February 2001 1
© 2001 Actel Corporation
Discontinued – v3.0
Integrator Series FPGAs:
1200XL and 3200DX Families
Features
High Capacity
2,500 to 30,000 Logic Gates
Up to 3Kbits Configurable Dual-Port SRAM
Fast Wide-Decode Circuitry
Up to 250 User-Programmable I/O Pins
High Performance
225 MHz Performance
5 ns Dual-Port SRAM Access
100 MHz FIFOs
7.5 ns 35-Bit Address Decode
Ease-of-Integration
Synthesis-Friendly Architecture Supports ASIC Design
Methodologies.
95–100% Device Utilization using Automatic
Place-and-Route Tools.
Deterministic, User-Controllable Timing Via Timing
Driven Software Tools with Up To 100% Pin Fixing.
IEEE Standard 1149.1 (JTAG) Boundary Scan Testing.
General Description
Actel’s Integrator Series FPGAs are the first programmable
logic devices optimized for high-speed system logic
integration. Based on Actel’s proprietary antifuse
technology and 0.6-micron double metal CMOS process,
Integrator Series devices offer a fine-grained, register-rich
architecture with embedded dual-port SRAM and
wide-decode circuitry.
Integrator Series’ 3200DX and 1200XL families were
designed to integrate system logic which is typically
implemented in multiple CPLDs, PALs, and FPGAs. These
devices provide the features and performance required for
today’s complex, high-speed digital logic systems. The
3200DX family offers fast dual-port SRAM for implementing
FIFOs, LIFOs, and temporary data storage. The large
number of storage elements can efficiently address
applications requiring wide datapath manipulation and
transformation functions such as telecommunications,
networking, and DSP.
Integrator Series Product Profile Family
1200XL 3200DX
Device A1225XL A1240XL A1280XL A3265DX A32100DX A32140DX A32200DX A32300DX
Capacity
Logic Gates1
SRAM Bits 2,500
N/A 4,000
N/A 8,000
N/A 6,500
N/A 10,000
2,048 14,000
N/A 20,000
2,560 30,000
3,072
Logic Modules
Sequential
Combinatorial
Decode
231
220
N/A
348
336
N/A
624
608
N/A
510
475
20
700
662
20
954
912
24
1,230
1,184
24
1,888
1,833
28
SRAM Modules
(64x4 or 32x8) N/A N/A N/A N/A 8 N/A 10 12
Dedicated Flip-Flops 231 348 624 510 700 954 1,230 1,888
Clocks 22226266
User I/O (Maximum) 83 104 140 126 152 176 202 250
JTAG No No No No Yes Yes Yes Yes
Packages
PL84
PQ100
VQ100
PG100
PL84 PQ100
PQ144
TQ176
PG132
PL84
PQ160 PQ208
TQ176
PG176 CQ172
PL84
PQ100
PQ160
TQ176
PL84
PQ160
PQ208
TQ176
CQ84
PL84
PQ160
PQ208
TQ176
CQ256
PQ208
RQ208
RQ240
CQ208
CQ256
RQ208
RQ240
CQ256
Note: Logic gate capacity does not include SRAM bits as logic.
v3.0
Integrator Series FPGAs: 1200XL and 3200DX Families
2 Discontinued – v3.0
Ordering Information
Application (Temperature Range)
C = Commercial (0 to +70°C)
I = Industrial (–40 to +85°C)
M = Milit ary (–55 to +125°C)
B=MIL-STD-883
Package Type
CQ = Ceramic Quad Flat Pack
PG = Ceramic Pin Grid Array
PL = Plastic Leaded Chip Carrier
PQ = Plastic Quad Flat Pack
RQ = Plastic Power Quad Flat Pack
TQ = Thin (1.4 mm) Quad Flat Pack
VQ = Very Thin (1.0 mm) Quad Flat Pack
Speed Grade
Blank = Standard Speed
1 = Approximately 15% Faster than Standard
2 = Approximately 25% Faster than Standard
3 = Approximately 35% Faster than Standard
F = Approximately 30% Slower than Standard
Part Number
A1225 = 2500 Gates
A1240 = 4000 Gates
A3265 = 6500 Gates
A1280 = 8000 Gates
A32100 = 10000 Gates
A32140 = 14000 Gates
A32200 = 20000 Gates
A32300 = 30000 Gates
Die Revision
XL = 1200XL Family
DX = 3200DX Family
Package Lead Count
A1225 PQ 100 CXL
Operating Voltage
V = 3.3 Volt
Blank = 5.0 Volt
V
Note: This family has been discontinued.
