ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
MSP430SoC with RF Core
1FEATURES
23True System-on-Chip (SoC) for Low-Power High-Performance Sub-1-GHz RF Transceiver
Wireless Communication Applications Core
Wide Supply Voltage Range: 1.8 V to 3.6 V Same as in CC1101
Ultra-Low Power Consumption: Wide Supply Voltage Range: 2.0 V to 3.6 V
CPU Active Mode (AM): 160 µA/MHz Frequency Bands: 300 MHz to 348 MHz,
389 MHz to 464 MHz, and 779 MHz to
Standby Mode (LPM3 RTC Mode):2.0 µA928 MHz
Off Mode (LPM4 RAM Retention): 1.0 µAProgrammable Data Rate From 0.6 kBaud
Radio in RX: 15 mA, 250 kbps, 915 MHz to 500 kBaud
MSP430System and Peripherals High Sensitivity (-117 dBm at 0.6 kBaud,
16-Bit RISC Architecture, Extended -111 dBm at 1.2 kBaud, 315 MHz, 1% Packet
Memory, up to 20-MHz System Clock Error Rate)
Wake-Up From Standby Mode in Less Excellent Receiver Selectivity and Blocking
Than 6 µsPerformance
Flexible Power Management System with Programmable Output Power Up to +12
SVS and Brownout dBm for All Supported Frequencies
Unified Clock System with FLL 2-FSK, 2-GFSK, and MSK Supported as well
16-Bit Timer TA0, Timer_A with Five as OOK and Flexible ASK Shaping
Capture/Compare Registers Flexible Support for Packet-Oriented
16-Bit Timer TA1, Timer_A with Three Systems: On-Chip Support for Sync Word
Capture/Compare Registers Detection, Address Check, Flexible Packet
Hardware Real-Time Clock Length, and Automatic CRC Handling
Two Universal Serial Communication Support for Automatic Clear Channel
Interfaces Assessment (CCA) Before Transmitting (for
Listen-Before-Talk Systems)
USCI_A0 supporting UART, IrDA, SPI
Digital RSSI Output
USCI_B0 supporting I2C, SPI
Suited for Systems Targeting Compliance
12-Bit A/D Converter With Internal With EN 300 220 (Europe) and
Reference, Sample-and-Hold, and Autoscan FCC CFR Part 15 (US)
Features (CC430F613x and CC430F513x
Only) Suited for Systems Targeting Compliance
With Wireless M-Bus Standard EN
Comparator 13757-4:2005
Integrated LCD Driver With Contrast Support for Asynchronous and
Control for up to 96 Segments Synchronous Serial Receive/Transmit Mode
(CC430F61xx Only) for Backward Compatibility With Existing
128-bit AES Security Encryption/Decryption Radio Communication Protocols
Coprocessor Family Members are Summarized in Table 1.
32-Bit Hardware Multiplier For Complete Module Descriptions, See the
Three-Channel Internal DMA CC430 Family User's Guide (SLAU259).
Serial Onboard Programming, No External
Programming Voltage Needed
Embedded Emulation Module (EEM)
1Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
2MSP430 is a trademark of Texas Instruments.
3I2C is a trademark of others.
PRODUCTION DATA information is current as of publication date. Copyright ©20092011, Texas Instruments Incorporated
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
DESCRIPTION
The Texas Instruments CC430 family of ultra-low-power microcontroller system-on-chip with integrated RF
transceiver cores consists of several devices featuring different sets of peripherals targeted for a wide range of
applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life
in portable measurement applications. The device features the powerful MSP43016-bit RISC CPU, 16-bit
registers, and constant generators that contribute to maximum code efficiency.
The CC430 family provides a tight integration between the microcontroller core, its peripherals, software, and the
RF transceiver, making these true system-on-chip solutions easy to use as well as improving performance.
The CC430F61xx series are microcontroller system-on-chip configurations combining the excellent performance
of the state-of-the-art CC1101 sub-1-GHz RF transceiver with the MSP430 CPUXV2, up to 32 kB of in-system
programmable flash memory, up to 4 kB of RAM, two 16-bit timers, a high-performance 12-bit A/D converter with
eight external inputs plus internal temperature and battery sensors on CC430F613x devices, comparator,
universal serial communication interfaces (USCI), 128-bit AES security accelerator, hardware multiplier, DMA,
real-time clock module with alarm capabilities, LCD driver, and up to 44 I/O pins.
The CC430F513x series are microcontroller system-on-chip configurations combining the excellent performance
of the state-of-the-art CC1101 sub-1-GHz RF transceiver with the MSP430 CPUXV2, up to 32 kB of in-system
programmable flash memory, up to 4 kB of RAM, two 16-bit timers, a high performance 12-bit A/D converter with
six external inputs plus internal temperature and battery sensors, comparator, universal serial communication
interfaces (USCI), 128-bit AES security accelerator, hardware multiplier, DMA, real-time clock module with alarm
capabilities, and up to 30 I/O pins.
Typical applications for these devices include wireless analog and digital sensor systems, heat cost allocators,
thermostats, metering (AMR/AMI), smart grid wireless networks, etc.
Family members available are summarized in Table 1.
For complete module descriptions, see the CC430 Family User's Guide, literature number SLAU259.
Table 1. Family Members
USCI
Channel Channel
Program SRAM Timer_A ADC12_A Package
Device LCD_B (2) Comp_B I/O
A: B:
(KB) (KB) (1) (2) Type
UART/LIN SPI/ I2C
/IrDA/SPI
8 ext/
CC430F6137 32 4 5, 3 96 seg 1 1 8 ch. 44 64 RGC
4 int ch.
8 ext/
CC430F6135 16 2 5, 3 96 seg 1 1 8 ch. 44 64 RGC
4 int ch.
CC430F6127 32 4 5, 3 96 seg 1 1 n/a 8 ch. 44 64 RGC
CC430F6126 32 2 5, 3 96 seg 1 1 n/a 8 ch. 44 64 RGC
CC430F6125 16 2 5, 3 96 seg 1 1 n/a 8 ch. 44 64 RGC
6 ext/
CC430F5137 32 4 5, 3 n/a 1 1 6 ch. 30 48 RGZ
4 int ch.
6 ext/
CC430F5135 16 2 5, 3 n/a 1 1 6 ch. 30 48 RGZ
4 int ch.
6 ext/
CC430F5133 8 2 5, 3 n/a 1 1 6 ch. 30 48 RGZ
4 int ch.
(1) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM
output generators available. For example, a number sequence of 5, 3 would represent two instantiations of Timer_A, the first
instantiation having 5 and the second instantiation having 3 capture compare registers and PWM output generators, respectively.
(2) n/a = not available
2Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
ORDERING INFORMATION(1)
PACKAGED DEVICES(2)
TAPLASTIC 64-PIN QFN (RGC) PLASTIC 48-PIN QFN (RGZ)
CC430F6137IRGC CC430F5137IRGZ
CC430F6135IRGC CC430F5135IRGZ
40°C to 85°C CC430F6127IRGC CC430F5133IRGZ
CC430F6126IRGC
CC430F6125IRGC
(1) For the most current package and ordering information, see the Package Option Addendum at the end
of this document, or see the TI web site at www.ti.com.
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 3
RAM
4kB
2kB
Power
Mgmt
LDO
SVM/SVS
Brownout
SYS
TA0
5 CC
Registers
EEM
(S: 3+1)
RTC_A
Comp_B
Flash
32kB
16kB
SMCLK
ACLK
MDB
MAB
XOUTXIN
Spy-Bi-
Wire
CRC16
Bus
Cntrl
Logic
MAB
MDB
MAB
MDB
MCLK
USCI_A0
(UART,
IrDA, SPI)
USCI_B0
(SPI, I2C)
LCD_B
96
Segments
1,2,3,4
Mux
I/O Ports
P1/P2
2x8 I/Os
PA
1x16 I/Os
P1.x/P2.x
2x8
I/O Ports
P3/P4
2x8 I/Os
PB
1x16 I/Os
P3.x/P4.x
2x8
I/O Ports
P5
1x8 I/Os
P5.x
1x8
AES128
Security
En-/De-
cryption
RF_XOUTRF_XIN
RF_NRF_P
TA1
3 CC
Registers
MODEM
RF/ANALOG
TX & RX
Frequency
Synthesizer
CPU Interface
Packet
Handler
Digital RSSI
Carrier Sense
PQI / LQI
CCA
Sub-1GHz
Radio
(CC1101)
MPY32
ADC12
(32kHz) (26MHz)
Unified
Clock
System
CPUXV2
incl. 16
Registers
JTAG
Interface
DMA
Controller
3 Channel
Port
Mapping
Controller
Watch-
dog
REF
Voltage
Reference
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
CC430F613x Functional Block Diagram
4Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
RGC PACKAGE
(TOP VIEW)
CC430F613x
P3.7/PM_SMCLK/S17 P2.0/PM_CBOUT1/PM_TA1CLK/CB0/A0
17
64
P3.6/PM_RFGDO1/S16 P2.1/PM_TA1CCR0A/CB1/A1
18
63
P3.5/PM_TA0CCR4A/S15 P2.2/PM_TA1CCR1A/CB2/A2
19
62
P2.3/PM_TA1CCR2A/CB3/A3
P3.4/PM_TA0CCR3A/S14
20
61
P2.4/PM_RTCCLK/CB4/A4/VREF-/VeREF-
P3.3/PM_TA0CCR2A/S13
21
60
P2.5/ /CB5/A5PM_SVMOUT /VREF+/VeREF+
P3.2/PM_TA0CCR1A/S12
22
59
DVCC
P4.4/S6
29
52
RST/NMI/SBWTDIO
P4.3/S5
30
51
TEST/SBWTCK
P4.2/S4
31
50
PJ.3/TCK
P4.1/S3
32
49
P2.6/PM_ACLK/CB6/A6
P3.1/PM_TA0CCR0A/S11
23
58
P2.7/ /CB7/A7PM_ADC12CLK/PM_DMAE0
P3.0/PM_CBOUT0/PM_TA0CLK/S10
24
57
AVCC
DVCC
25
56
P5.0/XIN
P4.7/S9
26
55
P5.1/XOUT
P4.6/S8
27
54
AVSS
P4.5/S7
28
53
P4.0/S2P1.0/PM_RFGDO0/S18 3316
P5.3/S1
P1.1/PM_RFGDO2/S19 3415
P5.2/S0
P1.2/PM_UCB0SOMI/PM_UCB0SCL/S20 35
14
RF_XINP1.3/PM_UCB0SIMO/PM_UCB0SDA/S21 3613
RF_XOUTP1.4/PM_UCB0CLK/PM_UCA0STE/S22 37
12
AVCC_RFDVCC 38
11
GUARD
LCDCAP/R33 45
4
PJ.0/TDO
P1.5/PM_UCA0RXD/PM_UCA0SOMI/R23 463
PJ.1/TDI/TCLK
P1.6/PM_UCA0TXD/PM_UCA0SIMO/R13/LCDREF 472
PJ.2/TMS
P1.7/PM_UCA0CLK/PM_UCB0STE/R03 48
1
AVCC_RF
VCORE 3910
RF_P
P5.4/S23 409
RF_NP5.5/COM3/S24 41
8
AVCC_RFP5.6/COM2/S25 42
7
AVCC_RF
P5.7/COM1/S26 436
R_BIAS
COM0 44
5
VSS
Exposed die
attached pad
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
The secondary digital functions on ports P1, P2, and P3 are fully mappable. Pinout above shows only the default
mapping. See Table 9 for details.
CAUTION: the LCDCAP/R33 must be connected to VSS if not used.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 5
RAM
4kB
2kB
2kB
Power
Mgmt
LDO
SVM/SVS
Brownout
TA0
5 CC
Registers
EEM
(S: 3+1)
RTC_A
Comp_B
Flash
32kB
32kB
16kB
SMCLK
ACLK
MDB
MAB
XOUTXIN
Spy-Bi-
Wire
CRC16
Bus
Cntrl
Logic
MAB
MDB
MAB
MDB
MCLK
USCI_A0
(UART,
IrDA, SPI)
USCI_B0
(SPI, I2C)
LCD_B
96
Segments
1,2,3,4
Mux
I/O Ports
P1/P2
2x8 I/Os
PA
1x16 I/Os
P1.x/P2.x
2x8
I/O Ports
P3/P4
2x8 I/Os
PB
1x16 I/Os
P3.x/P4.x
2x8
I/O Ports
P5
1x8 I/Os
P5.x
1x8
AES128
Security
En-/De-
cryption
RF_XOUTRF_XIN
RF_NRF_P
TA1
3 CC
Registers
MODEM
RF/ANALOG
TX & RX
Frequency
Synthesizer
CPU Interface
Packet
Handler
Digital RSSI
Carrier Sense
PQI / LQI
CCA
Sub-1GHz
Radio
(CC1101)
MPY32
(32kHz) (26MHz)
Unified
Clock
System
JTAG
Interface
DMA
Controller
3 Channel
SYS
Port
Mapping
Controller
Watch-
dog
REF
Voltage
Reference
CPUXV2
incl. 16
Registers
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
CC430F612x Functional Block Diagram
6Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
RGC PACKAGE
(TOP VIEW)
CC430F612x
P3.7/PM_SMCLK/S17 P2.0/PM_CBOUT1/PM_TA1CLK/CB0
17
64
P3.6/PM_RFGDO1/S16 P2.1/PM_TA1CCR0A/CB1
18
63
P3.5/PM_TA0CCR4A/S15 P2.2/PM_TA1CCR1A/CB2
19
62
P2.3/PM_TA1CCR2A/CB3
P3.4/PM_TA0CCR3A/S14
20
61
P2.4/PM_RTCCLK/CB4
P3.3/PM_TA0CCR2A/S13
21
60
P2.5/ /CB5PM_SVMOUT
P3.2/PM_TA0CCR1A/S12
22
59
DVCC
P4.4/S6
29
52
RST/NMI/SBWTDIO
P4.3/S5
30
51
TEST/SBWTCK
P4.2/S4
31
50
PJ.3/TCK
P4.1/S3
32
49
P2.6/PM_ACLK/CB6
P3.1/PM_TA0CCR0A/S11
23
58
P2.7/ /CB7PM_DMAE0
P3.0/PM_CBOUT0/PM_TA0CLK/S10
24
57
AVCC
DVCC
25
56
P5.0/XIN
P4.7/S9
26
55
P5.1/XOUT
P4.6/S8
27
54
AVSS
P4.5/S7
28
53
P4.0/S2P1.0/PM_RFGDO0/S18 3316
P5.3/S1
P1.1/PM_RFGDO2/S19 3415
P5.2/S0
P1.2/PM_UCB0SOMI/PM_UCB0SCL/S20 35
14
RF_XINP1.3/PM_UCB0SIMO/PM_UCB0SDA/S21 3613
RF_XOUTP1.4/PM_UCB0CLK/PM_UCA0STE/S22 37
12
AVCC_RFDVCC 38
11
GUARD
LCDCAP/R33 45
4
PJ.0/TDO
P1.5/PM_UCA0RXD/PM_UCA0SOMI/R23 463
PJ.1/TDI/TCLK
P1.6/PM_UCA0TXD/PM_UCA0SIMO/R13/LCDREF 472
PJ.2/TMS
P1.7/PM_UCA0CLK/PM_UCB0STE/R03 48
1
AVCC_RF
VCORE
3910
RF_P
P5.4/S23 409
RF_NP5.5/COM3/S24 41
8
AVCC_RFP5.6/COM2/S25 42
7
AVCC_RF
P5.7/COM1/S26 436
R_BIAS
COM0 44
5
VSS
Exposed die
attached pad
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
The secondary digital functions on ports P1, P2, and P3 are fully mappable. Pin out above shows only the default
mapping. See Table 9 for details.
CAUTION: The LCDCAP/R33 must be connected to VSS if not used.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 7
RAM
4kB
2kB
Power
Mgmt
LDO
SVM/SVS
Brownout
TA0
5 CC
Registers
EEM
(S: 3+1)
RTC_A
Comp_B
Flash
32
kB
16kB
8kB
SMCLK
ACLK
MDB
MAB
XOUTXIN
Spy-Bi-
Wire
CRC16
Bus
Cntrl
Logic
MAB
MDB
MAB
MDB
MCLK
USCI_A0
(UART,
IrDA, SPI)
USCI_B0
(SPI, I2C)
I/O Ports
P1/P2
2x8 I/Os
PA
1x16 I/Os
P1.x/P2.x
2x8
I/O Ports
P3
1x8 I/Os
P3.x
1x8
I/O Ports
P5
1x2 I/Os
P5.x
1x2
AES128
Security
En-/De-
cryption
RF_XOUTRF_XIN
RF_NRF_P
MODEM
RF/ANALOG
TX & RX
Frequency
Synthesizer
CPU Interface
Packet
Handler
Digital RSSI
Carrier Sense
PQI / LQI
CCA
Sub-1GHz
Radio
(CC1101)
MPY32
ADC12
(32kHz) (26MHz)
Unified
Clock
System
JTAG
Interface
DMA
Controller
3 Channel
SYS
Port
Mapping
Controller
Watch-
dog
REF
Voltage
Reference
CPUXV2
incl. 16
Registers
TA1
3 CC
Registers
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
CC430F513x Functional Block Diagram
8Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
RGZ PACKAGE
(TOP VIEW)
12
11
4
3
2
1
10
9
8
7
6
5
13 14 15 16 17 18 19 20 21 22 23 24
25
26
27
28
29
30
31
32
33
34
35
36
48 47 46 45 44 43 42 41 40 39 38 37
P1.1/PM_RFGDO2
P1.2/PM_UCB0SOMI/PM_UCB0SCL
P1.7/PM_UCA0CLK/PM_UCB0STE
P2.0/PM_CBOUT1/PM_TA1CLK/CB0/A0
P2.1/PM_TA1CCR0A/CB1/A1
P2.2/PM_TA1CCR1A/CB2/A2
P1.3/PM_UCB0SIMO/PM_UCB0SDA
P1.4/PM_UCB0CLK/PM_UCA0STE
DVCC
VCORE
P1.5/PM_UCA0RXD/PM_UCA0SOMI
P1.6/PM_UCA0TXD/PM_UCA0SIMO
RF_XIN
RF_XOUT
AVCC_RF
GUARD
PJ.0/TDO
PJ.1/TDI/TCLK
AVCC_RF
RF_P
RF_N
AVCC_RF
AVCC_RF
R_BIAS
P2.3/PM_TA1CCR2A/CB3/A3
P2.4/PM_RTCCLK/CB4/A4/VREF-/VeREF-
RST/NMI/SBWTDIO
TEST/SBWTCK
PJ.3/TCK
PJ.2/TMS
P2.5/PM_SVMOUT/CB5/A5/VREF+/VeREF+
AVCC
P5.0/XIN
P5.1/XOUT
AVSS
DVCC
P1.0/PM_RFGDO0
P3.7/PM_SMCLK
P3.6/PM_RFGDO1
P3.5/PM_TA0CCR4A
P3.4/PM_TA0CCR3A
P3.3/PM_TA0CCR2A
P3.2/PM_TA0CCR1A
P3.1/PM_TA0CCR0A
P3.0/PM_CBOUT0/PM_TA0CLK
DVCC
P2.7/PM_ADC12CLK/PM_DMAE0
P2.6/PM_ACLK
VSS
Exposed die
attached pad
CC430F513x
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
The secondary digital functions on ports P1, P2, and P3 are fully mappable. Pin out above shows only the default
mapping. See Table 9 for details.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 9
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Table 2. CC430F613x and CC430F612x Terminal Functions
TERMINAL I/O(1) DESCRIPTION
NAME NO.
General-purpose digital I/O with port interrupt and map-able secondary function
P1.7/ PM_UCA0CLK/ 1 I/O Default mapping: USCI_A0 clock input/output / USCI_B0 SPI slave transmit enable
PM_UCB0STE/ R03 Input/output port of lowest analog LCD voltage (V5)
General-purpose digital I/O with port interrupt and map-able secondary function
P1.6/ PM_UCA0TXD/ Default mapping: USCI_A0 UART transmit data; USCI_A0 SPI slave in master out
2 I/O
PM_UCA0SIMO/ R13/ LCDREF Input/output port of third most positive analog LCD voltage (V3 or V4)
External reference voltage input for regulated LCD voltage
General-purpose digital I/O with port interrupt and map-able secondary function
P1.5/ PM_UCA0RXD/ 3 I/O Default mapping: USCI_A0 UART receive data; USCI_A0 SPI slave out master in
PM_UCA0SOMI/ R23 Input/output port of second most positive analog LCD voltage (V2)
LCD capacitor connection
LCDCAP/ R33 4 I/O Input/output port of most positive analog LCD voltage (V1)
CAUTION: Must be connected to VSS if not used.
COM0 5 O LCD common output COM0 for LCD backplane
General-purpose digital I/O
P5.7/ COM1/ S26 6 I/O LCD common output COM1 for LCD backplane
LCD segment output S26
General-purpose digital I/O
P5.6/ COM2/ S25 7 I/O LCD common output COM2 for LCD backplane
LCD segment output S25
General-purpose digital I/O
P5.5/ COM3/ S24 8 I/O LCD common output COM3 for LCD backplane
LCD segment output S24
General-purpose digital I/O
P5.4/ S23 9 I/O LCD segment output S23
VCORE 10 Regulated core power supply
DVCC 11 Digital power supply
General-purpose digital I/O with port interrupt and map-able secondary function
P1.4/ PM_UCB0CLK/ 12 I/O Default mapping: USCI_B0 clock input/output / USCI_A0 SPI slave transmit enable
PM_UCA0STE/ S22 LCD segment output S22
General-purpose digital I/O with port interrupt and map-able secondary function
P1.3/ PM_UCB0SIMO/ 13 I/O Default mapping: USCI_B0 SPI slave in master out/USCI_B0 I2C data
PM_UCB0SDA/ S21 LCD segment output S21
General-purpose digital I/O with port interrupt and map-able secondary function
P1.2/ PM_UCB0SOMI/ 14 I/O Default mapping: USCI_B0 SPI slave out master in/UCSI_B0 I2C clock
PM_UCB0SCL/ S20 LCD segment output S20
General-purpose digital I/O with port interrupt and map-able secondary function
P1.1/ PM_RFGDO2/ S19 15 I/O Default mapping: Radio GDO2 output
LCD segment output S19
General-purpose digital I/O with port interrupt and map-able secondary function
P1.0/ PM_RFGDO0/ S18 16 I/O Default mapping: Radio GDO0 output
LCD segment output S18
General-purpose digital I/O with map-able secondary function
P3.7/ PM_SMCLK/ S17 17 I/O Default mapping: SMCLK output
LCD segment output S17
General-purpose digital I/O with map-able secondary function
P3.6/ PM_RFGDO1/ S16 18 I/O Default mapping: Radio GDO1 output
LCD segment output S16
General-purpose digital I/O with map-able secondary function
P3.5/ PM_TA0CCR4A/ S15 19 I/O Default mapping: TA0 CCR4 compare output/capture input
LCD segment output S15
General-purpose digital I/O with map-able secondary function
P3.4/ PM_TA0CCR3A/ S14 20 I/O Default mapping: TA0 CCR3 compare output/capture input
LCD segment output S14
General-purpose digital I/O with map-able secondary function
P3.3/ PM_TA0CCR2A/ S13 21 I/O Default mapping: TA0 CCR2 compare output/capture input
LCD segment output S13
(1) I = input, O = output
10 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Table 2. CC430F613x and CC430F612x Terminal Functions (continued)
TERMINAL I/O(1) DESCRIPTION
NAME NO.
General-purpose digital I/O with map-able secondary function
P3.2/ PM_TA0CCR1A/ S12 22 I/O Default mapping: TA0 CCR1 compare output/capture input
LCD segment output S12
General-purpose digital I/O with map-able secondary function
P3.1/ PM_TA0CCR0A/ S11 23 I/O Default mapping: TA0 CCR0 compare output/capture input
LCD segment output S11
General-purpose digital I/O with map-able secondary function
P3.0/ PM_CBOUT0/PM_TA0CLK/ 24 I/O Default mapping: Comparator_B output; TA0 clock input
S10 LCD segment output S10
DVCC 25 Digital power supply
General-purpose digital I/O
P4.7/ S9 26 I/O LCD segment output S9
General-purpose digital I/O
P4.6/ S8 27 I/O LCD segment output S8
General-purpose digital I/O
P4.5/ S7 28 I/O LCD segment output S7
General-purpose digital I/O
P4.4/ S6 29 I/O LCD segment output S6
General-purpose digital I/O
P4.3/ S5 30 I/O LCD segment output S5
General-purpose digital I/O
P4.2/ S4 31 I/O LCD segment output S4
General-purpose digital I/O
P4.1/ S3 32 I/O LCD segment output S3
General-purpose digital I/O
P4.0/ S2 33 I/O LCD segment output S2
General-purpose digital I/O
P5.3/ S1 34 I/O LCD segment output S1
General-purpose digital I/O
P5.2/ S0 35 I/O LCD segment output S0
RF_XIN 36 I Input terminal for RF crystal oscillator, or external clock input
RF_XOUT 37 O Output terminal for RF crystal oscillator
AVCC_RF 38 Radio analog power supply
AVCC_RF 39 Radio analog power supply
RF Positive RF input to LNA in receive mode
RF_P 40 I/O Positive RF output from PA in transmit mode
RF Negative RF input to LNA in receive mode
RF_N 41 I/O Negative RF output from PA in transmit mode
AVCC_RF 42 Radio analog power supply
AVCC_RF 43 Radio analog power supply
RBIAS 44 External bias resistor for radio reference current
GUARD 45 Power supply connection for digital noise isolation
General-purpose digital I/O
PJ.0/ TDO 46 I/O Test data output port
General-purpose digital I/O
PJ.1/ TDI/ TCLK 47 I/O Test data input or test clock input
General-purpose digital I/O
PJ.2/ TMS 48 I/O Test mode select
General-purpose digital I/O
PJ.3/ TCK 49 I/O Test clock
Test mode pin select digital I/O on JTAG pins
TEST/ SBWTCK 50 I Spy-bi-wire input clock
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 11
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Table 2. CC430F613x and CC430F612x Terminal Functions (continued)
TERMINAL I/O(1) DESCRIPTION
NAME NO.
