Features
PC603e
®
Microprocessor (Embedded PowerPC Core) at 133 - 300 MHz
280 MIPS at 200 MHz (Dhrystone 2.1)
520 MIPS at 300 MHz (Dhrystone 2.1)
High-performance, Superscalar Microprocessor
Disable CPU Mode
Improved Low-power Core
16-Kbyte Data and 16-Kbyte Instruction Cache, Four-way Set Associative
Memory Management Unit (MMU)
Floating Point Unit (FPU)
Common On-chip Processor (COP)
Two Bus Architectures: One 64-bit PowerPC and One 32-bit PCI or Local Bus
System Integration Unit (SIU)
Memory Controller, Including Two Dedicated SDRAM Machines
PCI up to 66 MHz
Hardware Bus Monitor and Software Watchdog Timer
IEEE 1149.1 JTAG Test Access Port
High-performance Communications Processor Module (CPM)
CPM Frequency Up to 200 MHz
PowerPC and CPM May Run at Different Frequencies
Parallel I/O Registers
On-board 32 KBytes of Dual-port RAM
Two Multi-channel Controllers (MCCs) Each Supporting 128 Full-duplex, 64-Kbps,
HDLC Lines
Virtual DMA Functionality
3 FCCs Supporting:
Up to 155 Mbps ATM SAR, Maximum of Two (AAL0, AAL1, AAL2, AAL5)
10/100 Mbps Ethernet, Up to Three (IEEE 802.3X with Flow Control)
45 Mbps HDLC/Transparent (Up to Three)
Two UTOPIA Level-2 Master/Slave Ports, Both with Multi-PHY Support. One Can
Support 8/16 bit Data
Three MII Interfaces
Eight TDM Interfaces (T1/E1), Two TDM Ports Can Be Glueless to T3/E3
Power Consumption: 2.5W at 300 MHz
Description
The PC8265A PowerQUICC II
is a versatile communications processor that inte-
grates on one chip, a high-performance PowerPC (PC603e) RISC microprocessor, a
highly flexible system integration unit, and many communications peripheral control-
lers that can be used in a variety of applications, particularly in communications and
networking systems.
The core is an embedded variant of the PC603e microprocessor, specifically referred
to later in this document as the EC603e, with 16 Kbytes of instruction cache and
16 Kbytes of data cache and floating-point unit (FPU). The system interface unit (SIU)
consists of a flexible memory controller that interfaces to almost any user-defined
memory system, a 60x-to-PCI bus bridge and many other peripherals, making this
device a complete system on a chip.
PowerPC based
Communications
Processor
PC8265A
PowerQUICC II
5336E–HIREL–04/06
2
5336E–HIREL–04/06
PC8265A
The communications processor module (CPM) includes all the peripherals found in the PC860,
with the addition of three high-performance communication channels that support new emerging
protocols (for example, 155-Mbps ATM and Fast Ethernet).
Equipped with dedicated hardware, the PC8265A can handle up to 256 full-duplex, time-divi-
sion, multiplexed logical channels.
Screening Quality Packaging
This product is manufactured in full compliance with:
Upscreening based upon Atmel standards
Military temperature range (
T
amb
= -55°C,
T
j
= +125°C)
480-ball Tape Ball Grid Array package (TBGA 37.5 × 37.5 mm)
TP suffix
TBGA480
Tape Ball Grid Array
3
5336E–HIREL–04/06
PC8265A
1. PC8265A Architecture General Overview
Figure 1-1. Block Diagram
2. Features Overview
The major features of the PC8265A family are as follows:
Dual-issue integer core
A core version of the EC603e microprocessor
System core microprocessor supporting frequencies of 150 – 300 MHz
Separate 16-Kbyte data and instruction caches:
Four-way set associative
Physically addressed
LRU replacement algorithm
PowerPC architecture-compliant memory management unit (MMU)
Common on-chip processor (COP) test interface
High-performance (6.6 - 7.65 SPEC95 benchmark at 300 MHz; 1.68 MIPs/MHz without inlin-
ing and 1.90 Dhrystones MIPS/MHz with inlining)
Supports bus snooping for data cache coherency
Floating-point unit (FPU)
16 Kbytes
G2 Core
I-Cache
I-MMU
16 Kbytes
D-Cache
D-MMU
Communication Processor Module (CPM)
Timers
Parallel I/O
Baud Rate
Generators
32 Kbytes
32-bit RISC Microcontroller
and Program ROM
Serial
DMAs
4 Virtual
IDMAs
60x-to-PCI
Bridge
Bridge
Memory Controller
Clock Counter
System Functions
System Interface Unit
(SIU)
MCC1 MCC2 FCC1 FCC2 FCC3 SCC1 SCC2 SCC3 SCC4 SMC1 SMC2 SPI I2C
Serial Interface
3 MII 2 UTOPIA
PortsPorts
60x Bus
Dual-Port RAM
Interrupt
Controller
Time Slot Assigner
8 TDM Ports xed
I/O
60x-to-Local
Bus Interface Unit
Local Bus
32 bits, up to 83 MHz
PCI Bus
32 bits, up to 66 MHz
or
Non-Multiple
4
5336E–HIREL–04/06
PC8265A
Separate power supply for internal logic and for I/O
Separate PLLs for G2 core and for the CPM
G2 core and CPM can run at different frequencies for power/performance optimization
Internal core/bus clock multiplier that provides 1.5:1, 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 6:1 ratios
Internal CPM/bus clock multiplier that provides 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 6:1 ratios
64-bit data and 32-bit address 60x bus
Bus supports multiple master designs
Supports single- and four-beat burst transfers
64-, 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
Supports data parity or ECC and address parity
32-bit data and 18-bit address local bus
Single-master bus, supports external slaves
Eight-beat burst transfers
32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
60x-to-PCI bridge
Programmable host bridge and agent
32-bit data bus, 66 MHz, 3.3V
Synchronous and asynchronous 60x and PCI clock modes
All internal address space available to external PCI host
DMA for memory block transfers
PCI-to-60x address remapping
System interface unit (SIU)
Clock synthesizer
Reset controller
Real-time clock (RTC) register
Periodic interrupt timer
Hardware bus monitor and software watchdog timer
IEEE 1149.1 JTAG test access port
Twelve-bank memory controller
Glueless interface to SRAM, page mode SDRAM, DRAM, EPROM, Flash and other user-
definable peripherals
Byte write enables and selectable parity generation
32-bit address decoder with programmable bank size
Three user programmable machines, general-purpose chip-select machine, and page-mode
pipeline SDRAM machine
Byte selects of 64 bus width (60x) and byte selects for 32 bus width (local)
5
5336E–HIREL–04/06
PC8265A
Dedicated interface logic for SDRAM
CPU core can be disabled and the device can be used in slave mode to an external core
Communications processor module (CPM)
Embedded 32-bit communications processor (CP) uses a RISC architecture for flexible sup-
port of communications protocols
Interfaces to G2 core through an on-chip 32-Kbyte dual-port RAM and DMA controller
Serial DMA channels for receive and transmit on all serial channels
Parallel I/O registers with open-drain and interrupt capability
Virtual DMA functionality executing memory-to-memory and memory-to-I/O transfers
Three fast communications controllers supporting the following protocols:
10/100-Mbit Ethernet/IEEE 802.3 CDMA/CS interface through a media independent
interface (MII)
ATM – Full-duplex SAR protocols at 155 Mbps, through UTOPIA interface, AAL5,
AAL1, AAL0 protocols, TM 4.0 CBR, VBR, UBR, ABR traffic types, up to 16 K
external connections
Transparent
HDLC – Up to T3 rates (clear channel)
Two multichannel controllers (MCCs)
Each MCC handles 128 serial, full-duplex, 64-Kbps data channels. Each MCC can
be split into four subgroups of 32 channels each
Almost any combination of subgroups can be multiplexed to single or multiple TDM
interfaces up to four TDM interfaces per MCC
Four serial communications controllers (SCCs) identical to those on the PC860, supporting
the digital portions of the following protocols:
Ethernet/IEEE 802.3 CDMA/CS
HDLC/SDLC and HDLC bus
Universal asynchronous receiver transmitter (UART)
Synchronous UART
Binary synchronous (BISYNC) communications
Transparent
Two serial management controllers (SMCs), identical to those of the PC860
Provides management for BRI devices as general circuit interface (GCI) controllers
in time-division-multiplexed (TDM) channels
Transparent
UART (low-speed operation)
One serial peripheral interface identical to the PC860 SPI
One inter-integrated circuit (I2C) controller (identical to the PC860 I2 C controller)
Microwire compatible
Multiple-master, single-master, and slave modes
6
5336E–HIREL–04/06
PC8265A
Up to eight TDM interfaces
Supports two groups of four TDM channels for a total of eight TDMs
2,048 bytes of SI RAM
Bit or byte resolution
Independent transmit and receive routing, frame synchronization
Supports T1, CEPT, T1/E1, T3/E3, pulse code modulation highway, ISDN basic rate,
ISDN primary rate, Freescale interchip digital link (IDL), general circuit interface
(GCI), and user-defined TDM serial interfaces
Eight independent baud rate generators and 20 input clock pins for supplying clocks to
FCCs, SCCs, SMCs, and serial channels
Four independent 16-bit timers that can be interconnected as two 32-bit timers
•CPM
32-Kbyte dual-port RAM
Additional MCC host commands
CPM multiplexing
FCC2 can also be connected to the TC layer
PCI bridge
PCI Specification Revision 2.2 compliant and supports frequencies up to 66 MHz
On-chip arbitration
Support for PCI to 60x memory and 60x memory to PCI streaming
PCI Host Bridge or Peripheral capabilities
Includes 4 DMA channels for the following transfers:
PCI-to-60x to 60x-to-PCI
60x-to-PCI to PCI-to-60x
PCI-to-60x to PCI-to-60x
60x-to-PCI to 60x-to-PCI
Includes all of the configuration registers (which are automatically loaded from the EPROM
and used to configure the PC8265A) required by the PCI standard as well as message and
doorbell registers
Supports the I2O standard
Hot-Swap friendly (supports the Hot Swap Specification as defined by PICMG 2.1 R1.0
August 3, 1998)
Support for 66 MHz, 3.3V specification
60x-PCI bus core logic which uses a buffer pool to allocate buffers for each port
Makes use of the local bus signals, so there is no need for additional pins
7
5336E–HIREL–04/06
PC8265A
3. Pinout
This section provides the pin assignments and pinout list for the PC8265A.
3.1 Pin Assignments
Figure 3-1 shows the pinout of the PC8265A’s 480 TBGA package as viewed from the top
surface.
Figure 3-1. Pinout of the 480 TBGA Package as Viewed from the Top Surface
1 2 3 4 5 6 7 8 91011121314151617181920212223242526272829
Not to Scale
1 2 3 4 5 6 7 8 91011121314151617181920212223242526272829
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
AG
AH
AJ
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
AG
AH
AJ
8
5336E–HIREL–04/06
PC8265A
Figure 3-2 shows the side profile of the TBGA package to indicate the direction of the top sur-
face view.
Figure 3-2. Side View of the TBGA Package
Table 3-1 shows the pinout list of the PC8265A. Table 3-2 on page 21 defines conventions and
acronyms used in Table 3-1.
