Data Sheet
April 2008
LW020 Single-Output-Series Power Modules:
36 Vdc to 75 Vdc Inputs; 20 W
The LW020 Single-Output-Series Power Modules use
advanced, surface-mount technology and deliver high-qual-
ity, compact, dc-dc conversion at an economical price.
Applications
nDistributed power architectures
nCommunication equipment
nComputer equipment
Options
nChoice of remote on/off configuration
nCase ground pin
nSynchronization
nShort pins: 2.79 mm ± 0.25 mm
(0.110 in. ± 0.010 in.)
nShort pins: 3.68 mm ± 0.25 mm
(0.145 in. ± 0.010 in.)
Features
nLow profile: 9.91 mm (0.390 in.) with 0.38 mm
(0.015 in.) standoffs, 9.53 mm (0.375 in.) with
standoffs recessed
nWide input voltage range: 36 Vdc to 75 Vdc
nOvercurrent protection
nOutput overvoltage protection
nInput-to-output isolation: 1500 Vdc
nOperating case temperature range: –40 °C to
+110 °C
nRemote on/off
nOutput voltage adjustment: 90% to 110% of VO, nom
nJQA Certified to EN60950
nUL* 1950 Recognized, CSA C22.2 No. 950-95
Certified, VDE 0805 (EN60950, IEC950) Licensed
nCE mark meets 73/23/EEC and 93/68/EEC
directives§
nWithin FCC Class A radiated limits
Description
The LW020 Single-Output-Series Power Modules are
low-profile dc-dc converters that operate over an
input voltage range of 36 Vdc to 75 Vdc and provide
precisely regulated outputs. The outputs are isolated
from the input, allowing versatile polarity configura-
tions and grounding connections. Built-in filtering for
both input and output minimizes the need for external
filtering. The modules have a maximum power rating
of 20 W at a typical full-load efficiency of up to 85%.
*UL is a registered trademark of Underwriters Laboratories, Inc.
CSA is a registered trademark of Canadian Standards Associa-
tion.
VDE is a trademark of Verband Deutscher Elektrotechniker e.V.
§ This product is intended for integration into end-use equipment.
All the required procedures for CE marking of end-use equip-
ment should be followed. (The CE mark is placed on selected
products.)
2Lineage Power
Data Sheet
April 2008
36 Vdc to 75 Vdc Inputs; 20 W
LW020 Single-Output-Series Power Modules:
Absolute Maximum Ratings
Stresses in excess of the absolute maximum ratings can cause permanent damage to the devices. These are
absolute stress ratings only. Functional operation of the devices is not implied at these or any other conditions in
excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for
extended periods can adversely affect device reliability.
* Maximum case temperature varies based on power dissipation. See derating curve, Figure 16, for details.
Electrical Specifications
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature
conditions.
Table 1. Input Specifications
Fusing Considerations
CAUTION: This power module is not internally fused. An input line fuse must always be used.
This encapsulated power module can be used in a wide variety of applications, ranging from simple stand-alone
operation to an integrated part of a sophisticated power architecture. To preserve maximum flexibility, internal fus-
ing is not included; however, to achieve maximum safety and system protection, always use an input line fuse.
The safety agencies require a normal-blow fuse with a maximum rating of 5 A (see Safety Considerations
section). Based on the information provided in this data sheet on inrush energy and maximum dc input current, the
same type of fuse with a lower rating can be used. Refer to the fuse manufacturer’s data for further information.
Parameter Symbol Min Max Unit
Input Voltage:
Continuous
Transient (100 ms)
VI
VI, trans
0
0
80
100
Vdc
V
Operating Case Temperature
(See Thermal Considerations section.)
TC–40 110* °C
Storage Temperature Tstg –40 120 °C
I/O Isolation Voltage 1500 Vdc
Parameter Symbol Min Typ Max Unit
Operating Input Voltage VI36 48 75 Vdc
Maximum Input Current
(VI = 0 V to VI, max; IO = IO, max; see Figure 1.)