Reset input active low
RST/NMI/ SBWTDIO 51 I/O Non-maskable interrupt input
Spy-bi-wire data input/output
DVCC 52 Digital power supply
AVSS 53 Analog ground supply for ADC12
General-purpose digital I/O
P5.1/ XOUT 54 I/O Output terminal of crystal oscillator XT1
General-purpose digital I/O
P5.0/ XIN 55 I/O Input terminal for crystal oscillator XT1
AVCC 56 Analog power supply
General-purpose digital I/O with port interrupt and map-able secondary function
P2.7/ PM_ADC12CLK/ Default mapping: ADC12CLK output; DMA external trigger input
57 I/O
PM_DMAE0/ CB7 (/A7) Comparator_B input CB7
Analog input A7 12-bit ADC (CC430F613x only)
General-purpose digital I/O with port interrupt and map-able secondary function
Default mapping: ACLK output
P2.6/ PM_ACLK/ CB6 (/A6) 58 I/O Comparator_B input CB6
Analog input A6 12-bit ADC (CC430F613x only)
General-purpose digital I/O with port interrupt and map-able secondary function
Default mapping: SVM output
P2.5/ PM_SVMOUT/ CB5 Comparator_B input CB5
59 I/O
(/A5/ VREF+/ VeREF+) Analog input A5 12-bit ADC (CC430F613x only)
Output of reference voltage to the ADC (CC430F613x only)
Input for an external reference voltage to the ADC (CC430F613x only)
General-purpose digital I/O with port interrupt and map-able secondary function
Default mapping: RTCCLK output
P2.4/ PM_RTCCLK/ CB4 Comparator_B input CB4
60 I/O
(/A4/ VREF-/ VeREF-) Analog input A4 12-bit ADC (CC430F613x only)
Negative terminal for the ADC's reference voltage for both sources, the internal
reference voltage, or an external applied reference voltage (CC430F613x only)
General-purpose digital I/O with port interrupt and map-able secondary function
Default mapping: TA1 CCR2 compare output/capture input
P2.3/ PM_TA1CCR2A/ CB3 (/A3) 61 I/O Comparator_B input CB3
Analog input A3 12-bit ADC (CC430F613x only)
General-purpose digital I/O with port interrupt and map-able secondary function
Default mapping: TA1 CCR1 compare output/capture input
P2.2/ PM_TA1CCR1A/ CB2 (/A2) 62 I/O Comparator_B input CB2
Analog input A2 12-bit ADC (CC430F613x only)
General-purpose digital I/O with port interrupt and map-able secondary function
Default mapping: TA1 CCR0 compare output/capture input
P2.1/PM_TA1CCR0A/CB1(/A1) 63 I/O Comparator_B input CB1
Analog input A1 12-bit ADC (CC430F613x only)
General-purpose digital I/O with port interrupt and map-able secondary function
P2.0/ PM_CBOUT1/ PM_TA1CLK/ Default mapping: Comparator_B output; TA1 clock input
64 I/O
CB0 (/A0) Comparator_B input CB0
Analog input A0 12-bit ADC (CC430F613x only)
Ground supply
VSS - Exposed die attach pad The exposed die attach pad must be connected to a solid ground plane as this is
the ground connection for the chip.
12 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Table 3. CC430F513x Terminal Functions
TERMINAL I/O(1) DESCRIPTION
NAME NO.
General-purpose digital I/O with port interrupt and map-able secondary function
Default mapping: TA1 CCR1 compare output/capture input
P2.2/ PM_TA1CCR1A/ CB2/ A2 1 I/O Comparator_B input CB2
Analog input A2 12-bit ADC
General-purpose digital I/O with port interrupt and map-able secondary function
Default mapping: TA1 CCR0 compare output/capture input
P2.1/ PM_TA1CCR0A/ CB1/ A1 2 I/O Comparator_B input CB1
Analog input A1 12-bit ADC
General-purpose digital I/O with port interrupt and map-able secondary function
P2.0/ PM_CBOUT1/ PM_TA1CLK/ Default mapping: Comparator_B output; TA1 clock input
3 I/O
CB0/ A0 Comparator_B input CB0
Analog input A0 12-bit ADC
P1.7/ PM_UCA0CLK/ General-purpose digital I/O with port interrupt and map-able secondary function
4 I/O
PM_UCB0STE Default mapping: USCI_A0 clock input/output / USCI_B0 SPI slave transmit enable
P1.6/ PM_UCA0TXD/ General-purpose digital I/O with port interrupt and map-able secondary function
5 I/O
PM_UCA0SIMO Default mapping: USCI_A0 UART transmit data; USCI_A0 SPI slave in master out
P1.5/ PM_UCA0RXD/ General-purpose digital I/O with port interrupt and map-able secondary function
6 I/O
PM_UCA0SOMI Default mapping: USCI_A0 UART receive data; USCI_A0 SPI slave out master in
VCORE 7 Regulated core power supply
DVCC 8 Digital power supply
P1.4/ PM_UCB0CLK/ General-purpose digital I/O with port interrupt and map-able secondary function
9 I/O
PM_UCA0STE Default mapping: USCI_B0 clock input/output / USCI_A0 SPI slave transmit enable
P1.3/ PM_UCB0SIMO/ General-purpose digital I/O with port interrupt and map-able secondary function
10 I/O
PM_UCB0SDA Default mapping: USCI_B0 SPI slave in master out/USCI_B0 I2C data
P1.2/ PM_UCB0SOMI/ General-purpose digital I/O with port interrupt and map-able secondary function
11 I/O
PM_UCB0SCL Default mapping: USCI_B0 SPI slave out master in/UCSI_B0 I2C clock
General-purpose digital I/O with port interrupt and map-able secondary function
P1.1/ PM_RFGDO2 12 I/O Default mapping: Radio GDO2 output
General-purpose digital I/O with port interrupt and map-able secondary function
P1.0/ PM_RFGDO0 13 I/O Default mapping: Radio GDO0 output
General-purpose digital I/O with map-able secondary function
P3.7/ PM_SMCLK 14 I/O Default mapping: SMCLK output
General-purpose digital I/O with map-able secondary function
P3.6/ PM_RFGDO1 15 I/O Default mapping: Radio GDO1 output
General-purpose digital I/O with map-able secondary function
P3.5/ PM_TA0CCR4A 16 I/O Default mapping: TA0 CCR4 compare output/capture input
General-purpose digital I/O with map-able secondary function
P3.4/ PM_TA0CCR3A 17 I/O Default mapping: TA0 CCR3 compare output/capture input
General-purpose digital I/O with map-able secondary function
P3.3/ PM_TA0CCR2A 18 I/O Default mapping: TA0 CCR2 compare output/capture input
General-purpose digital I/O with map-able secondary function
P3.2/ PM_TA0CCR1A 19 I/O Default mapping: TA0 CCR1 compare output/capture input
General-purpose digital I/O with map-able secondary function
P3.1/ PM_TA0CCR0A 20 I/O Default mapping: TA0 CCR0 compare output/capture input
General-purpose digital I/O with map-able secondary function
P3.0/ PM_CBOUT0/ PM_TA0CLK 21 I/O Default mapping: Comparator_B output; TA0 clock input
DVCC 22 Digital power supply
P2.7/ PM_ADC12CLK/ General-purpose digital I/O with port interrupt and map-able secondary function
23 I/O
PM_DMAE0 Default mapping: ADC12CLK output; DMA external trigger input
General-purpose digital I/O with port interrupt and map-able secondary function
P2.6/ PM_ACLK 24 I/O Default mapping: ACLK output
RF_XIN 25 I Input terminal for RF crystal oscillator, or external clock input
RF_XOUT 26 O Output terminal for RF crystal oscillator
AVCC_RF 27 Radio analog power supply
(1) I = input, O = output
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 13
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Table 3. CC430F513x Terminal Functions (continued)
TERMINAL I/O(1) DESCRIPTION
NAME NO.
AVCC_RF 28 Radio analog power supply
RF Positive RF input to LNA in receive mode
RF_P 29 I/O Positive RF output from PA in transmit mode
RF Negative RF input to LNA in receive mode
RF_N 30 I/O Negative RF output from PA in transmit mode
AVCC_RF 31 Radio analog power supply
AVCC_RF 32 Radio analog power supply
RBIAS 33 External bias resistor for radio reference current
GUARD 34 Power supply connection for digital noise isolation
General-purpose digital I/O
PJ.0/ TDO 35 I/O Test data output port
General-purpose digital I/O
PJ.1/ TDI/ TCLK 36 I/O Test data input or test clock input
General-purpose digital I/O
PJ.2/ TMS 37 I/O Test mode select
General-purpose digital I/O
PJ.3/ TCK 38 I/O Test clock
Test mode pin select digital I/O on JTAG pins
TEST/ SBWTCK 39 I Spy-bi-wire input clock
Reset input active low
RST/NMI/ SBWTDIO 40 I/O Non-maskable interrupt input
Spy-bi-wire data input/output
DVCC 41 Digital power supply
AVSS 42 Analog ground supply for ADC12
General-purpose digital I/O
P5.1/ XOUT 43 I/O Output terminal of crystal oscillator XT1
General-purpose digital I/O
P5.0/ XIN 44 I/O Input terminal for crystal oscillator XT1
AVCC 45 Analog power supply
General-purpose digital I/O with port interrupt and map-able secondary function
Default mapping: SVM output
P2.5/ PM_SVMOUT/ CB5/ Comparator_B input CB5
46 I/O
A5/ VREF+/ VeREF+ Analog input A5 12-bit ADC
Output of reference voltage to the ADC
Input for an external reference voltage to the ADC
General-purpose digital I/O with port interrupt and map-able secondary function
Default mapping: RTCCLK output
P2.4/ PM_RTCCLK/ CB4/ Comparator_B input CB4
47 I/O
A4/ VREF-/ VeREF- Analog input A4 12-bit ADC
Negative terminal for the ADC's reference voltage for both sources, the internal
reference voltage, or an external applied reference voltage
General-purpose digital I/O with port interrupt and map-able secondary function
Default mapping: TA1 CCR2 compare output/capture input
P2.3/ PM_TA1CCR2A/ CB3/ A3 48 I/O Comparator_B input CB3
Analog input A3 12-bit ADC
Ground supply
VSS - Exposed die attach pad The exposed die attach pad must be connected to a solid ground plane as this is
the ground connection for the chip.
14 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
BIAS
PA
RBIAS RF_XIN RF_XOUT
XOSC
LNA
0
90
FREQ
SYNTH
ADC
DEMODULATOR
PACKET HANDLER
RXFIFOTXFIFO
INTERFACE TO MCU
RADIOCONTROL
RF_P
RF_N
RCOSC
ADC
MODULATOR
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
SHORT-FORM DESCRIPTION
Sub-1-GHz Radio
The implemented sub-1-GHz radio module is based on the industry-leading CC1101, requiring very few external
components. Figure 1 shows a high-level block diagram of the implemented radio.
Figure 1. Sub-1-GHz Radio Block Diagram
The radio features a low-IF receiver. The received RF signal is amplified by a low-noise amplifier (LNA) and
down-converted in quadrature to the intermediate frequency (IF). At IF, the I/Q signals are digitized. Automatic
gain control (AGC), fine channel filtering, demodulation bit/packet synchronization are performed digitally.
The transmitter part is based on direct synthesis of the RF frequency. The frequency synthesizer includes a
completely on-chip LC VCO and a 90 degrees phase shifter for generating the I and Q LO signals to the
down-conversion mixers in receive mode.
The 26-MHz crystal oscillator generates the reference frequency for the synthesizer, as well as clocks for the
ADC and the digital part.
A memory mapped register interface is used for data access, configuration and status request by the CPU.
The digital baseband includes support for channel configuration, packet handling and data buffering.
For complete module descriptions, see the CC430 Family User's Guide, literature number SLAU259.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 15
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
CPU
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations,
other than program-flow instructions, are performed as register operations in conjunction with seven addressing
modes for source operand and four addressing modes for destination operand.
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register
operation execution time is one cycle of the CPU clock.
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant
generator, respectively. The remaining registers are general-purpose registers.
Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all
instructions.
The instruction set consists of the original 51 instructions with three formats and seven address modes and
additional instructions for the expanded address range. Each instruction can operate on word and byte data.
Operating Modes
The CC430 has one active mode and five software-selectable low-power modes of operation. An interrupt event
can wake up the device from any of the low-power modes, service the request, and restore back to the
low-power mode on return from the interrupt program.
The following six operating modes can be configured by software:
Active mode (AM)
All clocks are active
Low-power mode 0 (LPM0)
CPU is disabled
ACLK and SMCLK remain active, MCLK is disabled
FLL loop control remains active
Low-power mode 1 (LPM1)
CPU is disabled
FLL loop control is disabled
ACLK and SMCLK remain active, MCLK is disabled
Low-power mode 2 (LPM2)
CPU is disabled
MCLK and FLL loop control and DCOCLK are disabled
DCO's dc-generator remains enabled
ACLK remains active
Low-power mode 3 (LPM3)
CPU is disabled
MCLK, FLL loop control, and DCOCLK are disabled
DCO's dc-generator is disabled
ACLK remains active
Low-power mode 4 (LPM4)
CPU is disabled
ACLK is disabled
MCLK, FLL loop control, and DCOCLK are disabled
DCO's dc-generator is disabled
Crystal oscillator is stopped
Complete data retention
16 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Interrupt Vector Addresses
The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FF80h. The
vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.
Table 4. Interrupt Sources, Flags, and Vectors
SYSTEM WORD
INTERRUPT SOURCE INTERRUPT FLAG PRIORITY
INTERRUPT ADDRESS
System Reset
Power-Up
External Reset WDTIFG, KEYV (SYSRSTIV)(1) (2) Reset 0FFFEh 63, highest
Watchdog Timeout, Password
Violation
Flash Memory Password Violation
System NMI SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG,
PMM VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG, (Non)maskable 0FFFCh 62
Vacant Memory Access JMBOUTIFG (SYSSNIV)(1) (3)
JTAG Mailbox
User NMI
NMI NMIIFG, OFIFG, ACCVIFG (SYSUNIV)(1) (3) (Non)maskable 0FFFAh 61
Oscillator Fault
Flash Memory Access Violation
Comparator_B Comparator_B Interrupt Flags (CBIV)(1) Maskable 0FFF8h 60
Watchdog Interval Timer Mode WDTIFG Maskable 0FFF6h 59
USCI_A0 Receive/Transmit UCA0RXIFG, UCA0TXIFG (UCA0IV)(1) Maskable 0FFF4h 58
UCB0RXIFG, UCB0TXIFG, I2C Status Interrupt
USCI_B0 Receive/Transmit Maskable 0FFF2h 57
Flags (UCB0IV)(1)
ADC12_A ADC12IFG0 ... ADC12IFG15 (ADC12IV)(1) Maskable 0FFF0h 56
(Reserved on CC430F612x)
TA0 TA0CCR0 CCIFG0 Maskable 0FFEEh 55
TA0CCR1 CCIFG1 ... TA0CCR4 CCIFG4,
TA0 Maskable 0FFECh 54
TA0IFG (TA0IV)(1)
Radio Interface Interrupt Flags (RF1AIFIV)
RF1A CC1101-based Radio Maskable 0FFEAh 53
Radio Core Interrupt Flags (RF1AIV)
DMA DMA0IFG, DMA1IFG, DMA2IFG (DMAIV)(1) Maskable 0FFE8h 52
TA1 TA1CCR0 CCIFG0 Maskable 0FFE6h 51
TA1CCR1 CCIFG1 ... TA1CCR2 CCIFG2,
TA1 Maskable 0FFE4h 50
TA1IFG (TA1IV)(1)
I/O Port P1 P1IFG.0 to P1IFG.7 (P1IV)(1) Maskable 0FFE2h 49
I/O Port P2 P2IFG.0 to P2IFG.7 (P2IV)(1) Maskable 0FFE0h 48
LCD_B LCD_B Interrupt Flags (LCDBIV)(1) Maskable 0FFDEh 47
(Reserved on CC430F513x) RTCRDYIFG, RTCTEVIFG, RTCAIFG,
RTC_A Maskable 0FFDCh 46
RT0PSIFG, RT1PSIFG (RTCIV)(1)
AES AESRDYIFG Maskable 0FFDAh 45
0FFD8h 44
Reserved Reserved(4)
0FF80h 0, lowest
(1) Multiple source flags
(2) A reset is generated if the CPU tries to fetch instructions from within peripheral space.
(3) (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.
(4) Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain
compatibility with other devices, it is recommended to reserve these locations.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 17
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Memory Organization
Table 5. Memory Organization
CC430F6137/F6127 CC430F6135/F6125
CC430F6126(1) CC430F5133(1)
CC430F5137(1) CC430F5135(1)
Main Memory Total 32kB 32kB 16kB 8kB
(flash) Size
Main: Interrupt 00FFFFh to 00FF80h 00FFFFh to 00FF80h 00FFFFh to 00FF80h 00FFFFh to 00FF80h
vector
Main: code Bank 0 32kB 32kB 16kB 8kB
memory 00FFFFh to 008000h 00FFFFh to 008000h 00FFFFh to 00C000h 00FFFFh to 00E000h
Total 4kB 2kB 2kB 2kB
RAM Size
Sect 1 2kB not available not available not available
002BFFh to 002400h
Sect 0 2kB 2kB 2kB 2kB
0023FFh to 001C00h 0023FFh to 001C00h 0023FFh to 001C00h 0023FFh to 001C00h
128 B 128 B 128 B 128 B
001AFFh to 001A80h 001AFFh to 001A80h 001AFFh to 001A80h 001AFFh to 001A80h
Device
Descriptor 128 B 128 B 128 B 128 B
001A7Fh to 001A00h 001A7Fh to 001A00h 001A7Fh to 001A00h 001A7Fh to 001A00h
Info A 128 B 128 B 128 B 128 B
0019FFh to 001980h 0019FFh to 001980h 0019FFh to 001980h 0019FFh to 001980h
Info B 128 B 128 B 128 B 128 B
00197Fh to 001900h 00197Fh to 001900h 00197Fh to 001900h 00197Fh to 001900h
Information
memory (flash) Info C 128 B 128 B 128 B 128 B
0018FFh to 001880h 0018FFh to 001880h 0018FFh to 001880h 0018FFh to 001880h
Info D 128 B 128 B 128 B 128 B
00187Fh to 001800h 00187Fh to 001800h 00187Fh to 001800h 00187Fh to 001800h
BSL 3 512 B 512 B 512 B 512 B
0017FFh to 001600h 0017FFh to 001600h 0017FFh to 001600h 0017FFh to 001600h
BSL 2 512 B 512 B 512 B 512 B
Bootstrap loader 0015FFh to 001400h 0015FFh to 001400h 0015FFh to 001400h 0015FFh to 001400h
(BSL) memory BSL 1 512 B 512 B 512 B 512 B
(flash) 0013FFh to 001200h 0013FFh to 001200h 0013FFh to 001200h 0013FFh to 001200h
BSL 0 512 B 512 B 512 B 512 B
0011FFh to 001000h 0011FFh to 001000h 0011FFh to 001000h 0011FFh to 001000h
4 KB 4 KB 4 KB 4 KB
Peripherals 000FFFh to 0h 000FFFh to 0h 000FFFh to 0h 000FFFh to 0h
(1) All memory regions not specified here are vacant memory, and any access to them causes a Vacant Memory Interrupt.
Bootstrap Loader (BSL)
The BSL enables users to program the flash memory or RAM using various serial interfaces. Access to the
device memory via the BSL is protected by an user-defined password. BSL entry requires a specific entry
sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For complete description of the features of the
BSL and its implementation, see the MSP430 Programming Via the Bootstrap Loader User's Guide, literature
number SLAU319.
Table 6. UART BSL Pin Requirements and Functions
DEVICE SIGNAL BSL FUNCTION
RST/NMI/SBWTDIO Entry sequence signal
TEST/SBWTCK Entry sequence signal
P1.6 Data transmit
P1.5 Data receive
VCC Power supply
VSS Ground supply
18 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
JTAG Operation
JTAG Standard Interface
The CC430 family supports the standard JTAG interface which requires four signals for sending and receiving
data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the
JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430
development tools and device programmers. The JTAG pin requirements are shown in Table 7. For further
details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's
Guide, literature number SLAU278.
Table 7. JTAG Pin Requirements and Functions
DEVICE SIGNAL Direction FUNCTION
PJ.3/TCK IN JTAG clock input
PJ.2/TMS IN JTAG state control
PJ.1/TDI/TCLK IN JTAG data input/TCLK input
PJ.0/TDO OUT JTAG data output
TEST/SBWTCK IN Enable JTAG pins
RST/NMI/SBWTDIO IN External reset
VCC Power supply
VSS Ground supply
Spy-Bi-Wire Interface
In addition to the standard JTAG interface, the CC430 family supports the two wire Spy-Bi-Wire interface.
Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. The Spy-Bi-Wire
interface pin requirements are shown in Table 8. For further details on interfacing to development tools and
device programmers, see the MSP430 Hardware Tools User's Guide, literature number SLAU278.
Table 8. Spy-Bi-Wire Pin Requirements and Functions
DEVICE SIGNAL Direction FUNCTION
TEST/SBWTCK IN Spy-Bi-Wire clock input
RST/NMI/SBWTDIO IN, OUT Spy-Bi-Wire data input/output
VCC Power supply
VSS Ground supply
Flash Memory
The flash memory can be programmed via the JTAG port, Spy-Bi-Wire (SBW), or in-system by the CPU. The
CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the flash
memory include:
Flash memory has n segments of main memory and four segments of information memory (Info A to Info D)
of 128 bytes each. Each segment in main memory is 512 bytes in size.
Segments 0 to n may be erased in one step, or each segment may be individually erased.
Segments Info A to Info D can be erased individually, or as a group with the main memory segments.
Segments Info A to Info D are also called information memory.
Segment A can be locked separately.
RAM Memory
The RAM memory is made up of n sectors. Each sector can be completely powered down to save leakage,
however, all data is lost. Features of the RAM memory include:
RAM memory has n sectors of 2k bytes each.
Each sector 0 to n can be complete disabled, however data retention is lost.
Each sector 0 to n automatically enters low power retention mode when possible.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 19
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Peripherals
Peripherals are connected to the CPU through data, address, and control busses and can be handled using all
instructions. For complete module descriptions, see the CC430 Family User's Guide, literature number SLAU259.
Oscillator and System Clock
The Unified Clock System (UCS) module includes support for a 32768-Hz watch crystal oscillator, an internal
very-low-power low-frequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), an
integrated internal digitally-controlled oscillator (DCO), and a high-frequency crystal oscillator. The UCS module
is designed to meet the requirements of both low system cost and low-power consumption. The UCS module
features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the
DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast
turn-on clock source and stabilizes in less than 5 µs. The UCS module provides the following clock signals:
Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, a high-frequency crystal, the internal
low-frequency oscillator (VLO), or the trimmed low-frequency oscillator (REFO).
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources made
available to ACLK.
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by
same sources made available to ACLK.
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.
Power Management Module (PMM)
The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains
programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor
(SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is
implemented to provide the proper internal reset signal to the device during power-on and power-off. The
SVS/SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply
voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM, the device is not
automatically reset). SVS and SVM circuitry is available on the primary supply and core supply.
Digital I/O
There are up to five 8-bit I/O ports implemented: ports P1 through P5.
All individual I/O bits are independently programmable.
Any combination of input, output, and interrupt conditions is possible.
Programmable pullup or pulldown on all ports.
Programmable drive strength on all ports.
Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2.
Read/write access to port-control registers is supported by all instructions.
Ports can be accessed byte-wise (P1 through P5) or word-wise in pairs (PA and PB).
20 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Port Mapping Controller
The port mapping controller allows the flexible and re-configurable mapping of digital functions to port pins of
ports P1 through P3.
Table 9. Port Mapping, Mnemonics, and Functions
Value PxMAPy Mnemonic Input Pin Function (PxDIR.y=0) Output Pin Function (PxDIR.y=1)
0 PM_NONE None DVSS
Comparator_B output (on TA0 clock
PM_CBOUT0 input)
1(1)
PM_TA0CLK TA0 clock input -
Comparator_B output (on TA1 clock
PM_CBOUT1 - input)
2(1)
PM_TA1CLK TA1 clock input -
3 PM_ACLK None ACLK output
4 PM_MCLK None MCLK output
5 PM_SMCLK None SMCLK output
6 PM_RTCCLK None RTCCLK output
PM_ADC12CLK - ADC12CLK output
7(1) PM_DMAE0 DMA external trigger input -
8 PM_SVMOUT None SVM output
9 PM_TA0CCR0A TA0 CCR0 capture input CCI0A TA0 CCR0 compare output Out0
10 PM_TA0CCR1A TA0 CCR1 capture input CCI1A TA0 CCR1 compare output Out1
11 PM_TA0CCR2A TA0 CCR2 capture input CCI2A TA0 CCR2 compare output Out2
12 PM_TA0CCR3A TA0 CCR3 capture input CCI3A TA0 CCR3 compare output Out3
13 PM_TA0CCR4A TA0 CCR4 capture input CCI4A TA0 CCR4 compare output Out4
14 PM_TA1CCR0A TA1 CCR0 capture input CCI0A TA1 CCR0 compare output Out0
15 PM_TA1CCR1A TA1 CCR1 capture input CCI1A TA1 CCR1 compare output Out1
16 PM_TA1CCR2A TA1 CCR2 capture input CCI2A TA1 CCR2 compare output Out2
PM_UCA0RXD USCI_A0 UART RXD (Direction controlled by USCI - input)
17(2) PM_UCA0SOMI USCI_A0 SPI slave out master in (direction controlled by USCI)
PM_UCA0TXD USCI_A0 UART TXD (Direction controlled by USCI - output)
18(2) PM_UCA0SIMO USCI_A0 SPI slave in master out (direction controlled by USCI)
PM_UCA0CLK USCI_A0 clock input/output (direction controlled by USCI)
19(3) PM_UCB0STE USCI_B0 SPI slave transmit enable (direction controlled by USCI - input)
PM_UCB0SOMI USCI_B0 SPI slave out master in (direction controlled by USCI)
20(4) PM_UCB0SCL USCI_B0 I2C clock (open drain and direction controlled by USCI)
PM_UCB0SIMO USCI_B0 SPI slave in master out (direction controlled by USCI)
21(4) PM_UCB0SDA USCI_B0 I2C data (open drain and direction controlled by USCI)
PM_UCB0CLK USCI_B0 clock input/output (direction controlled by USCI)
22(5) PM_UCA0STE USCI_A0 SPI slave transmit enable (direction controlled by USCI - input)
23 PM_RFGDO0 Radio GDO0 (direction controlled by Radio)
24 PM_RFGDO1 Radio GDO1 (direction controlled by Radio)
25 PM_RFGDO2 Radio GDO2 (direction controlled by Radio)
26 Reserved None DVSS
(1) Input or output function is selected by the corresponding setting in the port direction register PxDIR.
(2) UART or SPI functionality is determined by the selected USCI mode.
(3) UCA0CLK function takes precedence over UCB0STE function. If the mapped pin is required as UCA0CLK input or output USCI_B0 will
be forced to 3-wire SPI mode even if 4-wire mode is selected.
(4) SPI or I2C functionality is determined by the selected USCI mode. In case the I2C functionality is selected the output of the mapped pin
drives only the logical 0 to VSS level.
(5) UCB0CLK function takes precedence over UCA0STE function. If the mapped pin is required as UCB0CLK input or output USCI_A0 will
be forced to 3-wire SPI mode even if 4-wire mode is selected.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 21
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Table 9. Port Mapping, Mnemonics, and Functions (continued)
Value PxMAPy Mnemonic Input Pin Function (PxDIR.y=0) Output Pin Function (PxDIR.y=1)
27 Reserved None DVSS
28 Reserved None DVSS
29 Reserved None DVSS
30 Reserved None DVSS
Disables the output driver as well as the input Schmitt-trigger to prevent
31 (0FFh)(6) PM_ANALOG parasitic cross currents when applying analog signals.
(6) The value of the PMPAP_ANALOG mnemonic is set to 0FFh. The port mapping registers are only 5 bits wide and the upper bits are
ignored resulting in a read out value of 31.