Table 3-1. Pinout List
Pin Name Ball
BR W5
BG F4
ABB
IRQ2 E2
TS E3
A0 G1
A1 H5
A2 H2
A3 H1
A4 J5
A5 J4
A6 J3
A7 J2
A8 J1
A9 K4
A10 K3
A11 K2
A12 K1
A13 L5
A14 L4
A15 L3
A16 L2
A17 L1
Copper Traces
Die
Copper Heat Spreader
(Oxidized for Insulation)
1.27 mm Pitch Glob-Top Dam
Etched
Pressure Sensitive
Die
Polymide Tape Cavity
Adhesive
Attach
Soldermask Glob-Top Filled Area
View
9
5336E–HIREL–04/06
PC8265A
A18 M5
A19 N5
A20 N4
A21 N3
A22 N2
A23 N1
A24 P4
A25 P3
A26 P2
A27 P1
A28 R1
A29 R3
A30 R5
A31 R4
TT0 F1
TT1 G4
TT2 G3
TT3 G2
TT4 F2
TBST D3
TSIZ0 C1
TSIZ1 E4
TSIZ2 D2
TSIZ3 F5
AACK F3
ARTRY E1
DBG V1
DBB
IRQ3 V2
D0 B20
D1 A18
D2 A16
D3 A13
D4 E12
D5 D9
D6 A6
Table 3-1. Pinout List (Continued)
Pin Name Ball
10
5336E–HIREL–04/06
PC8265A
D7 B5
D8 A20
D9 E17
D10 B15
D11 B13
D12 A11
D13 E9
D14 B7
D15 B4
D16 D19
D17 D17
D18 D15
D19 C13
D20 B11
D21 A8
D22 A5
D23 C5
D24 C19
D25 C17
D26 C15
D27 D13
D28 C11
D29 B8
D30 A4
D31 E6
D32 E18
D33 B17
D34 A15
D35 A12
D36 D11
D37 C8
D38 E7
D39 A3
D40 D18
D41 A17
D42 A14
Table 3-1. Pinout List (Continued)
Pin Name Ball
11
5336E–HIREL–04/06
PC8265A
D43 B12
D44 A10
D45 D8
D46 B6
D47 C4
D48 C18
D49 E16
D50 B14
D51 C12
D52 B10
D53 A7
D54 C6
D55 D5
D56 B18
D57 B16
D58 E14
D59 D12
D60 C10
D61 E8
D62 D6
D63 C2
DP0/RSRV/EXT_BR2 B22
IRQ1/DP1/EXT_BG2 A22
IRQ2/DP2/TLBISYNC/EXT_DBG2 E21
IRQ3/DP3/CKSTP_OUT/EXT_BR3 D21
IRQ4/DP4/CORE_SRESET/EXT_BG3 C21
IRQ5/DP5/TBEN/EXT_DBG3 B21
IRQ6/DP6/CSE0 A21
IRQ7/DP7/CSE1 E20
PSDVAL V3
TA C22
TEA V5
GBL
IRQ1 W1
CI/BADDR29/IRQ2 U2
WT/BADDR30/IRQ3 U3
Table 3-1. Pinout List (Continued)
Pin Name Ball
12
5336E–HIREL–04/06
PC8265A
L2_HIT/IRQ4 Y4
CPU_BG/BADDR31/IRQ5 U4
CPU_DBG R2
CPU_BR Y3
CS0 F25
CS1 C29
CS2 E27
CS3 E28
CS4 F26
CS5 F27
CS6 F28
CS7 G25
CS8 D29
CS9 E29
CS10/BCTL1 F29
CS11/AP0 G28
BADDR27 T5
BADDR28 U1
ALE T2
BCTL0 A27
PWE0/PSDDQM0/PBS0 C25
PWE1/PSDDQM1/PBS1 E24
PWE2/PSDDQM2/PBS2 D24
PWE3/PSDDQM3/PBS3 C24
PWE4/PSDDQM4/PBS4 B26
PWE5/PSDDQM5/PBS5 A26
PWE6/PSDDQM6/PBS6 B25
PWE7/PSDDQM7/PBS7 A25
PSDA10/PGPL0 E23
PSDWE/PGPL1 B24
POE/PSDRAS/PGPL2 A24
PSDCAS/PGPL3 B23
PGTA/PUPMWAIT/PGPL4/PPBS A23
PSDAMUX/PGPL5 D22
LWE0/LSDDQM0/LBS0/PCI_CFG0 H28
LWE1/LSDDQM1/LBS1/PCI_CFG1 H27
Table 3-1. Pinout List (Continued)
Pin Name Ball
13
5336E–HIREL–04/06
PC8265A
LWE2/LSDDQM2/LBS2/PCI_CFG2 H26
LWE3/LSDDQM3/LBS3/PCI_CFG3 G29
LSDA10/LGPL0/PCI_MODCKH0 D27
LSDWE/LGPL1/PCI_MODCKH1 C28
LOE/LSDRAS/LGPL2/PCI_MODCKH2 E26
LSDCAS/LGPL3/PCI_MODCKH3 D25
LGTA/LUPMWAIT/LGPL4/LPBS C26
LGPL5/LSDAMUX/PCI_MODCK B27
LWR D28
L_A14/PAR N27
L_A15/FRAME/SMI T29
L_A16/TRDY R27
L_A17/IRDY/CKSTP_OUT R26
L_A18/STOP R29
L_A19/DEVSEL R28
L_A20/IDSEL W29
L_A21/PERR P28
L_A22/SERR N26
L_A23/REQ0 AA27
L_A24/REQ1/HSEJSW P29
L_A25/GNT0 AA26
L_A26/GNT1/HSLED N25
L_A27/GNT2/HSENUM AA25
L_A28/RST/CORE_SRESET AB29
L_A29/INTA AB28
L_A30/REQ2 P25
L_A31/DLLOUT AB27
LCL_D0/AD0 H29
LCL_D1/AD1 J29
LCL_D2/AD2 J28
LCL_D3/AD3 J27
LCL_D4/AD4 J26
LCL_D5/AD5 J25
LCL_D6/AD6 K25
LCL_D7/AD7 L29
LCL_D8/AD8 L27
Table 3-1. Pinout List (Continued)
Pin Name Ball
14
5336E–HIREL–04/06
PC8265A
LCL_D9/AD9 L26
LCL_D10/AD10 L25
LCL_D11/AD11 M29
LCL_D12/AD12 M28
LCL_D13/AD13 M27
LCL_D14/AD14 M26
LCL_D15/AD15 N29
LCL_D16/AD16 T25
LCL_D17/AD17 U27
LCL_D18/AD18 U26
LCL_D19/AD19 U25
LCL_D20/AD20 V29
LCL_D21/AD21 V28
LCL_D22/AD22 V27
LCL_D23/AD23 V26
LCL_D24/AD24 W27
LCL_D25/AD25 W26
LCL_D26/AD26 W25
LCL_D27/AD27 Y29
LCL_D28/AD28 Y28
LCL_D29/AD29 Y25
LCL_D30/AD30 AA29
LCL_D31/AD31 AA28
LCL_DP0/C0/BE0 L28
LCL_DP1/C1/BE1 N28
LCL_DP2/C2/BE2 T28
LCL_DP3/C3/BE3 W28
IRQ0/NMI_OUT T1
IRQ7/INT_OUT/APE D1
TRST AH3
TCK AG5
TMS AJ3
TDI AE6
TDO AF5
TRIS AB4
PORESET AG6
Table 3-1. Pinout List (Continued)
Pin Name Ball
15
5336E–HIREL–04/06
PC8265A
HRESET AH5
SRESET AF6
QREQ AA3
RSTCONF AJ4
MODCK1/AP1/TC0/BNKSEL0 W2
MODCK2/AP2/TC1/BNKSEL1 W3
MODCK3/AP3/TC2/BNKSEL2 W4
XFC AB2
CLKIN1 AH4
PA0/RESTART1/DREQ3/FCC2_UTM_TXADDR2 AC29
(2)
PA1/REJECT1/FCC2_UTM_TXADDR1/DONE3 AC25
(2)
PA2/CLK20/FCC2_UTM_TXADDR0/DACK3 AE28
(2)
PA3/CLK19/FCC2_UTM_RXADDR0/DACK4
L1RXD1A2 AG29
(2)
PA4/REJECT2/FCC2_UTM_RXADDR1/DONE4 AG28
(2)
PA5/RESTART2/DREQ4/FCC2_UTM_RXADDR2 AG26
(2)
PA6/L1RSYNCA1 AE24
(2)
PA7/SMSYN2/L1TSYNCA1/L1GNTA1 AH25
(2)
PA8/SMRXD2/L1RXD0A1/L1RXDA1 AF23
(2)
PA9/SMTXD2/L1TXD0A1 AH23
(2)
PA10/FCC1_UT8_RXD0/FCC1_UT16_RXD8/MS
NUM5 AE22
(2)
PA11/FCC1_UT8_RXD1/FCC1_UT16_RXD9/MS
NUM4 AH22
(2)
PA12/FCC1_UT8_RXD2/FCC1_UT16_RXD10/M
SNUM3 AJ21
(2)
PA13/FCC1_UT8_RXD3/FCC1_UT16_RXD11/M
SNUM2 AH20
(2)
PA14/FCC1_UT8_RXD4/FCC1_UT16_RXD12/FC
C1_RXD3 AG19
(2)
PA15/FCC1_UT8_RXD5/FCC1_UT16_RXD13/FC
C1_RXD2 AF18
(2)
PA16/FCC1_UT8_RXD6/FCC1_UT16_RXD14/FC
C1_RXD1 AF17
(2)
PA17/FCC1_UT8_RXD7/FCC1_UT16_RXD15
FCC1_RXD0/FCC1_RXD AE16
(2)
PA18/FCC1_UT8_TXD7/FCC1_UT16_TXD15/FC
C1_TXD0/FCC1_TXD AJ16
(2)
PA19/FCC1_UT8_TXD6/FCC1_UT16_TXD14/FC
C1_TXD1 AG15
(2)
Table 3-1. Pinout List (Continued)
Pin Name Ball
16
5336E–HIREL–04/06
PC8265A
PA20/FCC1_UT8_TXD5/FCC1_UT16_TXD13/FC
C1_TXD2 AJ13
(2)
PA21/FCC1_UT8_TXD4/FCC1_UT16_TXD12/FC
C1_TXD3 AE13
(2)
PA22/FCC1_UT8_TXD3/FCC1_UT16_TXD11 AF12
(2)
PA23/FCC1_UT8_TXD2/FCC1_UT16_TXD10 AG11
(2)
PA24/FCC1_UT8_TXD1/FCC1_UT16_TXD9/MS
NUM1 AH9
(2)
PA25/FCC1_UT8_TXD0/FCC1_UT16_TXD8/MS
NUM0 AJ8
(2)
PA26/FCC1_UTM_RXCLAV/FCC1_UTS_RXCLA
V/FCC1_MII_RX_ER AH7
(2)
PA27/FCC1_UT_RXSOC/FCC1_MII_RX_DV AF7
(2)
PA28/FCC1_UTM_RXENB/FCC1_UTS_RXENB/
FCC1_MII_TX_EN AD5
(2)
PA29/FCC1_UT_TXSOC/FCC1_MII_TX_ER AF1
(2)
PA30/FCC1_UTM_TXCLAV/FCC1_UTS_TXCLAV
FCC1_MII_CRS/FCC1_RTS AD3
(2)
PA31/FCC1_UTM_TXENB/FCC1_UTS_TXENB
FCC1_MII_COL AB5
(2)
PB4/FCC3_TXD3/FCC2_UT8_RXD0
L1RSYNCA2/FCC3_RTS AD28
(2)
PB5/FCC3_TXD2/FCC2_UT8_RXD1/L1TSYNCA
2/L1GNTA2 AD26
(2)
PB6/FCC3_TXD1/FCC2_UT8_RXD2/L1RXDA2
L1RXD0A2 AD25
(2)
PB7/FCC3_TXD0/FCC3_TXD/FCC2_UT8_RXD3
L1TXDA2/L1TXD0A2 AE26
(2)
PB8/FCC2_UT8_TXD3/FCC3_RXD0/FCC3_RXD
/TXD3/L1RSYNCD1 AH27
(2)
