Data Sheet No. PD60028-M IR2111(S) & (PbF) HALF-BRIDGE DRIVER Features * Floating channel designed for bootstrap operation * * * * * * * Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout for both channels CMOS Schmitt-triggered inputs with pull-down Matched propagation delay for both channels Internally set deadtime High side output in phase with input Also available LEAD-FREE Description Product Summary VOFFSET 600V max. IO+/- 200 mA / 420 mA VOUT 10 - 20V ton/off (typ.) 750 & 150 ns Deadtime (typ.) 650 ns Packages The IR2111(S) is a high voltage, high speed power MOSFET and IGBT driver with dependent high and low side referenced output channels designed for halfbridge applications. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic input is compatible with standard CMOS outputs. The output drivers feature a high pulse current buffer stage designed for minimum 8-Lead PDIP driver cross-conduction. Internal deadtime is provided to avoid shoot-through in the output half-bridge. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. 8-Lead SOIC Typical Connection up to 600V VCC VCC IN IN COM VB HO VS TO LOAD LO (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1 IR2111(S) & (PbF) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in figures 7 through 10. Symbol Definition Min. Max. Units VB High side floating supply voltage -0.3 625 VS High side floating supply offset voltage VB - 25 VB + 0.3 VHO High side floating output voltage VS - 0.3 VB + 0.3 VCC Low side and logic fixed supply voltage -0.3 25 VLO Low side output voltage -0.3 VCC + 0.3 Logic input voltage VIN dVs/dt PD RthJA V -0.3 VCC + 0.3 Allowable offset supply voltage transient (figure 2) -- 50 Package power dissipation @ TA +25C (8 Lead PDIP) -- 1.0 (8 lead SOIC) -- 0.625 (8 lead PDIP) -- 125 (8 lead SOIC) -- 200 Thermal resistance, junction to ambient TJ Junction temperature -- 150 TS Storage temperature -55 150 TL Lead temperature (soldering, 10 seconds) -- 300 V/ns W C/W C Recommended Operating Conditions The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential. Symbol Min. Max. VB Definition High side floating supply absolute voltage VS + 10 VS + 20 VS High side floating supply offset voltage Note 1 600 VHO High side floating output voltage VS VB VCC Low side and logic fixed supply voltage 10 20 VLO Low side output voltage 0 VCC VIN Logic input voltage 0 VCC TA Ambient temperature -40 125 Units V C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). 2 www.irf.com IR2111(S) & (PbF) Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, CL = 1000 pF and TA = 25C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in figure 3. Symbol Definition Min. Typ. Max. Units Test Conditions ton Turn-on propagation delay 550 750 950 VS = 0V toff Turn-off propagation delay -- 150 180 VS = 600V tr Turn-on rise time -- 80 130 tf Turn-off fall time -- 40 65 DT Deadtime, LS turn-off to HS turn-on & HS turn-off to LS turn-on 480 650 820 MT Delay matching, HS & LS turn-on/off -- 30 -- ns Static Electrical Characteristics VBIAS (VCC, VBS) = 15V and TA = 25C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol VIH VIL Definition Logic "1" input voltage for HO & logic "0" for LO Logic "0" input voltage for HO & logic "1" for LO Min. Typ. Max. Units Test Conditions 6.4 -- -- VCC = 10V 9.5 -- -- VCC = 15V 12.6 -- -- VCC = 20V V -- -- 3.8 -- -- 6.0 VCC = 15V -- -- 8.3 VCC = 20V VOH High level output voltage, VBIAS - VO -- -- 100 VOL Low level output voltage, VO -- -- 100 ILK Offset supply leakage current -- -- 50 VCC = 10V IO = 0A mV IO = 0A VB = VS = 600V IQBS Quiescent VBS supply current -- 50 100 VIN = 0V or VCC IQCC Quiescent VCC supply current -- 70 180 VIN = 0V or VCC IIN+ Logic "1" input bias current -- 30 50 VIN = VCC IIN- Logic "0" input bias current -- -- 1.0 VIN = 0V VBSUV+ VBS supply undervoltage positive going threshold 7.6 8.6 9.6 VBSUV- VBS supply undervoltage negative going threshold 7.2 8.2 9.2 VCCUV+ VCC supply undervoltage positive going threshold 7.6 8.6 9.6 VCCUV- VCC supply undervoltage negative going threshold 7.2 8.2 9.2 Output high short circuit pulsed current 200 250 -- IO+ A V VO = 0V, VIN = VCC mA IO- www.irf.com Output low short circuit pulsed current 420 500 -- PW 10 s VO = 15V, VIN = 0V PW 10 s 3 IR2111(S) & (PbF) Functional Block Diagram VB HV LEVEL SHIFT DEAD TIME UV DETECT R PULSE FILTER R Q PULSE GEN IN HO S VS UV DETECT VCC LO DEAD TIME COM Lead Definitions Symbol Description IN VB HO VS VCC LO COM Logic input for high side and low side gate driver outputs (HO & LO), in phase with HO High side floating supply High side gate drive output High side floating supply return Low side and logic fixed supply Low side gate drive output Low side return Lead Assignments 8 Lead DIP 8 Lead SOIC IR2111 IR2111S Part Number 4 www.irf.com IR2111(S) & (PbF) IN HO LO Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit IN(LO) 50% 50% IN(HO) ton toff tr 90% LO HO Figure 3. Switching Time Test Circuit 50% tf 90% 10% 10% Figure 4. Switching Time Waveform Definition IN (LO) 50% 50% 50% IN IN (HO) LO 90% HO 10% 10% 90% 90% 10% Figure 5. Deadtime Waveform Definitions www.irf.com MT MT DT LO HO LO HO Figure 6. Delay Matching Waveform Definitions 5 IR2111(S) & (PbF) 1500 1250 M ax. 1000 T yp. 750 M in. 500 250 Turn-On Delay Time (ns) Turn-On Delay Time (ns) 1500 1250 Max. 1000 750 Typ. Min. 500 250 0 0 -50 -25 0 25 50 75 100 125 10 12 o Temperature ( C) 400 350 350 Turn-Off Delay Time (ns) Turn-Off Delay Time (ns) 18 20 V BIA S Supply V oltage (V) 400 300 Max 200 Typ 150 16 Figure 11B Turn-On Time vs Voltage Figure 11A Turn-On Time vs Temperature 250 14 100 50 300 250 Max 200 150 Typ 100 50 0 0 -50 -25 0 25 50 Temperature (C) 75 100 10 125 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 12B Turn-Off Time vs Voltage 400 400 350 350 Turn-On Rise Time (ns) Turn-On rise Time (ns) Figure 12A Turn-Off Time vs Temperature 300 250 200 Max 150 100 Typ 50 250 200 Max 150 100 Typ 50 0 0 -50 -25 0 25 50 75 100 125 Temperature (C) Figure 13A Turn-On RiseTime vs Temperature 6 300 10 12 14 16 18 20 V B IA S Supply V oltage (V ) Figure 13B Turn-On RiseTime vs Voltage www.irf.com 200 200 150 150 100 Turn-Off Fall Time (ns) Turn -Off Fall Time (ns) IR2111(S) & (PbF) Max 50 Typ 100 Max 50 Typ 0 0 -50 -25 0 25 50 75 Temperature (C) 100 125 10 18 20 Figure 14B Turn-Off Fall Time vs Voltage 1000 M ax. Typ. 750 M in. 500 Deadtime (ns) Deadtime (ns) 1000 Max. Typ. 750 Min. 500 250 250 0 -25 0 25 50 75 100 10 125 12 14 16 18 20 VBIAS Supply Voltage (V) Temperature (oC) Figure 15A Dead Time vs Temperature 6 3 0 -25 0 25 50 75 100 125 9 9 Min 6 Min 3 12 0 15 12 15 Figure 15B Dead Time vs Voltage Logic " 1 " Input Treshold (V) Logic "1" Input Threshold (V) 16 1250 1250 -50 14 VBIAS