Table 10. Default Mapping
Pin PxMAPy Mnemonic Input Pin Function (PxDIR.y=0) Output Pin Function (PxDIR.y=1)
P1.0/P1MAP0 PM_RFGDO0 None Radio GDO0
P1.1/P1MAP1 PM_RFGDO2 None Radio GDO2
USCI_B0 SPI slave out master in (direction controlled by USCI)/USCI_B0
P1.2/P1MAP2 PM_UCB0SOMI/PM_UCB0SCL I2C clock (open drain and direction controlled by USCI)
USCI_B0 SPI slave in master out (direction controlled by USCI)/USCI_B0
P1.3/P1MAP3 PM_UCB0SIMO/PM_UCB0SDA I2C data (open drain and direction controlled by USCI)
USCI_B0 clock input/output (direction controlled by USCI)/USCI_A0 SPI
P1.4/P1MAP4 PM_UCB0CLK/PM_UCA0STE slave transmit enable (direction controlled by USCI - input)
USCI_A0 UART RXD (Direction controlled by USCI - input)/USCI_A0 SPI
P1.5/P1MAP5 PM_UCA0RXD/PM_UCA0SOMI slave out master in (direction controlled by USCI)
USCI_A0 UART TXD (Direction controlled by USCI - output)/USCI_A0
P1.6/P1MAP6 PM_UCA0TXD/PM_UCA0SIMO SPI slave in master out (direction controlled by USCI)
USCI_A0 clock input/output (direction controlled by USCI)/USCI_B0 SPI
P1.7/P1MAP7 PM_UCA0CLK/PM_UCB0STE slave transmit enable (direction controlled by USCI - input)
P2.0/P2MAP0 PM_CBOUT1/PM_TA1CLK TA1 clock input Comparator_B output
P2.1/P2MAP1 PM_TA1CCR0A TA1 CCR0 capture input CCI0A TA1 CCR0 compare output Out0
P2.2/P2MAP2 PM_TA1CCR1A TA1 CCR1 capture input CCI1A TA1 CCR1 compare output Out1
P2.3/P2MAP3 PM_TA1CCR2A TA1 CCR2 capture input CCI2A TA1 CCR2 compare output Out2
P2.4/P2MAP4 PM_RTCCLK None RTCCLK output
P2.5/P2MAP5 PM_SVMOUT None SVM output
P2.6/P2MAP6 PM_ACLK None ACLK output
P2.7/P2MAP7 PM_ADC12CLK/PM_DMAE0 DMA external trigger input ADC12CLK output
P3.0/P3MAP0 PM_CBOUT0/PM_TA0CLK TA0 clock input Comparator_B output
P3.1/P3MAP1 PM_TA0CCR0A TA0 CCR0 capture input CCI0A TA0 CCR0 compare output Out0
P3.2/P3MAP2 PM_TA0CCR1A TA0 CCR1 capture input CCI1A TA0 CCR1 compare output Out1
P3.3/P3MAP3 PM_TA0CCR2A TA0 CCR2 capture input CCI2A TA0 CCR2 compare output Out2
P3.4/P3MAP4 PM_TA0CCR3A TA0 CCR3 capture input CCI3A TA0 CCR3 compare output Out3
P3.5/P3MAP5 PM_TA0CCR4A TA0 CCR4 capture input CCI4A TA0 CCR4 compare output Out4
P3.6/P3MAP6 PM_RFGDO1 None Radio GDO1
P3.7/P3MAP7 PM_SMCLK None SMCLK output
22 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
System Module (SYS)
The SYS module handles many of the system functions within the device. These include power on reset and
power up clear handling, NMI source selection and management, reset interrupt vector generators, boot strap
loader entry mechanisms, as well as, configuration management (device descriptors). It also includes a data
exchange mechanism via JTAG called a JTAG mailbox that can be used in the application.
Table 11. System Module Interrupt Vector Registers
INTERRUPT VECTOR REGISTER ADDRESS INTERRUPT EVENT VALUE PRIORITY
SYSRSTIV , System Reset 019Eh No interrupt pending 00h
Brownout (BOR) 02h Highest
RST/NMI (POR) 04h
DoBOR (BOR) 06h
Reserved 08h
Security violation (BOR) 0Ah
SVSL (POR) 0Ch
SVSH (POR) 0Eh
SVML_OVP (POR) 10h
SVMH_OVP (POR) 12h
DoPOR (POR) 14h
WDT timeout (PUC) 16h
WDT password violation (PUC) 18h
KEYV flash password violation (PUC) 1Ah
FLL unlock (PUC) 1Ch
Peripheral area fetch (PUC) 1Eh
PMM password violation (PUC) 20h
Reserved 22h to 3Eh Lowest
SYSSNIV , System NMI 019Ch No interrupt pending 00h
SVMLIFG 02h Highest
SVMHIFG 04h
DLYLIFG 06h
DLYHIFG 08h
VMAIFG 0Ah
JMBINIFG 0Ch
JMBOUTIFG 0Eh
VLRLIFG 10h
VLRHIFG 12h
Reserved 14h to 1Eh Lowest
SYSUNIV, User NMI 019Ah No interrupt pending 00h
NMIFG 02h Highest
OFIFG 04h
ACCVIFG 06h
Reserved 08h to 1Eh Lowest
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 23
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
DMA Controller
The DMA controller allows movement of data from one memory address to another without CPU intervention.
Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces
system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move
data to or from a peripheral.
Table 12. DMA Trigger Assignments(1)
Channel
Trigger 0 1 2
0 DMAREQ DMAREQ DMAREQ
1 TA0CCR0 CCIFG TA0CCR0 CCIFG TA0CCR0 CCIFG
2 TA0CCR2 CCIFG TA0CCR2 CCIFG TA0CCR2 CCIFG
3 TA1CCR0 CCIFG TA1CCR0 CCIFG TA1CCR0 CCIFG
4 TA1CCR2 CCIFG TA1CCR2 CCIFG TA1CCR2 CCIFG
5 Reserved Reserved Reserved
6 Reserved Reserved Reserved
7 Reserved Reserved Reserved
8 Reserved Reserved Reserved
9 Reserved Reserved Reserved
10 Reserved Reserved Reserved
11 Reserved Reserved Reserved
12 Reserved Reserved Reserved
13 Reserved Reserved Reserved
14 Reserved Reserved Reserved
15 Reserved Reserved Reserved
16 UCA0RXIFG UCA0RXIFG UCA0RXIFG
17 UCA0TXIFG UCA0TXIFG UCA0TXIFG
18 UCB0RXIFG UCB0RXIFG UCB0RXIFG
19 UCB0TXIFG UCB0TXIFG UCB0TXIFG
20 Reserved Reserved Reserved
21 Reserved Reserved Reserved
22 Reserved Reserved Reserved
23 Reserved Reserved Reserved
24 ADC12IFGx(2) ADC12IFGx(2) ADC12IFGx(2)
25 Reserved Reserved Reserved
26 Reserved Reserved Reserved
27 Reserved Reserved Reserved
28 Reserved Reserved Reserved
29 MPY ready MPY ready MPY ready
30 DMA2IFG DMA0IFG DMA1IFG
31 DMAE0 DMAE0 DMAE0
(1) Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers will not
cause any DMA trigger event when selected.
(2) Only on CC430F613x and CC430F513x. Reserved on CC430F612x.
Watchdog Timer (WDT_A)
The primary function of the watchdog timer is to perform a controlled system restart after a software problem
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed
in an application, the timer can be configured as an interval timer and can generate interrupts at selected time
intervals.
24 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
CRC16
The CRC16 module produces a signature based on a sequence of entered data values and can be used for data
checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.
Hardware Multiplier
The multiplication operation is supported by a dedicated peripheral module. The module performs operations with
32-bit, 24-bit, 16-bit, and 8-bit operands. The module is capable of supporting signed and unsigned multiplication
as well as signed and unsigned multiply and accumulate operations.
AES128 Accelerator
The AES accelerator module performs encryption and decryption of 128-bit data with 128-bit keys according to
the Advanced Encryption Standard (AES) (FIPS PUB 197) in hardware.
Universal Serial Communication Interface (USCI)
The USCI module is used for serial data communication. The USCI module supports synchronous
communication protocols such as SPI (3 or 4 pin) and I2C, and asynchronous communication protocols such as
UART, enhanced UART with automatic baudrate detection, and IrDA.
The USCI_An module provides support for SPI (3 or 4 pin), UART, enhanced UART, and IrDA.
The USCI_Bn module provides support for SPI (3 or 4 pin) and I2C.
A USCI_A0 and USCI_B0 module are implemented.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 25
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
TA0
TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. TA0 can support multiple
capture/compares, PWM outputs, and interval timing. TA0 also has extensive interrupt capabilities. Interrupts
may be generated from the counter on overflow conditions and from each of the capture/compare registers.
Table 13. TA0 Signal Connections
MODULE OUTPUT DEVICE OUTPUT
DEVICE INPUT SIGNAL MODULE INPUT NAME MODULE BLOCK SIGNAL SIGNAL
PM_TA0CLK TACLK
ACLK (internal) ACLK Timer NA
SMCLK (internal) SMCLK
RFCLK/192(1) INCLK
PM_TA0CCR0A CCI0A PM_TA0CCR0A
DVSS CCI0B CCR0 TA0
DVSS GND
DVCC VCC
PM_TA0CCR1A CCI1A PM_TA0CCR1A
ADC12 (internal)(2)
CBOUT (internal) CCI1B ADC12SHSx = {1}
CCR1 TA1
DVSS GND
DVCC VCC
PM_TA0CCR2A CCI2A PM_TA0CCR2A
ACLK (internal) CCI2B CCR2 TA2
DVSS GND
DVCC VCC
PM_TA0CCR3A CCI3A PM_TA0CCR3A
GDO1 from Radio CCI3B
(internal) CCR3 TA3
DVSS GND
DVCC VCC
PM_TA0CCR4A CCI4A PM_TA0CCR4A
GDO2 from Radio CCI4B
(internal) CCR4 TA4
DVSS GND
DVCC VCC
(1) If a different RFCLK divider setting is selected for a radio GDO output, this divider setting is also used for the Timer_A INCLK.
(2) Only on CC430F613x and CC430F513x
26 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
TA1
TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA1 can support multiple
capture/compares, PWM outputs, and interval timing. TA1 also has extensive interrupt capabilities. Interrupts
may be generated from the counter on overflow conditions and from each of the capture/compare registers.
Table 14. TA1 Signal Connections
DEVICE OUTPUT
MODULE OUTPUT SIGNAL
DEVICE INPUT SIGNAL MODULE INPUT NAME MODULE BLOCK SIGNAL PZ
PM_TA1CLK TACLK
ACLK (internal) ACLK Timer NA
SMCLK (internal) SMCLK
RFCLK/192(1) INCLK
PM_TA1CCR0A CCI0A PM_TA1CCR0A
RF Async. Output CCI0B RF Async. Input (internal)
(internal) CCR0 TA0
DVSS GND
DVCC VCC
PM_TA1CCR1A CCI1A PM_TA1CCR1A
CBOUT (internal) CCI1B CCR1 TA1
DVSS GND
DVCC VCC
PM_TA1CCR2A CCI2A PM_TA1CCR2A
ACLK (internal) CCI2B CCR2 TA2
DVSS GND
DVCC VCC
(1) If a different RFCLK divider setting is selected for a radio GDO output, this divider setting is also used for the Timer_A INCLK.
Real-Time Clock (RTC_A)
The RTC_A module can be used as a general-purpose 32-bit counter (counter mode) or as an integrated
real-time clock (RTC) (calendar mode). In counter mode, the RTC_A also includes two independent 8-bit timers
that can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. Calendar
mode integrates an internal calendar which compensates for months with less than 31 days and includes leap
year correction. The RTC_A also supports flexible alarm functions and offset-calibration hardware.
REF Voltage Reference
The reference module (REF) is responsible for generation of all critical reference voltages that can be used by
the various analog peripherals in the device. These include the ADC12_A, LCD_B, and COMP_B modules.
LCD_B (Only CC430F613x and CC430F612x)
The LCD_B driver generates the segment and common signals required to drive a Liquid Crystal Display (LCD).
The LCD_B controller has dedicated data memories to hold segment drive information. Common and segment
signals are generated as defined by the mode. Static, 2-mux, 3-mux, and 4-mux LCDs are supported. The
module can provide a LCD voltage independent of the supply voltage with its integrated charge pump. It is
possible to control the level of the LCD voltage and thus contrast by software. The module also provides an
automatic blinking capability for individual segments.
Comparator_B
The primary function of the Comparator_B module is to support precision slope analog-to-digital conversions,
battery voltage supervision, and monitoring of external analog signals.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 27
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
ADC12_A (Only CC430F613x and CC430F513x)
The ADC12_A module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR
core, sample select control, reference generator and a 16 word conversion-and-control buffer. The
conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any
CPU intervention.
Embedded Emulation Module (EEM, S Version)
The Embedded Emulation Module (EEM) supports real-time in-system debugging. The S version of the EEM
implemented on all devices has the following features:
Three hardware triggers/breakpoints on memory access
One hardware trigger/breakpoint on CPU register write access
Up to four hardware triggers can be combined to form complex triggers/breakpoints
One cycle counter
Clock control on module level
28 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Peripheral File Map
Table 15. Peripherals
OFFSET ADDRESS
MODULE NAME BASE ADDRESS RANGE
Special Functions (see Table 16) 0100h 000h - 01Fh
PMM (see Table 17) 0120h 000h - 00Fh
Flash Control (see Table 18) 0140h 000h - 00Fh
CRC16 (see Table 19) 0150h 000h - 007h
RAM Control (see Table 20) 0158h 000h - 001h
Watchdog (see Table 21) 015Ch 000h - 001h
UCS (see Table 22) 0160h 000h - 01Fh
SYS (see Table 23) 0180h 000h - 01Fh
Shared Reference (see Table 24) 01B0h 000h - 001h
Port Mapping Control (see Table 25) 01C0h 000h - 007h
Port Mapping Port P1 (see Table 26) 01C8h 000h - 007h
Port Mapping Port P2 (see Table 27) 01D0h 000h - 007h
Port Mapping Port P3 (see Table 28) 01D8h 000h - 007h
Port P1/P2 (see Table 29) 0200h 000h - 01Fh
Port P3/P4 (see Table 30) (P4 not available on 0220h 000h - 01Fh
CC430F513x)
Port P5 (see Table 31) 0240h 000h - 01Fh
Port PJ (see Table 32) 0320h 000h - 01Fh
TA0 (see Table 33) 0340h 000h - 03Fh
TA1 (see Table 34) 0380h 000h - 03Fh
RTC_A (see Table 35) 04A0h 000h - 01Fh
32-bit Hardware Multiplier (see Table 36) 04C0h 000h - 02Fh
DMA Module Control (see Table 37) 0500h 000h - 00Fh
DMA Channel 0 (see Table 38) 0510h 000h - 00Fh
DMA Channel 1 (see Table 39) 0520h 000h - 00Fh
DMA Channel 2 (see Table 40) 0530h 000h - 00Fh
USCI_A0 (see Table 41) 05C0h 000h - 01Fh
USCI_B0 (see Table 42) 05E0h 000h - 01Fh
ADC12 (see Table 43) (only CC430F613x and 0700h 000h - 03Fh
CC430F513x)
Comparator_B (see Table 44) 08C0h 000h - 00Fh
AES Accelerator (see Table 45) 09C0h 000h - 00Fh
LCD_B (see Table 46) (only CC430F613x and 0A00h 000h - 05Fh
CC430F612x)
Radio Interface (see Table 47) 0F00h 000h - 03Fh
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 29
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Table 16. Special Function Registers (Base Address: 0100h)
REGISTER DESCRIPTION REGISTER OFFSET
SFR interrupt enable SFRIE1 00h
SFR interrupt flag SFRIFG1 02h
SFR reset pin control SFRRPCR 04h
Table 17. PMM Registers (Base Address: 0120h)
REGISTER DESCRIPTION REGISTER OFFSET
PMM Control 0 PMMCTL0 00h
PMM control 1 PMMCTL1 02h
SVS high side control SVSMHCTL 04h
SVS low side control SVSMLCTL 06h
PMM interrupt flags PMMIFG 0Ch
PMM interrupt enable PMMIE 0Eh
PMM power mode 5 control PM5CTL0 10h
Table 18. Flash Control Registers (Base Address: 0140h)
REGISTER DESCRIPTION REGISTER OFFSET
Flash control 1 FCTL1 00h
Flash control 3 FCTL3 04h
Flash control 4 FCTL4 06h
Table 19. CRC16 Registers (Base Address: 0150h)
REGISTER DESCRIPTION REGISTER OFFSET
CRC data input CRC16DI 00h
CRC data input reverse byte CRCDIRB 02h
CRC initialization and result CRCINIRES 04h
CRC result reverse byte CRCRESR 06h
Table 20. RAM Control Registers (Base Address: 0158h)
REGISTER DESCRIPTION REGISTER OFFSET
RAM control 0 RCCTL0 00h
Table 21. Watchdog Registers (Base Address: 015Ch)
REGISTER DESCRIPTION REGISTER OFFSET
Watchdog timer control WDTCTL 00h
Table 22. UCS Registers (Base Address: 0160h)
REGISTER DESCRIPTION REGISTER OFFSET
UCS control 0 UCSCTL0 00h
UCS control 1 UCSCTL1 02h
UCS control 2 UCSCTL2 04h
UCS control 3 UCSCTL3 06h
UCS control 4 UCSCTL4 08h
UCS control 5 UCSCTL5 0Ah
UCS control 6 UCSCTL6 0Ch
UCS control 7 UCSCTL7 0Eh
UCS control 8 UCSCTL8 10h
30 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Table 23. SYS Registers (Base Address: 0180h)
REGISTER DESCRIPTION REGISTER OFFSET
System control SYSCTL 00h
Bootstrap loader configuration area SYSBSLC 02h
JTAG mailbox control SYSJMBC 06h
JTAG mailbox input 0 SYSJMBI0 08h
JTAG mailbox input 1 SYSJMBI1 0Ah
JTAG mailbox output 0 SYSJMBO0 0Ch
JTAG mailbox output 1 SYSJMBO1 0Eh
Bus Error vector generator SYSBERRIV 18h
User NMI vector generator SYSUNIV 1Ah
System NMI vector generator SYSSNIV 1Ch
Reset vector generator SYSRSTIV 1Eh
Table 24. Shared Reference Registers (Base Address: 01B0h)
REGISTER DESCRIPTION REGISTER OFFSET
Shared reference control REFCTL 00h
Table 25. Port Mapping Control Registers (Base Address: 01C0h)
REGISTER DESCRIPTION REGISTER OFFSET
Port mapping key register PMAPKEYID 00h
Port mapping control register PMAPCTL 02h
Table 26. Port Mapping Port P1 Registers (Base Address: 01C8h)
REGISTER DESCRIPTION REGISTER OFFSET
Port P1.0 mapping register P1MAP0 00h
Port P1.1 mapping register P1MAP1 01h
Port P1.2 mapping register P1MAP2 02h
Port P1.3 mapping register P1MAP3 03h
Port P1.4 mapping register P1MAP4 04h
Port P1.5 mapping register P1MAP5 05h
Port P1.6 mapping register P1MAP6 06h
Port P1.7 mapping register P1MAP7 07h
Table 27. Port Mapping Port P2 Registers (Base Address: 01D0h)
REGISTER DESCRIPTION REGISTER OFFSET
Port P2.0 mapping register P2MAP0 00h
Port P2.1 mapping register P2MAP1 01h
Port P2.2 mapping register P2MAP2 02h
Port P2.3 mapping register P2MAP3 03h
Port P2.4 mapping register P2MAP4 04h
Port P2.5 mapping register P2MAP5 05h
Port P2.6 mapping register P2MAP6 06h
Port P2.7 mapping register P2MAP7 07h
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 31
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Table 28. Port Mapping Port P3 Registers (Base Address: 01D8h)
REGISTER DESCRIPTION REGISTER OFFSET
Port P3.0 mapping register P3MAP0 00h
Port P3.1 mapping register P3MAP1 01h
Port P3.2 mapping register P3MAP2 02h
Port P3.3 mapping register P3MAP3 03h
Port P3.4 mapping register P3MAP4 04h
Port P3.5 mapping register P3MAP5 05h
Port P3.6 mapping register P3MAP6 06h
Port P3.7 mapping register P3MAP7 07h
Table 29. Port P1/P2 Registers (Base Address: 0200h)
REGISTER DESCRIPTION REGISTER OFFSET
Port P1 input P1IN 00h
Port P1 output P1OUT 02h
Port P1 direction P1DIR 04h
Port P1 pullup/pulldown enable P1REN 06h
Port P1 drive strength P1DS 08h
Port P1 selection P1SEL 0Ah
Port P1 interrupt vector word P1IV 0Eh
Port P1 interrupt edge select P1IES 18h
Port P1 interrupt enable P1IE 1Ah
Port P1 interrupt flag P1IFG 1Ch
Port P2 input P2IN 01h
Port P2 output P2OUT 03h
Port P2 direction P2DIR 05h
Port P2 pullup/pulldown enable P2REN 07h
Port P2 drive strength P2DS 09h
Port P2 selection P2SEL 0Bh
Port P2 interrupt vector word P2IV 1Eh
Port P2 interrupt edge select P2IES 19h
Port P2 interrupt enable P2IE 1Bh
Port P2 interrupt flag P2IFG 1Dh
Table 30. Port P3/P4 Registers (Base Address: 0220h)
REGISTER DESCRIPTION REGISTER OFFSET
Port P3 input P3IN 00h
Port P3 output P3OUT 02h
Port P3 direction P3DIR 04h
Port P3 pullup/pulldown enable P3REN 06h
Port P3 drive strength P3DS 08h
Port P3 selection P3SEL 0Ah
Port P4 input P4IN 01h
Port P4 output P4OUT 03h
Port P4 direction P4DIR 05h
Port P4 pullup/pulldown enable P4REN 07h
Port P4 drive strength P4DS 09h
Port P4 selection P4SEL 0Bh
32 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Table 31. Port P5 Registers (Base Address: 0240h)
REGISTER DESCRIPTION REGISTER OFFSET
Port P5 input P5IN 00h
Port P5 output P5OUT 02h
Port P5 direction P5DIR 04h
Port P5 pullup/pulldown enable P5REN 06h
Port P5 drive strength P5DS 08h
Port P5 selection P5SEL 0Ah
Table 32. Port J Registers (Base Address: 0320h)
REGISTER DESCRIPTION REGISTER OFFSET
Port PJ input PJIN 00h
Port PJ output PJOUT 02h
Port PJ direction PJDIR 04h
Port PJ pullup/pulldown enable PJREN 06h
Port PJ drive strength PJDS 08h
Table 33. TA0 Registers (Base Address: 0340h)
REGISTER DESCRIPTION REGISTER OFFSET
TA0 control TA0CTL 00h
Capture/compare control 0 TA0CCTL0 02h
Capture/compare control 1 TA0CCTL1 04h
Capture/compare control 2 TA0CCTL2 06h
Capture/compare control 3 TA0CCTL3 08h
Capture/compare control 4 TA0CCTL4 0Ah
TA0 counter register TA0R 10h
Capture/compare register 0 TA0CCR0 12h
Capture/compare register 1 TA0CCR1 14h
Capture/compare register 2 TA0CCR2 16h
Capture/compare register 3 TA0CCR3 18h
Capture/compare register 4 TA0CCR4 1Ah
TA0 expansion register 0 TA0EX0 20h
TA0 interrupt vector TA0IV 2Eh
Table 34. TA1 Registers (Base Address: 0380h)
REGISTER DESCRIPTION REGISTER OFFSET
TA1 control TA1CTL 00h
Capture/compare control 0 TA1CCTL0 02h
Capture/compare control 1 TA1CCTL1 04h
Capture/compare control 2 TA1CCTL2 06h
TA1 counter register TA1R 10h
Capture/compare register 0 TA1CCR0 12h
Capture/compare register 1 TA1CCR1 14h
Capture/compare register 2 TA1CCR2 16h
TA1 expansion register 0 TA1EX0 20h
TA1 interrupt vector TA1IV 2Eh
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 33
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Table 35. Real Time Clock Registers (Base Address: 04A0h)
REGISTER DESCRIPTION REGISTER OFFSET
RTC control 0 RTCCTL0 00h
RTC control 1 RTCCTL1 01h
RTC control 2 RTCCTL2 02h
RTC control 3 RTCCTL3 03h
RTC prescaler 0 control RTCPS0CTL 08h
RTC prescaler 1 control RTCPS1CTL 0Ah
RTC prescaler 0 RTCPS0 0Ch
RTC prescaler 1 RTCPS1 0Dh
RTC interrupt vector word RTCIV 0Eh
RTC seconds/counter register 1 RTCSEC/RTCNT1 10h
RTC minutes/counter register 2 RTCMIN/RTCNT2 11h
RTC hours/counter register 3 RTCHOUR/RTCNT3 12h
RTC day of week/counter register 4 RTCDOW/RTCNT4 13h
RTC days RTCDAY 14h
RTC month RTCMON 15h
RTC year low RTCYEARL 16h
RTC year high RTCYEARH 17h
RTC alarm minutes RTCAMIN 18h
RTC alarm hours RTCAHOUR 19h
RTC alarm day of week RTCADOW 1Ah
RTC alarm days RTCADAY 1Bh
Table 36. 32-bit Hardware Multiplier Registers (Base Address: 04C0h)
REGISTER DESCRIPTION REGISTER OFFSET
16-bit operand 1 multiply MPY 00h
16-bit operand 1 signed multiply MPYS 02h
16-bit operand 1 multiply accumulate MAC 04h
16-bit operand 1 signed multiply accumulate MACS 06h
16-bit operand 2 OP2 08h
16 ×16 result low word RESLO 0Ah
16 ×16 result high word RESHI 0Ch
16 ×16 sum extension register SUMEXT 0Eh
32-bit operand 1 multiply low word MPY32L 10h
32-bit operand 1 multiply high word MPY32H 12h
32-bit operand 1 signed multiply low word MPYS32L 14h
32-bit operand 1 signed multiply high word MPYS32H 16h
32-bit operand 1 multiply accumulate low word MAC32L 18h
32-bit operand 1 multiply accumulate high word MAC32H 1Ah
32-bit operand 1 signed multiply accumulate low word MACS32L 1Ch
32-bit operand 1 signed multiply accumulate high word MACS32H 1Eh
32-bit operand 2 low word OP2L 20h
32-bit operand 2 high word OP2H 22h
32 ×32 result 0 least significant word RES0 24h
32 ×32 result 1 RES1 26h
32 ×32 result 2 RES2 28h
32 ×32 result 3 most significant word RES3 2Ah
MPY32 control register 0 MPY32CTL0 2Ch
34 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Table 37. DMA Module Control Registers (Base Address: 0500h)
REGISTER DESCRIPTION REGISTER OFFSET
DMA module control 0 DMACTL0 00h
DMA module control 1 DMACTL1 02h
DMA module control 2 DMACTL2 04h
DMA module control 3 DMACTL3 06h
DMA module control 4 DMACTL4 08h
DMA interrupt vector DMAIV 0Ah
Table 38. DMA Channel 0 Registers (Base Address: 0510h)
REGISTER DESCRIPTION REGISTER OFFSET
DMA channel 0 control DMA0CTL 00h
DMA channel 0 source address low DMA0SAL 02h
DMA channel 0 source address high DMA0SAH 04h
DMA channel 0 destination address low DMA0DAL 06h
DMA channel 0 destination address high DMA0DAH 08h
DMA channel 0 transfer size DMA0SZ 0Ah
Table 39. DMA Channel 1 Registers (Base Address: 0520h)
REGISTER DESCRIPTION REGISTER OFFSET
DMA channel 1 control DMA1CTL 00h
DMA channel 1 source address low DMA1SAL 02h
DMA channel 1 source address high DMA1SAH 04h
DMA channel 1 destination address low DMA1DAL 06h
DMA channel 1 destination address high DMA1DAH 08h
DMA channel 1 transfer size DMA1SZ 0Ah
Table 40. DMA Channel 2 Registers (Base Address: 0530h)
REGISTER DESCRIPTION REGISTER OFFSET
DMA channel 2 control DMA2CTL 00h
DMA channel 2 source address low DMA2SAL 02h
DMA channel 2 source address high DMA2SAH 04h
DMA channel 2 destination address low DMA2DAL 06h
DMA channel 2 destination address high DMA2DAH 08h
DMA channel 2 transfer size DMA2SZ 0Ah
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 35
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Table 41. USCI_A0 Registers (Base Address: 05C0h)
REGISTER DESCRIPTION REGISTER OFFSET
USCI control 1 UCA0CTL1 00h
USCI control 0 UCA0CTL0 01h
USCI baud rate 0 UCA0BR0 06h
USCI baud rate 1 UCA0BR1 07h
USCI modulation control UCA0MCTL 08h
USCI status UCA0STAT 0Ah
USCI receive buffer UCA0RXBUF 0Ch
USCI transmit buffer UCA0TXBUF 0Eh
USCI LIN control UCA0ABCTL 10h
USCI IrDA transmit control UCA0IRTCTL 12h
USCI IrDA receive control UCA0IRRCTL 13h
USCI interrupt enable UCA0IE 1Ch
USCI interrupt flags UCA0IFG 1Dh
USCI interrupt vector word UCA0IV 1Eh
Table 42. USCI_B0 Registers (Base Address: 05E0h)
REGISTER DESCRIPTION REGISTER OFFSET
USCI synchronous control 1 UCB0CTL1 00h
USCI synchronous control 0 UCB0CTL0 01h
USCI synchronous bit rate 0 UCB0BR0 06h
USCI synchronous bit rate 1 UCB0BR1 07h
USCI synchronous status UCB0STAT 0Ah
USCI synchronous receive buffer UCB0RXBUF 0Ch
USCI synchronous transmit buffer UCB0TXBUF 0Eh
USCI I2C own address UCB0I2COA 10h
USCI I2C slave address UCB0I2CSA 12h
USCI interrupt enable UCB0IE 1Ch
USCI interrupt flags UCB0IFG 1Dh
USCI interrupt vector word UCB0IV 1Eh
36 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Table 43. ADC12_A Registers (Base Address: 0700h)
REGISTER DESCRIPTION REGISTER OFFSET
Control register 0 ADC12CTL0 00h
Control register 1 ADC12CTL1 02h
Control register 2 ADC12CTL2 04h
Interrupt-flag register ADC12IFG 0Ah
Interrupt-enable register ADC12IE 0Ch
Interrupt-vector-word register ADC12IV 0Eh
ADC memory-control register 0 ADC12MCTL0 10h
ADC memory-control register 1 ADC12MCTL1 11h
ADC memory-control register 2 ADC12MCTL2 12h
ADC memory-control register 3 ADC12MCTL3 13h
ADC memory-control register 4 ADC12MCTL4 14h
ADC memory-control register 5 ADC12MCTL5 15h
ADC memory-control register 6 ADC12MCTL6 16h
ADC memory-control register 7 ADC12MCTL7 17h
ADC memory-control register 8 ADC12MCTL8 18h
ADC memory-control register 9 ADC12MCTL9 19h
ADC memory-control register 10 ADC12MCTL10 1Ah
ADC memory-control register 11 ADC12MCTL11 1Bh
ADC memory-control register 12 ADC12MCTL12 1Ch
ADC memory-control register 13 ADC12MCTL13 1Dh
ADC memory-control register 14 ADC12MCTL14 1Eh
ADC memory-control register 15 ADC12MCTL15 1Fh
Conversion memory 0 ADC12MEM0 20h
Conversion memory 1 ADC12MEM1 22h
Conversion memory 2 ADC12MEM2 24h
Conversion memory 3 ADC12MEM3 26h
Conversion memory 4 ADC12MEM4 28h
Conversion memory 5 ADC12MEM5 2Ah
Conversion memory 6 ADC12MEM6 2Ch
Conversion memory 7 ADC12MEM7 2Eh
Conversion memory 8 ADC12MEM8 30h
Conversion memory 9 ADC12MEM9 32h
Conversion memory 10 ADC12MEM10 34h
Conversion memory 11 ADC12MEM11 36h
Conversion memory 12 ADC12MEM12 38h
Conversion memory 13 ADC12MEM13 3Ah
Conversion memory 14 ADC12MEM14 3Ch
Conversion memory 15 ADC12MEM15 3Eh
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 37
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Table 44. Comparator_B Registers (Base Address: 08C0h)
REGISTER DESCRIPTION REGISTER OFFSET
Comp_B control register 0 CBCTL0 00h
Comp_B control register 1 CBCTL1 02h
Comp_B control register 2 CBCTL2 04h
Comp_B control register 3 CBCTL3 06h
Comp_B interrupt register CBINT 0Ch
Comp_B interrupt vector word CBIV 0Eh
Table 45. AES Accelerator Registers (Base Address: 09C0h)
REGISTER DESCRIPTION REGISTER OFFSET
AES accelerator control register 0 AESACTL0 00h
Reserved 02h
AES accelerator status register AESASTAT 04h
AES accelerator key register AESAKEY 06h
AES accelerator data in register AESADIN 008h
AES accelerator data out register AESADOUT 00Ah
Table 46. LCD_B Registers (Base Address: 0A00h)
REGISTER DESCRIPTION REGISTER OFFSET
LCD_B control register 0 LCDBCTL0 000h
LCD_B control register 1 LCDBCTL1 002h
LCD_B blinking control register LCDBBLKCTL 004h
LCD_B memory control register LCDBMEMCTL 006h
LCD_B voltage control register LCDBVCTL 008h
LCD_B port control register 0 LCDBPCTL0 00Ah
LCD_B port control register 1 LCDBPCTL1 00Ch
LCD_B charge pump control register LCDBCTL0 012h
LCD_B interrupt vector word LCDBIV 01Eh
LCD_B memory 1 LCDM1 020h
LCD_B memory 2 LCDM2 021h
...