II, max ——1.1A
Inrush Transient i2t—0.1A
2s
Input Reflected-ripple Current
(50 Hz to 20 MHz; 12 µH source impedance,
TC = 25 °C; see Figure 11 and Design Considerations
section.)
II—3—mAp-p
Input Ripple Rejection (100 Hz—120 Hz) 60 dB
Lineage Power 3
Data Sheet
April 2008 36 Vdc to 75 Vdc Inputs; 20 W
LW020 Single-Output-Series Power Modules:
Electrical Specifications (continued)
Table 2. Output Specifications
Parameter Device Symbol Min Typ Max Unit
Output Voltage Set Point
(VI = 48 V; IO = IO, max; TC = 25 °C)
LW020G
LW020F
LW020A
LW020B
LW020C
VO, set
VO, set
VO, set
VO, set
VO, set
2.46
3.25
4.92
11.81
14.76
2.5
3.3
5.0
12.0
15.0
2.54
3.35
5.08
12.19
15.24
Vdc
Vdc
Vdc
Vdc
Vdc
Output Voltage
(Over all line, load, and temperature
conditions until end of life; see Figure 13.)
LW020G
LW020F
LW020A
LW020B
LW020C
VO
VO
VO
VO
VO
2.4
3.20
4.85
11.64
14.55
2.6
3.40
5.15
12.36
15.45
Vdc
Vdc
Vdc
Vdc
Vdc
Output Regulation:
Line (VI = 36 V to 75 V)
Load (IO = IO, min to IO, max)
Temperature (TC = –40 °C to +100 °C)
All
All
All
0.01
0.05
0.5
0.1
0.2
1.0
%VO
%VO
%VO
Output Ripple and Noise Voltage
(See Figure 12.):
RMS
Peak-to-peak (5 Hz to 20 MHz)
LW020A, F,
G
LW020B, C
LW020A, F,
G
LW020B, C
20
50
20
50
100
150
mVrms
mVrms
mVp-p
mVp-p
Output Current
(At IO < IO, min, the modules may exceed
output ripple specifications.)
LW020A, F,
G
LW020B
LW020C
IO
IO
IO
0.4
0.17
0.13
4.0
1.67
1.33
A
A
A
Output Current-limit Inception
(VO = 90% x VO, set; see Figure 2.)
All IO103 150 %IO, max
Output Short-circuit Current
(VO = 250 mV)
LW020C
LW020B
LW020A, F,
G
IO
IO
IO
150
150
150
250
220
200
%IO, max
%IO, max
%IO, max
Efficiency
(VI, nom; IO = IO, max; TC = 25 °C; see Figures
3—7 and 13.)
LW020G
LW020F
LW020A
LW020B
LW020C
η
η
η
η
η
71
74
77
82
82
75
77
81
85
85
%
%
%
%
%
Switching Frequency All 256 kHz
Dynamic Response
(ýIO/ýt = 1 A/10 µs, VI = VI, nom, TA = 25 °C):
Load Change from IO = 50% to 75% of
IO, max:
Peak Deviation
Settling Time (VO < 10% peak
deviation)
Load Change from IO = 50% to 25% of
IO, max:
Peak Deviation
Settling Time (VO < 10% peak
deviation)
All
All
All
All
2
1.0
2
1.0
%VO, set
ms
%VO, set
ms
4Lineage Power
Data Sheet
April 2008
36 Vdc to 75 Vdc Inputs; 20 W
LW020 Single-Output-Series Power Modules:
Electrical Specifications (continued)
Table 3. Isolation Specifications
General Specifications
Feature Specifications
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature
conditions. See Feature Descriptions and Design Considerations for further information.
Parameter Min Typ Max Unit
Isolation Capacitance 0.002 µF
Isolation Resistance 10
Parameter Min Typ Max Unit
Calculated MTBF (IO = 80% of IO, max; TC = 40 °C) 4,500,000 hours
Weight 54 (1.9) g (oz.)