Discontinued – v3.0 3
Integrator Series FPGAs: 1200XL and 3200DX Families
Product Plan
Speed Grade* Application
–F Std –1 –2 –3 C I M B
A1225XL Device
84-Pin Plastic Leaded Chip Carrier (PLCC)
100-Pin Plastic Quad Flat Pack (PQFP)
100-Pin Ver y Thin Pla st ic Quad Flat Pack (VQFP)
100-Pin Ceramic Pin Grid Array (CPGA) ✔✔✔
A1225XLV Device
84-Pin Plastic Leaded Chip Carrier (PLCC) ———
100-Pin Ver y Thin Pla st ic Quad Flat Pack (VQFP) ———
A1240XL Device
84-Pin Plastic Leaded Chip Carrier (PLCC)
100-Pin Plastic Quad Flat Pack (PQFP)
132-Pin Ceramic Pin Grid Array (CPGA) ✔✔✔
144-Pin Plastic Quad Flat Pack (PQFP)
176-Pin Thin Plastic Quad Flat Pack (TQFP)
A1240XLV Device
84-Pin Plastic Leaded Chip Carrier (PLCC) ———
176-Pin Thin Plastic Quad Flat Pack (TQFP) ———
A3265DX Device
84-Pin Plastic Leaded Chip Carrier (PLCC)
100-Pin Plastic Quad Flat Pack (PQFP)
160-Pin Plastic Quad Flat Pack (PQFP)
176-Pin Thin Plastic Quad Flat Pack (TQFP)
A3265DXV Device
84-Pin Plastic Leaded Chip Carrier (PLCC) ———
176-Pin Thin Plastic Quad Flat Pack (TQFP) ———
A1280XL Device
84-Pin Plastic Leaded Chip Carrier (PLCC)
160-Pin Plastic Quad Flat Pack (PQFP)
172-Pin Ceramic Quad Flat Pack (CQFP) ✔✔✔
176-Pin Thin Plastic Quad Flat Pack (TQFP)
176-Pin Ceramic Pin Grid Array (CPGA) ✔✔✔
208-Pin Plastic Quad Flat Pack (PQFP)
A1280XLV Device
84-Pin Plastic Leaded Chip Carrier (PLCC) ———
176-Pin Thin Plastic Quad Flat Pack (TQFP) ———
A32100DX Device
84-Pin Ceramic Quad Flat Pack (CQFP) ✔✔✔
84-Pin Plastic Leaded Chip Carrier (PLCC)
160-Pin Plastic Quad Flat Pack (PQFP)
208-Pin Plastic Quad Flat Pack (PQFP)
Contact your Actel sales representative for product availability.
Applications: C = Commercial Availability: = Available *Speed Grade: –1 = Approx. 15% faster than Standard
I = Industrial P = Planned –2 = Approx. 25% faster than Standard
M = Military = Not Planned –3 = Approx. 35% faster than Standard
–F = Approx. 40% slower than Standard
Only Std, –1, –2 Speed Grade
Only Std, –1 Speed Grade
Integrator Series FPGAs: 1200XL and 3200DX Families
4 Discontinued – v3.0
176-Pin Thin Plastic Quad Flat Pack (TQFP) ✔✔✔✔✔ ✔✔
A32100DXV Device
84-Pin Plastic Leaded Chip Carrier (PLCC) ———
176-Pin Thin Plastic Quad Flat Pack (TQFP) ———
A32140DX Device
84-Pin Plastic Leaded Chip Carrier (PLCC)
160-Pin Plastic Quad Flat Pack (PQFP)
176-Pin Thin Plastic Quad Flat Pack (TQFP)
208-Pin Plastic Quad Flat Pack (PQFP)
256-Pin Ceramic Quad Flat Pack (CQFP)
A32140DXV Device
84-Pin Plastic Leaded Chip Carrier (PLCC) ———
176-Pin Thin Plastic Quad Flat Pack (TQFP) ———
A32200DX Device
208-Pin Plastic Quad Flat Pack (PQFP) ✔✔✔✔✔ ✔✔
208-Pin Plastic Po we r Quad Flat Pack (RQFP) ✔✔✔✔✔ ✔✔
240-Pin Plastic Po we r Quad Flat Pack (RQFP) ✔✔✔✔✔ ✔✔
208-Pin Ceramic Quad Flat Pack (CQFP)
256-Pin Ceramic Quad Flat Pack (CQFP)
A32200DXV Device
208-Pin Plastic Quad Flat Pack (PQFP) ———
240-Pin Plastic Po we r Quad Flat Pack (RQFP) ———
A32300DX Device
208-Pin Plastic Po we r Quad Flat Pack (RQFP) ✔✔✔✔✔ ✔✔
240-Pin Plastic Po we r Quad Flat Pack (RQFP) ✔✔✔✔✔ ✔✔
256-Pin Ceramic Quad Flat Pack (CQFP)
A32300DXV Device
208-Pin Plastic Po we r Quad Flat Pack (RQFP) ———
240-Pin Plastic Po we r Quad Flat Pack (RQFP) ———
Product Plan (Continued)
Speed Grade* Application
FStd1–2–3 C I M B
Contact your Actel sales representative for product availability.
Applications: C = Commercial Availability: = Available *Speed Grade: –1 = Approx. 15% faster than Standard
I = Industrial P = Planned –2 = Approx. 25% faster than Standard
M = Military = Not Planned –3 = Approx. 35% faster than Standard
–F = Approx. 40% slower than Standard
Only Std, –1, –2 Speed Grade
Only Std, –1 Speed Grade
Discontinued – v3.0 5
Integrator Series FPGAs: 1200XL and 3200DX Families
Development Tool Support
The devices are fully supported by Actel’s line of FPGA
development tools, including the Actel DeskTOP series and
Designer Advantage tools. The Actel DeskTOP series is an
integrated design environment for PCs that includes design
entry, simulation, synthesis, and place and route tools.