LCD_B memory 14 LCDM14 02Dh
LCD_B blinking memory 1 LCDBM1 040h
LCD_B blinking memory 2 LCDBM2 041h
...
LCD_B blinking memory 14 LCDBM14 04Dh
38 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Table 47. Radio Interface Registers (Base Address: 0F00h)
REGISTER DESCRIPTION REGISTER OFFSET
Radio interface control register 0 RF1AIFCTL0 00h
Radio interface control register 1 RF1AIFCTL1 02h
Radio interface error flag register RF1AIFERR 06h
Radio interface error vector word RF1AIFERRV 0Ch
Radio interface interrupt vector word RF1AIFIV 0Eh
Radio instruction word register RF1AINSTRW 10h
Radio instruction word register, 1-byte auto-read RF1AINSTR1W 12h
Radio instruction word register, 2-byte auto-read RF1AINSTR2W 14h
Radio data in register RF1ADINW 16h
Radio status word register RF1ASTATW 20h
Radio status word register, 1-byte auto-read RF1ASTAT1W 22h
Radio status word register, 2-byte auto-read RF1AISTAT2W 24h
Radio data out register RF1ADOUTW 28h
Radio data out register, 1-byte auto-read RF1ADOUT1W 2Ah
Radio data out register, 2-byte auto-read RF1ADOUT2W 2Ch
Radio core signal input register RF1AIN 30h
Radio core interrupt flag register RF1AIFG 32h
Radio core interrupt edge select register RF1AIES 34h
Radio core interrupt enable register RF1AIE 36h
Radio core interrupt vector word RF1AIV 38h
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 39
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Absolute Maximum Ratings(1)
over operating free-air temperature range (unless otherwise noted)
Voltage applied at DVCC and AVCC pins to VSS 0.3 V to 4.1 V
0.3 V to (VCC + 0.3 V),
Voltage applied to any pin (excluding VCORE, RF_P, RF_N, and R_BIAS)(2) 4.1 V Max
Voltage applied to VCORE, RF_P, RF_N, and R_BIAS(2) 0.3 V to 2.0 V
Input RF level at pins RF_P and RF_N 10 dBm
Diode current at any device terminal ±2 mA
Storage temperature range(3), Tstg 55°C to 150°C
Maximum junction temperature, TJ95°C
(1) Stresses beyond those listed under "absolute maximum ratings"may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions"is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages referenced to VSS.
(3) Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow
temperatures not higher than classified on the device label on the shipping boxes or reels.
Thermal Packaging Characteristics CC430F51xxLow-K board 48 QFN (RGZ) 98°C/W
θJA Junction to ambient thermal resistance, still air High-K board 48 QFN (RGZ) 28°C/W
Thermal Packaging Characteristics CC430F61xxLow-K board 64 QFN (RGC) 83°C/W
θJA Junction to ambient thermal resistance, still air High-K board 64 QFN (RGC) 26°C/W
Recommended Operating Conditions MIN NOM MAX UNIT
Supply voltage range applied at all DVCC and AVCC PMMCOREVx = 0 1.8 3.6 V
pins(1) during program execution and flash programming (default after POR)
VCC with PMM default settings. Radio is not operational with PMMCOREVx = 1 2.0 3.6 V
PMMCOREVx = 0, 1.(2)
Supply voltage range applied at all DVCC and AVCC PMMCOREVx = 2 2.2 3.6 V
VCC pins(1) during program execution, flash programming and PMMCOREVx = 3 2.4 3.6 V
radio operation with PMM default settings.(2)
Supply voltage range applied at all DVCC and AVCC
pins(1) during program execution, flash programming and PMMCOREVx = 2,
VCC radio operation with PMMCOREVx = 2, high-side SVS SVSHRVLx = SVSHRRRLx = 1 2.0 3.6 V
level lowered (SVSHRVLx=SVSHRRRLx=1) or high-side or SVSHE = 0
SVS disabled (SVSHE=0).(3) (2)
Supply voltage applied at the exposed die attach VSS and
VSS 0 V
AVSS pin
TAOperating free-air temperature 40 85 °C
TJOperating junction temperature 40 85 °C
CVCORE Recommended capacitor at VCORE 470 nF
CDVCC/ Capacitor ratio of capacitor at DVCC to capacitor at 10
CVCORE VCORE PMMCOREVx = 0 0 8 MHz
(default condition)
PMMCOREVx = 1 0 12 MHz
fSYSTEM Processor (MCLK) frequency(4) (see Figure 2)PMMCOREVx = 2 0 16 MHz
PMMCOREVx = 3 0 20 MHz
(1) It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be
tolerated during power up and operation.
(2) Modules may have a different supply voltage range specification. See the specification of the respective module in this data sheet.
(3) Lowering the high-side SVS level or disabling the high-side SVS might cause the LDO to operate out of regulation but the core voltage
will still stay within it's limits and is still supervised by the low-side SVS ensuring reliable operation.
(4) Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.
40 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
2.01.8
8
0
12
20
System Frequency - MHz
Supply Voltage - V
The numbers within the fields denote the supported PMMCOREVx settings.
2.2 2.4 3.6
0, 1, 2, 30, 1, 20, 10
1, 2, 3
1, 2
1
2, 3
3
2
16
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Recommended Operating Conditions (continued) MIN NOM MAX UNIT
PINT Internal power dissipation VCC ×I(DVCC) W
(VCC - VIOH)×IIOH +
PIO I/O power dissipation of I/O pins powered by DVCC W
VIOL ×IIOL
PMAX Maximum allowed power dissipation, PMAX >PIO + PINT (TJ- TA) / θJA W
Figure 2. Maximum System Frequency
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 41
0
1
2
3
4
5
0 5 10 15 20
MCLK Frequency - MHz
IAM - Active Mode Supply Current - mA
VCC = 3.0 V
PMMVCOREx=2
PMMVCOREx=0
PMMVCOREx=1
PMMVCOREx=3
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Electrical Characteristics
Active Mode Supply Current Into VCC Excluding External Current
over recommended operating free-air temperature (unless otherwise noted)(1) (2) (3)
FREQUENCY (fDCO = fMCLK = fSMCLK)
EXECUTION
PARAMETER VCC PMMCOREVx 1 MHz 8 MHz 12 MHz 16 MHz 20 MHz UNIT
MEMORY TYP MAX TYP MAX TYP MAX TYP MAX TYP MAX
0 0.23 0.26 1.35 1.60
1 0.25 0.28 1.55 2.30 2.65
IAM, Flash(4) Flash 3.0 V mA
2 0.27 0.30 1.75 2.60 3.45 3.90
3 0.28 0.32 1.85 2.75 3.65 4.55 5.10
0 0.18 0.20 0.95 1.10
1 0.20 0.22 1.10 1.60 1.85
IAM, RAM(5) RAM 3.0 V mA
2 0.21 0.24 1.20 1.80 2.40 2.70
3 0.22 0.25 1.30 1.90 2.50 3.10 3.60
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
(2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load
capacitance are chosen to closely match the required 12.5 pF.
(3) Characterized with program executing typical data processing.
fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency.
XTS = CPUOFF = SCG0 = SCG1 = OSCOFF= SMCLKOFF = 0.
(4) Active mode supply current when program executes in flash at a nominal supply voltage of 3.0 V.
(5) Active mode supply current when program executes in RAM at a nominal supply voltage of 3.0 V.
Typical Characteristics - Active Mode Supply Currents
Active Mode Supply Current
vs
MCLK Frequency
Figure 3.
42 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Low-Power Mode Supply Currents (Into VCC) Excluding External Current
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)
Temperature (TA)
PARAMETER VCC PMMCOREVx -40°C 25°C 60°C 85°C UNIT
TYP MAX TYP MAX TYP MAX TYP MAX
2.2 V 0 80 100 80 100 80 100 80 100
ILPM0,1MHz Low-power mode 0(3) (4) µA
3.0 V 3 90 110 90 110 90 110 90 110
2.2 V 0 6.5 11 6.5 11 6.5 11 6.5 11
ILPM2 Low-power mode 2(5) (4) µA
3.0 V 3 7.5 12 7.5 12 7.5 12 7.5 12
0 1.8 2.0 2.6 3.0 4.0 4.4 5.9
1 1.9 2.1 3.2 4.8
Low-power mode 3, crystal
ILPM3,XT1LF 3.0 V µA
mode(6) (4) 2 2.0 2.2 3.4 5.1
3 2.0 2.2 2.9 3.5 4.8 5.3 7.4
0 0.9 1.1 2.3 2.1 3.7 3.5 5.6
1 1.0 1.2 2.3 3.9
Low-power mode 3,
ILPM3,VLO 3.0 V µA
VLO mode(7) (4) 2 1.1 1.3 2.5 4.2
3 1.1 1.3 2.6 2.6 4.5 4.4 7.1
0 0.8 1.0 2.2 2.0 3.6 3.4 5.5
1 0.9 1.1 2.2 3.8
ILPM4 Low-power mode 4(8) (4) 3.0 V µA
2 1.0 1.2 2.4 4.1
3 1.0 1.2 2.5 2.5 4.4 4.3 7.0
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
(2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load
capacitance are chosen to closely match the required 12.5 pF.
(3) Current for watchdog timer clocked by SMCLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0); fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz
(4) Current for brownout, high side supervisor (SVSH) normal mode included. Low side supervisor and monitors disabled (SVSL, SVML).
High side monitor disabled (SVMH). RAM retention enabled.
(5) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2); fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz; DCO setting = 1
MHz operation, DCO bias generator enabled.
(6) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz
(7) Current for watchdog timer and RTC clocked by ACLK included. ACLK = VLO.
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); fACLK = fVLO, fMCLK = fSMCLK = fDCO = 0 MHz
(8) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4); fDCO = fACLK = fMCLK = fSMCLK = 0 MHz
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 43
0
1
2
3
4
5
-40 -20 0 20 40 60 80
TA- Free-Air Tem perature - °C
ILPM3,XT1LF- LPM3 Supply Current - uA
VCC = 3.0 V
PMMCOREVx = 3
PMMCOREVx = 0
0
1
2
3
4
5
-40 -20 0 20 40 60 80
TA- Free-Air Tem perature - °C
ILPM4 - LPM4 Supply Current - uA
VDD = 3.0 V
PMMCOREVx = 3
PMMCOREVx = 0
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Typical Characteristics - Low-Power Mode Supply Currents
LPM3 Supply Current LPM4 Supply Current
vs vs
Temperature Temperature
Figure 4. Figure 5.
44 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Low-Power Mode with LCD Supply Currents (Into VCC) Excluding External Current
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)
Temperature (TA)
PARAMETER VCC PMMCOREVx -40°C 25°C 60°C 85°C UNIT
TYP MAX TYP MAX TYP MAX TYP MAX
0 2.2 2.4 3.5 4.9
Low-power mode 3
ILPM3 1 2.3 2.5 3.7 5.3
(LPM3) current, LCD
LCD, 3.0 V µA
4-mux mode, external 2 2.4 2.6 3.9 5.6
ext. bias biasing(3) (4) 3 2.4 2.6 4.0 5.8
0 3.1 3.3 4.0 4.3 5.8 7.4
Low-power mode 3
ILPM3 (LPM3) current, LCD 1 3.2 3.4 4.5 6.2
LCD, 4-mux mode, internal 3.0 V µA
2 3.3 3.5 4.7 6.5
int. bias biasing, charge pump
disabled(3) (5) 3 3.3 3.5 4.3 4.8 6.7 8.9
0 4.0
2.2 V 1 4.1
Low-power mode 3 2 4.2
(LPM3) current, LCD
ILPM3 4-mux mode, internal 0 4.2 µA
LCD,CP biasing, charge pump 1 4.3
enabled(3) (6) 3.0 V 2 4.5
3 4.5
(1) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
(2) The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load
capacitance are chosen to closely match the required 12.5 pF.
(3) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz
Current for brownout, high side supervisor (SVSH) normal mode included. Low side supervisor and monitors disabled (SVSL, SVML).
High side monitor disabled (SVMH). RAM retention enabled.
(4) LCDMx = 11 (4-mux mode), LCDREXT=1, LCDEXTBIAS=1 (external biasing), LCD2B=0 (1/3 bias), LCDCPEN=0 (charge pump
disabled), LCDSSEL=0, LCDPREx=101, LCDDIVx=00011 (fLCD = 32768 Hz/32/4 = 256 Hz)
Current through external resistors not included (voltage levels are supplied by test equipment).
Even segments S0, S2,...=0, odd segments S1, S3,...=1. No LCD panel load.
(5) LCDMx = 11 (4-mux mode), LCDREXT=0, LCDEXTBIAS=0 (internal biasing), LCD2B=0 (1/3 bias), LCDCPEN=0 (charge pump
disabled), LCDSSEL=0, LCDPREx=101, LCDDIVx=00011 (fLCD = 32768 Hz/32/4 = 256 Hz)
Even segments S0, S2,...=0, odd segments S1, S3,...=1. No LCD panel load.
(6) LCDMx = 11 (4-mux mode), LCDREXT=0, LCDEXTBIAS=0 (internal biasing), LCD2B=0 (1/3 bias), LCDCPEN=1 (charge pump
enabled), VLCDx=1000 (VLCD= 3 V typ.), LCDSSEL=0, LCDPREx=101, LCDDIVx=00011 (fLCD = 32768 Hz/32/4 = 256 Hz)
Even segments S0, S2,...=0, odd segments S1, S3,...=1. No LCD panel load.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 45
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Digital Inputs
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
1.8 V 0.80 1.40
VIT+ Positive-going input threshold voltage V
3 V 1.50 2.10
1.8 V 0.45 1.00
VITNegative-going input threshold voltage V
3 V 0.75 1.65
1.8 V 0.3 0.8
Vhys Input voltage hysteresis (VIT+ VIT) V
3 V 0.4 1.0
For pullup: VIN = VSS
RPull Pullup/pulldown resistor 20 35 50 kΩ
For pulldown: VIN = VCC
CIInput capacitance VIN = VSS or VCC 5 pF
Ilkg(Px.x) High-impedance leakage current (1) (2) 1.8 V/3 V ±50 nA
Ports with interrupt capability
External interrupt timing (External trigger pulse (see block diagram and
t(int) 1.8 V/3 V 20 ns
width to set interrupt flag)(3) terminal function
descriptions).
(1) The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.
(2) The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is
disabled.
(3) An external signal sets the interrupt flag every time the minimum interrupt pulse width t(int) is met. It may be set by trigger signals shorter
than t(int).
46 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Digital Outputs
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN MAX UNIT
I(OHmax) =1 mA, PxDS.y = 0(2) VCC 0.25 VCC
1.8 V
I(OHmax) =3 mA, PxDS.y = 0(3) VCC 0.60 VCC
High-level output voltage,
VOH V
Reduced Drive Strength(1) I(OHmax) =2 mA, PxDS.y = 0(2) VCC 0.25 VCC
3.0 V
I(OHmax) =6 mA, PxDS.y = 0(3) VCC 0.60 VCC
I(OLmax) = 1 mA, PxDS.y = 0(2) VSS VSS + 0.25
1.8 V
I(OLmax) = 3 mA, PxDS.y = 0(3) VSS VSS + 0.60
Low-level output voltage,
VOL V
Reduced Drive Strength(1) I(OLmax) = 2 mA, PxDS.y = 0(2) VSS VSS + 0.25
3.0 V
I(OLmax) = 6 mA, PxDS.y = 0(3) VSS VSS + 0.60
I(OHmax) =3 mA, PxDS.y = 1(2) VCC 0.25 VCC
1.8 V
I(OHmax) =10 mA, PxDS.y = 1(3) VCC 0.60 VCC
High-level output voltage,
VOH V
Full Drive Strength I(OHmax) =5 mA, PxDS.y = 1(2) VCC 0.25 VCC
3 V
I(OHmax) =15 mA, PxDS.y = 1(3) VCC 0.60 VCC
I(OLmax) = 3 mA, PxDS.y = 1(2) VSS VSS + 0.25
1.8 V
I(OLmax) = 10 mA, PxDS.y = 1(3) VSS VSS + 0.60
Low-level output voltage,
VOL V
Full Drive Strength I(OLmax) = 5 mA, PxDS.y = 1(2) VSS VSS + 0.25
3 V
I(OLmax) = 15 mA, PxDS.y = 1(3) VSS VSS + 0.60
VCC = 1.8 V 16
PMMCOREVx = 0
Port output frequency
fPx.y CL= 20 pF, RL(4) (5) MHz
(with load) VCC = 3 V 25
PMMCOREVx = 2
VCC = 1.8 V 16
PMMCOREVx = 0
fPort_CLK Clock output frequency CL= 20 pF(5) MHz
VCC = 3 V 25
PMMCOREVx = 2
(1) Selecting reduced drive strength may reduce EMI.
(2) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop
specified.
(3) The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage
drop specified.
(4) A resistive divider with 2 ×R1 between VCC and VSS is used as load. The output is connected to the center tap of the divider. For full
drive strength, R1 = 550 Ω. For reduced drive strength, R1 = 1.6 kΩ. CL= 20 pF is connected to the output to VSS.
(5) The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 47
0
5
10
15
20
25
0 0.5 1 1.5 2 2.5 3 3.5
VOL - Low -Le vel Output Voltage - V
IOL - Typical Low-Level Output Current - mA
VCC = 3.0 V
P4.3
TA= 25°C
TA= 85°C
-25
-20
-15
-10
-5
0
0 0.5 1 1.5 2 2.5 3 3.5
VOH - High-Level Output Voltage - V
IOH - Typical High-Level Output Current - mA
VCC = 3.0 V
VCC = 3.0 V
P4.3
TA= 25°C
TA= 85°C
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Typical Characteristics - Outputs, Reduced Drive Strength (PxDS.y = 0)
TYPICAL LOW-LEVEL OUTPUT CURRENT TYPICAL LOW-LEVEL OUTPUT CURRENT
vs vs
LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT VOLTAGE
Figure 6. Figure 7.
TYPICAL HIGH-LEVEL OUTPUT CURRENT TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs vs
HIGH-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT VOLTAGE
Figure 8. Figure 9.
48 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
0
10
20
30
40
50
60
0 0.5 1 1.5 2 2.5 3 3.5
VOL - Low -Le vel Output Voltage - V
IOL - Typical Low-Level Output Current - mA
VCC = 3.0 V
P4.3
TA= 25°C
TA= 85°C
-60
-50
-40
-30
-20
-10
0
0 0.5 1 1.5 2 2.5 3 3.5
VOH - High-Level Output Voltage - V
IOH - Typical High-Level Output Current - mA
VCC = 3.0 V
VCC = 3.0 V
P4.3
TA= 25°C
TA= 85°C
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Typical Characteristics - Outputs, Full Drive Strength (PxDS.y = 1)
TYPICAL LOW-LEVEL OUTPUT CURRENT TYPICAL LOW-LEVEL OUTPUT CURRENT
vs vs
LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT VOLTAGE
Figure 10. Figure 11.
TYPICAL HIGH-LEVEL OUTPUT CURRENT TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs vs
HIGH-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT VOLTAGE
Figure 12. Figure 13.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 49
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Crystal Oscillator, XT1, Low-Frequency Mode(1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 1, 0.075
TA= 25°C
Differential XT1 oscillator crystal fOSC = 32768 Hz, XTS = 0,
ΔIDVCC.LF current consumption from lowest XT1BYPASS = 0, XT1DRIVEx = 2, 3.0 V 0.170 µA
drive setting, LF mode TA= 25°C
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 3, 0.290
TA= 25°C
XT1 oscillator crystal frequency,
fXT1,LF0 XTS = 0, XT1BYPASS = 0 32768 Hz
LF mode
XT1 oscillator logic-level
fXT1,LF,SW square-wave input frequency, XTS = 0, XT1BYPASS = 1(2) (3) 10 32.768 50 kHz
LF mode XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 0, 210
fXT1,LF = 32768 Hz, CL,eff = 6 pF
Oscillation allowance for
OALF kΩ
LF crystals(4) XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 1, 300
fXT1,LF = 32768 Hz, CL,eff = 12 pF
XTS = 0, XCAPx = 0(6) 2
XTS = 0, XCAPx = 1 5.5
Integrated effective load
CL,eff pF
capacitance, LF mode(5) XTS = 0, XCAPx = 2 8.5
XTS = 0, XCAPx = 3 12.0
XTS = 0, Measured at ACLK,
Duty cycle, LF mode 30 70 %
fXT1,LF = 32768 Hz
Oscillator fault frequency,
fFault,LF XTS = 0(8) 10 10000 Hz
LF mode(7)
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 0, 1000
TA= 25°C,
CL,eff = 6 pF
tSTART,LF Startup time, LF mode 3.0 V ms
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 3, 500
TA= 25°C,
CL,eff = 12 pF
(1) To improve EMI on the XT1 oscillator, the following guidelines should be observed.
(a) Keep the trace between the device and the crystal as short as possible.
(b) Design a good ground plane around the oscillator pins.
(c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
(d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
(f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
(2) When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in
the Schmitt-trigger Inputs section of this datasheet.
(3) Maximum frequency of operation of the entire device cannot be exceeded.
(4) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the
XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following
guidelines, but should be evaluated based on the actual crystal selected for the application:
(a) For XT1DRIVEx = 0, CL,eff 6 pF
(b) For XT1DRIVEx = 1, 6 pF CL,eff 9 pF
(c) For XT1DRIVEx = 2, 6 pF CL,eff 10 pF
(d) For XT1DRIVEx = 3, CL,eff 6 pF
(5) Includes parasitic bond and package capacitance (approximately 2 pF per pin).