Parameter Device Symbol Min Typ Max Unit
Remote On/Off Signal Interface:
(VI = 0 V to VI, max; open collector or equivalent
compatible; signal referenced to VI(–) terminal.
See Figure 14 and Feature Descriptions.):
Negative Logic: Device Code Suffix “1”:
Logic Low—Module On
Logic High—Module Off
Positive Logic: If Device Code Suffix “1” is not
specified:
Logic Low—Module Off
Logic High—Module On
Module Specifications:
On/Off Current—Logic Low
On/Off Voltage:
Logic Low
Logic High (Ion/off = 0)
Open Collector Switch Specifications:
Leakage Current During Logic High
(Von/off = 10 V)
Output Low Voltage During Logic Low
(Ion/off = 1 mA)
All
All
All
All
All
Ion/off
Von/off
Von/off
Ion/off
Von/off
–0.7
1.0
1.2
10
50
1.2
mA
V
V
µA
V
Lineage Power 5
Data Sheet
April 2008 36 Vdc to 75 Vdc Inputs; 20 W
LW020 Single-Output-Series Power Modules:
Feature Specifications (continued)
Parameter Device Symbol Min Typ Max Unit
Turn-on Delay and Rise Times
(at 80% of IO, max; TA = 25 °C):
Case 1: On/Off Input Is Set for Unit On and then
Input Power Is Applied (delay from point at
which VI = 48 V until VO = 10% of VO, nom).
Case 2: 48 V Input Is Applied for at Least One
Second, and then the On/Off Input Is Set to
Turn the Module On (delay from point at which
on/off input is toggled until VO = 10% of
VO, nom).
Output Voltage Rise Time (time for VO to rise
from 10% of VO, nom to 90% of VO, nom)
Output Voltage Overshoot (at 80% of IO, max;
TA = 25 °C)
All
All
All
All
Tdelay
Tdelay
Trise
27
2
1.5
50
10
3.0
5
ms
ms
ms
%
Output Voltage Set-point Adjustment Range LW020B
All others
83
90
110
110
%VO, nom
%VO, nom
Output Overvoltage Protection (clamp) LW020G
LW020F
LW020A
LW020B
LW020C
VO, clamp
VO, clamp
VO, clamp
VO, clamp
VO, clamp
2.9
3.9
5.6
13.2
16.5
3.8
5.0
7.0
16.5
20.0
V
V
V
V
V
66 Lineage Power
Data Sheet
April 2008
36 Vdc to 75 Vdc Inputs; 20 W
LW020 Single-Output-Series Power Modules:
Characteristics Curves
8-1481(C).a
Figure 1. LW020 Typical Input Characteristics,
TA=2C
8-1258(C).a
Figure 2. LW020A, B, C, F, and G Typical Output
Characteristics, TA=2C
8-1483(C).a
Figure 3. LW020G Typical Converter Efficiency vs.
Output Current, TA=2C
8-1483(C)
Figure 4. LW020F Typical Converter Efficiency vs.
Output Current, TA=2C
10 20 30 40 50 60
0.0
0.8
INPUT VOLTAGE, V I (V)
0.6
0.5
0.4
0.7
INPUT CURRENT, II
(A)
1.0
70 800
0.9
0.3
0.2
0.1
PO = 20 W
PO = 10 W
PO = 2 W
0
100%
VO, nom
80%
VO, nom
40%
VO, nom
20%
VO, nom
60%
VO, nom
NORMALIZED OUTPUT CURRENT, IO (A)
NORMALIZED OUTPUT VOLTAGE, VO (V)
VI = 75
VI = 54
VI = 36
50%
IO, max 100%
IO, max 150%
IO, max
0
1.4 1.9 2.4 2.9 3.4
60
OUTPUT CURRENT, IO (A)
74
EFFICIENCY, η (%)
76
3.90.4
72
62
70
64
VI = 36 V
VI = 48 V
VI = 75 V
68
66
0.9
0.5 1.0 1.5 2.0 2.5 3.0
70
OUTPUT CURRENT, I
O
(A)
79
78
77
EFFICIENCY, η (%)
80
3.5 4.00.0
76
75
74
V
I =
75
V
I =
54
V
I =
36
73
72
71
Lineage Power 7
Data Sheet
April 2008 36 Vdc to 75 Vdc Inputs; 20 W
LW020 Single-Output-Series Power Modules:
Characteristics Curves (continued)
8-1260(C).a
Figure 5. LW020A Typical Converter Efficiency vs.