Designer Advantage, Actel’s suite of FPGA development
point tools for PCs and Workstations, includes the ACTgen
Macro Builder, timing-driven place and route and analysis
tools, and device programming software.
In addition, the devices contain ActionProbe circuitry that
provides built-in access to every node in a design, enabling
100 percent real-time observation and analysis of a device's
internal logic nodes without design iteration. The probe
circuitry is accessed by Silicon Explorer II, an easy-to-use
integrated verification and logic analysis tool that can
sample data at 100 MHz (asynchronous) or 66 MHz
(synchronous). Silicon Explorer II attaches to a PC’s
standard COM port, turning the PC into a fully functional
18-channel logic analyzer. Silicon Explorer II allows
designers to complete the design verification process at
their desks and reduces verification time from several hours
per cycle to only a few seconds.
Integrator Series Architectural
Overview
The 1200XL and 3200DX architecture is composed of
fine-grained building blocks which produce fast, efficient
logic designs. All devices within the Integrator Series are
composed of logic modules, routing resources, clock
networks, and I/O modules which are the building blocks to
design fast logic designs. In addition, a subset of devices
contain embedded dual-port SRAM and wide-decode
modules. The dual-port SRAM modules are optimized for
high-speed datapath functions such as FIFOs, LIFOs, and
scratchpad memory. The “Integrator Series Product Profile
Family” on page 1 lists the specific logic resources
contained within each device.
Plastic Device Resources
User I/Os
Device PLCC 84-Pin VQFP 100-Pin PQFP
100-Pin PQFP 144-Pin PQFP 160-Pin PQFP 208-Pin RQFP
240-Pin TQFP 176-Pin
A1225XL 72 83 83
A1240XL 72 83 104 ———103
A3265DX 72 83 125 126
A1280XL 72 125 140 140
A32100DX 72 125 152 142
A32140DX 72 125 176 150
A32200DX 176* 202
A32300DX 176 202
Package Definitions (Consult your local Actel Sales Representative for product availability.)
PLCC = Plastic Leaded Chip Carrier, PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, BGA = Ball Grid Ar ray, VQFP = V ery Thin Quad Flat
Pack, RQFP = Plastic Power Quad Flat Pack
* Also available in RQFP 208-pin.
Hermetic Device Resources
User I/Os
Device CPGA
176-Pin CQFP
84-Pin CQFP
172-Pin CQFP
208-Pin CQFP
256-Pin
A1280XL 140 140
A32100DX 60
A32140DX 176
A32200DX 176 202
A32300DX 212
Package Definitions (Consult your local Actel Sales Representative for product availability.)
CPGA = Ceramic Pin Grid Array, CQFP = Ceramic Quad Flat Pack
Integrator Series FPGAs: 1200XL and 3200DX Families
6 Discontinued – v3.0
Logic Modules
3200DX and 1200XL devices contain three types of logic
modules: combinatorial (C-modules), sequential
(S-modules), and decode (D-modules). 1200XL devices
contain only the C-module and S-module, while the 3200DX
devices contain D-modules and dual-port SRAM modules in
addition to the S-module and C-module.
The C-module is shown in Figure 1 and implements the
following function:
Y=!S1*!S0*D00+!S1*S0*D01+S1*!S0*D10+S1*S0*D11
where:
S0=A0*B0
S1=A1+B1
The S-module shown in Figure 2 is designed to implement
high-speed sequential functions within a single logic
module. The S-module implements the same combinatorial
logic function as the C-module while adding a sequential
element. The sequential element can be configured as
either a D-type flip-flop or a transparent latch. To increase
flexibility, the S-module register can be bypassed so that it
implements purely combinatorial logic.
Figure 1 C-Module Implementation
D00
D01
D10
D11
S0
S1
Y
A0
B0
A1
B1
Figure 2 S-Module Implementation
D11
D01
D00
D10 YOUT
S1 S0
Up to 7-Input Function Plus D-Type Flip-Flop with Clear
D11
D01
D00
D10 Y
S1 S0
Up to 7-Input Function Plus Latch
Y
Up to 4-Input Function Plus Latch with Clear
D11
D01
D00
D10 YOUT
S1
S0
Up to 8-Input Function (Same as C-Module)
S
D1
D0
CLR
DQ
OUT
CLR
DQ
OUT
GATE
DQ
GATE
Discontinued – v3.0 7
Integrator Series FPGAs: 1200XL and 3200DX Families
3200DX devices contain a third type of logic module,
D-modules, which are arranged around the periphery of the
device. D-modules contain wide-decode circuitry which
provides a fast, wide-input AND function similar to that
found in product term architectures (Figure 3). The
D-module allows 3200DX devices to perform wide-decode
functions at speeds comparable CPLDs and PAL devices.
The output of the D-module has a programmable inverter
for active HIGH or LOW assertion. The D-module output is
hard-wired to an output pin or can be fed back into the
array to be incorporated into other logic.
Dual-Port SRAM Modules
Several 3200DX devices contain dual-port SRAM modules
that have been optimized for synchronous or asynchronous
applications. The SRAM modules are arranged in 256-bit
blocks which can be configured as 32x8 or 64x4 (refer to
“Integrator Series Product Profile Family” on page 1 for the
number of SRAM blocks within a particular device). SRAM
modules can be cascaded together to form memory spaces
of user-definable width and depth. A block diagram of the
3200DX dual-port SRAM block is shown in Figure 4.