Because the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a
correct setup, the effective load capacitance should always match the specification of the used crystal.
(6) Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
(7) Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.
Frequencies in between might set the flag.
(8) Measured with logic-level input frequency but also applies to operation with crystals.
50 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Internal Very-Low-Power Low-Frequency Oscillator (VLO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
fVLO VLO frequency Measured at ACLK 1.8 V to 3.6 V 6 9.4 14 kHz
dfVLO/dTVLO frequency temperature drift Measured at ACLK(1) 1.8 V to 3.6 V 0.5 %/°C
dfVLO/dVCC VLO frequency supply voltage drift Measured at ACLK(2) 1.8 V to 3.6 V 4 %/V
Duty cycle Measured at ACLK 1.8 V to 3.6 V 40 50 60 %
(1) Calculated using the box method: (MAX(-40 to 85°C) MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C(40°C))
(2) Calculated using the box method: (MAX(1.8 to 3.6 V) MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V 1.8 V)
Internal Reference, Low-Frequency Oscillator (REFO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
IREFO REFO oscillator current consumption TA= 25°C 1.8 V to 3.6 V 3 µA
fREFO REFO frequency calibrated Measured at ACLK 1.8 V to 3.6 V 32768 Hz
Full temperature range 1.8 V to 3.6 V ±3.5 %
REFO absolute tolerance calibrated TA= 25°C 3 V ±1.5 %
dfREFO/dTREFO frequency temperature drift Measured at ACLK(1) 1.8 V to 3.6 V 0.01 %/°C
dfREFO/dVCC REFO frequency supply voltage drift Measured at ACLK(2) 1.8 V to 3.6 V 1.0 %/V
Duty cycle Measured at ACLK 1.8 V to 3.6 V 40 50 60 %
tSTART REFO startup time 40%/60% duty cycle 1.8 V to 3.6 V 25 µs
(1) Calculated using the box method: (MAX(-40 to 85°C) MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C(40°C))
(2) Calculated using the box method: (MAX(1.8 to 3.6 V) MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V 1.8 V)
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 51
01 2 34567
Typical DCO Frequency, V = 3.0 V, T = 25°C
CC A
DCORSEL
100
10
1
0.1
f – MHz
DCO
DCOx = 31
DCOx = 0
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
DCO Frequency
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
fDCO(0,0) DCO frequency (0, 0) DCORSELx = 0, DCOx = 0, MODx = 0 0.07 0.20 MHz
fDCO(0,31) DCO frequency (0, 31) DCORSELx = 0, DCOx = 31, MODx = 0 0.70 1.70 MHz
fDCO(1,0) DCO frequency (1, 0) DCORSELx = 1, DCOx = 0, MODx = 0 0.15 0.36 MHz
fDCO(1,31) DCO frequency (1, 31) DCORSELx = 1, DCOx = 31, MODx = 0 1.47 3.45 MHz
fDCO(2,0) DCO frequency (2, 0) DCORSELx = 2, DCOx = 0, MODx = 0 0.32 0.75 MHz
fDCO(2,31) DCO frequency (2, 31) DCORSELx = 2, DCOx = 31, MODx = 0 3.17 7.38 MHz
fDCO(3,0) DCO frequency (3, 0) DCORSELx = 3, DCOx = 0, MODx = 0 0.64 1.51 MHz
fDCO(3,31) DCO frequency (3, 31) DCORSELx = 3, DCOx = 31, MODx = 0 6.07 14.0 MHz
fDCO(4,0) DCO frequency (4, 0) DCORSELx = 4, DCOx = 0, MODx = 0 1.3 3.2 MHz
fDCO(4,31) DCO frequency (4, 31) DCORSELx = 4, DCOx = 31, MODx = 0 12.3 28.2 MHz
fDCO(5,0) DCO frequency (5, 0) DCORSELx = 5, DCOx = 0, MODx = 0 2.5 6.0 MHz
fDCO(5,31) DCO frequency (5, 31) DCORSELx = 5, DCOx = 31, MODx = 0 23.7 54.1 MHz
fDCO(6,0) DCO frequency (6, 0) DCORSELx = 6, DCOx = 0, MODx = 0 4.6 10.7 MHz
fDCO(6,31) DCO frequency (6, 31) DCORSELx = 6, DCOx = 31, MODx = 0 39.0 88.0 MHz
fDCO(7,0) DCO frequency (7, 0) DCORSELx = 7, DCOx = 0, MODx = 0 8.5 19.6 MHz
fDCO(7,31) DCO frequency (7, 31) DCORSELx = 7, DCOx = 31, MODx = 0 60 135 MHz
Frequency step between range
SDCORSEL SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO) 1.2 2.3 ratio
DCORSEL and DCORSEL + 1
Frequency step between tap
SDCO SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO) 1.02 1.12 ratio
DCO and DCO + 1
Duty cycle Measured at SMCLK 40 50 60 %
dfDCO/dT DCO frequency temperature drift fDCO = 1 MHz 0.1 %/°C
dfDCO/dVCC DCO frequency voltage drift fDCO = 1 MHz 1.9 %/V
Figure 14. Typical DCO frequency
52 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
PMM, Brown-Out Reset (BOR)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
BORHon voltage,
V(DVCC_BOR_IT) | dDVCC/dt|<3 V/s 1.45 V
DVCC falling level
BORHoff voltage,
V(DVCC_BOR_IT+) | dDVCC/dt|<3 V/s 0.80 1.30 1.50 V
DVCC rising level
V(DVCC_BOR_hys) BORHhysteresis 60 250 mV
Pulse length required at
tRESET RST/NMI pin to accept a 2 µs
reset
PMM, Core Voltage
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Core voltage, active
VCORE3(AM) 2.4 V DVCC 3.6 V 1.90 V
mode, PMMCOREV = 3
Core voltage, active
VCORE2(AM) 2.2 V DVCC 3.6 V 1.80 V
mode, PMMCOREV = 2
Core voltage, active
VCORE1(AM) 2.0 V DVCC 3.6 V 1.60 V
mode, PMMCOREV = 1
Core voltage, active
VCORE0(AM) 1.8 V DVCC 3.6 V 1.40 V
mode, PMMCOREV = 0
Core voltage, low-current
VCORE3(LPM) 2.4 V DVCC 3.6 V 1.94 V
mode, PMMCOREV = 3
Core voltage, low-current
VCORE2(LPM) 2.2 V DVCC 3.6 V 1.84 V
mode, PMMCOREV = 2
Core voltage, low-current
VCORE1(LPM) 2.0 V DVCC 3.6 V 1.64 V
mode, PMMCOREV = 1
Core voltage, low-current
VCORE0(LPM) 1.8 V DVCC 3.6 V 1.44 V
mode, PMMCOREV = 0
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 53
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
PMM, SVS High Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SVSHE = 0, DVCC = 3.6 V 0 nA
I(SVSH) SVS current consumption SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0 200
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1 1.5 µA
SVSHE = 1, SVSHRVL = 0 1.53 1.60 1.67
SVSHE = 1, SVSHRVL = 1 1.73 1.80 1.87
V(SVSH_IT)SVSHon voltage level(1) V
SVSHE = 1, SVSHRVL = 2 1.93 2.00 2.07
SVSHE = 1, SVSHRVL = 3 2.03 2.10 2.17
SVSHE = 1, SVSMHRRL = 0 1.60 1.70 1.80
SVSHE = 1, SVSMHRRL = 1 1.80 1.90 2.00
SVSHE = 1, SVSMHRRL = 2 2.00 2.10 2.20
SVSHE = 1, SVSMHRRL = 3 2.10 2.20 2.30
V(SVSH_IT+) SVSHoff voltage level(1) V
SVSHE = 1, SVSMHRRL = 4 2.25 2.35 2.50
SVSHE = 1, SVSMHRRL = 5 2.52 2.65 2.78
SVSHE = 1, SVSMHRRL = 6 2.85 3.00 3.15
SVSHE = 1, SVSMHRRL = 7 2.85 3.00 3.15
SVSHE = 1, dVDVCC/dt = 10 mV/µs, 2.5
SVSHFP = 1
tpd(SVSH) SVSHpropagation delay µs
SVSHE = 1, dVDVCC/dt = 1 mV/µs, 20
SVSHFP = 0
SVSHE = 0 1, dVDVCC/dt = 10 mV/µs, 12.5
SVSHFP = 1
t(SVSH) SVSHon/off delay time µs
SVSHE = 0 1, dVDVCC/dt = 1 mV/µs, 100
SVSHFP = 0
dVDVCC/dt DVCC rise time 0 1000 V/s
(1) The SVSHsettings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage
Supervisor chapter in the CC430 Family User's Guide (SLAU259) on recommended settings and usage.
54 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
PMM, SVM High Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SVMHE = 0, DVCC = 3.6 V 0 nA
I(SVMH) SVMHcurrent consumption SVMHE= 1, DVCC = 3.6 V, SVMHFP = 0 200
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1 1.5 µA
SVMHE = 1, SVSMHRRL = 0 1.60 1.70 1.80
SVMHE = 1, SVSMHRRL = 1 1.80 1.90 2.00
SVMHE = 1, SVSMHRRL = 2 2.00 2.10 2.20
SVMHE = 1, SVSMHRRL = 3 2.10 2.20 2.30
V(SVMH) SVMHon/off voltage level(1) SVMHE = 1, SVSMHRRL = 4 2.25 2.35 2.50 V
SVMHE = 1, SVSMHRRL = 5 2.52 2.65 2.78
SVMHE = 1, SVSMHRRL = 6 2.85 3.00 3.15
SVMHE = 1, SVSMHRRL = 7 2.85 3.00 3.15
SVMHE = 1, SVMHOVPE = 1 3.75
SVMHE = 1, dVDVCC/dt = 10 mV/µs, 2.5
SVMHFP = 1
tpd(SVMH) SVMHpropagation delay µs
SVMHE = 1, dVDVCC/dt = 1 mV/µs, 20
SVMHFP = 0
SVMHE = 0 1, dVDVCC/dt = 10 mV/µs, 12.5
SVMHFP = 1
t(SVMH) SVMHon/off delay time µs
SVMHE = 0 1, dVDVCC/dt = 1 mV/µs, 100
SVMHFP = 0
(1) The SVMHsettings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage
Supervisor chapter in the CC430 Family User's Guide (SLAU259) on recommended settings and usage.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 55
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
PMM, SVS Low Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SVSLE = 0, PMMCOREV = 2 0 nA
I(SVSL) SVSLcurrent consumption SVSLE = 1, PMMCOREV = 2, SVSLFP = 0 200 nA
SVSLE = 1, PMMCOREV = 2, SVSLFP = 1 1.5 µA
SVSLE = 1, dVCORE/dt = 10 mV/µs, 2.5
SVSLFP = 1
tpd(SVSL) SVSLpropagation delay µs
SVSLE = 1, dVCORE/dt = 1 mV/µs, 20
SVSLFP = 0
SVSLE = 0 1, dVCORE/dt = 10 mV/µs, 12.5
SVSLFP = 1
t(SVSL) SVSLon/off delay time µs
SVSLE = 0 1, dVCORE/dt = 1 mV/µs, 100
SVSLFP = 0
PMM, SVM Low Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SVMLE = 0, PMMCOREV = 2 0 nA
I(SVML) SVMLcurrent consumption SVMLE= 1, PMMCOREV = 2, SVMLFP = 0 200 nA
SVMLE= 1, PMMCOREV = 2, SVMLFP = 1 1.5 µA
SVMLE = 1, dVCORE/dt = 10 mV/µs, 2.5
SVMLFP = 1
tpd(SVML) SVMLpropagation delay µs
SVMLE = 1, dVCORE/dt = 1 mV/µs, 20
SVMLFP = 0
SVMLE = 0 1, dVCORE/dt = 10 mV/µs, 12.5
SVMLFP = 1
t(SVML) SVMLon/off delay time µs
SVMLE = 0 1, dVCORE/dt = 1 mV/µs, 100
SVMLFP = 0
Wake-up from Low Power Modes and Reset
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Wake-up time from PMMCOREV = SVSMLRRL = n, fMCLK 4.0 MHz 5
tWAKE-UP- LPM2, LPM3, or LPM4 where n = 0, 1, 2, or 3, µs
FAST fMCLK <4.0 MHz 6
to active mode(1) SVSLFP = 1
Wake-up time from
tWAKE-UP- PMMCOREV = SVSMLRRL = n, where n = 0, 1, 2, or 3,
LPM2, LPM3 or LPM4 to 150 165 µs
SLOW SVSLFP = 0
active mode(2)
Wake-up time from RST
tWAKE-UP- or BOR event to active 2 3 ms
RESET mode(3)
(1) This value represents the time from the wakeup event to the first active edge of MCLK. The wakeup time depends on the performance
mode of the low side supervisor (SVSL) and low side monitor (SVML). Fastest wakeup times are possible with SVSLand SVMLin full
performance mode or disabled when operating in AM, LPM0, and LPM1. Various options are available for SVSLand SVMLwhile
operating in LPM2, LPM3, and LPM4. See the Power Management Module and Supply Voltage Supervisor chapter in the CC430 Family
User's Guide (SLAU259).
(2) This value represents the time from the wakeup event to the first active edge of MCLK. The wakeup time depends on the performance
mode of the low side supervisor (SVSL) and low side monitor (SVML). In this case, the SVSLand SVMLare in normal mode (low current)
mode when operating in AM, LPM0, and LPM1. Various options are available for SVSLand SVMLwhile operating in LPM2, LPM3, and
LPM4. See the Power Management Module and Supply Voltage Supervisor chapter in the CC430 Family User's Guide (SLAU259).
(3) This value represents the time from the wakeup event to the reset vector execution.
56 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Timer_A
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
Internal: SMCLK, ACLK 1.8 V/
fTA Timer_A input clock frequency External: TACLK 25 MHz
3.0 V
Duty cycle = 50% ±10%
All capture inputs. 1.8 V/
tTA,cap Timer_A capture timing Minimum pulse width required for 20 ns
3.0 V
capture.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 57
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
USCI (UART Mode) Recommended Operating Conditions
PARAMETER CONDITIONS VCC MIN TYP MAX UNIT
Internal: SMCLK, ACLK
fUSCI USCI input clock frequency External: UCLK fSYSTEM MHz
Duty cycle = 50% ±10%
BITCLK clock frequency
fBITCLK 1 MHz
(equals baud rate in MBaud)
USCI (UART Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
2.2 V 50 600
tτUART receive deglitch time(1) ns
3 V 50 600
(1) Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are
correctly recognized their width should exceed the maximum specification of the deglitch time.
USCI (SPI Master Mode) Recommended Operating Conditions
PARAMETER CONDITIONS VCC MIN TYP MAX UNIT
Internal: SMCLK, ACLK
fUSCI USCI input clock frequency fSYSTEM MHz
Duty cycle = 50% ±10%
USCI (SPI Master Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
(see Note (1),Figure 15 and Figure 16)PMMCOR
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
EVx
1.8 V 55
0 ns
3.0 V 38
tSU,MI SOMI input data setup time 2.4 V 30
3 ns
3.0 V 25
1.8 V 0
0 ns
3.0 V 0
tHD,MI SOMI input data hold time 2.4 V 0
3 ns
3.0 V 0
1.8 V 20
0 ns
3.0 V 18
UCLK edge to SIMO valid,
tVALID,MO SIMO output data valid time(2) CL= 20 pF 2.4 V 16
3 ns
3.0 V 15
1.8 V -10
0 ns
3.0 V -8
tHD,MO SIMO output data hold time(3) CL= 20 pF 2.4 V -10
3 ns
3.0 V -8
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)).
For the slave's parameters tSU,SI(Slave) and tVALID,SO(Slave) see the SPI parameters of the attached slave.
(2) Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams
in Figure 15 and Figure 16.
(3) Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in
Figure 15 and Figure 16.
58 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
tSU,MI
tHD,MI
UCLK
SOMI
SIMO
tVALID,MO
tHD,MO
CKPL =0
CKPL =1
tLO/HI tLO/HI
1/fUCxCLK
tSU,MI
tHD,MI
UCLK
SOMI
SIMO
tVALID,MO
CKPL =0
CKPL =1
1/fUCxCLK
tHD,MO
tLO/HI tLO/HI
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Figure 15. SPI Master Mode, CKPH = 0
Figure 16. SPI Master Mode, CKPH = 1
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 59
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
USCI (SPI Slave Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
(see Note (1),Figure 17 and Figure 18)PMMCOR
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
EVx
1.8 V 11
0 ns
3.0 V 8
tSTE,LEAD STE lead time, STE low to clock 2.4 V 7
33.0 V 6
1.8 V 3
0 ns
3.0 V 3
STE lag time, Last clock to STE
tSTE,LAG high 2.4 V 3
33.0 V 3
1.8 V 66
0 ns
3.0 V 50
STE access time, STE low to
tSTE,ACC SOMI data out 2.4 V 36
33.0 V 30
1.8 V 30
0 ns
3.0 V 23
STE disable time, STE high to
tSTE,DIS SOMI high impedance 2.4 V 16
33.0 V 13
1.8 V 5
0 ns
3.0 V 5
tSU,SI SIMO input data setup time 2.4 V 2
3 ns
3.0 V 2
1.8 V 5
0 ns
3.0 V 5
tHD,SI SIMO input data hold time 2.4 V 5
3 ns
3.0 V 5
1.8 V 76
0 ns
3.0 V 60
UCLK edge to SOMI valid,
tVALID,SO SOMI output data valid time(2) CL= 20 pF 2.4 V 44
3 ns
3.0 V 40
1.8 V 18
0 ns
3.0 V 12
tHD,SO SOMI output data hold time(3) CL= 20 pF 2.4 V 10
3 ns
3.0 V 8
(1) fUCxCLK = 1/2tLO/HI with tLO/HI max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)).
For the master's parameters tSU,MI(Master) and tVALID,MO(Master) see the SPI parameters of the attached master.
(2) Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams
in Figure 15 and Figure 16.
(3) Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 15
and Figure 16.
60 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
STE
UCLK
CKPL =0
CKPL =1
SOMI
SIMO
tSU,SI
tHD,SI
tVALID,SO
tSTE,LEAD
1/fUCxCLK
tLO/HI tLO/HI
tSTE,LAG
tSTE,DIS
tSTE,ACC
tHD,SO
STE
UCLK
CKPL =0
CKPL =1
SOMI
SIMO
tSU,SI
tHD,SI
tVALID,SO
tSTE,LEAD
1/fUCxCLK
tSTE,LAG
tSTE,DIS
tSTE,ACC
tHD,MO
tLO/HI tLO/HI
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Figure 17. SPI Slave Mode, CKPH = 0
Figure 18. SPI Slave Mode, CKPH = 1
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 61
SDA
SCL
tHD,DAT
tSU,DAT
tHD,STA
tHIGH
tLOW
tBUF
tHD,STA
tSU,STA
tSP
tSU,STO
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
USCI (I2C Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 19)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
Internal: SMCLK, ACLK
fUSCI USCI input clock frequency External: UCLK fSYSTEM MHz
Duty cycle = 50% ±10%
fSCL SCL clock frequency 2.2 V/3 V 0 400 kHz
fSCL 100 kHz 4.0
tHD,STA Hold time (repeated) START 2.2 V/3 V µs
fSCL >100 kHz 0.6
fSCL 100 kHz 4.7
tSU,STA Setup time for a repeated START 2.2 V/3 V µs
fSCL >100 kHz 0.6
tHD,DAT Data hold time 2.2 V/3 V 0 ns
tSU,DAT Data setup time 2.2 V/3 V 250 ns
fSCL 100 kHz 4.0
tSU,STO Setup time for STOP 2.2 V/3 V µs
fSCL >100 kHz 0.6
2.2 V 50 600
tSP Pulse width of spikes suppressed by input filter ns
3 V 50 600
Figure 19. I2C Mode Timing
62 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
LCD_B Recommended Operating Conditions
PARAMETER CONDITIONS MIN NOM MAX UNIT
Supply voltage range, LCDCPEN=1, 0000 <VLCDx 1111 (charge
VCC,LCD_B,CP en,3.6 charge pump enabled, 2.2 3.6 V
pump enabled, VLCD3.6 V)
VLCD 3.6 V
Supply voltage range, LCDCPEN=1, 0000 <VLCDx 1100 (charge
VCC,LCD_B,CP en,3.3 charge pump enabled, 2.0 3.6 V
pump enabled, VLCD3.3 V)
VLCD3.3 V
Supply voltage range,
VCC,LCD_B,int. bias internal biasing, LCDCPEN=0, VLCDEXT=0 2.4 3.6 V
charge pump disabled
Supply voltage range,
VCC,LCD_B,ext. bias external biasing, LCDCPEN=0, VLCDEXT=0 2.4 3.6 V
charge pump disabled
Supply voltage range,
external LCD voltage,
VCC,LCD_B,VLCDEXT internal or external LCDCPEN=0, VLCDEXT=1 2.0 3.6 V
biasing, charge pump
disabled
External LCD voltage
at LCDCAP/R33,
VLCDCAP/R33 internal or external LCDCPEN=0, VLCDEXT=1 2.4 3.6 V
biasing, charge pump
disabled
Capacitor on LCDCAP LCDCPEN=1, VLCDx >0000 (charge pump
CLCDCAP when charge pump 4.7 4.7 10 µF
enabled)
enabled
LCD frame frequency fLCD = 2 ×mux ×fFRAME with mux= 1 (static),
fFrame 0 100 Hz
range 2, 3, 4.
ACLK input frequency
fACLK,in 30 32 40 kHz
range
CPanel Panel capacitance 100-Hz frame frequency 10000 pF
Analog input voltage
VR33 LCDCPEN=0, VLCDEXT=1 2.4 VCC+0.2 V
at R33 VR03 +
Analog input voltage
VR23,1/3bias LCDREXT=1, LCDEXTBIAS=1, LCD2B=0 VR13 2/3*(VR33 VR33 V
at R23 -VR03)
Analog input voltage VR03 +
VR13,1/3bias at R13 with 1/3 LCDREXT=1, LCDEXTBIAS=1, LCD2B=0 VR03 1/3*(VR33 VR23 V
biasing -VR03)
Analog input voltage VR03 +
VR13,1/2bias at R13 with 1/2 LCDREXT=1, LCDEXTBIAS=1, LCD2B=1 VR03 1/2*(VR33 VR33 V
biasing -VR03)
Analog input voltage
VR03 R0EXT=1 VSS V
at R03
Voltage difference
VLCD-VR03 between VLCD and LCDCPEN=0, R0EXT=1 2.4 VCC+0.2 V
R03
External LCD
reference voltage
VLCDREF/R13 VLCDREFx = 01 0.8 1.2 1.5 V
applied at
LCDREF/R13
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 63
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
LCD_B Electrical Characteristics
over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
VLCD LCD voltage VLCDx=0000, VLCDEXT=0 2.4 V to VCC V
3.6 V
LCDCPEN=1, VLCDx=0001 2.0 V to 2.54 V
3.6 V
LCDCPEN=1, VLCDx=0010 2.0 V to 2.60 V
3.6 V
LCDCPEN=1, VLCDx=0011 2.0 V to 2.66 V
3.6 V
LCDCPEN=1, VLCDx=0100 2.0 V to 2.72 V
3.6 V
LCDCPEN=1, VLCDx=0101 2.0 V to 2.78 V
3.6 V
LCDCPEN=1, VLCDx=0110 2.0 V to 2.84 V
3.6 V
LCDCPEN=1, VLCDx=0111 2.0 V to 2.90 V
3.6 V
LCDCPEN=1, VLCDx=1000 2.0 V to 2.96 V
3.6 V
LCDCPEN=1, VLCDx=1001 2.0 V to 3.02 V
3.6 V
LCDCPEN=1, VLCDx=1010 2.0 V to 3.08 V
3.6 V
LCDCPEN=1, VLCDx=1011 2.0 V to 3.14 V
3.6 V
LCDCPEN=1, VLCDx=1100 2.0 V to 3.20 V
3.6 V
LCDCPEN=1, VLCDx=1101 2.2 V to 3.26 V
3.6 V
LCDCPEN=1, VLCDx=1110 2.2 V to 3.32 V
3.6 V
LCDCPEN=1, VLCDx=1111 2.2 V to 3.38 3.6 V
3.6 V
ICC,Peak,CP Peak supply currents due to LCDCPEN=1, VLCDx=1111 2.2V 200 µA
charge pump activities
tLCD,CP,on Time to charge CLCD when CLCDCAP=4.7µF, LCDCPEN=01, 2.2V 100 500 ms
discharge VLCDx=1111
ICP,Load Max. charge pump load current LCDCPEN=1, VLCDx=1111 2.2V 50 µA
RLCD,Seg LCD driver output impedance, LCDCPEN=1, VLCDx=1000, 2.2V 10 k
segment lines ILOAD=±10µA
RLCD,COM LCD driver output impedance, LCDCPEN=1, VLCDx=1000, 2.2V 10 k
common lines ILOAD=±10µA
64 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
12-Bit ADC, Power Supply and Input Range Conditions
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
AVCC and DVCC are connected together,
Analog supply voltage
AVCC AVSS and DVSS are connected together, 2.2 3.6 V
Full performance V(AVSS) = V(DVSS) = 0 V
V(Ax) Analog input voltage range(2) All ADC12 analog input pins Ax 0 AVCC V
fADC12CLK = 5.0 MHz, ADC12ON = 1, 2.2 V 125 155
Operating supply current into
IADC12_A REFON = 0, SHT0 = 0, SHT1 = 0, µA
AVCC terminal(3) 3 V 150 220
ADC12DIV = 0
Only one terminal Ax can be selected at one
CIInput capacitance 2.2 V 20 25 pF
time
RIInput MUX ON resistance 0 V VAx AVCC 10 200 1900 Ω
(1) The leakage current is specified by the digital I/O input leakage.
(2) The analog input voltage range must be within the selected reference voltage range VR+ to VRfor valid conversion results. If the
reference voltage is supplied by an external source or if the internal reference voltage is used and REFOUT = 1, then decoupling
capacitors are required. See REF, External Reference and REF, Built-In Reference.
(3) The internal reference supply current is not included in current consumption parameter IADC12_A.
12-Bit ADC, Timing Parameters
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
For specified performance of ADC12 linearity
parameters using an external reference voltage or 0.45 4.8 5.0
AVCC as reference.(1)
fADC12CLK ADC conversion clock For specified performance of ADC12 linearity 2.2 V/3 V MHz
0.45 2.4 4.0
parameters using the internal reference.(2)
For specified performance of ADC12 linearity 0.45 2.4 2.7
parameters using the internal reference.(3)
Internal ADC12
fADC12OSC ADC12DIV = 0, fADC12CLK = fADC12OSC 2.2 V/3 V 4.2 4.8 5.4 MHz
oscillator(4)
REFON = 0, Internal oscillator, 2.2 V/3 V 2.4 3.1
fADC12OSC = 4.2 MHz to 5.4 MHz
tCONVERT Conversion time µs
External fADC12CLK from ACLK, MCLK or SMCLK, (5)
ADC12SSEL 0
RS= 400 Ω, RI= 1000 Ω, CI= 30 pF,
tSample Sampling time 2.2 V/3 V 1000 ns
τ= [RS+ RI]×CI(6)
(1) REFOUT = 0, external reference voltage: SREF2 = 0, SREF1 = 1, SREF0 = 0. AVCC as reference voltage: SREF2 = 0, SREF1 = 0,
SREF0 = 0. The specified performance of the ADC12 linearity is ensured when using the ADC12OSC. For other clock sources, the
specified performance of the ADC12 linearity is ensured with fADC12CLK maximum of 5.0 MHz.