PB9/FCC2_UT8_TXD2/FCC3_RXD1/L1TXD2A2
L1TSYNCD1/L1GNTD1 AG24
(2)
PB10/FCC2_UT8_TXD1/FCC3_RXD2/L1RXDD1 AH24
(2)
PB11/FCC3_RXD3/FCC2_UT8_TXD0/L1TXDD1 AJ24
(2)
PB12/FCC3_MII_CRS/L1CLKOB1/L1RSYNCC1/
TXD2 AG22
(2)
PB13/FCC3_MII_COL/L1RQB1/L1TSYNCC1/L1G
NTC1/L1TXD1A2 AH21
(2)
PB14/FCC3_MII_TX_EN/RXD3/L1RXDC1 AG20
(2)
PB15/FCC3_MII_TX_ER/RXD2/L1TXDC1 AF19
(2)
PB16/FCC3_MII_RX_ER/L1CLKOA1/CLK18 AJ18
(2)
Table 3-1. Pinout List (Continued)
Pin Name Ball
17
5336E–HIREL–04/06
PC8265A
PB17/FCC3_MII_RX_DV/L1RQA1/CLK17 AJ17
(2)
PB18/FCC2_UT8_RXD4/FCC2_RXD3
L1CLKOD2/L1RXD2A2 AE14
(2)
PB19/FCC2_UT8_RXD5/FCC2_RXD2
L1RQD2/L1RXD3A2 AF13
(2)
PB20/FCC2_UT8_RXD6/FCC2_RXD1
L1RSYNCD2/L1TXD1A1 AG12
(2)
PB21/FCC2_UT8_RXD7/FCC2_RXD0
FCC2_RXD/L1TSYNCD2/L1GNTD2/L1TXD2A1 AH11
(2)
PB22/FCC2_UT8_TXD7/FCC2_TXD0
FCC2_TXD/L1RXD1A1/L1RXDD2 AH16
(2)
PB23/FCC2_UT8_TXD6/FCC2_TXD1
L1RXD2A1/L1TXDD2 AE15
(2)
PB24/FCC2_UT8_TXD5/FCC2_TXD2
L1RXD3A1/L1RSYNCC2 AJ9
(2)
PB25/FCC2_UT8_TXD4/FCC2_TXD3
L1TSYNCC2/L1GNTC2/L1TXD3A1 AE9
(2)
PB26/FCC2_MII_CRS/FCC2_UT8_TXD1
L1RXDC2 AJ7
(2)
PB27/FCC2_MII_COL/FCC2_UT8_TXD0
L1TXDC2 AH6
(2)
PB28/FCC2_MII_RX_ER/FCC2_RTS
L1TSYNCB2/L1GNTB2/TXD1 AE3
(2)
PB29/FCC2_UTM_RXCLAV
FCC2_UTS_RXCLAV
L1RSYNCB2/FCC2_MII_TX_EN
AE2
(2)
PB30/FCC2_MII_RX_DV/FCC2_UT_TXSOC
L1RXDB2 AC5
(2)
PB31/FCC2_MII_TX_ER/FCC2_UT_RXSOC
L1TXDB2 AC4
(2)
PC0/DREQ1/BRGO7/SMSYN2/L1CLKOA2 AB26
(2)
PC1/DREQ2/BRGO6/L1RQA2 AD29
(2)
PC2/FCC3_CD/FCC2_UT8_TXD3/DONE2 AE29
(2)
PC3/FCC3_CTS/FCC2_UT8_TXD2/DACK2
CTS4 AE27
(2)
PC4/FCC2_UTM_RXENB/FCC2_UTS_RXENB
SI2_L1ST4/FCC2_CD AF27
(2)
PC5/FCC2_UTM_TXCLAV
FCC2_UTS_TXCLAV/SI2_L1ST3/FCC2_CTS AF24
(2)
Table 3-1. Pinout List (Continued)
Pin Name Ball
18
5336E–HIREL–04/06
PC8265A
PC6/FCC1_CD/L1CLKOC1
FCC1_UTM_RXADDR2/FCC1_UTS_RXADDR2
FCC1_UTM_RXCLAV1
AJ26
(2)
PC7/FCC1_CTS/L1RQC1
FCC1_UTM_TXADDR2/FCC1_UTS_TXADDR2
FCC1_UTM_TXCLAV1
AJ25
(2)
PC8/CD4/RENA4/FCC1_UT16_TXD0
SI2_L1ST2/CTS3 AF22
(2)
PC9/CTS4/CLSN4/FCC1_UT16_TXD1
SI2_L1ST1/L1TSYNCA2/L1GNTA2 AE21
(2)
PC10/CD3/RENA3/FCC1_UT16_TXD2
SI1_L1ST4/FCC2_UT8_RXD3 AF20
(2)
PC11/CTS3/CLSN3/L1CLKOD1
L1TXD3A2/FCC2_UT8_RXD2 AE19
(2)
PC12/CD2/RENA2/SI1_L1ST3
FCC1_UTM_RXADDR1/FCC1_UTS_RXADDR1 AE18
(2)
PC13/CTS2/CLSN2
L1RQD1/FCC1_UTM_TXADDR1
FCC1_UTS_TXADDR1
AH18
(2)
PC14/CD1/RENA1/FCC1_UTM_RXADDR0
FCC1_UTS_RXADDR0 AH17
(2)
PC15/CTS1/CLSN1/SMTXD2
FCC1_UTM_TXADDR0/FCC1_UTS_TXADDR0 AG16
(2)
PC16/CLK16/TIN4 AF15
(2)
PC17/CLK15/TIN3/BRGO8 AJ15
(2)
PC18/CLK14/TGATE2 AH14
(2)
PC19/CLK13/BRGO7/SPICLK AG13
(2)
PC20/CLK12/TGATE1 AH12
(2)
PC21/CLK11/BRGO6 AJ11
(2)
PC22/CLK10/DONE1 AG10
(2)
PC23/CLK9/BRGO5/DACK1 AE10
(2)
PC24/FCC2_UT8_TXD3/CLK8/TOUT4 AF9
(2)
PC25/FCC2_UT8_TXD2/CLK7/BRGO4 AE8
(2)
PC26/CLK6/TOUT3/TMCLK AJ6
(2)
PC27/FCC3_TXD/FCC3_TXD0/CLK5/BRGO3 AG2
(2)
PC28/CLK4/TIN1/TOUT2/CTS2/CLSN2 AF3
(2)
PC29/CLK3/TIN2/BRGO2/CTS1/CLSN1 AF2
(2)
PC30/FCC2_UT8_TXD3/CLK2/TOUT1 AE1
(2)
PC31/CLK1/BRGO1 AD1
(2)
Table 3-1. Pinout List (Continued)
Pin Name Ball
19
5336E–HIREL–04/06
PC8265A
PD4/BRGO8/L1TSYNCD1/L1GNTD1
FCC3_RTS/SMRXD2 AC28
(2)
PD5/FCC1_UT16_TXD3/DONE1 AD27
(2)
PD6/FCC1_UT16_TXD4/DACK1 AF29
(2)
PD7/SMSYN1/FCC1_UTM_TXADDR3
FCC1_UTS_TXADDR3/FCC2_UTM_TXADDR4
FCC1_TXCLAV2
AF28
(2)
PD8/SMRXD1/FCC2_UT_TXPRTY/BRGO5 AG25
(2)
PD9/SMTXD1/FCC2_UT_RXPRTY/BRGO3 AH26
(2)
PD10/L1CLKOB2/FCC2_UT8_RXD1
L1RSYNCB1/BRGO4 AJ27
(2)
PD11/L1RQB2/FCC2_UT8_RXD0
L1TSYNCB1/L1GNTB1 AJ23
(2)
PD12/SI1_L1ST2/L1RXDB1 AG23
(2)
PD13/SI1_L1ST1/L1TXDB1 AJ22
(2)
PD14/FCC1_UT16_RXD0/L1CLKOC2/I2CSCL AE20
(2)
PD15/FCC1_UT16_RXD1/L1RQC2/I2CSDA AJ20
(2)
PD16/FCC1_UT_TXPRTY/L1TSYNCC1
L1GNTC1/SPIMISO AG18
(2)
PD17/FCC1_UT_RXPRTY/BRGO2/SPIMOSI AG17
(2)
PD18/FCC1_UTM_RXADDR4
FCC1_UTS_RXADDR4/FCC1_UTM_RXCLAV3
FCC2_UTM_RXADDR3/SPICLK
AF16
(2)
PD19/FCC1_UTM_TXADDR4
FCC1_UTS_TXADDR4/FCC1_UTM_TXCLAV3
FCC2_UTM_TXADDR3/SPISEL/BRGO1
AH15
(2)
PD20/RTS4/TENA4
FCC1_UT16_RXD2/L1RSYNCA2 AJ14
(2)
PD21/TXD4/FCC1_UT16_RXD3
L1RXD0A2/L1RXDA2 AH13
(2)
PD22/RXD4/FCC1_UT16_TXD5/L1TXD0A2
L1TXDA2 AJ12
(2)
PD23/RTS3/TENA3/FCC1_UT16_RXD4
L1RSYNCD1 AE12
(2)
PD24/TXD3/FCC1_UT16_RXD5/L1RXDD1 AF10
(2)
PD25/RXD3/FCC1_UT16_TXD6/L1TXDD1 AG9
(2)
PD26/RTS2/TENA2/FCC1_UT16_RXD6
L1RSYNCC1 AH8
(2)
PD27/TXD2/FCC1_UT16_RXD7/L1RXDC1 AG7
(2)
Table 3-1. Pinout List (Continued)
Pin Name Ball
20
5336E–HIREL–04/06
PC8265A
Notes: 1. This pin should be used as CLKIN2.
2. The default configuration of the CPM pins (PA[0-31], PB[4-31], PC[0-1], PD[4-31]) is input. To
prevent excessive DC current, it is recommended to either pull unused pins to GND or VDDH,
or to configure them as outputs.
3. Must be pulled down or left floating.
4. This pin should be asserted if the PCI function is desired or pulled up or left floating if PCI is
not desired.
5. For information on how to use this pin, refer to MPC8260 PowerQUICC II Thermal Resistor
Guide available at www.freescale.com/semiconductors.
PD28/RXD2/FCC1_UT16_TXD7/L1TXDC1 AE4
(2)
PD29/RTS1/TENA1/FCC1_UTM_RXADDR3
FCC1_UTS_RXADDR3/FCC1_UTM_RXCLAV2
FCC2_UTM_RXADDR4
AG1
(2)
PD30/FCC2_UTM_TXENB
FCC2_UTS_TXENB/TXD1 AD4
(2)
PD31/RXD1 AD2
(2)
SYN AB3
SYN1 B9
GNDSYN AB1
CLKIN2
(1)
AE11
SPARE4
(3)
U5
PCI_MODE
(4)
AF25
SPARE6
(3)
V4
THERMAL0
(5)
AA1
THERMAL1
(5)
AG4
I/O Power
AG21, AG14, AG8, AJ1, AJ2, AH1, AH2, AG3,
AF4, AE5, AC27, Y27, T27, P27, K26, G27, AE25,
AF26, AG27, AH28, AH29, AJ28, AJ29, C7, C14,
C16, C20, C23, E10, A28, A29, B28, B29, C27,
D26, E25, H3, M4, T3, AA4, A1, A2, B1, B2, C3,
D4, E5
Core Power U28, U29, K28, K29, A9, A19, B19, M1, M2, Y1,
Y2, AC1, AC2, AH19, AJ19, AH10, AJ10, AJ5
Ground
AA5, AF21, AF14, AF8, AE7, AF11, AE17, AE23,
AC26, AB25, Y26, V25, T26, R25, P26, M25, K27,
H25, G26, D7, D10, D14, D16, D20, D23, C9,
E11, E13, E15, E19, E22, B3, G5, H4, K5, M3, P5,
T4, Y5, AA2, AC3
Table 3-1. Pinout List (Continued)
Pin Name Ball
21
5336E–HIREL–04/06
PC8265A
Symbols used in Table 3-1 are described in Table 3-2.