Supply Voltage (V) Figure 14A Turn-Off Fall Time vs Temperature 0 -50 12 10 12 14 16 18 20 Temperature (C) Figure 16A Logic "I" Input voltage for HO & Logic "0" for LO vs Temperature www.irf.com Figure 16B Logic "I" Input voltage for HO & Logic "0" for LO vs Voltage 7 3 9 Max 6 Max 6 3 9 12 Logic " 0 " Input Treshold (V) 12 0 Logic "0" Input Threshold (V) 15 15 IR2111(S) & (PbF) 0 -50 -25 0 25 50 Temperature (C) 75 100 10 125 18 20 H igh Level O utput V oltage (V ) 1 0.8 0.6 0.4 M ax. 0.2 0.8 0.6 0.4 M ax. 0.2 0 0 -50 -25 0 25 50 75 100 125 10 Low Level Output Voltage (V) 1 0.8 0.6 0.4 Max. 0.2 -25 0 25 50 14 16 18 20 Figure 18B. High Level Output vs. Voltage Figure 18A. High Level Output vs. Temperature 0 -50 12 V B A IS S upply V otage (V ) T e m p e ra tu re Low Level Output Voltage (V) 16 Figure 17B Logic "0" Input voltage for HO & Logic "I" for LO vs Voltage 1 75 100 125 Temperature (C) Figure 19A. Low Level Output vs. Temperature 8 14 VCC Logic Supply Voltage (V) Figure 17A Logic "0" Input voltage for HO & Logic "I" for LO vs Temperature H igh Level O utput V oltage (V ) 12 1 0.8 0.6 0.4 Max. 0.2 0 10 12 14 16 18 20 VBIAS Supply Votage (V) Figure 19B. Low Level Output vs. Voltage www.irf.com 500 400 300 200 Max. 100 0 -50 -25 0 25 50 75 100 125 Temperature (C) 500 Offset Supply Leakage Current (uA) Offset Supply Leakage Current (uA) IR2111(S) & (PbF) 400 300 200 M ax . 100 0 0 300 400 500 600 Figure 20B Offset Supply Current vs Voltage 200 VBS Supply Current (uA) 200 VBS Supply Current (uA) 200 V B B oos t V oltage (v) Figure 20A Offset Supply Current vs Temperature 150 Max. 100 Typ. 50 0 150 Max. 100 Typ. 50 0 -50 -25 0 25 50 75 100 125 10 Temperature (C) 14 16 18 20 Figure 21B VBS Supply Current vs Voltage 500 400 400 V cc S upply C urrent (uA ) 500 300 Max. 200 Typ. 100 12 VBS Floating Supply Voltage (V) Figure 21A VBS Supply Current vs Temperature Vcc Supply Current (uA) 100 0 300 Max 200 100 Typ 0 -50 -25 0 25 50 75 100 125 Temperature (C) Figure 22A VCC Supply Current vs Temperature www.irf.com 10 12 14 16 18 20 V cc F ixed S upply V oltage (V ) Figure 22B VCC Supply Current vs Voltage 9 120 120 100 100 Logic " 1" Input Bias Current (uA) Logic "1 " Input Bias Current (uA) IR2111(S) & (PbF) 80 60 40 20 0 -50 -25 0 25 50 75 100 125 80 Max. 60 40 20 Typ. 0 10 12 Figure 23A Logic "1" Input Current vs Temperature 4 3 2 Max. 1 25 50 4 3 2 Max. 1 0 75 100 14 16 18 20 VCC Supply Voltage (V) Figure 24A. Logic "0" Input Current vs. Temperature Figure 24B. Logic "0" Input Current vs. VCC Voltage 12 V B S U V LO Threshold -(V ) 12 VBS UVLO Threshold +(V) 12 125 Temperature (C) 11 Max. 10 Typ. 9 8 7 Min. 11 10 M ax. 9 Typ. 8 7 M in. 6 6 -50 -25 0 25 50 75 100 Temperature (C) Figure 25 VBS Undervoltage Threshold (+) vsTemperature 10 20 5 10 0 0 18 Figure 23B Logic "1" Input Current vs VCC Voltage Logic "0" Input Current (uA) Logic "0" Input Bias Current (uA) 5 -25 16 VCC Supply Voltage (V) Temperature (C) -50 14 125 -50 -25 0 25 50 75 100 125 Tem perature (C ) Figure 26 VBS Undervoltage Threshold (-) vsTemperature www.irf.com IR2111(S) & (PbF) 11 10 VCC Undervoltage Lockout - (V) Vcc Undervoltage Lockout +(V) 11 Max. 9 Typ. 8 Min. 7 6 -50 10 Max. 9 Typ. 8 Min. 7 6 -25 0 25 50 75 100 -50 125 -25 0 Temperature (C) Figure 27 VCC Undervoltage (-) vs Temperature 75 100 125 Figure 28 VCC Undervoltage (-) vs Temperature