Figure 3 D-Module Implementation
7 Inputs
Hard-Wire to I/O
Feedback to Array
Programmable
Inverter
Figure 4 3200DX Dual-Port SRAM Block
SRAM Module
32 x 8 or 64 x 4
(256 Bits)
Read
Port
Logic
Write
Port
Logic
RD[7:0]
Routing Tracks
Latches
Read
Logic
[5:0] RDAD[5:0]
REN
RCLK
LatchesWD[7:0]
Latches
WRAD[5:0]
Write
Logic
MODE
BLKEN
WEN
WCLK
[5:0]
[7:0]
The 3200DX SRAM modules are true dual-port structures
containing independent READ and WRITE ports. Each
SRAM module contains six bits of read and write addressing
(RDAD[5:0] and WRAD[5:0], respectively) for 64x4 bit
blocks. When configured in byte mode, the highest order
address bits (RDAD5 and WRAD5) are not used. The read
and write ports of the SRAM block contain independent
clocks (RCLK and WCLK) with programmable polarities
offering active HIGH or LOW implementation. The SRAM
block contains eight data inputs (WD[7:0]) and eight
outputs (RD[7:0]) which are connected to segmented
vertical routing tracks.
The 3200DX dual-port SRAM blocks provide an optimal
solution for high-speed buffered applications requiring fast
FIFO and LIFO queues. Actel’s ACTgen Macro Builder
provides the capability to quickly design memory functions,
Integrator Series FPGAs: 1200XL and 3200DX Families
8 Discontinued – v3.0
such as FIFOs, LIFOs, and RAM arrays. Additionally, unused
SRAM blocks can be used to implement registers for other
logic within the design.
I/O Modules
The I/O modules provide the interface between the device
pins and the logic array. Figure 5 is a block diagram of the
I/O module. A variety of user functions, determined by a
library macro selection, can be implemented in the module
(refer to the Macro Library Guide for more information). I/O
modules contain a tri-state buffer, input and output latches
which can be configured for input, output, or bi-directional
pins (Figure 5).
Figure 5 I/O Module
G/CLK*
QD
EN
PAD
* Can be Configured as a Latch or D Flip-Flop
From Array
To Array
(Using C-Module)
G/CLK*
QD
The Integrator Series devices contain flexible I/O structures
where each output pin has a dedicated output enable
control. The I/O module can be used to latch input and/or
output data, providing a fast set-up time. In addition, the
Actel Designer Series software tools can build a D-type
flip-flop using a C-module to register input and/or output
signals.
Actel’s Designer Series development tools provide a design
library of I/O macrofunctions which can implement all I/O
configurations supported by the Integrator Series FPGAs.
Routing Structure
The Integrator Series architecture uses vertical and
horizontal routing tracks to interconnect the various logic
and I/O modules. These routing tracks are metal
interconnects that may either be of continuous length or
broken into pieces called segments. Varying segment
lengths allows interconnection of over 90% of design tracks
to occur with only two antifuse connections. Segments can
be joined together at the ends using antifuses to increase
their lengths up to the full length of the track. All
interconnects can be accomplished with a maximum of four
antifuses.
Horizontal Routing
Horizontal channels are located between the rows of
modules and are composed of several routing tracks. The
horizontal routing tracks within the channel are divided
into one or more segments. The minimum horizontal
segment length is the width of a module pair, and the
maximum horizontal segment length is the full length of the
channel. Any segment that spans more than one-third the
row length is considered a long horizontal segment. A
typical channel is shown in Figure 6. Non-dedicated
horizontal routing tracks are used to route signal nets;
dedicated routing tracks are used for the global clock
networks and for power and ground tie-off tracks.
Vertical Routing
Another set of routing tracks run vertically through the
module. Vertical tracks are of three types: input, output, and
long, and are divided into one or more segments. Each
segment in an input track is dedicated to the input of a
particular module; each segment in an output track is
dedicated to the output of a particular module. Long
segments are uncommitted and can be assigned during
routing. Each output segment spans four channels (two
above and two below), except near the top and bottom of the
array where edge effects occur. Long Vertical Tracks contain
either one or two segments. An example of vertical routing
tracks and segments is shown in Figure 6.
Figure 6 Routing Structure
Vertical Routing Tracks
Antifuses
Logic
Segmented
Horizontal
Routing
Tracks
Modules
Antifuse Structure
An antifuse is a “normally open” structure as opposed to the
normally closed fuse structure used in PROMs or PALs. The
use of antifuses to implement a programmable logic device
results in highly-testable structures as well as efficient
Discontinued – v3.0 9
Integrator Series FPGAs: 1200XL and 3200DX Families
programming algorithms. The structure is highly testable
because there are no pre-existing connections; therefore,
temporary connections can be made using pass transistors.
These temporary connections can isolate individual
antifuses to be programmed and individual circuit
structures to be tested, which can be done before and after
programming. For example, all metal tracks can be tested
for continuity and shorts between adjacent tracks, and the
functionality of all logic modules can be verified.