4. Electrical and Thermal Characteristics
This section provides AC and DC electrical specifications and thermal characteristics for the
PC8265A.
4.1 DC Electrical Characteristics
This section describes the DC electrical characteristics for the PC8265A. Following table shows
the maximum electrical ratings.
Notes: 1. Absolute maximum ratings are stress ratings only; functional operation at the maximums is not
guaranteed. Stress beyond those listed may affect device reliability or cause permanent
damage.
2. Caution: VDD/SYN must not exceed V
DDH
by more than 0.4V at any time, including during
power-on reset.
3. Caution: V
DDH
can exceed VDD/SYN by 3.3V during power on reset by no more than 100 ms.
V
DDH
should not exceed VDD/SYN by more than 2.5V during normal operation.
4. Caution: V
IN
must not exceed V
DDH
by more than 2.5V at any time, including during power-on
reset.
Table 3-2. Symbol Legend
Symbol Meaning
OVERBAR Signals with overbars, such as TA, are active low
UTM Indicates that a signal is part of the UTOPIA master interface
UTS Indicates that a signal is part of the UTOPIA slave interface
UT8 Indicates that a signal is part of the 8-bit UTOPIA interface
UT16 Indicates that a signal is part of the 16-bit UTOPIA interface
MII Indicates that a signal is part of the media independent interface
4.1.1 Absolute Maximum Ratings
(1)
Rating Symbol Value Unit
Core supply voltage
(2)
V
DD
-0.3 to +2.5 V
PLL supply voltage
(2)
SYN -0.3 to +2.5 V
I/O supply voltage
(3)
V
DDH
-0.3 to + 4.0 V
Input voltage
(4)
V
IN
GND(-0.3) to +3.6 V
Storage temperature range T
STG
-55 to +150 °C
22
5336E–HIREL–04/06
PC8265A
Following table lists recommended operational voltage conditions.
Notes: 1. Caution: These are the recommended and tested operating conditions. Proper device opera-
tion outside of these conditions is not guaranteed.
2. CPU frequency less than or equal to 200 MHz.
3. CPU frequency greater than 200 MHz but less than or equal 233 MHz.
4. CPU frequency greater than 233 MHz.
Note: V
DDH
, V
CCSYN
and V
DD
must track each other and both must vary in the same direction – in the
positive direction (+5% and +0.1 V
DC
) or in the negative direction (-5% and -0.1 V
DC
).
This device contains circuitry protection against damage due to high static voltage or electrical
fields; however, it is advised that normal precautions be taken to avoid application of any volt-
ages higher than maximum-rated voltages. Reliability of operation is enhanced if unused inputs
are tied to an appropriate logic voltage level (either GND or V
CC
).
4.1.2 Recommended Operating Conditions
(1)
Rating Symbol Value Unit
Core supply voltage V
DD
1.7 to 1.9
(2)
1.7 to 2.1
(3)
1.9 to 2.2
(4)
V
PLL supply voltage SYN 1.7 to 1.9
(2)
1.7 to 2.1
(3)
1.9 to 2.2
(4)
V
CPU minimum frequency Fmin 150 190 190 MHz
I/O supply voltage V
DDH
3.135 – 3.465 V
Input voltage V
IN
GND (-0.3) – 3.465 V
Tjunction T
j
+125 °C
Tcase T
amb
-55 °C
23
5336E–HIREL–04/06
PC8265A
Table 4-1 shows DC Electrical Characteristics
Table 4-1. DC Electrical Characteristics
(1)
Characteristic Symbol Min Max Unit
Input high voltage, all inputs except CLKIN V
IH
2.0 3.465 V
Input low voltage V
IL
GND 0.8 V
CLKIN input high voltage V
IHC
2.4 3.465 V
CLKIN input low voltage V
ILC
GND 0.4 V
Input leakage current, V
IN
= V
DDH
I
IN
–10µA
Hi-Z (off state) leakage current, V
IN
= V
DDH
I
OZ
–10
µ
A
Signal low input current, V
IL
= 0.8V I
L
–1
µ
A
Signal high input current, V
IH
= 2.0V I
H
–1
µ
A
Output high voltage, I
OH
= -2 mA
except XFC, UTOPIA mode, and open drain pins
In UTOPIA mode: I
OH
= -8.0 mA
PA[0-31]
PB[4-31]
PC[0-31]
PD[4-31]
V
OH
2.4 V
In UTOPIA mode: I
OL
= 8.0 mA
PA[0-31]
PB[4-31]
PC[0-31]
PD[4-31]
V
OL
–0.5V
IOL = 7.0 mA
BR
BG
ABB/IRQ2
TS
A[0-31]
TT[0-4]
TBST
TSIZE[0–3]
AACK
ARTRY
DBG
V
OL
–0.4V
24
5336E–HIREL–04/06
PC8265A
DBB/IRQ3
D[0-63]
DP(0)/RSRV/EXT_BR2
DP(1)/IRQ1/EXT_BG2
DP(2)/TLBISYNC/IRQ2/EXT_DBG2
DP(3)/IRQ3/EXT_BR3/CKSTP_OUT
DP(4)/IRQ4/EXT_BG3/CORE_SREST
DP(5)/TBEN/IRQ5/EXT_DBG3
DP(6)/CSE(0)/IRQ6
DP(7)/CSE(1)/IRQ7
PSDVAL
TA
TEA
GBL/IRQ1
CI/BADDR29/IRQ2
WT/BADDR30/IRQ3
L2_HIT/IRQ4
CPU_BG/BADDR31/IRQ5
CPU_DBG
CPU_BR
IRQ0/NMI_OUT
IRQ7/INT_OUT/APE
PORESET
HRESET
SRESET
RSTCONF
QREQ
IOL = 5.3 mA
CS[0-9]
CS(10)/BCTL1
CS(11)/AP(0)
BADDR[27–28]
ALE
BCTL0
PWE(0:7)/PSDDQM(0:7)/PBS(0:7)
PSDA10/PGPL0
PSDWE/PGPL1
POE/PSDRAS/PGPL2
PSDCAS/PGPL3
PGTA/PUPMWAIT/PGPL4/PPBS
PSDAMUX/PGPL5
LWE[0–3]LSDDQM[0–3]/LBS[0–3]/PCI_CFG[0–3
(2)
LSDA10/LGPL0/PCI_MODCKH0
(2)
LSDWE/LGPL1/PCI_MODCKH1
(2)
V
OL
–0.4V
Table 4-1. DC Electrical Characteristics
(1)
(Continued)
Characteristic Symbol Min Max Unit
25
5336E–HIREL–04/06
PC8265A
Notes: 1. The default configuration of the CPM pins (PA[0–31], PB[4–31], PC[0–31], PD[4–31]) is input.
To prevent excessive DC current, it is recommended to either pull unused pins to GND or
VDDH, or to configure them as outputs.
2. The leakage current is measured for nominal V
DDH
and V
DD
or both V
DDH
and V
DD
must vary in
the same direction; that is, V
DDH
and V
DD
either both vary in the positive direction (+5% and
+0.1 V
DC
) or both vary in the negative direction (-5% and -0.1 V
DC
).
LOE/LSDRAS/LGPL2/PCI_MODCKH2
(2)
LSDCAS/LGPL3/PCI_MODCKH3
(2)
LGTA/LUPMWAIT/LGPL4/LPBS
LSDAMUX/LGPL5/PCI_MODCK
(2)
LWR
MODCK1/AP(1)/TC(0)/BNKSEL(0)
MODCK2/AP(2)/TC(1)/BNKSEL(1)
MODCK3/AP(3)/TC(2)/BNKSEL(2)
IOL = 3.2 mA
L_A14/PAR
(2)
L_A15/FRAME
(2)
/SMI
L_A16/TRDY
(2)
L_A17/IRDY
(2)
/CKSTP_OUT
L_A18/STOP
(2)
L_A19/DEVSEL
(2)
L_A20/IDSEL
(2)
L_A21/PERR
(2)
L_A22/SERR
(2)
L_A23/REQ0
(2)
L_A24/REQ1
(2)
/HSEJSW
(2)
L_A25/GNT0
(2)
L_A26/GNT1
(2)
/HSLED
(2)
L_A27/GNT2
(2)
/HSENUM
(2)
L_A28/RST
(2)
/CORE_SRESET
L_A29/INTA
(2)
L_A30/REQ2
(2)
L_A31
LCL_D(0-31)/AD(0-31)
(2)
LCL_DP(0-3)/C/BE(0-3)
(2)
PA[0–31]
PB[4–31]
PC[0–31]
PD[4–31]
TDO
Table 4-1. DC Electrical Characteristics
(1)
(Continued)
Characteristic Symbol Min Max Unit
26
5336E–HIREL–04/06
PC8265A
4.1.3 Thermal Characteristics
Table 4-2 describes thermal characteristics.
Notes: 1. Assumes a single layer board with no thermal vias.
2. Natural convection.
3. Assumes a four layer board.
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8.
Board temperature is measured on the top surface of the board near the package.
5. Thermal resistance between the die and the case top surface as measured by the cold plate
method (MIL SPEC-883 Method 1012.1).
4.1.4 Power Considerations
The average chip-junction temperature, T
J
, in
°
C can be obtained from the following:
T
J
= T
A
+ (P
D
× Θ
JA
) (1)
where
T
A
= ambient temperature
°
C
Θ
JA
= package thermal resistance, junction to ambient,
°
C/W
P
D
= P
INT
+ P
I/O
P
INT
= I
DD
× V
DD
Watts (chip internal power)
P
I/O
= power dissipation on input and output pins (determined by user)
For most applications P
I/O
< 0.3 × P
INT
. If P
I/O
is neglected, an approximate relationship between
P
D
and T
J
is as follows:
P
D
= K/(T
J
+ 273°C) (2)
Solving equations (1) and (2) for K gives:
K = P
D
× (T
A
+ 273°C) + Θ
JA
× P
D2
(3)
where K is a constant pertaining to the particular part. K can be determined from equation (3) by
measuring P
D
(at equilibrium) for a known T
A
. Using this value of K, the values of P
D
and T
J
can
be obtained by solving equations (1) and (2) iteratively for any value of T
A
.
Table 4-2. Thermal Characteristics for the 480 TBGA Package
Characteristics Symbol Value Unit Air Flow
Junction to ambient Θ
JA
13
(1)
°C/W
NC
(2)
10
(1)
1 m/s
11
(3)
NC
8
(3)
1 m/s
Junction to board
(4)
Θ
JB
C/W–
Junction to case
(5)
Θ
JC
1.1 °C/W
27
5336E–HIREL–04/06
PC8265A
4.1.5 Layout Practices
Each pin should be provided with a low-impedance path to the board’s power supply. Each
ground pin should likewise be provided with a low-impedance path to ground. The power supply
pins drive distinct groups of logic on the chip. The power supply should be bypassed to ground
using at least four 0.1 µF by-pass capacitors located as close as possible to the four sides of the
package. The capacitor leads and associated printed circuit traces connecting to the chip and
ground should be kept to less than half an inch per capacitor lead. A four-layer board is recom-
mended, employing two inner layers as GND planes.