Output source Current (mA) Output source Current (mA) 50 500 500 400 300 Typ. 200 Min. 100 400 Typ. 300 Min. 200 100 0 0 -50 -25 0 25 50 75 100 10 125 12 Temperature (C) 14 16 18 20 VBIAS Supply Voltage (V) Figure 29B Output Source Current vs Voltage Figure 29A Output Source Current vs Temperature 750 Output Sink Current (mA) 750 Output Sink Current (mA) 25 Temperature (C) 600 Typ. 450 300 Min. 150 600 Typ. 450 300 Min. 150 0 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Temperature (C) Figure 30A Output Sink Current vs Temperature www.irf.com Figure 30B Output Sink Current vs Voltage 11 IR2111(S) & (PbF) 100 160 75 30V 50 25 1E+3 1E+4 1E+5 30V 75 50 25 0 1E+2 1E+3 1E+4 1E+5 1E+6 Frequency (Hz) Figure 31. IR2111 TJ vs. Frequency (IRFBC20) , VCC = 15V RGATE = 33 Figure 32. IR2111 TJ vs. Frequency (IRFBC30) , VCC = 15V RGATE = 22 320V 160V 150 30V 125 125 Ju n ctio n T e m p e ratu re (C ) Ju n ctio n T e m p e ratu re (C ) 1E+6 100 Frequency (Hz) 150 100 75 50 25 0 1E+2 12 160V 125 125 0 1E+2 320V 150 320 Ju n ctio n T e m p e ratu re (C ) Ju n ctio n T e m p e ratu re (C ) 150 1E+3 1E+4 1E+5 1E+6 320V 160V 30V 100 75 50 25 0 1E+2 1E+3 1E+4 1E+5 1E+6 Frequency (Hz) Frequency (Hz) Figure33. IR2111 TJ vs. Frequency (IRFBC40) , VCC = 15V RGATE = 15 Figure 34. IR2111 TJ vs. Frequency (IRFPC50) , VCC = 15V RGATE = 10 www.irf.com IR2111(S) & (PbF) 320V 140V 320V 150 150 160 100 75 30V 50 25 0 1E+2 30V 125 1E+3 1E+4 1E+5 Ju n ctio n T e m p e ratu re (C ) Ju n ctio n T e m p e ratu re (C ) 125 100 75 50 25 0 1E+2 1E+6 1E+3 1E+4 1E+6 Frequency (Hz) Frequency (Hz) Figure 35. IR2111S TJ vs. Frequency (IRFBC20) , VCC = 15V RGATE = 33 Figure 36. IR2111S TJ vs. Frequency (IRFBC30) , VCC = 15V RGATE = 22 320V 140V 150 320V 140V 30V 30V 150 125 125 Ju n ctio n T e m p e ratu re (C ) Ju n ctio n T e m p e ratu re (C ) 1E+5 100 75 50 25 0 1E+2 1E+3 1E+4 1E+5 1E+6 100 75 50 25 0 1E+2 1E+3 1E+4 1E+5 1E+6 Frequency (Hz) Frequency (Hz) Figure 37. IR2111S TJ vs. Frequency (IRFBC40) , VCC = 15V RGATE = 15 Figure 38. IR2111S TJ vs. Frequency (IRFPC50) , VCC = 15V RGATE = 10 www.irf.com 13 IR2111(S) & (PbF) Case outlines 01-6014 01-3003 01 (MS-001AB) 8-Lead PDIP D DIM B 5 A FOOTPRINT 8 6 7 6 5 H E 1 6X 2 3 0.25 [.010] 4 e A 6.46 [.255] 3X 1.27 [.050] e1 0.25 [.010] A1 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 .1574 3.80 4.00 E .1497 e .050 BASIC e1 MAX 1.27 BASIC .025 BASIC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0 8 0 8 y 0.10 [.004] 8X L 8X c 7 C A B NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA. 8-Lead SOIC 14 MIN .0532 K x 45 A C 8X b 8X 1.78 [.070] MILLIMETERS MAX A 8X 0.72 [.028] INCHES MIN 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 01-6027 01-0021 11 (MS-012AA) www.irf.com IR2111(S) & (PbF) LEADFREE PART MARKING INFORMATION Part number Date code IRxxxxxx YWW? Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released IR logo ?XXXX Lot Code (Prod mode - 4 digit SPN code) Assembly site code Per SCOP 200-002 ORDER INFORMATION Basic Part (Non-Lead Free) 8-Lead PDIP IR2111 order IR2111 8-Lead SOIC IR2111S order IR2111S Leadfree Part 8-Lead PDIP IR2111 order IR2111PbF 8-Lead SOIC IR2111S order IR2111SPbF IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 This product has been qualified per industrial level Data and specifications subject to change without notice. 4/12/2004 www.irf.com 15