Output Current
8-1484(C)
Figure 6. LW020B Typical Converter Efficiency vs.
Output Current, TA=2C
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
72
73
74
75
76
77
OUTPUT CURRENT, I
O (A)
78
79
80
81
EFFICIENCY, η (%)
82
VI = 36
VI = 54
VI = 75
0.2 0.4 0.6 0.8 1.0 1.2
70
OUTPUT CURRENT, IO (A)
84
EFFICIENCY, η (%)
86
1.4 1.60.0
82
80
78
VI = 75
VI = 54
VI = 36
76
74
72
8-1485(C)
Figure 7. LW020C Typical Converter Efficiency vs.
Output Current, TA=2C
8-1262(C).a
Figure 8. LW020A, B, C, F, and G Typical Output
Voltage for a Step Load Change from 50%
to 75%
0.2 0.4 0.6 0.8 1.0 1.2
70
OUTPUT CURRENT, I
O
(A)
84
EFFICIENCY, η
(%)
86
0.0
82
80
78
V
I
= 75
V
I
= 54
V
I
= 36
76
74
72
88
NORMALIZED
OUTPUT CURRENT, IO (A) NORMALIZED
OUTPUT VOLTAGE, VO (V)
50%
IO, max
100%
VO, nom
99%
VO, nom
75%
IO, max
TIME, t (100 µs/div)
88 Lineage Power
Data Sheet
April 2008
36 Vdc to 75 Vdc Inputs; 20 W
LW020 Single-Output-Series Power Modules:
Characteristics Curves (continued)
8-1261(C).b
Figure 9. LW020A, B, C, F, and G Typical Output
Voltage for a Step Load Change from 50%
to 25%
8-1263(C).b
Figure 10. LW020A, B, C, F, and G Typical Output
Voltage Start-Up when Signal Applied to
Remote On/Off
Test Configurations
8-203(C)
Note: Input reflected-ripple current is measured with a simulated
source impedance of 12 µH. Capacitor Cs offsets possible
battery impedance. Current is measured at the input of the
module.
Figure 11. Input Reflected-Ripple Test Setup
8-513(C)
Note: Use a 0.1 µF ceramic capacitor. Scope measurement should
be made using a BNC socket. Position the load between
50 mm and 75 mm (2 in. and 3 in.) from the module.
Figure 12. Peak-to-Peak Output Noise
Measurement Test Setup
8-204(C)
Note: All measurements are taken at the module terminals. When
socketing, place Kelvin connections at module terminals to
avoid measurement errors due to socket contact resistance.