All output pins on the PC8265A have fast rise and fall times. Printed circuit (PC) trace intercon-
nection length should be minimized in order to minimize overdamped conditions and reflections
caused by these fast output switching times. This recommendation particularly applies to the
address and data buses.
Maximum PC trace lengths of six inches are recommended. Capacitance calculations should
consider all device loads as well as parasitic capacitances due to the PC traces. Attention to
proper PCB layout and bypassing becomes especially critical in systems with higher capacitive
loads because these loads create higher transient currents in the GND circuits. Pull up all
unused inputs or signals that will be inputs during reset. Special care should be taken to mini-
mize the noise levels on the PLL supply pins.
Table 4-3 provides preliminary, estimated power dissipation for various configurations. Note that
suitable thermal management is required for conditions above P
D
= 3W (when the ambient tem-
perature is 70°C or greater) to ensure the junction temperature does not exceed the maximum
specified value. Also note that the I/O power should be included when determining whether to
use a heat sink.
Notes: 1. Test temperature = room temperature (25°C)
2. P
INT
= I
DD
×
V
DD
Watts (chip internal power)
Table 4-3. Estimated Power Dissipation for Various Configurations
(1)
Bus (MHz)
CPM
Multiplier
Core CPU
Multiplier CPM (MHz) CPU (MHz)
P
INT
(W)
(2)
Vddl 1.8 Volts Vddl 2.0 Volts
Nominal Maximum Nominal Maximum
66.66 2 3 133 200 1.2 2 1.8 2.3
66.66 2.5 3 166 200 1.3 2.1 1.9 2.3
66.66 3 4 200 266 2.3 2.9
66.66 3 4.5 200 300 2.4 3.1
83.33 2 3 166 250 2.2 2.8
83.33 2 3 166 250 2.2 2.8
83.33 2.5 3.5 208 291 2.4 3.1
28
5336E–HIREL–04/06
PC8265A
4.2 AC Electrical Characteristics
The following sections include illustrations and tables of clock diagrams, signals, and CPM out-
puts and inputs for the 66 MHz PC8265A device. Note that AC timings are based on a 50-pf
load. Typical output buffer impedances are shown in Table 4-4.
Note: 1. These are typical values at 65°C. The impedance may vary by ±25% with process and
temperature.
Table 4-5 lists CPM output characteristics.
Note: 1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings
are measured at the pin.
Table 4-6 lists CPM input characteristics.
Note: 1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are
measured at the pin.
Table 4-4. Output Buffer Impedances
(1)
Output Buffers Typical Impedance (Ω)
60x bus 40
Local bus 40
Memory Controller 40
Parallel I/O 46
PCI 25
Table 4-5. AC Characteristics for CPM Outputs
(1)
Spec_num Max/Min Characteristic
Max Delay (ns) Min Delay (ns)
66 MHz 83 MHz 66 MHz 83 MHz
sp36a/sp37a FCC outputs – internal clock (NMSI) 6 5.5 1 1
sp36b/sp37b FCC outputs – external clock (NMSI) 14 12 2 1
sp40/sp41 TDM outputs/SI 25 16 5 4
sp38a/sp39a SCC/SMC/SPI/I2C outputs – internal clock (NMSI) 19 16 1 0.5
sp38b/sp39b Ex_SCC/SMC/SPI/I2C outputs – external clock (NMSI) 19 16 2 1
sp42/sp43 TIMER/IDMA outputs 14 11 1 0.5
sp42a/sp43a PIO outputs 14 11 0.5 0.5
Table 4-6. AC Characteristics for CPM Inputs
(1)
Spec_num Characteristic
Setup (ns) Hold (ns)
66 MHz 83 MHz 66 MHz 83 MHz
sp16a/sp17a FCC inputs – internal clock (NMSI) 10 8 0 0
sp16b/sp17b FCC inputs – external clock (NMSI) 3 2.5 3 2
sp20/sp21 TDM inputs/SI 15 12 12 10
sp18a/sp19a SCC/SMC/SPI/I2C inputs – internal clock (NMSI) 20 16 0 0
sp18b/sp19b SCC/SMC/SPI/I2C inputs – external clock (NMSI) 5454
sp22/sp23 PIO/TIMER/IDMA inputs 10 8 3 3
29
5336E–HIREL–04/06
PC8265A
Note that although the specifications generally reference the rising edge of the clock, the following AC timing diagrams also
apply when the falling edge is the active edge.
Figure 4-1 shows the FCC external clock.
Figure 4-1. FCC External Clock Diagram
Figure 4-2 shows the FCC internal clock.
Figure 4-2. FCC Internal Clock Diagram
Serial ClKin
FCC input signals
FCC output signals
Note: when GFMR[TCI] = 1
Note: when GFMR[TCI] = 0
sp16b
sp17b
sp36b/sp37b
sp36b/sp37b
FCC output signals
BRG_OUT
FCC input signals
FCC output signals
Note: when GFMR [TCI] = 1
Note: when GFMR [TCI] = 0
sp16a
sp17a
sp36a/sp37a
sp36a/sp37a
FCC output signals
30
5336E–HIREL–04/06
PC8265A
Figure 4-3 shows the SCC/SMC/SPI/I
2
C external clock.
Figure 4-3. SCC/SMC/SPI/I
2
C External Clock Diagram
Note: The clock edge is selectable on SCC and SPI.
1. Input sampled on the rising edge and output driven on the rising edge (shown).
2. Input sampled on the rising edge and output driven on the falling edge.
3. Input sampled on the falling edge and output driven on the falling edge.
4. Input sampled on the falling edge and output driven on the rising edge.
Figure 4-4 shows the SCC/SMC/SPI/I
2
C internal clock.
Figure 4-4. SCC/SMC/SPI/I
2
C Internal Clock Diagram
Note: There are four possible TDM timing conditions:
1. Input sampled on the rising edge and output driven on the rising edge (shown).
2. Input sampled on the rising edge and output driven on the falling edge.
3. Input sampled on the falling edge and output driven on the falling edge.
4. Input sampled on the falling edge and output driven on the rising edge.
sp19b
sp18b
sp38b/sp39b
Serial CLKin
SCC/SMC/SPI/I2C input signals
(See note.)
SCC/SMC/SPI/I2C output signals
(See note.)
sp19a
sp18a
sp38a/sp39a
BRG_OUT
SCC/SMC/SPI/I2C output signals
(See note.)
SCC/SMC/SPI/I2C input signals
(See note.)
31
5336E–HIREL–04/06
PC8265A
Figure 4-5 shows TDM input and output signals.
Figure 4-5. TDM Signals Diagram
Note: There are four possible TDM timing conditions:
1. Input sampled on the rising edge and output driven on the rising edge (shown).
2. Input sampled on the rising edge and output driven on the falling edge.
3. Input sampled on the falling edge and output driven on the falling edge.
4. Input sampled on the falling edge and output driven on the rising edge.
Figure 4-6 shows PIO, timer, and DMA signals.
Figure 4-6. PIO, Timer, and DMA Signal Diagram
Note: TGATE is asserted on the rising edge of the clock; it is deasserted on the falling edge.
sp20
sp40/sp41
Serial CLKin
TDM input signals
TDM output signals
sp21
sp22
sp42/sp43
sp23
sp42a/sp43a
Sys clk
PIO/IDMA/TIMER[TGATE assertion] input signals
(see note)
IDMA output signals
TIMER input signal [TGATE deassertion]
(see note)
sp23
sp22
sp42/sp43
TIMER (sp42/43)/PIO (sp42a/sp43a)
output signals
32
5336E–HIREL–04/06
PC8265A
Table 4-7 lists SIU input characteristics.
Note: 1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are
measured at the pin.
Table 4-8 lists SIU output characteristics.
Note: 1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings
are measured at the pin.
Table 4-7. AC Characteristics for SIU Inputs
(1)
Spec Number
Characteristic
Setup (ns) Hold (ns)
Min Max 66 MHz 83 MHz 66 MHz 83 MHz
sp11 sp10 AACK/ARTRY/TA/TS/TEA/DBG/BG/BR 650.50.5
sp12 sp10 Data bus in normal mode 5 4 0.5 0.5
sp13 sp10 Data bus in ECC and PARITY modes 8 6 0.5 0.5
sp14 sp10 DP pins 7 6 0.5 0.5
sp15 sp10 All other pins 5 4 0.5 0.5
Table 4-8. AC Characteristics for SIU Outputs
(1)
Spec Number
Characteristic
Setup (ns) Hold (ns)
Min Max 66 MHz 83 MHz 66 MHz 83 MHz
sp31 sp30 PSDVAL/TEA/TA 760.50.5
sp32 sp30 ADD/ADD_atr./BADDR/CI/GBL/WT 8 6.5 0.5 0.5
sp33a sp30 Data bus 6.5 6.5 0.5 0.5
sp33b sp30 DP 8 7 0.5 0.5
sp34 sp30 Memory controller signals/ALE 6 5 0.5 0.5
sp35 sp30 All other signals 6 5.5 0.5 0.5
33
5336E–HIREL–04/06
PC8265A
Figure 4-7 shows the interaction of several bus signals.
Figure 4-7. Bus Signals
Note: Activating data pipelining (setting BR
×
[DR] in the memory controller) improves the AC timing.
When data pipelining is activated, sp12 can be used for data bus setup even when ECC or PAR-
ITY are used. Also, sp33a can be used as the AC specification for DP signals.
sp11
sp10
sp10
sp10
sp30
sp30
sp30
sp30
sp12
SP15
SP31
SP32
SP33a
SP35
CLKin
AACK/ARTRY/TA/TS/TEA/
DBG/BG/BR input signals
DATA bus normal mode
input signal
All other input signals
PSDVAL/TEA/TA output signals
ADD/ADD_atr/BADDR/CI/
GBL/WT output signals
DATA bus output signals
All other output signals
34
5336E–HIREL–04/06
PC8265A
Figure 4-8 shows signal behavior for all parity modes (including ECC, RMW parity, and standard parity).
Figure 4-8. Parity Mode Diagram
Figure 4-9 shows signal behavior in MEMC mode.
Figure 4-9. MEMC Mode Diagram
Note: Generally, all PC8265A bus and system output signals are driven from the rising edge of the input
clock (CLKin). Memory controller signals, however, trigger on four points within a CLKin cycle.
Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising
edge, and T3 at the falling edge, of CLKin. However, the spacing of T2 and T4 depends on the
PLL clock ratio selected, as shown in Table 4-9.
sp13
sp33b/sp10
sp10
sp10
sp14
CLKin
DATA bus, ECC, and PARITY mode input signals
DP mode input signal
DP mode output signal
Table 4-9. Tick Spacing for Memory Controller Signals
PLL Clock Ratio
Tick Spacing (T1 Occurs at the Rising Edge of CLKin)
T2 T3 T4
1:2, 1:3, 1:4, 1:5, 1:6 1/4 CLKin 1/2 CLKin 3/4 CLKin
1:2.5 3/10 CLKin 1/2 CLKin 8/10 CLKin
1:3.5 4/14 CLKin 1/2 CLKin 11/14 CLKin
sp34/sp30
CLKin
V_CLK
Memory controller signals
35
5336E–HIREL–04/06
PC8265A
Figure 4-10 is a graphical representation of
Table 4-9
.
