 20 25 30 35 40 45 50
Frequency (GHz)
Insertion Loss (dB)
26
27
28
29
30
31
6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Frequency (GHz)
Pin(dBm)
MIN 25°C
MIN -40°C
MIN 85°C
MAX 25°C
MAX -40°C
MAX 85°C
7
AMMC-6640 Typical Scattering Parameters at Min Attenuation (Tc = 25°C, Zo = 50ohm, VSh = 0V, VSer = 1.2V )
Freq
GHz
S11 S21 S12 S22
dB Mag Ang dB Mag Ang dB Mag Ang dB Mag Ang
1 -20.6 0.0932 -39.701 -1.3 0.8577 -9.722 -1.3 0.857 -9.794 -20.6 0.0931 -40.019
2 -19.0 0.1125 -67.029 -1.5 0.8462 -18.338 -1.5 0.8449 -18.430 -19.1 0.1112 -67.431
3 -17.5 0.1329 -86.619 -1.6 0.833 -26.672 -1.6 0.8313 -26.790 -17.6 0.132 -87.343
4 -16.2 0.1547 -102.289 -1.7 0.8207 -34.857 -1.7 0.8202 -34.940 -16.2 0.1551 -102.965
5 -15.1 0.1754 -114.732 -1.8 0.8087 -42.783 -1.9 0.8076 -42.819 -15.2 0.1742 -115.708
6 -14.3 0.1933 -126.006 -2.0 0.7982 -50.532 -2.0 0.7972 -50.551 -14.3 0.1933 -127.172
7 -13.6 0.2080 -135.886 -2.1 0.7888 -58.203 -2.1 0.7883 -58.308 -13.7 0.207 -137.300
8 -13.2 0.2189 -145.523 -2.1 0.7809 -65.878 -2.2 0.7803 -65.937 -13.1 0.2203 -147.338
9 -12.9 0.2274 -154.544 -2.2 0.7738 -73.421 -2.2 0.7721 -73.455 -12.9 0.2274 -156.155
10 -12.7 0.2308 -163.071 -2.3 0.7671 -81.038 -2.3 0.766 -80.994 -12.7 0.2307 -165.479
11 -12.8 0.2281 -170.663 -2.4 0.7601 -88.661 -2.4 0.761 -88.626 -12.9 0.2276 -173.700
12 -12.9 0.2273 -175.121 -2.6 0.7425 -96.400 -2.6 0.7425 -96.502 -13.2 0.2188 -178.184
13 -12.4 0.2401 173.936 -2.5 0.7458 -102.159 -2.6 0.7444 -102.261 -12.5 0.2368 172.131
14 -12.8 0.2293 164.435 -2.5 0.7514 -109.760 -2.5 0.7489 -109.761 -12.9 0.2269 162.000
15 -13.3 0.2169 155.170 -2.4 0.7552 -117.353 -2.5 0.7533 -117.251 -13.3 0.2175 151.783
16 -13.8 0.2040 146.732 -2.4 0.7561 -124.966 -2.4 0.7543 -124.928 -13.9 0.2022 143.011
17 -14.8 0.1826 136.275 -2.4 0.7591 -132.406 -2.4 0.7581 -132.468 -14.6 0.1863 132.323
18 -15.7 0.1643 125.779 -2.3 0.7638 -140.286 -2.4 0.7625 -140.279 -15.6 0.1657 122.267
19 -16.8 0.1439 116.550 -2.3 0.7668 -148.222 -2.3 0.7654 -148.207 -16.6 0.148 110.142
20 -18.3 0.1215 103.867 -2.3 0.7692 -156.276 -2.3 0.7687 -156.225 -18.0 0.1259 98.295
21 -20.2 0.0977 89.857 -2.2 0.7718 -164.428 -2.3 0.7716 -164.400 -19.4 0.1077 83.106
22 -21.7 0.0824 74.397 -2.2 0.7721 -172.624 -2.3 0.7711 -172.635 -20.8 0.0908 65.142
23 -23.9 0.0636 54.106 -2.2 0.7725 179.092 -2.3 0.7716 179.116 -22.1 0.0787 46.719