Figure 13. Output Voltage and Efficiency
Measurement Test Setup
TIME, t (100 µs/div)
NORMALIZED
OUTPUT VOLTAGE, V
O
(V)
NORMALIZED
OUTPUT CURRENT, I
O
(A)
101%
V
O
, nom
100%
V
O
, nom
50%
I
O
, max
25%
I
O
, max
TIME, t (1 ms/div)
NORMALIZED
OUTPUT VOLTAGE, V
O
(1 V/div)
0
100%
V
O
, nom
50%
V
O
, nom
5V
0
REMOTE ON/OFF,
V
on/off
(V) (2 V/div)
TO OSCILLOSCOPE
12 µH
CS 220 µF
IMPEDANCE < 0.1 Ω
@ 20 ˚C, 100 kHz
VI(+)
VI(-)
BATTERY 33 µF
CURRENT
PROBE
LTEST
V
O
(+)
V
O
(-)
0.1 µF RESISTIVE
LOAD
SCOPE
COPPER STRIP
VI(+)
VI(-)
VO(+)
VO(-)
IIIO
SUPPLY
CONTACT RESISTANCE
CONTACT AND
DISTRIBUTION LOSSES
LOAD
ηVO(+) VO(–)[]IO
VI(+) VI(–)[]II
------------------------------------------------
⎝⎠
⎛⎞
100
×=%
Lineage Power 9
Data Sheet
April 2008 36 Vdc to 75 Vdc Inputs; 20 W
LW020 Single-Output-Series Power Modules:
Design Considerations
Grounding Considerations
For standard units, the case is connected internally to
VI(+). For units with the case ground pin option, the
case is not connected internally allowing the user flexi-
bility in grounding.
Input Source Impedance
The power module should be connected to a low ac-
impedance input source. Highly inductive source
impedances can affect the stability of the power mod-
ule. For the test configuration in Figure 11, a 33 µF
electrolytic capacitor (ESR < 0.7 ¾ at 100 kHz)
mounted close to the power module helps ensure sta-
bility of the unit. For other highly inductive source
impedances, consult the factory for further application
guidelines.
Safety Considerations
For safety-agency approval of the system in which the
power module is used, the power module must be
installed in compliance with the spacing and separation
requirements of the end-use safety agency standard,
i.e., UL 1950, CSA C22.2 No. 950-95, and VDE 0805
(EN60950, IEC950).
If the input source is non-SELV (ELV or a hazardous
voltage greater than 60 Vdc and less than or equal to
75 Vdc), for the module's output to be considered
meeting the requirements of safety extra-low voltage
(SELV), all of the following must be true:
nThe input source is to be provided with reinforced
insulation from any other hazardous voltages, includ-
ing the ac mains.
nOne VI pin and one VO pin are to be grounded or
both the input and output pins are to be kept floating.
nThe input pins of the module are not operator acces-
sible.
nAnother SELV reliability test is conducted on the
whole system, as required by the safety agencies, on
the combination of supply source and the subject
module to verify that under a single fault, hazardous
voltages do not appear at the module's output.
Note: Do not ground either of the input pins of the
module without grounding one of the output
pins. This may allow a non-SELV voltage to
appear between the output pins and ground.
The power module has extra-low voltage (ELV) outputs
when all inputs are ELV.
The input to these units is to be provided with a maxi-
mum 5 A normal-blow fuse in the ungrounded lead.
Feature Descriptions
Overcurrent Protection
To provide protection in a fault (output overload) condi-
tion, the unit is equipped with internal current-limiting
circuitry and can endure current limiting for an unlim-
ited duration. At the point of current-limit inception, the
unit shifts from voltage control to current control. If the
output voltage is pulled very low during a severe fault,
the current-limit circuit can exhibit either foldback or
tailout characteristics (output-current decrease or
increase). The unit operates normally once the output
current is brought back into its specified range.
Output Overvoltage Protection
The output overvoltage clamp consists of control cir-
cuitry, independent of the primary regulation loop, that
monitors the voltage on the output terminals. The con-
trol loop of the protection circuit has a higher voltage
set point than the primary loop (see Feature Specifica-
tions table). In a fault condition, the overvoltage clamp
ensures that the output voltage does not exceed
VO, clamp, max. This provides a redundant voltage-control
that reduces the risk of output overvoltage.
Remote On/Off
Two remote on/off options are available. Positive logic
remote on/off turns the module on during a logic-high
voltage on the REMOTE ON/OFF pin, and off during a
logic low. Negative logic remote on/off, device code
suffix “1,” turns the module off during a logic high and
on during a logic low.