Figure 4-10. Internal Tick Spacing for Memory Controller Signals
Table 4-10 lists the JTAG timings.
Notes: 1. All outputs are measured from the midpoint voltage of the falling/rising edge of t
TCLK
to the midpoint of the signal in question.
The output timings are measured at the pins. All output timings assume a purely resistive 50. load. Time-of-flight delays
must be added for trace lengths, vias, and connectors in the system.
T1 T2 T3 T4
T1 T2 T3 T4
T1 T2 T3 T4
for 1:2, 1:3, 1:4, 1:5, 1:6CLKin
for 1:2.5CLKin
for 1:3.5
CLKin
Table 4-10. JTAG Timings
(1)
Parameter Symbol Min Max Unit Notes
JTAG external clock frequency of operation f
JTG
025MHz
JTAG external clock cycle time
t
JTG
40 ns
JTAG external clock pulse width measured
at 1.4V t
JTKHKL
20 ns
JTAG external clock rise and fall t
JTGR
and t
JTGF
05ns
(6)
TRST assert time t
TRST
25 ns
(3)(6)
Input setup times
- Boundary-scan data
- TMS, TDI
t
JTDVKH
t
JTIVKH
4
4
ns
ns
(4)(7)
(4)(7)
Input hold times
- Boundary-scan data
- TMS, TDI
t
JTDXKH
t
JTIXKH
10
10
ns
ns
(4)(7)
(4)(7)
Output valid times
- Boundary-scan data
- TDO
t
JTKLDV
t
JTKLOV
25
25
ns
ns
(5)(7)
(5)(7)
Output hold times Boundary-scan data
TDO
t
JTKLDX
t
JTKLOX
1
1
ns
ns
(5)(7)
(5)(7)
JTAG external clock to output high
impedance
- Boundary-scan data
- TDO
t
JTKLDZ
t
JTKLOZ
1
1
25
25
ns
ns
(5)(6)
(5)(6)
36
5336E–HIREL–04/06
PC8265A
2. The symbols used for timing specifications herein follow the pattern of t
(first two letters of functional block)(signal)(state) (reference)(state)
for
inputs and t(
(first two letters of functional block)(reference)(state)(signal)(state)
for outputs. For example, t
JTDVKH
symbolizes JTAG device timing
(JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t
JTG
clock reference (K) going to
the high (H) state or setup time. Also, t
JTDXKH
symbolizes JTAG timing (JT) with respect to the time data input signals (D)
went invalid (X) relative to the t
JTG
clock reference (K) going to the high (H) state. Note that, in general, the clock reference
symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the
latter convention is used with the appropriate letter: R (rise) or F (fall).
3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
4. Non-JTAG signal input timing with respect to t
TCLK
.
5. Non-JTAG signal output timing with respect to t
TCLK
.
6. Guaranteed by design.
7. Guaranteed by design and device characterization.
Note: The UPM machine outputs change on the internal tick determined by the memory controller programming; the AC specifications
are relative to the internal tick. Note that SDRAM and GPCM machine outputs change on CLKin’s rising edge.
4.3 Clock Configuration Modes
To configure the main PLL multiplication factor and the core, the CPM, and 60x bus frequencies,
the MODCK[1:3] pins are sampled while HRESET is asserted. Table 4-11 shows the eight basic
configuration modes. Another 49 modes are available by using the configuration pin (RST-
CONF) and driving four pins on the data bus.
4.3.1 Local Bus Mode
Table 4-11 describes default clock modes for the PC8265A.
Table 4-11. Clock Default Modes
MODCK[1–3]
Input Clock
Frequency
(MH)z
CPM
Multiplication
Factor
CPM Frequency
(MHz)
Core
Multiplication
Factor
Core Frequency
(MHz)
000 33 3 100 4 133
001 33 3 100 5 166
010 33 4 133 4 133
011 33 4 133 5 166
100 66 2 133 2.5 166
101 66 2 133 3 200
110 66 2.5 166 2.5 166
111 66 2.5 166 3 200
37
5336E–HIREL–04/06
PC8265A
Table 4-12 describes all possible clock configurations when using the hard reset configuration sequence.
Note that the clock configuration changes only after POR is asserted. Note also that basic modes are shown in boldface
type.
Table 4-12. Clock Configuration Modes
(1)
MODCK_H–MODCK[1–3]
Input Clock
Frequency
(2)(3)
(MHz)
CPM
Multiplication
Factor
(2)
CPM
Frequency
(2)
(MHz)
Core
Multiplication
Factor
(2)
Core
Frequency
(2)
(MHz)
0001_000 33 2 66 4 133
0001_001 33 2 66 5 166
0001_010 33 2 66 6 200
0001_011 33 2 66 7 233
0001_100 33 2 66 8 266
0001_101 33 3 100 4 133
0001_110 33 3 100 5 166
0001_111 33 3 100 6 200
0010_000 33 3 100 7 233
0010_001 33 3 100 8 266
0010_010 33 4 133 4 133
0010_011 33 4 133 5 166
0010_100 33 4 133 6 200
0010_101 33 4 133 7 233
0010_110 33 4 133 8 266
0010_111 33 5 166 4 133
0011_000 33 5 166 5 166
0011_001 33 5 166 6 200
0011_010 33 5 166 7 233
0011_011 33 5 166 8 266
0011_100 33 6 200 4 133
0011_101 33 6 200 5 166
0011_110 33 6 200 6 200
0011_111 33 6 200 7 233
0100_000 33 6 200 8 266
38
5336E–HIREL–04/06
PC8265A
0100_001
Reserved
0100_010
0100_011
0100_100
0100_101
0100_110
0100_111
Reserved
0101_000
0101_001
0101_010
0101_011
0101_100
0101_101 66 2 133 2 133
0101_110 66 2 133 2.5 166
0101_111 66 2 133 3 200
0110_000 66 2 133 3.5 233
0110_001 66 2 133 4 266
0110_010 66 2 133 4.5 300
0110_011 66 2.5 166 2 133
0110_100 66 2.5 166 2.5 166
0110_101 66 2.5 166 3 200
0110_110 66 2.5 166 3.5 233
0110_111 66 2.5 166 4 266
0111_000 66 2.5 166 4.5 300
0111_001 66 3 200 2 133
0111_010 66 3 200 2.5 166
0111_011 66 3 200 3 200
0111_100 66 3 200 3.5 233
0111_101 66 3 200 4 266
0111_110 66 3 200 4.5 300
Table 4-12. Clock Configuration Modes
(1)
(Continued)
MODCK_H–MODCK[1–3]
Input Clock
Frequency
(2)(3)
(MHz)
CPM
Multiplication
Factor
(2)
CPM
Frequency
(2)
(MHz)
Core
Multiplication
Factor
(2)
Core
Frequency
(2)
(MHz)
39
5336E–HIREL–04/06
PC8265A
Notes: 1. Because of speed dependencies, not all of the possible configurations in Table 4-12 are applicable.
2. The user should choose the input clock frequency and the multiplication factors such that the frequency of the CPU is equal
to or greater than150 MHz and the CPM ranges between 66 – 233 MHz.
3. Input clock frequency is given only for the purpose of reference. MODCK_H–MODCK_L should be set so that the resulting
configuration does not exceed the frequency rating of the user’s part.
Example. If a part is rated at 266 MHz CPU, 200 MHz CPM, and 66 MHz bus, any of the following are possible (note that
the three input clock frequencies are only three of many possible input clock frequencies):
1. 66 MHz input clock and MODCK_H–MODCK_L[0111–101] (with a core multiplication
factor of 4 and a CPM multiplication factor of 3). The resulting configuration equals the
part’s maximum possible frequencies of 266 MHz CPU, 200 MHz CPM, and 66 MHz
bus.
2. 50 MHz input clock and MODCK_H–MODCK_L[0111–101] to achieve a configuration
of 200 MHz CPU, 150 MHz CPM, and 50 MHz bus.
3. 40 MHz input clock and MODCK_H–MODCK_L[0010–011] to achieve a configuration
of 200 MHz CPU, 160 MHz CPM, and 40 MHz bus.
Note that with each example, any one of several values for MODCK_H–MODCK_L could possi-
bly be used as long as the resulting configuration does not exceed the part’s rating.
4.4 PCI Mode
The PC8265 has three clocking modes: local, PCI host, and PCI agent. The clocking mode is set
according to three input pins: PCI_MODE, PCI_CFG[0], PCI_MODCK, as shown in Table 4-13.
0111_111 66 3.5 233 2 133
1000_000 66 3.5 233 2.5 166
1000_001 66 3.5 233 3 200
1000_010 66 3.5 233 3.5 233
1000_011 66 3.5 233 4 266
1000_100 66 3.5 233 4.5 300
Table 4-12. Clock Configuration Modes
(1)
(Continued)
MODCK_H–MODCK[1–3]
Input Clock
Frequency
(2)(3)
(MHz)
CPM
Multiplication
Factor
(2)
CPM
Frequency
(2)
(MHz)
Core
Multiplication
Factor
(2)
Core
Frequency
(2)
(MHz)
Table 4-13. PC8265 Clocking Modes
Pins
Clocking Mode
PCI Clock
Frequency
Range (MHz)PCI_MODE PCI_CFG[0] PCI_MODCK
1 Local bus
000
PCI host 50-66
0 0 1 25-50
010
PCI agent 50-66
0 1 1 25-50
40
5336E–HIREL–04/06
PC8265A
In addition, note the following:
Notes: 1. PCI_MODCK
In PCI mode only, PCI_MODCK comes from the LGPL5 pin and MODCK_H[0–3] comes from
{LGPL0, LGPL1, LGPL2, LGPL3}.
2. Tval (Output Hold)
The minimum Tval = 2 when PCI_MODCK = 1, and the minimum Tval = 1
when PCI_MODCK = 0. Therefore, designers should use clock configurations that fit this con-
dition to achieve PCI-compliant AC timing.
3. Clock configurations change only after POR is asserted.
Notes: 1. Assumes MODCK_HI = 0000.
2. The frequency depends on the value of PCI_MODCK. If PCI_MODCK is high (logic ‘1’), the PCI frequency is divided by 2
(33 instead of 66 MHz, etc.)
Table 4-15 describes all possible clock configurations when using the PC8265A or the PC8266A’s internal PCI bridge in
host mode.