24 -25.3 0.0543 27.765 -2.3 0.769 170.719 -2.3 0.7686 170.744 -22.9 0.0713 19.344
25 -24.8 0.0578 -10.727 -2.3 0.7664 162.460 -2.3 0.7659 162.428 -22.7 0.0731 -10.712
26 -23.4 0.0674 -34.439 -2.4 0.7601 154.169 -2.4 0.7595 154.207 -21.2 0.0871 -35.577
27 -22.1 0.0788 -57.191 -2.4 0.756 146.174 -2.4 0.7552 146.169 -20.9 0.0905 -59.580
28 -20.4 0.0950 -76.429 -2.5 0.7534 137.880 -2.5 0.7535 137.853 -19.9 0.1014 -80.375
29 -19.9 0.1017 -84.707 -2.5 0.7478 129.613 -2.5 0.7467 129.541 -19.3 0.1079 -93.340
30 -19.5 0.1059 -94.597 -2.6 0.7421 121.074 -2.6 0.74 121.118 -19.3 0.1078 -102.213
31 -18.3 0.1217 -99.925 -2.7 0.7292 112.595 -2.8 0.7275 112.662 -18.9 0.1129 -113.489
32 -17.0 0.1412 -108.513 -3.0 0.7119 104.883 -3.0 0.7108 104.950 -19.3 0.1084 -119.616
33 -16.8 0.1451 -120.725 -3.0 0.7089 97.839 -3.0 0.7089 97.727 -18.5 0.1188 -129.955
34 -16.9 0.1421 -135.108 -3.0 0.7076 89.978 -3.0 0.7068 89.951 -19.6 0.1049 -140.476
35 -17.5 0.1334 -143.267 -3.0 0.7065 81.829 -3.0 0.7043 81.862 -20.4 0.0958 -152.186
36 -18.4 0.1199 -155.855 -3.1 0.6996 73.527 -3.1 0.6995 73.650 -22.1 0.0784 -158.477
37 -21.0 0.0894 -165.255 -3.2 0.693 65.487 -3.2 0.6925 65.483 -24.0 0.0633 -163.890
38 -22.3 0.0768 -168.127 -3.3 0.6856 57.571 -3.3 0.684 57.727 -28.2 0.039 179.216
39 -27.7 0.0410 -170.951 -3.3 0.6814 50.066 -3.4 0.6796 49.976 -35.0 0.0177 -159.042
40 -29.8 0.0322 -123.140 -3.4 0.6797 42.263 -3.4 0.6787 42.305 -40.0 0.01 -91.572
41 -32.6 0.0234 -94.952 -3.3 0.6805 34.150 -3.4 0.6795 34.252 -28.2 0.0391 -49.532
42 -24.6 0.0586 -82.680 -3.3 0.6801 25.860 -3.4 0.6791 25.858 -25.1 0.0559 -49.962
43 -23.0 0.0709 -82.607 -3.4 0.6772 17.413 -3.4 0.677 17.511 -22.0 0.079 -53.604
44 -22.7 0.0733 -89.192 -3.4 0.6747 8.839 -3.4 0.6733 8.959 -21.2 0.0868 -55.883
45 -21.0 0.0891 -87.119 -3.5 0.6685 0.343 -3.5 0.6682 0.327 -18.9 0.1131 -59.833
46 -20.7 0.0920 -92.026 -3.5 0.6647 -8.155 -3.6 0.6631 -8.162 -18.5 0.1182 -66.653
47 -21.5 0.0846 -97.232 -3.6 0.6604 -16.940 -3.6 0.6593 -16.712 -17.4 0.1347 -73.712
48 -19.4 0.1073 -81.170 -3.7 0.6528 -25.506 -3.7 0.6532 -25.465 -16.6 0.1485 -76.486
49 -19.8 0.1024 -94.833 -3.9 0.6371 -34.353 -4.0 0.6344 -34.428 -17.1 0.1391 -81.478
50 -20.8 0.0917 -76.090 -4.0 0.6323 -42.814 -4.0 0.6323 -42.706 -17.7 0.1301 -84.462
Note : S-parameters are obtained from on-wafer measurements.