To turn the power module on and off, the user must
supply a switch to control the voltage between the
on/off terminal and the VI(–) terminal (Von/off). The
switch can be an open collector or equivalent (see Fig-
ure 14). A logic low is Von/off = –0.7 V to 1.2 V. The max-
imum Ion/off during a logic low is 1 mA. The switch
should maintain a logic-low voltage while sinking 1 mA.
During a logic high, the maximum Von/off generated by
the power module is 6 V. The maximum allowable leak-
age current of the switch at Von/off = 6 V is 50 µA.
10 Lineage Power
Data Sheet
April 2008
36 Vdc to 75 Vdc Inputs; 20 W
LW020 Single-Output-Series Power Modules:
Feature Descriptions (continued)
Remote On/Off (continued)
The module has internal capacitance to reduce noise at the ON/OFF pin. Additional capacitance is not generally
needed and may degrade the start-up characteristics of the module.
8-758(C).a
Figure 14. Remote On/Off Implementation
Output Voltage Adjustment
Output voltage trim allows the user to increase or decrease the output voltage set point of a module. This is accom-
plished by connecting an external resistor between the TRIM pin and either the VO(+) or VO(–) pins. With an exter-
nal resistor between the TRIM and VO(+) pins (Radj-down), the output voltage set point (VO, adj) decreases. With an
external resistor between the TRIM pin and VO(–) pin (Radj-up), VO, adj increases.
The following equations determine the required external resistor value to obtain an output voltage change of ý%:
The adjusted output voltage cannot exceed 110% of the nominal output voltage between the VO(+) and VO(–) ter-
minal.
The modules have a fixed current-limit set point. Therefore, as the output voltage is adjusted down, the available
output power is reduced. In addition, the minimum output current is a function of the output voltage. As the output
voltage is adjusted down, the minimum required output current can increase.
Device a b c d –5% VO Radj-down +5% VO Radj-up
LW020G 14.0 51.10 7.02 2.0 75.3 k¾ 88.9 k¾
LW020F 14.0 51.10 5.19 2.70 110.9 k¾ 52.8 k¾
LW020A 4.02 16.90 2.01 2.0 19.3 k¾ 23.3 k¾
LW020B 15.40 15.40 1.58 9.80 246.5 k¾ 16.0 k¾
LW020C 21.50 16.90 1.76 12.24 356.3 k¾ 18.2 k¾
+
Ion/off
-
Von/off
REMOTE
ON/OFF
VI(+)
VI(-)
R
adj-down cd 1 Δ%()1[]
Δ%
---------------------------------------------------- bkΩ=
Radj-up a
dΔ
%
------------------- bkΩ=
Lineage Power 11
Data Sheet
April 2008 36 Vdc to 75 Vdc Inputs; 20 W
LW020 Single-Output-Series Power Modules:
Feature Descriptions (continued)
Synchronization (Optional)
The unit is capable of external synchronization from an
independent time base with a switching rate of
256 kHz. The amplitude of the synchronizing pulse
train is TTL compatible and the duty cycle ranges
between 40% and 60%. Synchronization is referenced
to VI(+).
Thermal Considerations
Introduction
The LW020 Single-Output-Series power module oper-
ates in a variety of thermal environments; however, suf-
ficient cooling should be provided to help ensure
reliable operation of the unit. Heat-dissipating compo-
nents inside the unit are thermally coupled to the case.
Heat is removed by conduction, convection, and radia-
tion to the surrounding environment. Proper cooling
can be verified by measuring the case temperature.
Peak case temperature (TC) occurs at the position indi-
cated in Figure 15.
8-1265(C)
Note: Dimensions are in millimeters and (inches). Pin locations are
for reference only.
Figure 15. Case Temperature Measurement
Location
Note that the view in Figure 15 is of the metal surface
of the module—the pin locations shown are for refer-
ence. The temperature at this location should not
exceed the maximum case temperature indicated in
the derating curve shown in Figure 16. The output
power of the module should not exceed the rated
power for the module as listed in the Ordering Informa-
tion table.