Clock Networks
Two low-skew, high-fanout clock distribution networks are
provided in each 3200DX device. These networks are
referred to as CLK0 and CLK1. Each network has a clock
module (CLKMOD) that selects the source of the clock
signal and may be driven as follows:
1. Externally from the CLKA pad
2. Externally from the CLKB pad
3. Internally from the CLKINA input
4. Internally from the CLKINB input
The clock modules are located in the top row of I/O
modules. Clock drivers and a dedicated horizontal clock
track are located in each horizontal routing channel.
The user controls the clock module by selecting one of two
clock macros from the macro library. The macro CLKBUF is
used to connect one of the two external clock pins to a clock
network, and the macro CLKINT is used to connect an
internally-generated clock signal to a clock network. Since
both clock networks are identical, the user does not care
whether CLK0 or CLK1 is being used. The clock input pads
may also be used as normal I/Os, bypassing the clock
networks (see Figure 7).
Figure 7 Clock Networks
CLKB
CLKA
From
Pads
Clock
Drivers
CLKMOD
CLKINB
CLKINA
S0
S1 Internal
Signal
CLKO(17)
CLKO(16)
CLKO(15)
CLKO(2)
CLKO(1)
Clock Tracks
The 3200DX devices which contain SRAM modules (all
except A3265DX and A32140DX) have four additional
register control resources, called quadrant clock networks
(Figure 8 on page 10). Each quadrant clock provides a local,
high-fanout resource to the contiguous logic modules within
its quadrant of the device. Quadrant clock signals can
originate from specific I/O pins or from the internal array
and can be used as a secondary register clock, register
clear, or output enable.
Test Circuitry
All devices contain Actel’s ActionProbe test circuitry which
test and debug a design once it is programmed into a device.
Once a device has been programmed, the ActionProbe test
circuitry allows the designer to probe any internal node
during device operation to aid in debugging a design. In
addition, 3200DX devices contain IEEE Standard 1149.1
boundary scan test circuitry.
IEEE Standard 1149.1 Boundary Scan Testing (BST)
IEEE Standard 1149.1 defines a four-pin Test Access Port
(TAP) interface for testing integrated circuits in a system.
The 3200DX family provides five BST pins: Test Data In
(TDI), Test Data Out (TDO), Test Clock (TCK), and Test
Mode Select Test Reset (TRST) (3200DX24A only). Devices
are configured in a test “chain” where BST data can be
transmitted serially between devices via TDO-to-TDI
interconnections. The TMS and TCK signals are shared
among all devices in the test chain so that all components
operate in the same state.
The 3200DX family implements a subset of the IEEE
Standard 1149.1 BST instruction in addition to a private
instruction, which allows the use of Actel’s ActionProbe
facility with BST. Refer to the IEEE Standard 1149.1
specification for detailed information regarding BST.
Boundary Scan Circuitry
The 3200DX boundary scan circuitry consists of a Test
Access Port (TAP) controller, test instruction register, a
JPROBE register, a bypass register, and a boundary scan
register. Figure 9 on page 10 shows a block diagram of the
3200DX boundary scan circuitry.
When a device is operating in BST mode, four I/O pins are
used for the TDI, TDO, TMS, and TCK signals. An active
reset (nTRST) pin is not supported; however, the 3200DX
device contain power-on circuitry that resets the boundary
scan circuitry upon power-up. Table 1 on page 11
summarizes the functions of the IEEE 1149.1 BST signals.
Figure 8 Quadrant Clock Network
Quad
Clock
Module
QCLKA
QCLKB
*QCLK1IN
S0 S1
QCLK1
Quad
Clock
Module
*QCLK2IN
S0 S1
QCLK2
Quad
Clock
Module
QCLKC
QCLKD
*QCLK3IN
S0S1
QCLK3
Quad
Clock
Module *QCLK4IN
S0S1
QCLK4
*QCLK1IN, QCLK2IN, QCLK3IN, and QCLK4IN are internally-generated signals.
Figure 9 3200DX IEEE 1149.1 Boundary Scan Circuitry
JPROBE Register
Boundary Scan Register
Instruction
Decode
Control Lo gic
TAP Controller
Instruction
Register
Bypass
Register
TMS
TCK
TDI
Output
MUX TDO
JTAG
JTAG
Integrator Series FPGAs: 1200XL and 3200DX Families
10 Discontinued – v3.0
Table 1 IEEE 1149.1 BST Signals
Signal Name Function
TDI Test Data In Serial data input for BST instructions and
data. Dat a is shifted in on th e rising edge
of TCK.
TDO Test Data Out Serial data out put for BST instructions
and test data.
TMS Test Mode Select Serial data input for BST mode. Data is
shifted in on the rising edge of TCK.
TCK Test Clock Clock signal to shift t he BST data into
the device.
Discontinued – v3.0 11
Integrator Series FPGAs: 1200XL and 3200DX Families
JTAG
All 3200DX devices are IEEE 1149.1 (JTAG) compliant.
3200DX devices offer superior diagnostic and testing
capabilities by providing JTAG and probing capabilites.
These functions are controlled through the special JTAG
pins in conjunction with the program fuse.