8
AMMC-6640 Typical Scattering Parameters [1] at Max Attenuation (Tc = 25°C, Zo = 50ohm, VSh = 1.2V, VSer = 0V)
Freq
GHz
S11 S21 S12 S22
dB Mag Phase dB Mag Phase dB Mag Phase dB Mag Phase
1 -22.7 0.0729 -5.5258 -25.7 0.0521 -7.5828 -25.6 0.0522 -7.4292 -22.5 0.0747 -6.1766
2 -22.3 0.0768 -13.2247 -25.7 0.0518 -14.6637 -25.7 0.0519 -14.5345 -22.4 0.0755 -12.2651
3 -22.2 0.0772 -16.9325 -25.7 0.0516 -21.5768 -25.7 0.0516 -21.4979 -22.3 0.0765 -18.4452
4 -22.2 0.0779 -21.5934 -25.8 0.0515 -28.5692 -25.7 0.0516 -28.4928 -22.2 0.0775 -23.3754
5 -22.1 0.0786 -33.3894 -25.8 0.0514 -35.5800 -25.8 0.0515 -35.4740 -21.9 0.0803 -30.7458
6 -21.2 0.0872 -31.5010 -25.8 0.0514 -42.5283 -25.8 0.0515 -42.4061 -21.8 0.0812 -34.2677
7 -22.8 0.0728 -44.0887 -25.8 0.0514 -49.6884 -25.8 0.0515 -49.5645 -21.6 0.0829 -40.4200
8 -19.6 0.1045 -42.6800 -25.8 0.0512 -56.9097 -25.8 0.0514 -56.8600 -21.4 0.0854 -44.2241
9 -24.3 0.0609 -36.7905 -25.8 0.0511 -63.8186 -25.8 0.0512 -63.7487 -21.1 0.0880 -49.4219
10 -19.7 0.1031 -65.2203 -25.7 0.0516 -70.8964 -25.7 0.0517 -70.8126 -20.8 0.0911 -52.1457
11 -20.6 0.0936 -35.3753 -25.7 0.0517 -79.1980 -25.7 0.0519 -79.1085 -20.5 0.0949 -52.2774
12 -20.5 0.0949 -71.0060 -26.6 0.0466 -86.4665 -26.6 0.0466 -86.4224 -20.3 0.0967 -60.7138
13 -19.9 0.1015 -58.7446 -26.1 0.0496 -89.7200 -26.1 0.0496 -89.7333 -20.0 0.1000 -63.3773
14 -20.2 0.0981 -76.2918 -25.9 0.0508 -97.5292 -25.9 0.0508 -97.5323 -20.1 0.0994 -69.2780
15 -19.8 0.1028 -67.2713 -25.8 0.0511 -105.3019 -25.8 0.0512 -105.2839 -19.8 0.1028 -70.2240
16 -19.3 0.1080 -83.1103 -25.8 0.0510 -112.5329 -25.8 0.0511 -112.5971 -19.4 0.1071 -74.8813
17 -20.4 0.0952 -72.5337 -25.8 0.0513 -119.9556 -25.8 0.0513 -119.9577 -19.8 0.1018 -75.0772
18 -20.1 0.0985 -86.9053 -25.8 0.0514 -127.5867 -25.8 0.0515 -127.4968 -19.7 0.1031 -77.9186
19 -20.6 0.0931 -85.0594 -25.7 0.0516 -134.9971 -25.7 0.0516 -134.8987 -20.2 0.0980 -84.3073
20 -19.5 0.1058 -85.8985 -25.7 0.0518 -142.9097 -25.7 0.0519 -142.8997 -19.3 0.1080 -80.9405
21 -20.4 0.0958 -75.9215 -25.7 0.0517 -150.2916 -25.7 0.0517 -150.3905 -19.9 0.1009 -80.9279
22 -19.5 0.1057 -89.6834 -25.8 0.0514 -158.4518 -25.8 0.0514 -158.3550 -19.4 0.1067 -83.4067
23 -19.6 0.1041 -93.8877 -25.8 0.0512 -165.6865 -25.8 0.0513 -165.6755 -18.6 0.1169 -88.1148
24 -17.6 0.1320 -92.9899 -25.8 0.0515 -173.0357 -25.8 0.0515 -173.0839 -18.8 0.1154 -84.0382
25 -20.0 0.0997 -91.0652 -25.8 0.0513 178.8482 -25.8 0.0513 178.9105 -19.5 0.1062 -83.8869
26 -21.4 0.0851 -95.9689 -25.9 0.0509 170.8062 -25.9 0.0509 170.8189 -20.2 0.0972 -89.0806