Heat Transfer
Increasing airflow over the module enhances the heat
transfer via convection. Figure 16 shows the maximum
power that can be dissipated by the module without
exceeding the maximum case temperature versus local
ambient temperature (TA) for natural convection
through 3.0 ms–1 (600 ft./min.).
Systems in which these power modules may be used
typically generate natural convection airflow rates of
0.3 ms–1 (60 ft./min.) due to other heat-dissipating com-
ponents in the system. Therefore, the natural convec-
tion condition represents airflow rates of up to 0.3 ms–1
(60 ft./min.). Use of Figure 16 is shown in the following
example.
Example
What is the minimum airflow necessary for a LW020A
operating at VI = 48 V, an output current of 3.6 A, and a
maximum ambient temperature of 85 °C?
Solution:
Given: VI = 48 V, IO = 3.6 A, TA = 85 °C
Determine PD (Figure 18): PD = 4.5 W
Determine airflow (Figure 16): v = 1.0 ms–1
(200 ft./min.)
8-1264(C).a
Note: Conversion factor for linear feet per minute to meters per
second: 200 ft./min. = 1 ms–1.
Figure 16. Forced Convection Power Derating;
Either Orientation
40 60 100
0
2
MAX AMBIENT TEMPERATURE, T
A (˚C)
POWER DISSIPATION, PD (W)
50 70 80 90
1
3
4
5
110 120
6
7
3.0 ms
-1 (600 ft./min.)
2.0 ms
-1 (400 ft./min.)
MAX CASE
TEMPERATURE
NATURAL
CONVECTION
1.0 ms -1 (200 ft./min.)
1212 Lineage Power
Data Sheet
April 2008
36 Vdc to 75 Vdc Inputs; 20 W
LW020 Single-Output-Series Power Modules:
Thermal Considerations (continued)
Heat Transfer (continued)
8-1478(C).a
Figure 17. LW020F and G Power Dissipation vs.
Output Current, TA=2C
8-1275(C).a
Figure 18. LW020A Power Dissipation vs. Output
Current
8-1479(C)
Figure 19. LW020B Power Dissipation vs. Output
Current, TA=2C
8-1477(C)
Figure 20. LW020C Power Dissipation vs. Output
Current, TA=2C
1.4 1.9 2.4 2.9 3.4
0.5
OUTPUT CURRENT, IO (A)
4.0
POWER DISSIPATION, PD
(W)
4.5
3.90.4
3.5
1.0
3.0
1.5
VI = 36 V
VI = 48 V
VI = 75 V
2.5
2.0
0.9
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0
1
OUTPUT CURRENT, I
O (A)
2
3
4
5
POWER DISSIPATION, PD (W)
6
VI = 75
VI = 48
VI = 36
0.80.4
OUTPUT CURRENT, IO (A)
2
1
5
1.0 1.60.0 0.6
VI = 54
3
0.2
4
VI = 36
VI = 75
1.2 1.4
6
0
POWER DISSIPATION, PD
(W)
0.80.4
0.0
OUTPUT CURRENT, I
O
(A)
3.0
2.5
2.0
POWER DISSIPATION, P
D
(W)
4.5
1.0 1.20.0
1.5
1.0
0.5
0.6
V
I
= 54
3.5
0.2
4.0
V
I
= 36
V
I
= 75
Lineage Power 13
Data Sheet
April 2008 36 Vdc to 75 Vdc Inputs; 20 W
LW020 Single-Output-Series Power Modules:
Thermal Measurements
The derating curves in Figure 16 were derived from measurements obtained in an experimental apparatus shown
in Figure 21. Note that the module and the printed-wiring board (PWB) that it is mounted on are vertically oriented.
The passage has a rectangular cross section.