JTAG fuse programmed:
TCK must be terminated—logical high or low doesn’t
matter (to avoid floating input)
TDI, TMS may float or at logical high (internal pull-up is
present)
TDO may float or connect to TDI of another device (it’s an
output)
JTAG fuse not programmed:
TCK, TDI, TDO, TMS are user I/O. If not used, they will be
configured as tristated output.
BST Instructions
Boundary scan testing within the 3200DX devices is
controlled by a Test Access Port (TAP) state machine. The
TAP controller drives the three-bit instruction register, a
bypass register, and the boundary scan data registers within
the device. The TAP controller uses the TMS signal to
control the testing of the device. The BST mode is
determined by the bitstream entered on the TMS pin.
Table 2 describes the test instructions supported by the
3200DX devices.
Reset
The TMS pin is equipped with an internal pull-up resistor.
This allows the TAP controller to remain in or return to the
Test-Logic-Reset state when there is no input or when a
logical 1 is on the TMS pin. To reset the controller, TMS
must be HIGH for at least five TCK cycles.
Table 2 BST Instructions
Test Mode Code Description
EXTEST 000
Allows the e xte r n al ci rcuitry an d
board-level interconnections to be tested
by forcing a test pa ttern at the o utput pins
and capturing test results at the input
pins.
SAMPLE/
PRELOAD 001 Allows a snapshot of the signa ls at the
device pins to be capt ured and examined
during device operation.
JPROBE 011 A private instruction allowing the user to
connect Actel’s Micro Prob e registers to
the test chain.
USER
INSTRUCTION 100 Allows the user to build
application-specific instructions such as
RAM READ and RAM WRITE.
HIGH Z 101 Refer to the IEEE Standard 1149.1
specification.
CLAMP 110 Refer to the IEEE Standard 1149.1
specification.
BYPASS 111
Enables the bypass register between the
TDI and TDO pins. The test data p asses
through the selecte d device to adjacent
device s in the test chain.
When a device is operating in BST mode, four I/O pins are
used for the TDI, TDO, TMS, and TCLK signals. An active
reset (nTRST) pin is not supported; however, the 3200DX
contains power-on circuitry which automatically resets the
BST circuitry upon power-up. The following table
summarizes the functions of the BST signals.
JTAG BST Instructions
JTAG BST testing within the 3200DX devices is controlled
by a Test Access Port (TAP) state machine. The TAP
controller drives the three-bit instruction register, a bypass
register, and the boundary scan data registers within the
device. The TAP controller uses the TMS signal to control
the JTAG testing of the device. The JTAG test mode is
determined by the bitstream entered on the TMS pin. The
table in the next column describes the JTAG instructions
supported by the 3200DX.
Design Tool Support ActionProbe
If a device has been successfully programmed and the
security fuse has not been programmed, any internal logic
or I/O module output can be observed in real time using the
ActionProbe circuitry, the PRA and/or PRB pins, and Actel’s
Silicon Explorer diagnostic and debug tool kit.
Integrator Series FPGAs: 1200XL and 3200DX Families
12 Discontinued – v3.0
5.0V Operating Conditions
Absolute Maximum Ratings1
Free Air Temperature Range
Symbol Parameter Limits Units
VCC DC Supply Voltage –0.5 to +7.0 V
VI2Input Voltage –0.5 to VCC +0.5 V
VOOutput Voltage –0.5 to VCC +0.5 V
TSTG Storage Temperature –65 to +150 °C
Notes:
1. Stresses beyond those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device.
Exposure to absolute maximum rated conditions for extended
periods may affect device reliability. Device should not be
operated outside the Recommended Operating Conditions.
2. Device inputs are normally high impedance and draw
extremely low current. However, when input voltage is greater
than VCC + 0.5V or less than GND – 0.5V, the internal protection
diode will be forward biased and can draw excessive current.
Recommended Operating Conditions
Parameter Commercial Industrial Military Units
Temperature
Range10 to +70 –40 to +85 –55 to +125 °C
Power Supply
Tolerance ±5 ±10 ±10 %VCC
Note:
1. Ambient temperature (TA) is used for commercial and
industrial; case temperature (TC) is used for military.
Electrical Specifications
Symbol Parameter
Commercial Commercial –F Industrial Military Units
Min. Max. Min. Max. Min. Max. Min. Max.
VOH1(IOH = –10 mA) 2.4 2.4 V
(IOH = –6 mA) 3.84 3.84 V
(IOH = –4 mA) 3.7 3.7 V
VOL1(IOL = 10 mA) 0.5 0.5 V
(IOL = 6 mA) 0.33 0.33 0.40 0.40 V
VIL –0.3 0.8 –0.3 0.8 –0.3 0.8 –0.3 0.8 V
VIH 2.0 VCC + 0.3 2.0 VCC + 0.3 2.0 VCC + 0.3 2.0 VCC + 0.3 V
Input Transition Time tR, tF500 500 500 500 ns
CIO I/O Capacitance210 10 10 10 pF
Standby Current, ICC3 (typical = 1 mA) 2.0 20 10 20 mA
ICC(D) Dynamic VCC Supply Current See the “Power Dissipation” section on page 14.
IV Curve4Can be converted from IBIS model on the web.