27 -20.2 0.0977 -100.1239 -25.9 0.0505 163.5284 -25.9 0.0505 163.3861 -19.1 0.1115 -86.7655
28 -20.5 0.0939 -89.8294 -26.0 0.0504 156.0409 -26.0 0.0504 155.9306 -20.3 0.0970 -75.9203
29 -21.2 0.0871 -91.4041 -26.0 0.0503 147.8155 -25.9 0.0504 147.8736 -20.2 0.0979 -76.7284
30 -21.0 0.0891 -96.1312 -25.9 0.0505 140.1722 -25.9 0.0505 140.0757 -19.5 0.1063 -84.3845
31 -19.6 0.1047 -85.0162 -26.1 0.0498 132.9230 -26.1 0.0497 132.7575 -18.7 0.1158 -72.8688
32 -18.6 0.1178 -90.3504 -26.0 0.0502 124.6842 -26.0 0.0501 124.7602 -17.2 0.1376 -78.7503
33 -24.2 0.0616 -89.6214 -26.1 0.0498 116.5344 -26.0 0.0500 116.4108 -20.6 0.0930 -78.2454
34 -20.2 0.0983 -84.3340 -26.1 0.0494 108.1947 -26.1 0.0494 107.9625 -18.0 0.1254 -71.6425
35 -21.3 0.0860 -76.1681 -26.3 0.0484 99.7143 -26.3 0.0485 99.2199 -18.4 0.1209 -76.2152
36 -19.2 0.1092 -73.0004 -26.5 0.0474 91.4310 -26.4 0.0476 91.8154 -18.3 0.1223 -62.4551
37 -21.4 0.0847 -79.7086 -26.6 0.0465 83.8384 -26.7 0.0462 85.3637 -18.0 0.1255 -66.6917
38 -16.8 0.1442 -59.9234 -26.8 0.0458 76.6048 -26.9 0.0452 78.3842 -16.7 0.1465 -62.2860
39 -17.3 0.1369 -74.3234 -26.7 0.0462 71.4124 -26.8 0.0456 70.9578 -15.3 0.1726 -59.2514
40 -16.5 0.1488 -65.9638 -26.8 0.0458 64.2460 -26.7 0.0461 63.5662 -15.7 0.1639 -56.2098
41 -16.2 0.1548 -81.6781 -26.7 0.0460 55.9474 -26.7 0.0464 56.2569 -14.2 0.1949 -64.7675
42 -17.3 0.1372 -58.2245 -26.5 0.0473 47.5980 -26.6 0.0467 47.7866 -15.4 0.1702 -58.3368
43 -14.7 0.1844 -69.1859 -26.7 0.0463 38.3880 -26.7 0.0463 37.9395 -13.1 0.2210 -57.9735
44 -15.5 0.1677 -71.3908 -26.8 0.0459 29.2405 -26.7 0.0460 29.0382 -13.0 0.2243 -68.5748
45 -14.5 0.1882 -62.4269 -26.8 0.0458 20.5805 -26.8 0.0457 20.3836 -13.5 0.2119 -53.4927
46 -14.3 0.1932 -71.4140 -27.1 0.0441 12.2736 -27.1 0.0443 10.9667 -10.9 0.2852 -68.8740
47 -12.3 0.2421 -65.2403 -27.8 0.0408 3.3789 -27.8 0.0409 2.4698 -11.7 0.2600 -55.1522
48 -13.7 0.2057 -73.1761 -27.8 0.0408 -5.2377 -27.8 0.0405 -6.0150 -10.3 0.3067 -63.1535
49 -12.2 0.2445 -54.5568 -27.5 0.0422 -14.4113 -27.6 0.0417 -16.3065 -10.6 0.2960 -60.3155
50 -11.0 0.2813 -77.9185 -28.6 0.0371 -23.5788 -28.8 0.0364 -27.4289 -8.0 0.3965 -71.1613
Note : S-parameters are obtained from on-wafer measurements.
9
AMMC-6640 Bias and Usage
The AMMC-6640 attenuator is driven by voltage ramps
placed on Vseries and Vshunt control pins. Operation in
this mode requires voltages between 0 to 1.5 volts for Vse
and 0 to 1.5 volts for Vsh. The recommended DC control
voltage range is Vse = 0 to 1.2 volts and Vsh = 0 to 1.2
volts. The simplied schematic for the MMIC die is shown
in Figure 19.