Table 4-14. Clock Default Configurations in PCI Host Mode (MODCK_HI = 0000)
MODCK[1–3]
(1)
Input Clock
Frequency
CPM
Multiplication
CPM
Frequency
Core
Multiplication
Core
Frequency
PCI Division
Factor
(2)
PCI
Frequency
(2)
000 66 MHz 2 133 MHz 2.5 166 MHz 2/4 66/33 MHz
001 66 MHz 2 133 MHz 3 200 MHz 2/4 66/33 MHz
010 66 MHz 2.5 166 MHz 3 200 MHz 3/6 55/28 MHz
011 66 MHz 2.5 166 MHz 3.5 233 MHz 3/6 55/28 MHz
100 66 MHz 2.5 166 MHz 4 266 MHz 3/6 55/28 MHz
101 66 MHz 3 200 MHz 3 200 MHz 3/6 66/33 MHz
110 66 MHz 3 200 MHz 3.5 233 MHz 3/6 66/33 MHz
111 66 MHz 3 200 MHz 4 266 MHz 3/6 66/33 MHz
Table 4-15. Clock Configuration Modes in PCI Host Mode
MODCK_H –
MODCK[1–3]
Input Clock
Frequency
(1)
(Bus)
CPM
Multiplication
Factor
CPM
Frequency
Core
Multiplication
Factor
Core
Frequency
PCI Division
Factor
(2)
PCI
Frequency
(2)
0001_000 33 MHz 3 100 MHz 5 166 MHz 3/6 33/16 MHz
0001_001 33 MHz 3 100 MHz 6 200 MHz 3/6 33/16 MHz
0001_010 33 MHz 3 100 MHz 7 233 MHz 3/6 33/16 MHz
0001_011 33 MHz 3 100 MHz 8 266 MHz 3/6 33/16 MHz
0010_000 33 MHz 4 133 MHz 5 166 MHz 4/8 33/16 MHz
0010_001 33 MHz 4 133 MHz 6 200 MHz 4/8 33/16 MHz
0010_010 33 MHz 4 133 MHz 7 233 MHz 4/8 33/16 MHz
0010_011 33 MHz 4 133 MHz 8 266 MHz 4/8 33/16 MHz
0011_000
(3)
33 MHz 5 166 MHz 5 166 MHz 5 33 MHz
0011_001
(3)
33 MHz 5 166 MHz 6 200 MHz 5 33 MHz
0011_010
(3)
33 MHz 5 166 MHz 7 233 MHz 5 33 MHz
41
5336E–HIREL–04/06
PC8265A
0011_011
(3)
33 MHz 5 166 MHz 8 266 MHz 5 33 MHz
0100_000
3
33 MHz 6 200 MHz 5 166 MHz 6 33 MHz
0100_001
3
33 MHz 6 200 MHz 6 200 MHz 6 33 MHz
0100_010
3
33 MHz 6 200 MHz 7 233 MHz 6 33 MHz
0100_011
3
33 MHz 6 200 MHz 8 266 MHz 6 33 MHz
0101_000 66 MHz 2 133 MHz 2.5 166 MHz 2/4 66/33 MHz
0101_001 66 MHz 2 133 MHz 3 200 MHz 2/4 66/33 MHz
0101_010 66 MHz 2 133 MHz 3.5 233 MHz 2/4 66/33 MHz
0101_011 66 MHz 2 133 MHz 4 266 MHz 2/4 66/33 MHz
0101_100 66 MHz 2 133 MHz 4.5 300 MHz 2/4 66/33 MHz
0110_000 66 MHz 2.5 166 MHz 2.5 166 MHz 3/6 55/28 MHz
0110_001 66 MHz 2.5 166 MHz 3 200 MHz 3/6 55/28 MHz
0110_010 66 MHz 2.5 166 MHz 3.5 233 MHz 3/6 55/28 MHz
0110_011 66 MHz 2.5 166 MHz 4 266 MHz 3/6 55/28 MHz
0110_100 66 MHz 2.5 166 MHz 4.5 300 MHz 3/6 55/28 MHz
0111_000 66 MHz 3 200 MHz 2.5 166 MHz 3/6 66/33 MHz
0111_001 66 MHz 3 200 MHz 3 200 MHz 3/6 66/33 MHz
0111_010 66 MHz 3 200 MHz 3.5 233 MHz 3/6 66/33 MHz
0111_011 66 MHz 3 200 MHz 4 266 MHz 3/6 66/33 MHz
0111_100 66 MHz 3 200 MHz 4.5 300 MHz 3/6 66/33 MHz
1000_000 66 MHz 3 200 MHz 2.5 166 MHz 4/8 50/25 MHz
1000_001 66 MHz 3 200 MHz 3 200 MHz 4/8 50/25 MHz
1000_010 66 MHz 3 200 MHz 3.5 233 MHz 4/8 50/25 MHz
1000_011 66 MHz 3 200 MHz 4 266 MHz 4/8 50/25 MHz
1000_100 66 MHz 3 200 MHz 4.5 300 MHz 4/8 50/25 MHz
1001_000 66 MHz 3.5 233 MHz 2.5 166 MHz 4/8 58/29 MHz
1001_001 66 MHz 3.5 233 MHz 3 200 MHz 4/8 58/29 MHz
1001_010 66 MHz 3.5 233 MHz 3.5 233 MHz 4/8 58/29 MHz
1001_011 66 MHz 3.5 233 MHz 4 266 MHz 4/8 58/29 MHz
Table 4-15. Clock Configuration Modes in PCI Host Mode (Continued)
MODCK_H –
MODCK[1–3]
Input Clock
Frequency
(1)
(Bus)
CPM
Multiplication
Factor
CPM
Frequency
Core
Multiplication
Factor
Core
Frequency
PCI Division
Factor
(2)
PCI
Frequency
(2)
42
5336E–HIREL–04/06
PC8265A
Notes: 1. Input clock frequency is given only for the purpose of reference. User should set MODCK_H–MODCK_L so that the resulting
configuration does not exceed the frequency rating of the user’s part.
Example. If a part is rated at 266 MHz CPU, 200 MHz CPM, and 66 MHz bus, any of the follow-
ing are possible (note that the three input clock frequencies are only three of many possible
input clock frequencies):
1. 66 MHz input clock, MODCK_H–MODCK_L[0111–011] (with a core multiplication fac-
tor of 4 and a CPM multiplication factor of 3), and PCI_MODCK = 0 (see note 2 below).
The resulting configuration equals the part’s maximum possible frequencies of 266
MHz CPU, 200 MHz CPM, 66 MHz 60x bus, and a PCI frequency of 66 MHz.
2. 50 MHz input clock, MODCK_H–MODCK_L[0111–011], and PCI_MODCK = 0 (see
note 2below) to achieve a configuration of 200 MHz CPU, 150 MHz CPM, 50 MHz 60x
bus, and a PCI frequency of 50 MHz.
3. 40 MHz input clock, MODCK_H–MODCK_L[0010–000], and PCI_MODCK = 0 (see
note 2 below) to achieve a configuration of 200 MHz CPU, 160 MHz CPM, 40 MHz 60x
bus, and a PCI frequency of 40 MHz.
Note that with each of the examples, any one of several values for MODCK_H–MODCK_L could
possibly be used as long as the resulting configuration does not exceed the part’s rating.
2. The frequency depends on the value of PCI_MODCK. If PCI_MODCK is high (logic “1“), the PCI frequency is divided by 2
(33 instead of 66 MHz, etc.).
3. In this mode, PCI_MODCK must be “0”
1001_100 66 MHz 3.5 233 MHz 4.5 300 MHz 4/8 58/29 MHz
1010_000 100 MHz 2 200 MHz 2 200 MHz 3/6 66/33 MHz
1010_001 100 MHz 2 200 MHz 2.5 250 MHz 3/6 66/33 MHz
1010_010 100 MHz 2 200 MHz 3 300 MHz 3/6 66/33 MHz
1010_011 100 MHz 2 200 MHz 3.5 350 MHz 3/6 66/33 MHz
1010_100 100 MHz 2 200 MHz 4 400 MHz 3/6 66/33 MHz
1011_000 100 MHz 2.5 250 MHz 2 200 MHz 4/8 62/31 MHz
1011_001 100 MHz 2.5 250 MHz 2.5 250 MHz 4/8 62/31MHz
1011_010 100 MHz 2.5 250 MHz 3 300 MHz 4/8 62/31 MHz
1011_011 100 MHz 2.5 250 MHz 3.5 350 MHz 4/8 62/31 MHz
1011_100 100 MHz 2.5 250 MHz 4 400 MHz 4/8 62/31 MHz
Table 4-15. Clock Configuration Modes in PCI Host Mode (Continued)
MODCK_H –
MODCK[1–3]
Input Clock
Frequency
(1)
(Bus)
CPM
Multiplication
Factor
CPM
Frequency
Core
Multiplication
Factor
Core
Frequency
PCI Division
Factor
(2)
PCI
Frequency
(2)
43
5336E–HIREL–04/06
PC8265A
.
Notes: 1. The user should verify that all buses and functions run frequencies that are within the supported ranges.
2. Assumes MODCK_HI = 0000
3. The frequency depends on the value of PCI_MODCK. If PCI_MODCK is high (logic ‘1’), the PCI frequency is divided by 2
(33 instead of 66 MHz, etc.) and the CPM multiplication factor is multiplied by 2.
4. Core frequency = (60x bus frequency)(core multiplication factor).
5. Bus frequency = CPM frequency/bus division factor.
Table 4-17 describes all possible clock configurations when using the PC8265A or the PC8266A’s internal PCI bridge in
agent mode
Table 4-16. Clock Default Configurations in PCI Agent Mode (MODCK_HI = 0000)
(1)
MODCK[1–3]
(2)
Input Clock
Frequency
(PCI)
(3)
CPM
Multiplication
Factor
(3)
CPM
Frequency
Core
Multiplication
Factor
Core
(4)
Frequency
Bus
Division
Factor
60x Bus
(5)
Frequency
000 66/33 MHz 2/4 133 MHz 2.5 166 MHz 2 66 MHz
001 66/33 MHz 2/4 133 MHz 3 200 MHz 2 66 MHz
010 66/33 MHz 3/6 200 MHz 3 200 MHz 3 66 MHz
011 66/33 MHz 3/6 200 MHz 4 266 MHz 3 66 MHz
100 66/33 MHz 3/6 200 MHz 3 240 MHz 2.5 80 MHz
101 66/33 MHz 3/6 200 MHz 3.5 280 MHz 2.5 80 MHz
110 66/33 MHz 4/8 266 MHz 3.5 300 MHz 3 88 MHz
111 66/33 MHz 4/8 266 MHz 3 300 MHz 2.5 100 MHz
Table 4-17. Clock Configuration Modes in PCI Agent Mode
(1)
MODCK_H –
MODCK[1–3]
Input Clock
Frequency
(PCI)
(2)(3)
CPM
Multiplication
Factor
(2)
CPM
Frequency
Core
Multiplicatio
n Factor
Core
(4)
Frequency
Bus
Division
Factor
60x Bus
(5)
Frequency
0001_001 66/33 MHz 2/4 133 MHz 5 166 MHz 4 33 MHz
0001_010 66/33 MHz 2/4 133 MHz 6 200 MHz 4 33 MHz
0001_011 66/33 MHz 2/4 133 MHz 7 233 MHz 4 33 MHz
0001_100 66/33 MHz 2/4 133 MHz 8 266 MHz 4 33 MHz
0010_001 50/25 MHz 3/6 150 MHz 3 180 MHz 2.5 60 MHz
0010_010 50/25 MHz 3/6 150 MHz 3.5 210 MHz 2.5 60 MHz
0010_011 50/25 MHz 3/6 150 MHz 4 240 MHz 2.5 60 MHz
0010_100 50/25 MHz 3/6 150 MHz 4.5 270 MHz 2.5 60 MHz
0011_000 66/33 MHz 2/4 133 MHz 2.5 110MHz 3 44 MHz
0011_001 66/33 MHz 2/4 133 MHz 3 132 MHz 3 44 MHz
0011_010 66/33 MHz 2/4 133 MHz 3.5 154 MHz 3 44 MHz
0011_011 66/33 MHz 2/4 133 MHz 4 176 MHz 3 44 MHz
0011_100 66/33 MHz 2/4 133 MHz 4.5 198 MHz 3 44 MHz
44
5336E–HIREL–04/06
PC8265A
0100_000 66/33 MHz 3/6 200 MHz 2.5 166 MHz 3 66 MHz
0100_001 66/33 MHz 3/6 200 MHz 3 200 MHz 3 66 MHz
0100_010 66/33 MHz 3/6 200 MHz 3.5 233 MHz 3 66 MHz
0100_011 66/33 MHz 3/6 200 MHz 4 266 MHz 3 66 MHz
0100_100 66/33 MHz 3/6 200 MHz 4.5 300 MHz 3 66 MHz
0101_000
6
33 MHz 5 166 MHz 2.5 166 MHz 2.5 66 MHz
0101_001
6
33 MHz 5 166 MHz 3 200 MHz 2.5 66 MHz
0101_010
6
33 MHz 5 166 MHz 3.5 233 MHz 2.5 66 MHz
0101_011
6
33 MHz 5 166 MHz 4 266 MHz 2.5 66 MHz
0101_100
6
33 MHz 5 166 MHz 4.5 300 MHz 2.5 66 MHz
0110_000 50/25 MHz 4/8 200 MHz 2.5 166 MHz 3 66 MHz
0110_001 50/25 MHz 4/8 200 MHz 3 200 MHz 3 66 MHz
0110_010 50/25 MHz 4/8 200 MHz 3.5 233 MHz 3 66 MHz
0110_011 50/25 MHz 4/8 200 MHz 4 266 MHz 3 66 MHz
0110_100 50/25 MHz 4/8 200 MHz 4.5 300 MHz 3 66 MHz
0111_000 66/33 MHz 3/6 200 MHz 2 200 MHz 2 100 MHz
0111_001 66/33 MHz 3/6 200 MHz 2.5 250 MHz 2 100 MHz
0111_010 66/33 MHz 3/6 200 MHz 3 300 MHz 2 100 MHz
0111_011 66/33 MHz 3/6 200 MHz 3.5 350 MHz 2 100 MHz
1000_000 66/33 MHz 3/6 200 MHz 2 160 MHz 2.5 80 MHz
1000_001 66/33 MHz 3/6 200 MHz 2.5 200 MHz 2.5 80 MHz
1000_010 66/33 MHz 3/6 200 MHz 3 240 MHz 2.5 80 MHz
1000_011 66/33 MHz 3/6 200 MHz 3.5 280 MHz 2.5 80 MHz
1000_100 66/33 MHz 3/6 200 MHz 4 320 MHz 2.5 80 MHz
1000_101 66/33 MHz 3/6 200 MHz 4.5 360 MHz 2.5 80 MHz
1001_000 66/33 MHz 4/8 266 MHz 2.5 166 MHz 4 66 MHz
1001_001 66/33 MHz 4/8 266 MHz 3 200 MHz 4 66 MHz
1001_010 66/33 MHz 4/8 266 MHz 3.5 233 MHz 4 66 MHz
1001_011 66/33 MHz 4/8 266 MHz 4 266 MHz 4 66 MHz
1001_100 66/33 MHz 4/8 266 MHz 4.5 300 MHz 4 66 MHz
Table 4-17. Clock Configuration Modes in PCI Agent Mode
(1)
(Continued)
MODCK_H –
MODCK[1–3]
Input Clock
Frequency
(PCI)
(2)(3)
CPM
Multiplication
Factor
(2)
CPM
Frequency
Core
Multiplicatio
n Factor
Core
(4)
Frequency
Bus
Division
Factor
60x Bus
(5)
Frequency
45
5336E–HIREL–04/06
PC8265A
Notes: 1. The user should verify that all buses and functions run frequencies that are within the supported ranges.