Notes:
1. Only one output tested at a time. VCC = min.
2. Includes worst-case 176 CPGA package capacitance. VOUT = 0 V, f = 1 MHz.
3. All outputs unloaded. All inputs = VCC or GND, typical ICC = 1 mA. ICC limit includes IPP and ISV during normal operation.
4. The IBIS model can be found at www.actel.com/support/support/support_ibis.html.
Discontinued – v3.0 13
Integrator Series FPGAs: 1200XL and 3200DX Families
3.3V Operating Conditions
Absolute Maximum Ratings1
Free Air Temperature Range
Symbol Parameter Limits Units
VCC DC Supply Voltage –0.5 to +7.0 V
VI2Input Voltage –0.5 to VCC +0.5 V
VOOutput Voltage –0.5 to VCC +0.5 V
TSTG Storage Temperature –65 to +150 °C
Notes:
1. Stresses beyond those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device.
Exposure to absolute maximum rated conditions for extended
periods may affect device reliability. Device should not be
operated outside the Recommended Operating Conditions.
2. Device inputs are normally high impedance and draw
extremely low current. However, when input voltage is greater
than VCC + 0.5V or less than GND – 0.5V, the internal protection
diodes will forward bias and can draw excessive current.
Recommended Operating Conditions
Parameter Commercial Units
Temperature Range10 to +70 °C
Power Supply Tolerance ±5 %V
Note:
1. Ambient temperature (TA) is used for commercial.
Electrical Specifications
Parameter Commercial Units
Min. Max.
VOH1(IOH = –4 mA) 2.15 V
(IOH = –3.2 mA) 2.4 V
VOL1(IOL = 6 mA) 0.4 V
VIL –0.3 0.8 V
VIH 2.0 VCC + 0.3 V
Input Transition Time tR, tF2500 ns
CIO I/O Capacitance2, 3 10 pF
Standby Current, ICC4 (typical = 0.3 mA) 0.75 mA
ICC(D) Dynamic VCC Supply Current See the “Power Dissipation” section on page 14.
IV Curve4Can be converted from IBIS model on the web.
Notes:
1. Only one output tested at a time. VCC = min.
2. Includes worst-case 84-pin PLCC package capacitance. VOUT = 0 V, f = 1 MHz.
3. Typical standby current = 0.3 mA. All outputs unloaded. All inputs = VCC or GND.
4. The IBIS model can be found at www.actel.com/support/support/support_ibis.html.
Integrator Series FPGAs: 1200XL and 3200DX Families
14 Discontinued – v3.0
Package Thermal Characteristics
The device junction to case thermal characteristic is θjc,
and the junction to ambient air characteristic is θja. The
thermal characteristics for θja are shown with two different
air flow rates.
Maximum junction temperature is 150°C.
A sample calculation of the absolute maximum power
dissipation allowed for a PQFP 160-pin package with still air
at commercial temperature is as follows:
Max. junction temp. (°C) Max. commercial temp.
θja (°C/W)
----------------------------------------------------------------------------------------------------------------------------- 150°C 70°C
34°C/W
--------------------------------- 2.4 W==
Package Type Pin Count
θja Maximum Power Dissipation
Still Air 300 ft/min Still Air 300 ft/min
Plastic Quad Flat Pack 100 42°C/W 33°C/W 1.9 W 2.4 W
Plastic Quad Flat Pack 144 36°C/W 29°C/W 2.2 W 2.8 W
Plastic Quad Flat Pack 160 34°C/W 27°C/W 2.4 W 3.0 W
Plastic Quad Flat Pack 208 25°C/W 16.2°C/W 3.2 W 4.9 W
Plastic Leaded Chip Carrier 84 37°C/W 28°C/W 2.2 W 2.9 W
Thin Quad Flat Pack 176 32°C/W 25°C/W 2.5 W 3.2 W
Power Quad Flat Pack 208 16.8°C/W 11.4°C/W 4.8 W 7.0 W
Power Quad Flat Pack 240 16.1°C/W 10.6°C/W 5.0 W 7.5 W
Very Thin Quad Flat Pack 100 43°C/W 35°C/W 1.9 W 2.3 W
Power Dissipation
General Power Equation
P = [ICCstandby + ICCactive] * VCC + IOL* VOL* N
+ IOH * (VCC – VOH) * M
where:
ICCstandby is the current flowing when no inputs or
outputs are changing.
ICCactive is the current flowing due to CMOS switching.
IOL, IOH are TTL sink/source currents.
VOL, VOH are TTL level output voltages.
N equals the number of outputs driving TTL loads to VOL.
M equals the number of outputs driving TTL loads to VOH.
An accurate determination of N and M is problematic
because their values depend on the family type, design
details, and on the system I/O. The power can be divided
into two components: static and active.
Static Power Component
Actel FPGAs have small static power components that
result in lower power dissipation than PALs or PLDs. By
integrating multiple PALs/PLDs into one FPGA, an even
greater reduction in board-level power dissipation can
be achieved.
The power dissipation due to standby current is typically a
small component of the overall power. Standby power is
calculated below for commercial worst case conditions.
ICC VCC Power
2 mA 5.25 V 10.5 mW
The static power dissipation by TTL loads depends on the
number of outputs driving HIGH or LOW and the DC load
current. Again, this number is typically small. For instance,
a 32-bit bus sinking 4 mA at 0.33V will generate 42 mW with
all outputs driving LOW and 140 mW with all outputs driving
HIGH. The actual dissipation will average somewhere in
between as I/Os switch states with time.