In the minimum attenuation state, the series FETs are
fully biased at 1.2 volts and the shunt FETs are in the full
o state at 0 volts. Inversely, for a maximum attenuation
state, the series FETs are o at 0 volts bias and the shunt
FETs are fully on at 1.2 volts. Achieving attenuation levels
in-between these two states requires voltage levels similar
to those in Table 4. Applying voltage to the shunt FETs sets
the source to drain resistance and establishes the main
attenuation level. The match is optimized by the amount
of bias applied to the series FETs. The match will determine
how at the attenuation level is across a broadband
operational range.
Figure 18. AMMC-6640 Schematic
Table 4. AMMC-6640 Typical Control Voltages
Attenuation (dB) Vseries (V) Vshunt (V)
0 1.2 0
2 0.440 0.325
4 0.435 0.383
6 0.430 0.416
8 0.420 0.440
10 0.410 0.465
12 0.400 0.480
14 0.385 0.505
16 0.375 0.535
18 0.360 0.575
20 0.350 0.650
22 0.346 0.845
max 0 1.2
Figure 19. Demonstration Board (available upon request)
Vse Vsh
RFO RFI
10
AMMC-6640 Assembly Techniques
The backside of the MMIC chip is RF ground. For microstrip
applications the chip should be attached directly to the
ground plane (e.g. circuit carrier or heatsink) using electri-
cally conductive epoxy [1].
For best performance, the topside of the MMIC should be
brought up to the same height as the circuit surrounding
it. This can be accomplished by mounting a gold plated
metal shim (same length as the MMIC) under the chip
which is of correct thickness to make the chip and adjacent
circuit the same height. The amount of epoxy used for the
chip or shim attachment should be just enough to provide
a thin llet around the bottom perimeter of the chip.
The ground plane should be free of any residue that may
jeopardize electrical or mechanical attachment.
RF connections should be kept as short as reasonable
to minimize performance degradation due to undesir-
able series inductance. A single bond wire is normally
Figure 20. AMMC-6640 Bond Pad Locations
Figure 21. AMMC-6640 Assembly Diagram
sucient for signal connections, however double bonding
with 0.7mil gold wire will reduce series inductance. Gold
thermo-sonic wedge bonding is the preferred method for
wire attachment to the bond pads. The recommended
wire bond stage temperature is 150°C+/-2°C. Caution
should be taken to not exceed the Absolute Maximum
Rating for assembly temperature and time.
The chip is 100Pm thick and should be handled with care.
Even though this MMIC has 4550 Angstroms of silicon
nitride covering the air bridges on the top surface of the
die, it should be handled by the edges or with a custom
collet (do not pick up the die with a vacuum on die center).
Bonding pads and chip backside metallization are gold.
This MMIC is static sensitive and ESD precautions should be taken.
Please see page 1 for ESD rating levels.
Notes:
1. Sumitomo 1295SA silver epoxy is recommended.
For product information and a complete list of distributors, please go to our web site: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2010 Avago Technologies. All rights reserved.
AV02-2237EN - September 27, 2010
Names and Contents of the Toxic and Hazardous Substances or Elements in the Products
Part Name
Lead
(Pb)
(Pb)
Mercury
(Hg)
Hg
Cadmium
(Cd)
Cd
Hexavalent
(Cr(VI))
Cr(VI)
Polybrominated
biphenyl (PBB)
PBB
Polybrominated
diphenylether (PBDE)
PBDE
100pF capacitor
: indicates that the content of the toxic and hazardous substance in all the homogeneous materials of the part is
below the concentration limit requirement as described in SJ/T 11363-2006.
: indicates that the content of the toxic and hazardous substance in at least one homogeneous material of the part
exceeds the concentration limit requirement as described in SJ/T 11363-2006.
(The enterprise may further explain the technical reasons for the “x” indicated portion in the table in accordance with
the actual situations.)
SJ/T 11363-2006
SJ/T 11363-2006
“×”
Note: EU RoHS compliant under exemption clause of lead in electronic ceramic parts (e.g. piezoelectronic devices)”
Toxic and Hazardous Substances or Elements