(2) SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 1
(3) SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 0. The specified performance of the ADC12 linearity is ensured when
using the ADC12OSC divided by 2.
(4) The ADC12OSC is sourced directly from MODOSC inside the UCS.
(5) 13 ×ADC12DIV ×1/fADC12CLK
(6) Approximately ten Tau (τ) are needed to get an error of less than ±0.5 LSB:
tSample = ln(2n+1) x (RS+ RI)×CI+ 800 ns, where n = ADC resolution = 12, RS= external source resistance
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 65
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
12-Bit ADC, Linearity Parameters Using an External Reference Voltage or AVCC as Reference
Voltage
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
1.4 V dVREF 1.6 V(2) ±2.0
EIIntegral linearity error(1) 2.2 V/3 V LSB
1.6 V <dVREF(2) ±1.7
EDDifferential linearity error(1) (2) 2.2 V/3 V ±1.0 LSB
dVREF 2.2 V(2) 2.2 V/3 V ±1.0 ±2.0
EOOffset error(3) LSB
dVREF >2.2 V(2) 2.2 V/3 V ±1.0 ±2.0
EGGain error(3) (2) 2.2 V/3 V ±1.0 ±2.0 LSB
dVREF 2.2 V(2) 2.2 V/3 V ±1.4 ±3.5
ETTotal unadjusted error LSB
dVREF >2.2 V(2) 2.2 V/3 V ±1.4 ±3.5
(1) Parameters are derived using the histogram method.
(2) The external reference voltage is selected by: SREF2 = 0 or 1, SREF1 = 1, SREF0 = 0. dVREF = VR+ - VR-, VR+ <AVCC, VR- >AVSS.
Unless otherwise mentioned, dVREF >1.5 V. Impedance of the external reference voltage R <100 Ωand two decoupling capacitors,
10 µF and 100 nF, should be connected to VREF+/VREF- to decouple the dynamic current. See also the CC430 Family User's Guide
(SLAU259).
(3) Parameters are derived using a best fit curve.
12-Bit ADC, Linearity Parameters Using the Internal Reference Voltage
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS(1) VCC MIN TYP MAX UNIT
ADC12SR = 0, REFOUT = 1 fADC12CLK 4.0 MHz ±1.7
Integral linearity
EI2.2 V/3 V LSB
error(2) ADC12SR = 0, REFOUT = 0 fADC12CLK 2.7 MHz ±2.5
ADC12SR = 0, REFOUT = 1 fADC12CLK 4.0 MHz -1.0 +2.0
Differential
EDADC12SR = 0, REFOUT = 1 fADC12CLK 2.7 MHz 2.2 V/3 V -1.0 +1.5 LSB
linearity error(2) ADC12SR = 0, REFOUT = 0 fADC12CLK 2.7 MHz -1.0 +2.5
ADC12SR = 0, REFOUT = 1 fADC12CLK 4.0 MHz ±1.0 ±2.0
EOOffset error(3) 2.2 V/3 V LSB
ADC12SR = 0, REFOUT = 0 fADC12CLK 2.7 MHz ±1.0 ±2.0
ADC12SR = 0, REFOUT = 1 fADC12CLK 4.0 MHz ±1.0 ±2.0 LSB
EGGain error(3) 2.2 V/3 V
ADC12SR = 0, REFOUT = 0 fADC12CLK 2.7 MHz ±1.5%(4) VREF
ADC12SR = 0, REFOUT = 1 fADC12CLK 4.0 MHz ±1.4 ±3.5 LSB
Total unadjusted
ET2.2 V/3 V
error ADC12SR = 0, REFOUT = 0 fADC12CLK 2.7 MHz ±1.5%(4) VREF
(1) The internal reference voltage is selected by: SREF2 = 0 or 1, SREF1 = 1, SREF0 = 1. dVREF = VR+ - VR-.
(2) Parameters are derived using the histogram method.
(3) Parameters are derived using a best fit curve.
(4) The gain error and total unadjusted error are dominated by the accuracy of the integrated reference module absolute accuracy. In this
mode the reference voltage used by the ADC12_A is not available on a pin.
66 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
500
550
600
650
700
750
800
850
900
950
1000
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80
Typical Temperature Sensor Voltage - mV
AmbientTemperature- ˚C
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
12-Bit ADC, Temperature Sensor and Built-In VMID (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
2.2 V 680
ADC12ON = 1, INCH = 0Ah,
VSENSOR See (2) (3) mV
TA= 0°C3 V 680
2.2 V 2.25
TCSENSOR See (3) ADC12ON = 1, INCH = 0Ah mV/°C
3 V 2.25
2.2 V 30
Sample time required if ADC12ON = 1, INCH = 0Ah,
tSENSOR(sample) µs
channel 10 is selected(4) Error of conversion result 1 LSB 3 V 30
AVCC divider at channel 11, ADC12ON = 1, INCH = 0Bh 0.48 0.5 0.52 VAVCC
VAVCC factor
VMID 2.2 V 1.06 1.1 1.14
AVCC divider at channel 11 ADC12ON = 1, INCH = 0Bh V
3 V 1.44 1.5 1.56
Sample time required if ADC12ON = 1, INCH = 0Bh,
tVMID(sample) 2.2 V/3 V 1000 ns
channel 11 is selected(5) Error of conversion result 1 LSB
(1) The temperature sensor is provided by the REF module. See the REF module parametric, IREF+, regarding the current consumption of
the temperature sensor.
(2) The temperature sensor offset can be as much as ±20°C. A single-point calibration is recommended in order to minimize the offset error
of the built-in temperature sensor.
(3) The device descriptor structure contains calibration values for 30°C±3°C and 85°C±3°C for each of the available reference voltage
levels. The sensor voltage can be computed as VSENSE = TCSENSOR * (Temperature, °C) + VSENSOR, where TCSENSOR and VSENSOR can
be computed from the calibration values for higher accuracy.
(4) The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on).
(5) The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.
Figure 20. Typical Temperature Sensor Voltage
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 67
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
REF, External Reference
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
VeREF+ Positive external reference voltage input VeREF+ >VREF/VeREF(2) 1.4 AVCC V
VREF/VeREFNegative external reference voltage input VeREF+ >VREF/VeREF(3) 0 1.2 V
(VeREF+ Differential external reference voltage VeREF+ >VREF/VeREF(4) 1.4 AVCC V
VREF/VeREF) input 1.4 V VeREF+ VAVCC ,
VeREF= 0 V
fADC12CLK = 5 2.2 V/3 V ±8.5 ±26 µA
MHz,ADC12SHTx = 1h,
Conversion rate 200ksps
IVeREF+ Static input current
IVREF/VeREF1.4 V VeREF+ VAVCC ,
VeREF= 0 V
fADC12CLK = 5 2.2 V/3 V ±1µA
MHz,ADC12SHTx = 8h,
Conversion rate 20ksps
Capacitance at VREF+/- terminal, external
CVREF+/- 10 µF
reference(5)
(1) The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, Ci, is also
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.
(2) The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced
accuracy requirements.
(3) The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced
accuracy requirements.
(4) The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with
reduced accuracy requirements.
(5) Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external
reference source if it is used for the ADC12_A. See also the CC430 Family User's Guide (SLAU259).
68 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
REF, Built-In Reference
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
REFVSEL = 2 for 2.5 V
REFON = REFOUT = 1 3 V 2.41 ±1.5%
IVREF+= 0 A
REFVSEL = 1 for 2.0 V
Positive built-in reference
VREF+ REFON = REFOUT = 1 3 V 1.93 ±1.5% V
voltage output IVREF+= 0 A
REFVSEL = 0 for 1.5 V
REFON = REFOUT = 1 2.2 V/ 3 V 1.45 ±1.5%
IVREF+= 0 A
REFVSEL = 0 for 1.5 V, reduced performance 1.8
AVCC minimum voltage, REFVSEL = 0 for 1.5 V 2.2
AVCC(min) Positive built-in reference V
REFVSEL = 1 for 2.0 V 2.3
active REFVSEL = 2 for 2.5 V 2.8
REFON = 1, REFOUT = 0, REFBURST = 0 3 V 100 140 µA
Operating supply current into
IREF+ AVCC terminal(2) (3) REFON = 1, REFOUT = 1, REFBURST = 0 3 V 0.9 1.5 mA
REFVSEL = 0, 1, 2
Load-current regulation, IVREF+ = +10 µA/1000 µA
IL(VREF+) 2500 µV/mA
VREF+ terminal(4) AVCC = AVCC (min) for each reference level.
REFVSEL = 0, 1, 2; REFON = REFOUT = 1
Capacitance at VREF+
CVREF+ REFON = REFOUT = 1 20 100 pF
terminals, internal reference IVREF+ = 0 A
Temperature coefficient of ppm/
TCREF+ REFVSEL = 0, 1, 2; 30 50
built-in reference(5) °C
REFON = 1, REFOUT = 0 or 1
AVCC = AVCC (min) - AVCC(max)
Power supply rejection ratio TA= 25 °C
PSRR_DC 120 300 µV/V
(DC) REFVSEL = 0, 1, 2;
REFON = 1, REFOUT = 0 or 1
AVCC = AVCC (min) - AVCC(max)
TA= 25 °C
Power supply rejection ratio
PSRR_AC f = 1 kHz, ΔVpp = 100 mV 6.4 mV/V
(AC) REFVSEL = 0, 1, 2;
REFON = 1, REFOUT = 0 or 1
AVCC = AVCC (min) - AVCC(max)
REFVSEL = 0, 1, 2; 75
REFOUT = 0, REFON = 0 1
Settling time of reference
tSETTLE µs
AVCC = AVCC (min) - AVCC(max)
voltage(6) CVREF = CVREF(max) 75
REFVSEL = 0, 1, 2;
REFOUT = 1, REFON = 0 1
(1) The reference is supplied to the ADC by the REF module and is buffered locally inside the ADC. The ADC uses two internal buffers, one
smaller and one larger for driving the VREF+ terminal. When REFOUT = 1, the reference is available at the VREF+ terminal, as well as,
used as the reference for the conversion and utilizes the larger buffer. When REFOUT = 0, the reference is only used as the reference
for the conversion and utilizes the smaller buffer.
(2) The internal reference current is supplied via terminal AVCC. Consumption is independent of the ADC12ON control bit, unless a
conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion. REFOUT = 0 represents
the current contribution of the smaller buffer. REFOUT = 1 represents the current contribution of the larger buffer without external load.
(3) The temperature sensor is provided by the REF module. Its current is supplied via terminal AVCC and is equivalent to IREF+ with REFON
=1 and REFOUT = 0.
(4) Contribution only due to the reference and buffer including package. This does not include resistance due to PCB trace, etc.
(5) Calculated using the box method: (MAX(-40 to 85°C) MIN(-40 to 85°C)) / MIN(-40 to 85°C)/(85°C(40°C)).
(6) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. The settling time depends on the external
capacitive load when REFOUT = 1.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 69
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Comparator B
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT
VCC Supply voltage 1.8 3.6 V
1.8 V 40
CBPWRMD = 00 2.2 V 30 50
Comparator operating supply
IAVCC_COMP current into AVCC, Excludes 3.0 V 40 65 µA
reference resistor ladder CBPWRMD = 01 2.2/3.0 V 10 30
CBPWRMD = 10 2.2/3.0 V 0.1 0.5
Quiescent current of local
IAVCC_REF reference voltage amplifier into CBREFACC = 1, CBREFLx = 01 22 µA
AVCC
VIC Common mode input range 0 VCC-1 V
CBPWRMD = 00 ±20 mV
VOFFSET Input offset voltage CBPWRMD = 01, 10 ±10 mV
CIN Input capacitance 5 pF
ON - switch closed 3 4 kΩ
RSIN Series input resistance OFF - switch opened 30 MΩ
CBPWRMD = 00, CBF = 0 450 ns
tPD Propagation delay, response time CBPWRMD = 01, CBF = 0 600 ns
CBPWRMD = 10, CBF = 0 50 µs
CBPWRMD = 00, CBON = 1, 0.35 0.6 1.0 µs
CBF = 1, CBFDLY = 00
CBPWRMD = 00, CBON = 1, 0.6 1.0 1.8 µs
CBF = 1, CBFDLY = 01
Propagation delay with filter
tPD,filter active CBPWRMD = 00, CBON = 1, 1.0 1.8 3.4 µs
CBF = 1, CBFDLY = 10
CBPWRMD = 00, CBON = 1, 1.8 3.4 6.5 µs
CBF = 1, CBFDLY = 11
Comparator enable time, settling CBON = 0 to CBON = 1,
tEN_CMP 1 2 µs
time CBPWRMD = 00, 01, 10
tEN_REF Resistor reference enable time CBON = 0 to CBON = 1 0.3 1.5 µs
VIN = reference into resistor ladder,
VCB_REF Reference voltage for a given tap VIN ×(n+1) / 32 V
n = 0 to 31
70 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Flash Memory
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TEST
PARAMETER MIN TYP MAX UNIT
CONDITIONS
DVCC(PGM/ERASE) Program and erase supply voltage 1.8 3.6 V
IPGM Average supply current from DVCC during program 3 5 mA
IERASE Average supply current from DVCC during erase 2 mA
IMERASE, IBANK Average supply current from DVCC during mass erase or bank erase 2 mA
tCPT Cumulative program time(1) 16 ms
Program/erase endurance 104105cycles
tRetention Data retention duration TJ= 25°C 100 years
tWord Word or byte program time(2) 64 85 µs
tBlock, 0 Block program time for first byte or word(2) 49 65 µs
Block program time for each additional byte or word, except for last
tBlock, 1(N1) 37 49 µs
byte or word(2)
tBlock, N Block program time for last byte or word(2) 55 73 µs
Erase time for segment erase, mass erase, and bank erase when
tErase 23 32 ms
available(2)
MCLK frequency in marginal read mode
fMCLK,MGR 0 1 MHz
(FCTL4.MGR0 = 1 or FCTL4. MGR1 = 1)
(1) The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming
methods: individual word/byte write and block write modes.
(2) These values are hardwired into the flash controller's state machine.
JTAG and Spy-Bi-Wire Interface
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TEST
PARAMETER MIN TYP MAX UNIT
CONDITIONS
fSBW Spy-Bi-Wire input frequency 2.2 V/3 V 0 20 MHz
tSBW,Low Spy-Bi-Wire low clock pulse length 2.2 V/3 V 0.025 15 µs
Spy-Bi-Wire enable time (TEST high to acceptance of first clock
tSBW, En 2.2 V/3 V 1 µs
edge)(1)
tSBW,Rst Spy-Bi-Wire return to normal operation time 15 100 µs
2.2 V 0 5 MHz
fTCK TCK input frequency - 4-wire JTAG(2) 3 V 0 10 MHz
Rinternal Internal pull-down resistance on TEST 2.2 V/3 V 45 60 80 kΩ
(1) Tools accessing the Spy-Bi-Wire interface need to wait for the minimum tSBW,En time after pulling the TEST/SBWTCK pin high before
applying the first SBWTCK clock edge.
(2) fTCK may be restricted to meet the timing requirements of the module selected.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 71
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
RF1A CC1101-Based Radio Parameters
Recommended Operating Conditions
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VCC Supply voltage range during radio operation 2.0 3.6 V
PMMCOREVx Core voltage range, PMMCOREVx setting during radio operation 2 3
300 348
RF frequency range 389(1) 464 MHz
779 928
2-FSK 0.6 500
Data rate 2-GFSK, OOK, and ASK 0.6 250 kBaud
(Shaped) MSK (also known as differential offset QPSK)(2) 26 500
RF crystal frequency 26 26 27 MHz
RF crystal tolerance Total tolerance including initial tolerance, crystal loading, aging and ±40 ppm
temperature dependency.(3)
RF crystal load capacitance 10 13 20 pF
RF crystal effective series 100 Ω
resistance
(1) If using a 27-MHz crystal, the lower frequency limit for this band is 392 MHz.
(2) If using optional Manchester encoding, the data rate in kbps is half the baud rate.
(3) The acceptable crystal tolerance depends on frequency band, channel bandwidth, and spacing. Also see Design Note DN005 -- CC11xx
Sensitivity versus Frequency Offset and Crystal Accuracy, literature number SWRA122.
RF Crystal Oscillator, XT2
TA= 25°C, VCC = 3 V (unless otherwise noted)(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Start-up time(2) 150 810 µs
Duty cycle 45 50 55 %
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 48).
(2) The start-up time depends to a very large degree on the used crystal.
Current Consumption, Reduced-Power Modes
TA= 25°C, VCC = 3 V (unless otherwise noted)(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Current RF crystal oscillator only (e.g., SLEEP state with MCSM0.OSC_FORCE_ON = 1) 100 µA
consumption IDLE state (including RF crystal oscillator) 1.7 mA
FSTXON state (only the frequency synthesizer is running)(2) 9.5 mA
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 48).
(2) This current consumption is also representative of other intermediate states when going from IDLE to RX or TX, including the calibration
state.
72 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Current Consumption, Receive Mode
TA= 25°C, VCC = 3 V (unless otherwise noted)(1) (2)
DATA
FREQ
PARAMETER RATE TEST CONDITIONS MIN TYP MAX UNIT
(MHz) (kBaud)
Input at -100 dBm (close to 17
sensitivity limit)
1.2 Input at -40 dBm (well above 16
sensitivity limit)
Input at -100 dBm (close to 17
Register settings sensitivity limit)
315 38.4 optimized for reduced Input at -40 dBm (well above
current 16
sensitivity limit)
Input at -100 dBm (close to 18
sensitivity limit)
250 Input at -40 dBm (well above 16.5
sensitivity limit)
Input at -100 dBm (close to 18
sensitivity limit)
1.2 Input at -40 dBm (well above 17
sensitivity limit)
Input at -100 dBm (close to 18
Current Register settings sensitivity limit)
consumption, 433 38.4 optimized for reduced mA
Input at -40 dBm (well above
RX current 17
sensitivity limit)
Input at -100 dBm (close to 18.5
sensitivity limit)
250 Input at -40 dBm (well above 17
sensitivity limit)
Input at -100 dBm (close to 16
sensitivity limit)
1.2 Input at -40 dBm (well above 15
sensitivity limit)
Input at -100 dBm (close to 16
Register settings sensitivity limit)
868, 915 38.4 optimized for reduced Input at -40 dBm (well above
current(3) 15
sensitivity limit)
Input at -100 dBm (close to 16
sensitivity limit)
250 Input at -40 dBm (well above 15
sensitivity limit)
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 48).
(2) Reduced current setting (MDMCFG2.DEM_DCFILT_OFF = 1) gives a slightly lower current consumption at the cost of a reduction in
sensitivity. See tables "RF Receive"for additional details on current consumption and sensitivity.
(3) For 868/915 MHz, see Figure 21 for current consumption with register settings optimized for sensitivity.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 73
16
17
18
19
-100 -80 -60 -40 -20
Input Pow er [dBm]
Radio Current [mA]
TA= 85°C
TA= 25°C
TA= -40°C
16
17
18
19
-100 -80 -60 -40 -20
Input Pow er [dBm]
Radio Current [mA]
TA= 85°C
TA= 25°C
TA= -40°C
16
17
18
19
-100 -80 -60 -40 -20
Input Pow er [dBm]
Radio Current [mA]
TA= 85°C
TA= 25°C
TA= -40°C
16
17
18
19
-100 -80 -60 -40 -20
Input Pow er [dBm]
Radio Current [mA]
TA= 85°C
TA= 25°C
TA= -40°C
1.2 kBaud GFSK
250 kBaud GFSK
38.4 kBaud GFSK
500 kBaud MSK
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Figure 21. Typical RX Current Consumption Over Temperature and Input Power Level, 868 MHz,
Sensitivity-Optimized Setting
74 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Current Consumption, Transmit Mode
TA= 25°C, VCC = 3 V (unless otherwise noted)(1) (2)
FREQUENCY PATABLE OUTPUT
PARAMETER MIN TYP MAX UNIT
[MHz} Setting POWER [dBm]
0xC0 max. 26 mA
0xC4 +10 25 mA
315 0x51 0 15 mA
0x29 -6 15 mA
0xC0 max. 33 mA
0xC6 +10 29 mA
433 0x50 0 17 mA
0x2D -6 17 mA
Current consumption, TX 0xC0 max. 36 mA
0xC3 +10 33 mA
868 0x8D 0 18 mA
0x2D -6 18 mA
0xC0 max. 35 mA
0xC3 +10 32 mA
915 0x8D 0 18 mA
0x2D -6 18 mA
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 48).
(2) Reduced current setting (MDMCFG2.DEM_DCFILT_OFF = 1) gives a slightly lower current consumption at the cost of a reduction in
sensitivity. See tables "RF Receive"for additional details on current consumption and sensitivity.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 75
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Typical TX Current Consumption, 315 MHz
Output VCC 2.0 V 3.0 V 3.6 V
PATABLE
PARAMETER Power UNIT
Setting TA25°C 25°C 25°C
[dBm]
0xC0 max. 27.5 26.4 28.1
Current 0xC4 +10 25.1 25.2 25.3
consumption, mA
0x51 0 14.4 14.6 14.7
TX 0x29 -6 14.2 14.7 15.0
Typical TX Current Consumption, 433 MHz
Output VCC 2.0 V 3.0 V 3.6 V
PATABLE
PARAMETER Power UNIT
Setting TA25°C 25°C 25°C
[dBm]
0xC0 max. 33.1 33.4 33.8
Current 0xC6 +10 28.6 28.8 28.8
consumption, mA
0x50 0 16.6 16.8 16.9
TX 0x2D -6 16.8 17.5 17.8
Typical TX Current Consumption, 868 MHz
Output VCC 2.0 V 3.0 V 3.6 V
PATABLE
PARAMETER Power UNIT
Setting TA-40°C 25°C 85°C -40°C 25°C 85°C -40°C 25°C 85°C
[dBm]
0xC0 max. 36.7 35.2 34.2 38.5 35.5 34.9 37.1 35.7 34.7
Current 0xC3 +10 34.0 32.8 32.0 34.2 33.0 32.5 34.3 33.1 32.2
consumption, mA
0x8D 0 18.0 17.6 17.5 18.3 17.8 18.1 18.4 18.0 17.7
TX 0x2D -6 17.1 17.0 17.2 17.8 17.8 18.3 18.2 18.1 18.1
Typical TX Current Consumption, 915 MHz
Output VCC 2.0 V 3.0 V 3.6 V
PATABLE
PARAMETER Power UNIT
Setting TA-40°C 25°C 85°C -40°C 25°C 85°C -40°C 25°C 85°C
[dBm]
0xC0 max. 35.5 33.8 33.2 36.2 34.8 33.6 36.3 35.0 33.8
Current 0xC3 +10 33.2 32.0 31.0 33.4 32.1 31.2 33.5 32.3 31.3
consumption, mA
0x8D 0 17.8 17.4 17.1 18.1 17.6 17.3 18.2 17.8 17.5
TX 0x2D -6 17.0 16.9 16.9 17.7 17.6 17.6 18.1 18.0 18.0
76 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
RF Receive, Overall
TA= 25°C, VCC = 3 V (unless otherwise noted)(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Digital channel filter bandwidth(2) 58 812 kHz
25 MHz to 1 GHz -68 -57
Spurious emissions(3) (4) dBm
Above 1 GHz -66 -47
RX latency Serial operation(5) 9 bit
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 48).
(2) User programmable. The bandwidth limits are proportional to crystal frequency (given values assume a 26.0 MHz crystal)
(3) Typical radiated spurious emission is -49 dBm measured at the VCO frequency
(4) Maximum figure is the ETSI EN 300 220 limit
(5) Time from start of reception until data is available on the receiver data output pin is equal to 9 bit.
RF Receive, 315 MHz
TA= 25°C, VCC = 3 V (unless otherwise noted)(1)
2-FSK, 1% packet error rate, 20-byte packet length, Sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF = 0 (unless
otherwise noted) DATA RATE
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
(kBaud)
0.6 14.3kHz deviation, 58kHz digital channel filter bandwidth -117
1.2 5.2kHz deviation, 58kHz digital channel filter bandwidth(2) -111
Receiver sensitivity 38.4 20kHz deviation, 100kHz digital channel filter bandwidth(3) -103 dBm
250 127kHz deviation, 540kHz digital channel filter bandwidth (4) -95
500 MSK, 812kHz digital channel filter bandwidth(4) -86
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 48).
(2) Sensitivity can be traded for current consumption by setting MDMCFG2.DEM_DCFILT_OFF=1. The typical current consumption is then
reduced by about 2mA close to the sensitivity limit. The sensitivity is typically reduced to -109dBm.
(3) Sensitivity can be traded for current consumption by setting MDMCFG2.DEM_DCFILT_OFF=1. The typical current consumption is then
reduced by about 2mA close to the sensitivity limit. The sensitivity is typically reduced to -102dBm.
(4) MDMCFG2.DEM_DCFILT_OFF=1 can not be used for data rates 250kBaud.
RF Receive, 433 MHz
TA= 25°C, VCC = 3 V (unless otherwise noted)(1)
2-FSK, 1% packet error rate, 20-byte packet length, Sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF = 0 (unless
otherwise noted) DATA RATE
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
(kBaud)
0.6 14.3kHz deviation, 58kHz digital channel filter bandwidth -114
1.2 5.2-kHz deviation, 58-kHz digital channel filter bandwidth(2) -111
38.4 20-kHz deviation, 100-kHz digital channel filter bandwidth(3) -104
Receiver sensitivity dBm
127-kHz deviation, 540-kHz digital channel filter bandwidth
250 -93
(4)
500 MSK, 812kHz digital channel filter bandwidth(4) -85
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 48).
(2) Sensitivity can be traded for current consumption by setting MDMCFG2.DEM_DCFILT_OFF=1. The typical current consumption is then
reduced by about 2mA close to the sensitivity limit. The sensitivity is typically reduced to -109dBm.
(3) Sensitivity can be traded for current consumption by setting MDMCFG2.DEM_DCFILT_OFF=1. The typical current consumption is then
reduced by about 2mA close to the sensitivity limit. The sensitivity is typically reduced to -101dBm.