2. The frequency depends on the value of PCI_MODCK. If PCI_MODCK is high (logic ‘1’), the PCI frequency is divided by 2
(33 instead of 66 MHz, etc.) and the CPM multiplication factor is multiplied by 2.
3. Input clock frequency is given only for the purpose of reference. MODCK_H–MODCK_L should be set so that the resulting
configuration does not exceed the frequency rating of the user’s part.
Example. If a part is rated at 266 MHz CPU, 200 MHz CPM, and 66 MHz bus, any of the follow-
ing are possible (note that the three input clock frequencies are only three of many possible
input clock frequencies):
1. 50 MHz input clock, MODCK_H–MODCK_L[0110–011] (with a core multiplication fac-
tor of 4, a CPM multiplication factor of 4, and a bus division factor of 3), and
PCI_MODCK = 0 (see note 2 above). The PCI frequency is 50 MHz and the resulting
configuration equals the part’s maximum possible frequencies of 266 MHz CPU,
200 MHz CPM, and 66 MHz 60x bus.
2. 66 MHz input clock, MODCK_H–MODCK_L[0100–001], and PCI_MODCK = 1 (see
note 2 above) to achieve a PCI frequency of 33 MHz and a configuration of 200MHz
CPU, 200 MHz CPM, and 66 MHz 60x bus.
3. 40 MHz input clock, MODCK_H–MODCK_L[1001–011], and PCI_MODCK = 0 (see
note 2 above) to achieve a PCI frequency of 40 MHz and a configuration of 160 MHz
CPU, 160 MHz CPM, and 40 MHz 60x bus.
Note that with each of the examples, any one of several values for MODCK_H–MODCK_L could
possibly be used as long as the resulting configuration does not exceed the part’s rating.
4. Core frequency = (60x bus frequency) (core multiplication factor)
5. Bus frequency = CPM frequency/bus division factor
6. In this mode, PCI_MODCK must be “1”.
1010_000 66/33 MHz 4/8 266 MHz 2.5 222 MHz 3 88 MHz
1010_001 66/33 MHz 4/8 266 MHz 3 266 MHz 3 88 MHz
1010_010 66/33 MHz 4/8 266 MHz 3.5 300 MHz 3 88 MHz
1010_011 66/33 MHz 4/8 266 MHz 4 350 MHz 3 88 MHz
1010_100 66/33 MHz 4/8 266 MHz 4.5 400 MHz 3 88 MHz
1011_000 66/33 MHz 4/8 266 MHz 2 212MHz 2.5 106 MHz
1011_001 66/33 MHz 4/8 266 MHz 2.5 265 MHz 2.5 106 MHz
1011_010 66/33 MHz 4/8 266 MHz 3 318 MHz 2.5 106 MHz
1011_011 66/33 MHz 4/8 266 MHz 3.5 371 MHz 2.5 106 MHz
1011_100 66/33 MHz 4/8 266 MHz 4 424 MHz 2.5 106 MHz
Table 4-17. Clock Configuration Modes in PCI Agent Mode
(1)
(Continued)
MODCK_H –
MODCK[1–3]
Input Clock
Frequency
(PCI)
(2)(3)
CPM
Multiplication
Factor
(2)
CPM
Frequency
Core
Multiplicatio
n Factor
Core
(4)
Frequency
Bus
Division
Factor
60x Bus
(5)
Frequency
46
5336E–HIREL–04/06
PC8265A
5. Package Description
The following sections provide the package parameters and mechanical dimensions for the
PC8265A.
5.1 Package Parameters
The package parameters are as provided in Table 5-1. The package type is a 37.5 × 37.5 mm,
480-lead TBGA.
Table 5-1. Package Parameters
Parameter Value
Package Outline 37.5
×
37.5 mm
Interconnects 480 (29
×
29 ball array)
Pitch 1.27 mm
Nominal unmounted package height 1.55 mm
47
5336E–HIREL–04/06
PC8265A
5.1.1 Mechanical Dimensions
Figure 5-1 provides the mechanical dimensions and bottom surface nomenclature of the 480
TBGA package.
Figure 5-1. Mechanical Dimensions and Bottom Surface Nomenclature
Dim Millimeters
Min Max
A 1.45 1.65
A1 0.60 0.70
A2 0.85 0.95
A3 0.25 _
b 0.65 0.85
D 37.50 BSC
D1 35.56 REF
e 1.27 BSC
E 37.50 BSC
E1 35.56 REF
Notes:
1. Dimensions and Tolerancing per
ASME Y14.5M-1994
2. Dimensions in millimeters
3. Dimension b is measured at the
maximum solder ball diameter,
parallel to primary data A
4. Primary data A and the seating
plane are defined by the spherical
crowns of the solder balls
DB
E
C
A
A
TOP VIEW
A1
BOTTOM VIEW
AJ
AH
AG
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1234567 891011121314151617181920212223242526272829
3480X b
ABC
A
3
15
M
M
(E1)
28X e
28X e
(D1)
SEATING
PLANE
A3
4X 0.2
A1
A
A2
0.15 A
480X
0.15 A
48
5336E–HIREL–04/06
PC8265A
6. Ordering Information
Notes: 1. For availability of the different versions, contact your local Atmel sales office.
2. The letter X in the part number designates a "Prototype" product that has not been qualified by Atmel. Reliability of a PCX
part-number is not guaranteed and such part-number shall not be used in Flight Hardware. Product changes may still occur
while shipping prototypes.
7. Definitions
7.1 Life Support Applications
These products are not designed for use in life support appliances, devices, or systems where
malfunction of these products can reasonably be expected to result in personal injury. Atmel
customers using or selling these products for use in such applications do so at their own risk and
agree to fully indemnify Atmel for any damages resulting from such improper use or sale.
8. Document Revision History
Table 8-1 provides a revision history for this hardware specification.
xx y xxx U nnn x8265
Part
Identifier
8265
M: Tamb = -55˚C,
Tj = +125˚C
TP = 480 TBGA Upscreening M = 266 MHz
H = 166 MHz
B = 66 MHz
C
Product
Code(1)
PC(X)(2)
Package(1) Screening
Level
CPU/CPM/Bus Speed
(MHz)
(1) Revision
Level(1)
Temperature
Range(1)
Table 8-1. Revision History
Revision
Number Date Substantive Change(s)
5336E 04/2006
- Addition of VCCSYN to “Note: Core, PLL, and I/O Supply Voltages” following Table 2.
- Addition of note 1 to Table 4-1 on page 23.
- Table 4-2 on page 26: Changes to Θ
JA
and Θ
JB
and Θ
JC
.
- Addition of notes or modifications to Figure 4-4 on page 30, Figure 4-5 on page 31, and Figure 4-6 on
page 31.
- Table 4-7 on page 32: Change of sp10.
- Addition of Table 4-13 on page 39.
- Addition of note 2 to Table 3-1 on page 8.
- Table 3-1 on page 8: Addition of FCC2 Rx and Tx [3,4] to CPM pins PD7, PD18, PD19, and PD29. Also,
the addition of SPICLK to PC19.
Addition of Table 4-10 on page 35.
5336D 01/2006 T
c
replaced by T
amb
at -55°C
5336C 11/2004 Preliminary α-site replaced by Preliminary β-site
Motorola changed to Freescale
5336B 06/2004 Ordering information: T
j
replaced by T
c
5336A 08/2003 Initial revision
i
5336E–HIREL–04/06
PC8265A
Table of Contents
Features .................................................................................................... 1
Description ............................................................................................... 1
Screening Quality Packaging ................................................................. 2
1 Features Overview ................................................................................... 3
2 Pinout ........................................................................................................ 7
2.1 Pin Assignments .......................................................................................................7
3 Electrical and Thermal Characteristics ................................................ 21
3.1 DC Electrical Characteristics ..................................................................................21
3.2 AC Electrical Characteristics ..................................................................................28
3.3 Clock Configuration Modes ....................................................................................36
3.4 PCI Mode ...............................................................................................................39
4 Package Description .............................................................................. 47
4.1 Package Parameters ..............................................................................................47
5 Ordering Information ............................................................................. 49
6 Definitions .............................................................................................. 49
6.1 Life Support Applications ........................................................................................49
7 Document Revision History .................................................................. 49
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.
Atmel Corporation Atmel Operations
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High-Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80
Literature Requests
www.atmel.com/literature
5336E–HIREL–04/06
© Atmel Corporation 2006. All rights reserved. Atmel
®
, logo and combinations thereof, Everywhere You Are
®
and others are registered trade-
marks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.