8-1126(C).d
Note: Dimensions are in millimeters and (inches).
Figure 21. Experimental Test Setup
Layout Considerations
Copper paths must not be routed beneath the power module standoffs.
AIR VELOCITY
AND AMBIENT
TEMPERATURE
MEASURED
BELOW THE
MODULE
AIRFLOW
13 (0.5)
FACING PWB
MODULE
76 (3.0)
PWB
14 Lineage Power
Data Sheet
April 2008
36 Vdc to 75 Vdc Inputs; 20 W
LW020 Single-Output-Series Power Modules:
Outline Diagram
Dimensions are in millimeters and (inches). Copper paths must not be routed beneath the power module standoffs.
Tolerances: x.x ± 0.5 mm (0.02 in.), x.xx ± 0.25 mm (0.010 in.). Pin-to-pin tolerances are not cumulative.
Note: For standard modules, VI(+) is internally connected to the case.
8-1198(C).g
Top View Pin Function
1REMOTE
ON/OFF
2 No Connec-
tion (sync fea-
ture optional)
3V
I(–)
4V
I(+)
5 CASE Pin
(pin optional)
6TRIM
7V
O(–)
8V
O(+)
Side View
Bottom View
Lineage Power 15
Data Sheet
April 2008 36 Vdc to 75 Vdc Inputs; 20 W
LW020 Single-Output-Series Power Modules:
Recommended Hole Pattern
Component-side footprint.
Dimensions are in millimeters and (inches).
8-1198(C).g
Ordering Information
Table 4. Device Codes
Optional features may be ordered using the device code suffixes shown. To order more than one option, list suf-
fixes in numerically descending order. Please contact your Lineage Power Account Manager or Field Applica-
tion Engineer for pricing and availability.
Table 5. Device Options
Input Voltage Output Voltage Output Power Device Code Comcode
48 V 2.5 V 10 W LW020G 108258195
48 V 3.3 V 13.2 W LW020F 107640807
48 V 5 V 20 W LW020A 107314304
48 V 12 V 20 W LW020B 107681033
48 V 15 V 20 W LW020C 107640799
Option Device Code Suffix
Short pins: 2.79 mm ± 0.25 mm
(0.110 in. ± 0.010 in.)
8
Case ground pin 7
Short pins: 3.68 mm ± 0.25 mm
(0.145 in. ± 0.010 in.)
6
Synchronization 3
Negative remote on/off logic 1
CASE OUTLINE
DRILL HOLE OF APPROX.
2.54 (0.100) DIAMETER
TO RECESS STANDOFFS
IF LOWER HEIGHT IS NEEDED
5.08
(0.200)
12.7
(0.50)
2.54 (0.100)
50.8 (2.00)
10.16
(0.400)
20.32
(0.800)
37.8
(1.49)
3.43
(0.135)
38.86
(1.530)
7.62 (0.300)
12.4
(0.49)
17.78
(0.700)
50.8
(2.00)
45.72 (1.800)
15.24
(0.600)
2.5
(0.10)
Data Sheet
April 2008
36 Vdc to 75 Vdc Inputs; 20 W
LW020 Single-Output-Series Power Modules:
April 2008
DS00-059EPS (Replaces DS00-058EPS)
World Wide Headquarters
Lineage Power Co rp oration
3000 Skyline Drive, Mesquite, TX 75149, USA
+1-800-526-7819
(Outside U.S.A.: +1- 97 2-2 84 -2626)
www.line ag epower .co m
e-m ail: tech sup por t1@linea gepower .co m
Asia-Pacific Headquarters
Tel: +65 641 6 4283
Eu ro pe, M iddle-East and Afric a He ad quarter s
Tel: +49 89 6089 286
India Headquarters
Tel: +91 80 28411633
Lineage Power reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or
application. No rights under any patent accompany the sale of any such product(s) or information.
© 2008 Lineage Power Corporation, (Mesquite, Texas) All International Rights Reserved.