(4) MDMCFG2.DEM_DCFILT_OFF=1 can not be used for data rates 250kBaud.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 77
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
RF Receive, 868/915 MHz
TA= 25°C, VCC = 3 V (unless otherwise noted)(1)
1% packet error rate, 20-byte packet length, Sensitivity optimized, MDMCFG2.DEM_DCFILT_OFF = 0 (unless otherwise
noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
0.6-kBaud data rate, 2-FSK, 14.3-kHz deviation, 58-kHz digital channel filter bandwidth (unless otherwise noted)
Receiver sensitivity -115 dBm
1.2-kBaud data rate, 2-FSK, 5.2-kHz deviation, 58-kHz digital channel filter bandwidth (unless otherwise noted)
-109
Receiver sensitivity(2) dBm
2-GFSK modulation by setting MDMCFG2.MOD_FORMAT=2, -109
Gaussian filter with BT = 0.5
Saturation FIFOTHR.CLOSE_IN_RX=0(3) -28 dBm
-100-kHz offset 39
Adjacent channel Desired channel 3 dB above the sensitivity limit, dB
rejection 100 kHz channel spacing(4) +100-kHz offset 39
IF frequency 152 kHz, desired channel 3 dB above
Image channel rejection 29 dB
the sensitivity limit
±2 MHz offset -48 dBm
Blocking Desired channel 3 dB above the sensitivity limit(5)
±10 MHz offset -40 dBm
38.4-kBaud data rate, 2-FSK, 20-kHz deviation, 100-kHz digital channel filter bandwidth (unless otherwise noted)
Receiver sensitivity(6) -102 dBm
2-GFSK modulation by setting MDMCFG2.MOD_FORMAT = 2, -101
Gaussian filter with BT = 0.5
Saturation FIFOTHR.CLOSE_IN_RX=0(3) -19 dBm
Adjacent channel Desired channel 3 dB above the sensitivity limit, -200-kHz offset 20 dB
rejection 200 kHz channel spacing(5) +200-kHz offset 25
Image channel rejection IF frequency 152 kHz, Desired channel 3 dB above the sensitivity limit 23 dB
Blocking Desired channel 3 dB above the sensitivity limit(5) ±2-MHz offset -48 dBm
±10-MHz offset -40 dBm
250-kBaud data rate, 2-FSK, 127-kHz deviation, 540-kHz digital channel filter bandwidth (unless otherwise noted)
Receiver sensitivity (7) -90 dBm
2-GFSK modulation by setting MDMCFG2.MOD_FORMAT = 2, -90
Gaussian filter with BT = 0.5
Saturation FIFOTHR.CLOSE_IN_RX=0(3) -19 dBm
Adjacent channel Desired channel 3 dB above the sensitivity limit, -750-kHz offset 24 dB
rejection 750-kHz channel spacing(8) +750-kHz offset 30
Image channel rejection IF frequency 304 kHz, Desired channel 3 dB above the sensitivity limit 18 dB
Blocking Desired channel 3 dB above the sensitivity limit(8) ±2-MHz offset -53 dBm
±10-MHz offset -39 dBm
500-kBaud data rate, MSK, 812-kHz digital channel filter bandwidth (unless otherwise noted)
Receiver sensitivity(7) -84 dBm
Image channel rejection IF frequency 355 kHz, Desired channel 3 dB above the sensitivity limit -2 dB
Blocking Desired channel 3 dB above the sensitivity limit(9) ±2-MHz offset -53 dBm
±10-MHz offset -38 dBm
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 48).
(2) Sensitivity can be traded for current consumption by setting MDMCFG2.DEM_DCFILT_OFF=1. The typical current consumption is then
reduced by about 2mA close to the sensitivity limit. The sensitivity is typically reduced to -107dBm
(3) See Design Note DN010 Close-in Reception with CC1101, literature number SWRA147.
(4) See Figure 22 for blocking performance at other offset frequencies.
(5) See Figure 23 for blocking performance at other offset frequencies.
(6) Sensitivity can be traded for current consumption by setting MDMCFG2.DEM_DCFILT_OFF=1. The typical current consumption is then
reduced by about 2mA close to the sensitivity limit. The sensitivity is typically reduced to -100dBm.
(7) MDMCFG2.DEM_DCFILT_OFF = 1 cannot be used for data rates 250kBaud.
(8) See Figure 24 for blocking performance at other offset frequencies.
(9) See Figure 25 for blocking performance at other offset frequencies.
78 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
-20
-10
0
10
20
30
40
50
60
70
80
-40 -30 -20 -10 0 10 20 30 40
Offset [MHz]
Blocking [dB]
-10
0
10
20
30
40
50
60
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Offset [MHz]
Selectivity [dB]
-20
-10
0
10
20
30
40
50
60
70
80
-40 -30 -20 -10 0 10 20 30 40
Offset [MHz]
Blocking [dB]
-20
-10
0
10
20
30
40
50
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Offset [MHz]
Selectivity [dB]
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
NOTE: 868.3 MHz, 2-FSK, 5.2-kHz deviation, IF frequency is 152.3 kHz, digital channel filter bandwidth is 58 kHz
Figure 22. Typical Selectivity at 1.2-kBaud Data Rate
NOTE: 868 MHz, 2-FSK, 20 kHz deviation, IF frequency is 152.3 kHz, digital channel filter bandwidth is 100 kHz
Figure 23. Typical Selectivity at 38.4-kBaud Data Rate
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 79
-20
-10
0
10
20
30
40
50
60
70
80
-40 -30 -20 -10 0 10 20 30 40
Offset [MHz]
Blocking [dB]
-20
-10
0
10
20
30
40
50
-3 -2 -1 0 1 2 3
Offset [MHz]
Selectivity [dB]
-20
-10
0
10
20
30
40
50
60
70
80
-40 -30 -20 -10 0 10 20 30 40
Offset [MHz]
Blocking [dB]
-20
-10
0
10
20
30
40
50
-3 -2 -1 0 1 2 3
Offset [MHz]
Selectivity [dB]
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
NOTE: 868 MHz, 2-FSK, IF frequency is 304 kHz, digital channel filter bandwidth is 540 kHz
Figure 24. Typical Selectivity at 250-kBaud Data Rate
NOTE: 868 MHz, 2-FSK, IF frequency is 355 kHz, digital channel filter bandwidth is 812 kHz
Figure 25. Typical Selectivity at 500-kBaud Data Rate
80 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Typical Sensitivity, 315 MHz, Sensitivity Optimized Setting
VCC 2.0 V 3.0 V 3.6 V
PARAMETER DATA RATE (kBaud) UNIT
TA-40°C 25°C 85°C -40°C 25°C 85°C -40°C 25°C 85°C
1.2 -112 -112 -110 -112 -111 -109 -112 -111 -108
Sensitivity, 38.4 -105 -105 -104 -105 -103 -102 -105 -104 -102 dBm
315MHz 250 -95 -95 -92 -94 -95 -92 -95 -94 -91
Typical Sensitivity, 433 MHz, Sensitivity Optimized Setting
VCC 2.0 V 3.0 V 3.6 V
PARAMETER DATA RATE (kBaud) UNIT
TA-40°C 25°C 85°C -40°C 25°C 85°C -40°C 25°C 85°C
1.2 -111 -110 -108 -111 -111 -108 -111 -110 -107
Sensitivity, 38.4 -104 -104 -101 -104 -104 -101 -104 -103 -101 dBm
433MHz 250 -93 -94 -91 -93 -93 -90 -93 -93 -90
Typical Sensitivity, 868 MHz, Sensitivity Optimized Setting
VCC 2.0 V 3.0 V 3.6 V
PARAMETER DATA RATE (kBaud) UNIT
TA-40°C 25°C 85°C -40°C 25°C 85°C -40°C 25°C 85°C
1.2 -109 -109 -107 -109 -109 -106 -109 -108 -106
38.4 -102 -102 -100 -102 -102 -99 -102 -101 -99
Sensitivity, dBm
868MHz 250 -90 -90 -88 -89 -90 -87 -89 -90 -87
500 -84 -84 -81 -84 -84 -80 -84 -84 -80
Typical Sensitivity, 915 MHz, Sensitivity Optimized Setting
VCC 2.0 V 3.0 V 3.6 V
PARAMETER DATA RATE (kBaud) UNIT
TA-40°C 25°C 85°C -40°C 25°C 85°C -40°C 25°C 85°C
1.2 -109 -109 -107 -109 -109 -106 -109 -108 -105
38.4 -102 -102 -100 -102 -102 -99 -103 -102 -99
Sensitivity, dBm
915MHz 250 -92 -92 -89 -92 -92 -88 -92 -92 -88
500 -87 -86 -81 -86 -86 -81 -86 -85 -80
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 81
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
RF Transmit
TA= 25°C, VCC = 3 V (unless otherwise noted)(1)
PTX = +10 dBm (unless otherwise noted)
FREQUENCY
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
(MHz)
315 122 + j31
Differential load 433 116 + j41 Ω
impedance(2) 868/915 86.5 + j43
315 +12
433 +13
Output power, highest Delivered to a 50Ωsingle-ended load via CC430 dBm
setting(3) reference design's RF matching network
868 +11
915 +11
Output power, lowest Delivered to a 50Ωsingle-ended load via CC430 -30 dBm
setting(3) reference design's RF matching network
Second harmonic -56
433 Third harmonic -57
Second harmonic -50
Harmonics, 868 dBm
radiated(4)(5)(6) Third harmonic -52
Second harmonic -50
915 Third harmonic -54
Frequencies below 960 MHz <-38
315 +10 dBm CW
Frequencies above 960 MHz <-48
Frequencies below 1 GHz -45
433 +10 dBm CW
Frequencies above 1 GHz <-48
Harmonics, conducted dBm
Second harmonic -59
868 +10 dBm CW
Other harmonics <-71
Second harmonic -53
915 +11 dBm CW(7)
Other harmonics <-47
Frequencies below 960 MHz <-58
315 +10 dBm CW
Frequencies above 960 MHz <-53
Frequencies below 1 GHz <-54
Frequencies above 1 GHz <-54
433 +10 dBm CW
Frequencies within 47 to 74, 87.5 to <-63
Spurious emissions, 118, 174 to 230, 470 to 862 MHz
conducted, harmonics dBm
Frequencies below 1 GHz <-46
not included(8)
Frequencies above 1 GHz <-59
868 +10 dBm CW
Frequencies within 47 to 74, 87.5 to <-56
118, 174 to 230, 470 to 862 MHz
Frequencies below 960 MHz <-49
915 +11 dBm CW
Frequencies above 960 MHz <-63
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 48).
(2) Differential impedance as seen from the RF-port (RF_P and RF_N) towards the antenna. Follow the CC430 reference designs available
from the TI website.
(3) Output power is programmable, and full range is available in all frequency bands. Output power may be restricted by regulatory limits.
See also Application Note AN050 Using the CC1101 in the European 868MHz SRD Band, literature number SWRA146 and Design
Note DN013 Programming Output Power on CC1101, literature number SWRA168, which gives the output power and harmonics when
using multi-layer inductors. The output power is then typically +10 dBm when operating at 868/915 MHz.
(4) The antennas used during the radiated measurements (SMAFF-433 from R.W.Badland and Nearson S331 868/915) play a part in
attenuating the harmonics.
(5) Measured on EM430F6137RF900 with CW, maximum output power
(6) All harmonics are below -41.2 dBm when operating in the 902 928 MHz band.
(7) Requirement is -20 dBc under FCC 15.247
(8) All radiated spurious emissions are within the limits of ETSI. Also see Design Note DN017 CC11xx 868/915 MHz RF Matching, literature
number SWRA168.
82 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
RF Transmit (continued)
TA= 25°C, VCC = 3 V (unless otherwise noted)(1)
PTX = +10 dBm (unless otherwise noted)
FREQUENCY
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
(MHz)
TX latency(9) Serial operation 8 bits
(9) Time from sampling the data on the transmitter data input pin until it is observed on the RF output ports
Optimum PATABLE Settings for Various Output Power Levels and Frequency Bands
TA= 25°C, VCC = 3 V (unless otherwise noted)(1)
PATABLE Setting
Output Power [dBm] 315 MHz 433 MHz 868 MHz 915 MHz
-30 0x12 0x05 0x03 0x03
-12 0x33 0x26 0x25 0x25
-6 0x29 0x2D 0x2D 0x2D
0 0x51 0x50 0x8D 0x8D
10 0xC4 0xC4 0xC3 0xC3
Maximum 0xC0 0xC0 0xC0 0xC0
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 48).
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 83
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Typical Output Power, 315 MHz(1)
VCC 2.0 V 3.0 V 3.6 V
PARAMETER PATABLE Setting UNIT
TA-40°C 25°C 85°C -40°C 25°C 85°C -40°C 25°C 85°C
0xC0 (max) 11.9 11.8 11.8
0xC4 (10 dBm) 10.3 10.3 10.3
Output power, 0xC6 (default) 9.3 dBm
315 MHz 0x51 (0 dBm) 0.7 0.6 0.7
0x29 (-6 dBm) -6.8 -5.6 -5.3
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 48).
Typical Output Power, 433 MHz(1)
VCC 2.0 V 3.0 V 3.6 V
PARAMETER PATABLE Setting UNIT
TA-40°C 25°C 85°C -40°C 25°C 85°C -40°C 25°C 85°C
0xC0 (max) 12.6 12.6 12.6
0xC4 (10 dBm) 10.3 10.2 10.2
Output power, 0xC6 (default) 10.0 dBm
433 MHz 0x50 (0 dBm) 0.3 0.3 0.3
0x2D (-6 dBm) -6.4 -5.4 -5.1
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 48).
Typical Output Power, 868 MHz(1)
VCC 2.0 V 3.0 V 3.6 V
PARAMETER PATABLE Setting UNIT
TA-40°C 25°C 85°C -40°C 25°C 85°C -40°C 25°C 85°C
0xC0 (max) 11.9 11.2 10.5 11.9 11.2 10.5 11.9 11.2 10.5
0xC3 (10 dBm) 10.8 10.1 9.4 10.8 10.1 9.4 10.7 10.1 9.4
Output power, 0xC6 (default) 8.8 dBm
868 MHz 0x8D (0 dBm) 1.0 0.3 -0.3 1.1 0.3 -0.3 1.1 0.3 -0.3
0x2D (-6 dBm) -6.5 -6.8 -7.3 -5.3 -5.8 -6.3 -4.9 -5.4 -6.0
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 48).
Typical Output Power, 915 MHz(1)
VCC 2.0 V 3.0 V 3.6 V
PARAMETER PATABLE Setting UNIT
TA-40°C 25°C 85°C -40°C 25°C 85°C -40°C 25°C 85°C
0xC0 (max) 12.2 11.4 10.6 12.1 11.4 10.7 12.1 11.4 10.7
0xC3 (10 dBm) 11.0 10.3 9.5 11.0 10.3 9.5 11.0 10.3 9.6
Output power, 0xC6 (default) 8.8 dBm
915 MHz 0x8D (0 dBm) 1.9 1.0 0.3 1.9 1.0 0.3 1.9 1.1 0.3
0x2D (-6 dBm) -5.5 -6.0 -6.5 -4.3 -4.8 -5.5 -3.9 -4.4 -5.1
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 48).
84 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Frequency Synthesizer Characteristics
TA= 25°C, VCC = 3 V (unless otherwise noted)(1)
MIN figures are given using a 27MHz crystal. TYP and MAX figures are given using a 26MHz crystal.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Programmed frequency resolution(2) 26- to 27-MHz crystal 397 fXOSC/216 412 Hz
Synthesizer frequency tolerance(3) ±40 ppm
50-kHz offset from carrier 95
100-kHz offset from carrier 94
200-kHz offset from carrier 94
500-kHz offset from carrier 98
RF carrier phase noise dBc/Hz
1-MHz offset from carrier 107
2-MHz offset from carrier 112
5-MHz offset from carrier 118
10-MHz offset from carrier 129
PLL turn-on / hop time(4) Crystal oscillator running 85.1 88.4 88.4 µs
PLL RX/TX settling time(5) 9.3 9.6 9.6 µs
PLL TX/RX settling time(6) 20.7 21.5 21.5 µs
PLL calibration time(7) 694 721 721 µs
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 48).
(2) The resolution (in Hz) is equal for all frequency bands.
(3) Depends on crystal used. Required accuracy (including temperature and aging) depends on frequency band and channel bandwidth /
spacing.
(4) Time from leaving the IDLE state until arriving in the RX, FSTXON, or TX state, when not performing calibration.
(5) Settling time for the 1-IF frequency step from RX to TX
(6) Settling time for the 1-IF frequency step from TX to RX
(7) Calibration can be initiated manually or automatically before entering or after leaving RX/TX.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 85
-120
-100
-80
-60
-40
-20
0
-120 -100 -80 -60 -40 -20 0
Input Pow er [dBm]
RSSI Readout [dBm]
1.2kBaud
38.4kBaud
-120
-100
-80
-60
-40
-20
0
-120 -100 -80 -60 -40 -20 0
Input Pow er [dBm]
RSSI Readout [dBm]
250kBaud
500kBaud
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Typical RSSI_offset Values
TA= 25°C, VCC = 3 V (unless otherwise noted)(1)
RSSI_OFFSET (dB)
DATA RATE (kBaud) 433 MHz 868 MHz
1.2 74 74
38.4 74 74
250 74 74
500 74 74
(1) All measurement results are obtained using the EM430F6137RF900 with BOM according to tested frequency range (see Table 48).
Figure 26. Typical RSSI Value vs Input Power Level for Different Data Rates at 868 MHz
86 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
RF_N
RF_P
AVCC_RF
AVCC_RF
AVCC_RF
AVCC_RF
GUARD
C5 C6 C7
C3
C2
C1
C4
R1
C23
L1
L6
L5
L4
L3
L2
C29
C28
C27
C24
C25
C26
L7
SMA STRAIGHT JACK, SMT
R_BIAS
26MHz
C22
C21
RF_XOUT
RF_XIN
VDD
C9 C8
DVCC
VDD
C11 C10
C19 DVCC
VCORE
TDO
TDI/TCLK
TMS
(JTAG / SBW signals)
AVDD
C16
C17
C18
VDD
C14
C15 R2
C20
DVCC
nRST/NMI/SBWTDIO
TCK
TEST/SBWTCK
AVDD
C12
C13
AVCC
AVSS
(May be added close to the respective pins
to reduce emissions at 5GHz to levels
required by ETSI.)
CC430F61xx
17
64
18
63
19
62
20
61
21
60
22
59
29
52
30
51
31
50
32
49
23
58
24
57
25
56
26
55
27
54
28
53
33
16
34
15
35
14
36
13
37
12
38
11
45
4
46
3
47
2
48
1
39
10
40
9
41
8
42
7
43
6
44
5
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
APPLICATION CIRCUIT
For a complete reference design including layout see the CC430 Wireless Development Tools and related
documentation (MSP430 Hardware Tools User's Guide, literature number SLAU278).
Figure 27. Typical Application Circuit CC430F61xx
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 87
RF_N
RF_P
AVCC_RF
AVCC_RF
AVCC_RF
AVCC_RF
GUARD
C5 C6 C7
C3
C2
C1
C4
R1
C23
L1
L6
L5
L4
L3
L2
C29
C28
C27
C24
C25
C26
L7
SMA STRAIGHT JACK, SMT
R_BIAS
26MHz
C22
C21
RF_XOUT
RF_XIN
VDD
C9 C8
DVCC
VDD
C11 C10
C19 DVCC
VCORE
TDO
TDI/TCLK
(JTAG / SBW signals)
AVDD
C16
C17
C18
VDD
C14
C15 R2
C20
DVCC
nRST/NMI/SBWTDIO
TCK
TEST/SBWTCK
AVDD
C12
C13
AVCC
TMS
AVSS
12
11
4
3
2
1
10
9
8
7
6
5
13 14 15 16 17 18 19 20 21 22 23 24
25
26
27
28
29
30
31
32
33
34
35
36
48 47 46 45 44 43 42 41 40 39 38 37
CC430F513x
(May be added close to the respective pins
to reduce emissions at 5GHz to levels
required by ETSI.)
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
For a complete reference design including layout see the CC430 Wireless Development Tools and related
documentation (MSP430 Hardware Tools User's Guide, literature number SLAU278).
Figure 28. Typical Application Circuit CC430F51xx
88 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Table 48. Bill of Materials
Component(s) For 315 MHz For 433 MHz For 868/915 MHz Comment
C1,3,4,5,7,9,11,13,15 100 nF Decoupling capacitors
C8,10,12,14 10 µF Decoupling capacitors
C2,6,16,17,18 2 pF Decoupling capacitors
C19 470 nF VCORE capacitor
RST decoupling cap
C20 2.2 nF (optimized for SBW)
Load capacitors for
C21,22 27 pF 26 MHz crystal(1)
R1 56 kΩR_BIAS (±1% required)
R2 47 kΩRST pullup
L1,2 Capacitors: 220 pF 0.016 µH 0.012 µH
L3,4 0.033 µH 0.027 µH 0.018 µH
L5 0.033 µH 0.047 µH 0.015 µH
L6 dnp(2) dnp(2) 0.0022 µH
L7 0.033 µH 0.051 µH 0.015 µH
C23 dnp(2) 2.7 pF 1 pF
C24 220 pF 220 pF 100 pF
C25 6.8 pF 3.9 pF 1.5 pF
C26 6.8 pF 3.9 pF 1.5 pF
C27 220 pF 220 pF 1.5 pF
C28 10 pF 4.7 pF 8.2 pF
C29 220 pF 220 pF 1.5 pF
(1) The load capacitance CLseen by the crystal is CL= 1/((1/C21)+(1/C22)) + Cparasitic. The parasitic capacitance Cparasitic includes pin
capacitance and PCB stray capacitance. It can be typically estimated to be approximately 2.5 pF.
(2) dnp = do not populate
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 89
P1.0/P1MAP0(/S18)
P1.1/P1MAP1(/S19)
P1.2/P1MAP2(/S20)
P1.3/P1MAP3(/S21)
P1.4/P1MAP4(/S22)
Direction
0:Input
1:Output
P1SEL.x
1
0
P1DIR.x
P1IN.x
P1IRQ.x
EN
toPortMapping
1
0
fromPortMapping
P1OUT.x
Interrupt
Select
Edge
Q
EN
Set
P1 .SEL x
P1IESx.
P1IFG.x
P1IE.x
1
0
DVSS
DVCC 1
P1DS.x
0:Lowdrive
1:Highdrive
D
fromPortMapping
S18...S22
LCDS18...LCDS22
PadLogic
P1REN.x
P1MAP.x=PMAP_ANALOG
Bus
Keeper
(n/aCC430F513x)
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
INPUT/OUTPUT SCHEMATICS
Port P1, P1.0 to P1.4, Input/Output With Schmitt Trigger
CC430F513x devices don't provide LCD functionality on port P1 pins.
90 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Table 49. Port P1 (P1.0 to P1.4) Pin Functions
CONTROL BITS/SIGNALS(1)
PIN NAME (P1.x) x FUNCTION LCDS19...
P1DIR.x P1SEL.x P1MAPx 22(2)
P1.0/P1MAP/S18 0 P1.0 (I/O) I: 0; O: 1 0 X 0
Mapped secondary digital function - see Table 9 0; 1(3) 130(3) 0
Output driver and input Schmitt trigger disabled X 1 = 31 0
S18 (not available on CC430F513x) X X X 1
P1.1/P1MAP1/S19 1 P1.1 (I/O) I: 0; O: 1 0 X 0
Mapped secondary digital function - see Table 9 0; 1(3) 130(3) 0
Output driver and input Schmitt trigger disabled X 1 = 31 0
S19 (not available on CC430F513x) X X X 1
P1.2/P1MAP2/S20 2 P1.2 (I/O) I: 0; O: 1 0 X 0
Mapped secondary digital function - see Table 9 0; 1(3) 130(3) 0
Output driver and input Schmitt trigger disabled X 1 = 31 0
S22 (not available on CC430F513x) X X X 1
P1.3/P1MAP3/S21 3 P1.3 (I/O) I: 0; O: 1 0 X 0
Mapped secondary digital function - see Table 9 0; 1(3) 130(3) 0
Output driver and input Schmitt trigger disabled X 1 = 31 0
S21 (not available on CC430F513x) X X X 1
P1.4/P1MAP4/S22 4 P1.4 (I/O) I: 0; O: 1 0 X 0
Mapped secondary digital function - see Table 9 0; 1(3) 130(3) 0
Output driver and input Schmitt trigger disabled X 1 = 31 0
S22 (not available on CC430F513x) X X X 1
(1) X = don't care
(2) LCDSx not available in CC430F513x.
(3) According to mapped function - see Table 9.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 91
P1.5/P1MAP5(/R23)
P1.6/P1MAP6(/R13)
P1.7/P1MAP7(/R03)
P1SEL.x
1
0
P1DIR.x
P1IN.x
P1IRQ.x
EN
to Port Mapping
1
0
from Port Mapping
P1OUT.x
Interrupt
Edge
Select
Q
EN
Set
P1SEL.x
P1IES.x
P1IFG.x
P1IE.x
1
0
DVSS
DVCC 1
P1DS.x
0: Low drive
1: High drive
D
from Port Mapping
to LCD_B
Pad Logic
Bus
Keeper
Direction
0: Input
1: Output
P1REN.x
P1MAP.x = PMAP_ANALOG
(n/a CC430F513x)
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Port P1, P1.5 to P1.7, Input/Output With Schmitt Trigger
CC430F513x devices don't provide LCD functionality on port P1 pins.
Table 50. Port P1 (P1.5 to P1.7) Pin Functions
CONTROL BITS/SIGNALS(1)
PIN NAME (P1.x) x FUNCTION P1DIR.x P1SEL.x P1MAPx
P1.5/P1MAP5/R23 5 P1.5 (I/O) I: 0; O: 1 0 X
Mapped secondary digital function - see Table 9 0; 1(2) 130(2)
R23(3) (not available on CC430F513x) X 1 = 31
P1.6/P1MAP6/R13/ 6 P1.6 (I/O) I: 0; O: 1 0 X
LCDREF Mapped secondary digital function - see Table 9 0; 1(2) 130(2)
R13/LCDREF(3) (not available on CC430F513x) X 1 = 31
P1.7/P1MAP7/R03 7 P1.7 (I/O) I: 0; O: 1 0 X
Mapped secondary digital function - see Table 9 0; 1(2) 130(2)
R03(3) (not available on CC430F513x) X 1 = 31
(1) X = don't care
(2) According to mapped function - see Table 9.
(3) Setting P1SEL.x bit together with P1MAPx = PM_ANALOG disables the output driver as well as the input Schmitt trigger.
92 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
P2.0/P2MAP0/CB0(/A0)
P2.1/P2MAP2/CB1(/A1)
P2.2/P2MAP2/CB2(/A2)
P2.3/P2MAP3/CB3(/A3)
Direction
0:Input
1:Output
P2SEL.x
1
0
P2DIR.x
P2IN.x
P2IRQ.x
EN
toPortMapping
1
0
fromPortMapping
P2OUT.x
Interrupt
Select
Edge
Q
EN
Set
P2 .SEL x
P2IESx.
P2IFG.x
P2IE.x
1
0
DVSS
DVCC 1
P2DS.x
0:Lowdrive
1:Highdrive
D
fromPortMapping
ToComparator_B
fromComparator_B
PadLogic
ToADC12
INCHx=x
(n/aCC430F612x)
CBPD.x
P2REN.x
P2MAP.x=PMAP_ANALOG
Bus
Keeper
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Port P2, P2.0 to P2.3, Input/Output With Schmitt Trigger
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 93
P2.4/P2MAP4/CB4(/A4/VREF-/VeREF-)
P2.5/P2MAP5/CB5(/A5/VREF+/VeRF+)
P2SEL.x
1
0
P2DIR.x
P2IN.x
P2IRQ.x
EN
toPortMapping
1
0
fromPortMapping
P2OUT.x
Interrupt
Select
Edge
Q
EN
Set
P2 .SEL x
P2IESx.
P2IFG.x
P2IE.x
1
0
DVSS
DVCC 1
P2DS.x
0:Lowdrive
1:Highdrive
D
fromPortMapping
ToComparator_B
fromComparator_B
PadLogic
ToADC12
INCHx=x
(n/aCC430F612x)
Bus
Keeper
to/fromReference
(n/aCC430F612x)
Direction
0:Input
1:Output
CBPD.x
P2REN.x
P2MAP.x=PMAP_ANALOG
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Port P2, P2.4 to P2.5, Input/Output With Schmitt Trigger
94 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
P2.6/P2MAP6(/CB6/A6)
P2.7/P2MAP7(/CB7/A7)
Direction
0:Input
1:Output
P2SEL.x
1
0
P2DIR.x
P2IN.x
P2IRQ.x
EN
toPortMapping
1
0
fromPortMapping
P2OUT.x
Interrupt
Select
Edge
Q
EN
Set
P2 .SEL x
P2IESx.
P2IFG.x
P2IE.x
1
0
DVSS
DVCC 1
P2DS.x
0:Lowdrive
1:Highdrive
D
fromPortMapping
ToComparator_B
fromComparator_B
PadLogic
ToADC12
INCHx=x
(n/aCC430F513x)
(n/aCC430F513x)
(n/aCC430F513x)
CBPD.x
P2REN.x
P2MAP.x=PMAP_ANALOG
Bus
Keeper
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Port P2, P2.6 and P2.7, Input/Output With Schmitt Trigger
CC430F513x devices don't provide analog functionality on port P2.6 and P2.7 pins.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 95
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Table 51. Port P2 (P2.0 to P2.7) Pin Functions
CONTROL BITS/SIGNALS(1)
PIN NAME (P2.x) x FUNCTION P2DIR.x P2SEL.x P2MAPx CBPD.x
P2.0/P2MAP0/CB0 0 P2.0 (I/O) I: 0; O: 1 0 X 0
(/A0) Mapped secondary digital function - see Table 9 0; 1(2) 130(2) 0
A0 (not available on CC430F612x)(3) X 1 = 31 X
CB0(4) X X X 1
P2.1/P2MAP1/CB1 1 P2.1 (I/O) I: 0; O: 1 0 X 0
(/A1) Mapped secondary digital function - see Table 9 0; 1(2) 130(2) 0
A1 (not available on CC430F612x)(3) X 1 = 31 X
CB1(4) X X X 1
P2.2/P2MAP2/CB2 2 P2.2 (I/O) I: 0; O: 1 0 X 0
(/A2) Mapped secondary digital function - see Table 9 0; 1(2) 130(2) 0
A2 (not available on CC430F612x)(3) X 1 = 31 X
CB2(4) X X X 1
P2.3/P2MAP3/CB3 3 P2.3 (I/O) I: 0; O: 1 0 X 0
(/A3) Mapped secondary digital function - see Table 9 0; 1(2) 130(2) 0
A3 (not available on CC430F612x)(3) X 1 = 31 X
CB3(4) X X X 1
P2.4/P2MAP4/CB4 4 P2.4 (I/O) I: 0; O: 1 0 X 0
(/A4/VREF-/VeREF-) Mapped secondary digital function - see Table 9 0; 1(2) 130(2) 0
A4/VREF-/VeREF- (not available on CC430F612x)(3) X 1 = 31 X
CB4(4) X X X 1
P2.5/P2MAP5/CB5 5 P2.5 (I/O) I: 0; O: 1 0 X 0
(/A5/VREF+/VeREF+) Mapped secondary digital function - see Table 9 0; 1(2) 130(2) 0
A5/VREF+/VeREF+ (not available on CC430F612x)(3) X 1 = 31 X
CB5(4) X X X 1
P2.6/P2MAP6(/CB6) 6 P2.6 (I/O) I: 0; O: 1 0 X 0
(/A6) Mapped secondary digital function - see Table 9 0; 1(2) 130(2) 0
A6 (not available on CC430F612x and X 1 = 31 X
CC430F513x)(3)
CB6 (not available on CC430F513x)(4) X X X 1
P2.7/P2MAP7(/CB7) 7 P2.7 (I/O) I: 0; O: 1 0 X 0
(/A7) Mapped secondary digital function - see Table 9 0; 1(2) 130(2) 0
A7 (not available on CC430F612x and X 1 = 31 X
CC430F513x)(3)
CB7 (not available on CC430F513x)(4) X X X 1
(1) X = don't care
(2) According to mapped function - see Table 9.
(3) Setting P2SEL.x bit together with P2MAPx = PM_ANALOG disables the output driver as well as the input Schmitt trigger.
(4) Setting the CBPD.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying
analog signals. Selecting the CBx input pin to the comparator multiplexer with the CBx bits automatically disables output driver and input
buffer for that pin, regardless of the state of the associated CBPD.x bit.
96 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
P3.4/P3MAP4(/S14)
P3.5/P3MAP5(/S15)
P3.6/P3MAP6(/S16)
P3.7/P3MAP7(/S17)
P3.0/P3MAP0(/S10)
P3.1/P3MAP1(/S11)
P3.2/P3MAP2(/S12)
P3.3/P3MAP3(/S13)
Direction
0:Input
1:Output
P3SEL.x
1
0
P3DIR.x
P3IN.x
EN
toPortMapping
1
0
fromPortMapping
P3OUT.x
1
0
DVSS
DVCC 1
P3DS.x
0:Lowdrive
1:Highdrive
D
fromPortMapping
S10...S17
LCDS10...LCDS17
PadLogic
P3REN.x
P3MAP.x=PMAP_ANALOG
Bus
Keeper
(n/aCC430F513x)
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Port P3, P3.0 to P3.7, Input/Output With Schmitt Trigger
CC430F513x devices don't provide LCD functionality on port P3 pins.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 97
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Table 52. Port P3 (P3.0 to P3.7) Pin Functions
CONTROL BITS/SIGNALS(1)
PIN NAME (P3.x) x FUNCTION LCDS10...
P3DIR.x P3SEL.x P3MAPx 17(2)
P3.0/P3MAP0/S10 0 P3.0 (I/O) I: 0; O: 1 0 X 0
Mapped secondary digital function - see Table 9 0; 1(3) 130(3) 0
Output driver and input Schmitt trigger disabled X 1 = 31 0
S10 (not available on CC430F513x) X X X 1
P3.1/P3MAP1/S11 1 P3.1 (I/O) I: 0; O: 1 0 X 0
Mapped secondary digital function - see Table 9 0; 1(3) 130(3) 0
Output driver and input Schmitt trigger disabled X 1 = 31 0
S11 (not available on CC430F513x) X X X 1
P3.2/P3MAP7/S12 2 P3.2 (I/O) I: 0; O: 1 0 X 0
Mapped secondary digital function - see Table 9 0; 1(3) 130(3) 0
Output driver and input Schmitt trigger disabled X 1 = 31 0
S12 (not available on CC430F513x) X X X 1
P3.3/P3MAP3/S13 3 P3.3 (I/O) I: 0; O: 1 0 X 0
Mapped secondary digital function - see Table 9 0; 1(3) 130(3) 0
Output driver and input Schmitt trigger disabled X 1 = 31 0
S13 (not available on CC430F513x) X X X 1
P3.4/P3MAP4/S14 4 P3.4 (I/O) I: 0; O: 1 0 X 0
Mapped secondary digital function - see Table 9 0; 1(3) 130(3) 0
Output driver and input Schmitt trigger disabled X 1 = 31 0
S14 (not available on CC430F513x) X X X 1
P3.5/P3MAP5/S15 5 P3.5 (I/O) I: 0; O: 1 0 X 0
Mapped secondary digital function - see Table 9 0; 1(3) 130(3) 0
Output driver and input Schmitt trigger disabled X 1 = 31 0
S15 (not available on CC430F513x) X X X 1
P3.6/P3MAP6/S16 6 P3.6 (I/O) I: 0; O: 1 0 X 0
Mapped secondary digital function - see Table 9 0; 1(3) 130(3) 0
Output driver and input Schmitt trigger disabled X 1 = 31 0
S16 (not available on CC430F513x) X X X 1
P3.7/P3MAP7/S17 7 P3.7 (I/O) I: 0; O: 1 0 X 0
Mapped secondary digital function - see Table 9 0; 1(3) 130(3) 0
Output driver and input Schmitt trigger disabled X 1 = 31 0
S17 (not available on CC430F513x) X X X 1
(1) X = don't care
(2) LCDSx not available in CC430F513x.
(3) According to mapped function - see Table 9.
98 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
P4.4/S6
P4.5/S7
P4.6/S8
P4.7/S9
P4.0/S2
P4.1/S3
P4.2/S4
P4.3/S5
Direction
0:Input
1:Output
P4SEL.x
1
0
P4DIR.x
P4IN.x
EN
NotUsed
1
0
DVSS
P4OUT.x
1
0
DVSS
DVCC 1
P4DS.x
0:Lowdrive
1:Highdrive
D
S2...S9
LCDS2...LCDS9
PadLogic
P4REN.x
Bus
Keeper
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Port P4, P4.0 to P4.7, Input/Output With Schmitt Trigger (CC430F613x and CC430F612x only)
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 99
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Table 53. Port P4 (P4.0 to P4.7) Pin Functions (CC430F613x and CC430F612x only)
CONTROL BITS/SIGNALS(1)
PIN NAME (P4.x) x FUNCTION P4DIR.x P4SEL.x LCDS2...7
P4.0/P4MAP0/S2 0 P4.0 (I/O) I: 0; O: 1 0 0
N/A 0 1 0
DVSS 1 1 0
S2 X X 1
P4.1/P4MAP1/S3 1 P4.1 (I/O) I: 0; O: 1 0 0
N/A 0 1 0
DVSS 1 1 0
S3 X X 1
P4.2/P4MAP7/S4 2 P4.2 (I/O) I: 0; O: 1 0 0
N/A 0 1 0
DVSS 1 1 0
S4 X X 1
P4.3/P4MAP3/S5 3 P4.3 (I/O) I: 0; O: 1 0 0
N/A 0 1 0
DVSS 1 1 0
S5 X X 1
P4.4/P4MAP4/S6 4 P4.4 (I/O) I: 0; O: 1 0 0
N/A 0 1 0
DVSS 1 1 0
S6 X X 1
P4.5/P4MAP5/S7 5 P4.5 (I/O) I: 0; O: 1 0 0
N/A 0 1 0
DVSS 1 1 0
S7 X X 1
P4.6/P4MAP6/S8 6 P4.6 (I/O) I: 0; O: 1 0 0
N/A 0 1 0
DVSS 1 1 0
S8 X X 1
P4.7/P4MAP7/S9 7 P4.7 (I/O) I: 0; O: 1 0 0
N/A 0 1 0
DVSS 1 1 0
S9 X X 1
(1) X = don't care
100 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
P5.0/XIN
P5SEL.0
1
0
P5DIR.0
P5IN.0
EN
ModuleXIN
1
0
ModuleXOUT
P5OUT.0
1
0
DVSS
DVCC
P5REN.0
PadLogic
1
P5DS.x
0:Lowdrive
1:Highdrive
D
Bus
Keeper
toXT1
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Port P5, P5.0, Input/Output With Schmitt Trigger
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 101
P5.1/XOUT
P5SEL.0
XT1BYPASS
1
0
P5DIR.1
P5IN.1
EN
ModuleXIN
1
0
ModuleXOUT
P5OUT.1
1
0
DVSS
DVCC
P5REN.1
PadLogic
1
P5DS.x
0:Lowdrive
1:Highdrive
D
Bus
Keeper
toXT1
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Port P5, P5.1, Input/Output With Schmitt Trigger
Table 54. Port P5 (P5.0 and P5.1) Pin Functions
CONTROL BITS/SIGNALS(1)
PIN NAME (P5.x) x FUNCTION P5DIR.x P5SEL.0 P5SEL.1 XT1BYPASS
P5.0/XIN 0 P5.0 (I/O) I: 0; O: 1 0 X X
XIN crystal mode(2) X 1 X 0
XIN bypass mode(2) X 1 X 1
P5.1/XOUT 1 P5.1 (I/O) I: 0; O: 1 0 X X
XOUT crystal mode(3) X 1 X 0
P5.1 (I/O)(3) X 1 X 1
(1) X = don't care
(2) Setting P5SEL.0 causes the general-purpose I/O to be disabled. Pending the setting of XT1BYPASS, P5.0 is configured for crystal
mode or bypass mode.
(3) Setting P5SEL.0 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.1 can be used as
general-purpose I/O.
102 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
P5.2/S0
P5.3/S1
P5.4/S23
P5SEL.x
1
0
P5DIR.x
P5IN.x
EN
Not Used
1
0
DVSS
P5OUT.x
1
0
DVSS
DVCC
P5REN.x
Pad Logic
1
P5DS.x
0: Low drive
1: High drive
D
Bus
Keeper
S0(P5.2)/S1(P5.3)/S23(P5.4)
LCDS0(P5.2)/LCDS1(P5.3)/LCDS23(P5.4)
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Port P5, P5.2 to P5.4, Input/Output With Schmitt Trigger (CC430F613x and CC430F612x only)
Table 55. Port P5 (P5.2 to P5.3) Pin Functions (CC430F613x and CC430F612x only)
CONTROL BITS/SIGNALS(1)
PIN NAME (P5.x) x FUNCTION P5DIR.x P5SEL.x LCDS0...1
P5.2/S0 2 P5.2 (I/O) I: 0; O: 1 0 0
N/A 0 1 0
DVSS 1 1 0
S0 X X 1
P5.3/S1 3 P5.3 (I/O) I: 0; O: 1 0 0
N/A 0 1 0
DVSS 1 1 0
S1 X X 1
(1) X = don't care
Table 56. Port P5 (P5.4) Pin Functions (CC430F613x and CC430F612x only)
CONTROL BITS/SIGNALS(1)
PIN NAME (P5.x) x FUNCTION P5DIR.x P5SEL.x LCDS23
P5.4/S23 4 P5.4 (I/O) I: 0; O: 1 0 0
N/A 0 1 0
DVSS 1 1 0
S23 X X 1
(1) X = don't care
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 103
P5.5/COM3/S24
P5.6/COM2/S25
P5.7/COM1/S26
P5SEL.x
P5DIR.x
P5IN.x
P5OUT.x
1
0
DVSS
DVCC
P5REN.x
PadLogic
1
P5DS.x
0:Lowdrive
1:Highdrive
Bus
Keeper
COM3(P5.5)/COM2(P5.6)/COM1(P5.7)
S24(P5.5)/S25(P5.6)/S26(P5.7)
LCDS24(P5.5)/LCDS25(P5.6)/LCDS26(P5.7)
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Port P5, P5.5 to P5.7, Input/Output With Schmitt Trigger (CC430F613x and CC430F612x only)
Table 57. Port P5 (P5.5 to P5.7) Pin Functions (CC430F613x and CC430F612x only)
CONTROL BITS/SIGNALS(1)
PIN NAME (P5.x) x FUNCTION P5DIR.x P5SEL.x LCDS24...26
P5.5/COM3/S24 5 P5.5 (I/O) I: 0; O: 1 0 0
COM3(2) X 1 X
S24(2) X 0 1
P5.6/COM2/S25 6 P5.6 (I/O) I: 0; O: 1 0 0
COM2(2) X 1 X
S25(2) X 0 1
P5.7/COM1/S26 7 P5.7 (I/O) I: 0; O: 1 0 0
COM1(2) X 1 X
S26(2) X 0 1
(1) X = don't care
(2) Setting P5SEL.x bit disables the output driver as well as the input Schmitt trigger.
104 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
PJ.0/TDO
FromJTAG
1
0
PJDIR.0
PJIN.0
1
0
FromJTAG
PJOUT.0
1
0
DVSS
DVCC
PJREN.0 PadLogic
1
PJDS.0
0:Lowdrive
1:Highdrive
DVCC
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
FromJTAG
1
0
PJDIR.x
PJIN.x
EN
1
0
FromJTAG
PJOUT.x
1
0
DVSS
DVCC
PJREN.x PadLogic
1
PJDS.x
0:Lowdrive
1:Highdrive
D
DVSS
ToJTAG
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Port J, J.0 JTAG pin TDO, Input/Output With Schmitt Trigger or Output
Port J, J.1 to J.3 JTAG pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 105
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Table 58. Port PJ (PJ.0 to PJ.3) Pin Functions
CONTROL BITS/
SIGNALS(1)
PIN NAME (PJ.x) x FUNCTION PJDIR.x
PJ.0/TDO 0 PJ.0 (I/O)(2) I: 0; O: 1
TDO(3) X
PJ.1/TDI/TCLK 1 PJ.1 (I/O)(2) I: 0; O: 1
TDI/TCLK(3) (4) X
PJ.2/TMS 2 PJ.2 (I/O)(2) I: 0; O: 1
TMS(3) (4) X
PJ.3/TCK 3 PJ.3 (I/O)(2) I: 0; O: 1
TCK(3) (4) X
(1) X = don't care
(2) Default condition
(3) The pin direction is controlled by the JTAG module.
(4) In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are do not care.
106 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
Device Descriptor Structures
Table 59 lists the content of the device descriptor tag-length-value (TLV) structure for CC430F613x and
CC430F613x device types.
Table 60 lists the content of the device descriptor tag-length-value (TLV) structure for CC430F612x device types.
Table 59. Device Descriptor Table
'F6137 'F6135 'F5137 'F5135 'F5133
Size
Description Address bytes Value Value Value Value Value
Info Block Info length 01A00h 1 06h 06h 06h 06h 06h
CRC length 01A01h 1 06h 06h 06h 06h 06h
CRC value 01A02h 2 per unit per unit per unit per unit per unit
Device ID 01A04h 1 61h 61h 51h 51h 51h
Device ID 01A05h 1 37h 35h 37h 35h 33h
Hardware revision 01A06h 1 per unit per unit per unit per unit per unit
Firmware revision 01A07h 1 per unit per unit per unit per unit per unit
Die Record Die Record Tag 01A08h 1 08h 08h 08h 08h 08h
Die Record length 01A09h 1 0Ah 0Ah 0Ah 0Ah 0Ah
Lot/Wafer ID 01A0Ah 4 per unit per unit per unit per unit per unit
Die X position 01A0Eh 2 per unit per unit per unit per unit per unit
Die Y position 01A10h 2 per unit per unit per unit per unit per unit
Test results 01A12h 2 per unit per unit per unit per unit per unit
ADC12 ADC12 Calibration 01A14h 1 11h 11h 11h 11h 11h
Calibration Tag
ADC12 Calibration 01A15h 1 10h 10h 10h 10h 10h
length
ADC Gain Factor 01A16h 2 per unit per unit per unit per unit per unit
ADC Offset 01A18h 2 per unit per unit per unit per unit per unit
ADC 1.5V
Reference 01A1Ah 2 per unit per unit per unit per unit per unit
Temp. Sensor
30°C
ADC 1.5V
Reference 01A1Ch 2 per unit per unit per unit per unit per unit
Temp. Sensor
85°C
ADC 2.0V
Reference 01A1Eh 2 per unit per unit per unit per unit per unit
Temp. Sensor
30°C
ADC 2.0V
Reference 01A20h 2 per unit per unit per unit per unit per unit
Temp. Sensor
85°C
ADC 2.5V
Reference 01A22h 2 per unit per unit per unit per unit per unit
Temp. Sensor
30°C
ADC 2.5V
Reference 01A24h 2 per unit per unit per unit per unit per unit
Temp. Sensor
85°C
REF REF Calibration 01A26h 1 12h 12h 12h 12h 12h
Calibration Tag
REF Calibration 01A27h 1 06h 06h 06h 06h 06h
length
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 107
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
SLAS554F MAY 2009REVISED DECEMBER 2011
www.ti.com
Table 59. Device Descriptor Table (continued)
'F6137 'F6135 'F5137 'F5135 'F5133
Size
Description Address bytes Value Value Value Value Value
1.5V Reference 01A28h 2 per unit per unit per unit per unit per unit
Factor
2.0V Reference 01A2Ah 2 per unit per unit per unit per unit per unit
Factor
2.5V Reference 01A2Ch 2 per unit per unit per unit per unit per unit
Factor
Peripheral Peripheral 01A2Eh 1 02h 02h 02h 02h 02h
Descriptor Descriptor Tag
(PD) Peripheral 01A2Fh 1 57h 57h 55h 55h 55h
Descriptor Length
Peripheral PD
01A30h ... ... ... ... ...
Descriptors Length
Table 60. Device Descriptor Table CC430F612x
'F6127 'F6126 'F6125
Size
Description Address bytes Value Value Value
Info Block Info length 01A00h 1 06h 06h 06h
CRC length 01A01h 1 06h 06h 06h
CRC value 01A02h 2 per unit per unit per unit
Device ID 01A04h 1 61h 61h 61h
Device ID 01A05h 1 27h 26h 25h
Hardware revision 01A06h 1 per unit per unit per unit
Firmware revision 01A07h 1 per unit per unit per unit
Die Record Die Record Tag 01A08h 1 08h 08h 08h
Die Record length 01A09h 1 0Ah 0Ah 0Ah
Lot/Wafer ID 01A0Ah 4 per unit per unit per unit
Die X position 01A0Eh 2 per unit per unit per unit
Die Y position 01A10h 2 per unit per unit per unit
Test results 01A12h 2 per unit per unit per unit
Empty Descriptor Empty Tag 01A14h 1 05h 05h 05h
Empty Tag Length 01A15h 1 10h 10h 10h
01A16h 16 undefined undefined undefined
REF Calibration REF Calibration Tag 01A26h 1 12h 12h 12h
REF Calibration length 01A27h 1 06h 06h 06h
1.5V Reference Factor 01A28h 2 per unit per unit per unit
2.0V Reference Factor 01A2Ah 2 per unit per unit per unit
2.5V Reference Factor 01A2Ch 2 per unit per unit per unit
Peripheral Peripheral Descriptor Tag 01A2Eh 1 02h 02h 02h
Descriptor (PD) Peripheral Descriptor 01A2Fh 1 55h 55h 55h
Length
Peripheral Descriptors 01A30h PD Length ... ... ...
108 Submit Documentation Feedback Copyright ©20092011, Texas Instruments Incorporated
ECCN 5E002 TSPA - Technology / Software Publicly Available
CC430F613x
CC430F612x
CC430F513x
www.ti.com
SLAS554F MAY 2009REVISED DECEMBER 2011
REVISION HISTORY
REVISION DESCRIPTION
SLAS554 Product Preview data sheet release
SLAS554A Product Preview data sheet updated with electrical parameters
SLAS554B Production Data release data sheet for CC430F51xx devices. CC430F61xx devices are Product Preview.
SLAS554C Production Data release data sheet for CC430F61xx devices.
Added correct termination of LCDCAP/R33 if not used.
SLAS554D Corrected unit in Frequency Synthesizer Characteristics from "ms"to s".
Removed RFRXIFG (14) and RFTXIFG (15) from DMA Trigger Assignments table
Corrected USCI control register location in Peripheral File Map.
SLAS554E Changed Tstg maximum limit from 105°C to 150°C in Absolute Maximum Ratings.
Replaced values for "Hardware revision"and "Firmware revision"in Device Descriptor Tables with "per unit".
Table 3, Corrected USCI signal names for pins 5 and 6 (descriptions unchanged).
12-Bit ADC, Linearity Parameters Using an External Reference Voltage or AVCC as Reference Voltage, ADC12 linearity
SLAS554F parameter test conditions revised.
12-Bit ADC, Linearity Parameters Using the Internal Reference Voltage, linearity parameters with internal reference
added.
Copyright ©20092011, Texas Instruments Incorporated Submit Documentation Feedback 109
PACKAGE OPTION ADDENDUM
www.ti.com 26-Jun-2012
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
CC430F5133IRGZ ACTIVE VQFN RGZ 48 52 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
CC430F5133IRGZR ACTIVE VQFN RGZ 48 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
CC430F5133IRGZT ACTIVE VQFN RGZ 48 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
CC430F5135IRGZ ACTIVE VQFN RGZ 48 52 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
CC430F5135IRGZR ACTIVE VQFN RGZ 48 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
CC430F5135IRGZT ACTIVE VQFN RGZ 48 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
CC430F5137IRGZ ACTIVE VQFN RGZ 48 52 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
CC430F5137IRGZR ACTIVE VQFN RGZ 48 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
CC430F5137IRGZT ACTIVE VQFN RGZ 48 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
CC430F6125IRGC ACTIVE VQFN RGC 64 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
CC430F6125IRGCR ACTIVE VQFN RGC 64 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
CC430F6125IRGCT ACTIVE VQFN RGC 64 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
CC430F6126IRGCR ACTIVE VQFN RGC 64 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
CC430F6126IRGCT ACTIVE VQFN RGC 64 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
CC430F6127IRGC ACTIVE VQFN RGC 64 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
CC430F6127IRGCR ACTIVE VQFN RGC 64 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
CC430F6127IRGCT ACTIVE VQFN RGC 64 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
PACKAGE OPTION ADDENDUM
www.ti.com 26-Jun-2012
Addendum-Page 2
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
CC430F6135IRGC ACTIVE VQFN RGC 64 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
CC430F6135IRGCR ACTIVE VQFN RGC 64 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
CC430F6135IRGCT ACTIVE VQFN RGC 64 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
CC430F6137IRGC ACTIVE VQFN RGC 64 40 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
CC430F6137IRGCR ACTIVE VQFN RGC 64 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
CC430F6137IRGCT ACTIVE VQFN RGC 64 250 Green (RoHS
& no Sb/Br) CU NIPDAU Level-3-260C-168 HR
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
PACKAGE OPTION ADDENDUM
www.ti.com 26-Jun-2012
Addendum-Page 3
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
CC430F5133IRGZR VQFN RGZ 48 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q2
CC430F5133IRGZT VQFN RGZ 48 250 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q2
CC430F5135IRGZR VQFN RGZ 48 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q2
CC430F5135IRGZT VQFN RGZ 48 250 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q2
CC430F5137IRGZR VQFN RGZ 48 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q2
CC430F5137IRGZT VQFN RGZ 48 250 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q2
CC430F6125IRGCT VQFN RGC 64 250 330.0 16.4 9.3 9.3 1.5 12.0 16.0 Q2
CC430F6126IRGCT VQFN RGC 64 250 330.0 16.4 9.3 9.3 1.5 12.0 16.0 Q2
CC430F6127IRGCT VQFN RGC 64 250 330.0 16.4 9.3 9.3 1.5 12.0 16.0 Q2
CC430F6135IRGCT VQFN RGC 64 250 330.0 16.4 9.3 9.3 1.5 12.0 16.0 Q2
CC430F6137IRGCT VQFN RGC 64 250 330.0 16.4 9.3 9.3 1.5 12.0 16.0 Q2
PACKAGE MATERIALS INFORMATION
www.ti.com 16-Feb-2012
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
CC430F5133IRGZR VQFN RGZ 48 2500 336.6 336.6 28.6
CC430F5133IRGZT VQFN RGZ 48 250 336.6 336.6 28.6
CC430F5135IRGZR VQFN RGZ 48 2500 336.6 336.6 28.6
CC430F5135IRGZT VQFN RGZ 48 250 336.6 336.6 28.6
CC430F5137IRGZR VQFN RGZ 48 2500 336.6 336.6 28.6
CC430F5137IRGZT VQFN RGZ 48 250 336.6 336.6 28.6
CC430F6125IRGCT VQFN RGC 64 250 336.6 336.6 28.6
CC430F6126IRGCT VQFN RGC 64 250 336.6 336.6 28.6
CC430F6127IRGCT VQFN RGC 64 250 336.6 336.6 28.6
CC430F6135IRGCT VQFN RGC 64 250 336.6 336.6 28.6
CC430F6137IRGCT VQFN RGC 64 250 336.6 336.6 28.6
PACKAGE MATERIALS INFORMATION
www.ti.com 16-Feb-2012
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic."Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP®Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Mobile Processors www.ti.com/omap
Wireless Connectivity www.ti.com/wirelessconnectivity
TI E2E Community Home Page e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright ©2012, Texas Instruments Incorporated