Active Power Component
Power dissipation in CMOS devices is usually dominated by
the active (dynamic) power dissipation. This component is
frequency-dependent, a function of the logic and the
external I/O. Active power dissipation results from charging
internal chip capacitances of the interconnect,
unprogrammed antifuses, module inputs, and module
outputs, plus external capacitance due to PC board traces
and load device inputs. An additional component of the
active power dissipation is the totem pole current in the
CMOS transistor pairs. The net effect can be associated with
an equivalent capacitance that can be combined with
frequency and voltage to represent active power dissipation.
Discontinued – v3.0 15
Integrator Series FPGAs: 1200XL and 3200DX Families
Equivalent Capacitance
The power dissipated by a CMOS circuit can be expressed by
Equation 1
Power (µW) = CEQ * VCC2 * F (1)
where:
CEQ is the equivalent capacitance expressed in picofarads
(pF).
VCC is power supply in volts (V).
F is the switching frequency in megahertz (MHz).
Equivalent capacitance is calculated by measuring ICCactive
at a specified frequency and voltage for each circuit
component of interest. Measurements have been made over
a range of frequencies at a fixed value of VCC. Equivalent
capacitance is frequency-independent, so the results may
be used over a wide range of operating conditions.
Equivalent capacitance values are shown below.
CEQ Values for Actel FPGAs
Modules (CEQM)5.2
Input Buffers (CEQI)11.6
Output Buffers (CEQO)23.8
Routed Array Clock Buffer Loads (CEQCR)3.5
To calculate the active power dissipated from the complete
design, the switching frequency of each part of the logic
must be known. Equation 2 shows a piece-wise linear
summation over all components.
Power = VCC2 * [(m x CEQM * fm)Modules +
(n * CEQI * fn)Inputs + (p * (CEQO + CL) * fp)outputs +
0.5 * (q1 * CEQCR * fq1)routed_Clk1 + (r1 * fq1)routed_Clk1 +
0.5 * (q2 * CEQCR * fq2)routed_Clk2 + (r2 * fq2)routed_Clk2 (2)
where:
m = Number of logic modules switching at frequency fm
n = Number of input buffers switching at frequency fn
p = Number of output buffers switching at frequency fp
q1=Number of clock loads on the first routed array
clock
q2=Number of clock loads on the second routed array
clock
r1=lFixed capacitance due to first routed array clock
r2=Fixed capacitance due to second routed array
clock
CEQM =Equivalent capacitance of logic modules in pF
CEQI =Equivalent capacitance of input buffers in pF
CEQO =Equivalent capacitance of output buffers in pF
CEQCR =Equivalent capacitance of routed array clock in pF
CL=Output load capacitance in p
fm=Average logic module switching rate in MHz
fn=Average input buffer switching rate in MHz
fp=Average output buffer switching rate in MHz
fq1 =Average first routed array clock rate in MHz
fq2 =Average second routed array clock rate in MHz
Fixed Capacitance Values for Actel FPGAs
(pF)
Table 5.
Device Type
r1
routed_Clk1
r2
routed_Clk2
A1225XL 106 106
A1240XL 134 134
A3265DX 158 158
A1280XL 168 168
A32100DX 178 178
A32140DX 190 190
A32200DX 230 230
A32300DX 285 285
Determining Average Switching Frequency
To determine the switching frequency for a design, the user
must have a detailed understanding of the data input values
to the circuit. The following guidelines represent worst-case
scenarios; they can be generally used to predict the upper
limits of power dissipation.
Logic Modules (m) =80% of
Combinatorial
Modules
Inputs Switching (n) =# of Inputs/4
Outputs Switching (p) =# Outputs/4
First Routed Array Clock Loads
(q1)
=40% of Sequential
Modules
Second Routed Array Clock
Loads (q2)
=40% of Sequential
Modules
Load Capacitance (CL) = 35 pF
Average Logic Module Switching
Rate (fm)
=F/10
Average Input Switching Rate
(fn)
=F/5
Average Output Switching Rate
(fp)
=F/10
Average First Routed Array
Clock Rate (fq1)
= F
Average Second Routed Array
Clock Rate (fq2)
=F/2
Integrator Series FPGAs: 1200XL and 3200DX Families
16 Discontinued – v3.0
1200XL Timing Model*
Output DelaysInternal DelaysInput Delays
tINH = 0.0 ns
tINSU = 0.3 ns
I/O Module
DQ
tINGL = 2.6 ns
tINYL = 1.3 ns tIRD2 = 3.2 ns
Combinatorial
Logic Module
tPD = 2.6 ns
Sequential
Logic Module
I/O Module
tRD1 = 0.8 ns tDLH = 3.8 ns
I/O Module
Array
Clocks
FMAX = 225 MHz
Combin-
atorial
Logic
included
in tSUD
DQDQ
tOUTH = 0.0 ns
tOUTSU = 0.3 ns
tGLH = 4.2 ns
tDLH = 3.8 ns
tENHZ = 5.4 ns
tRD1 = 0.8 ns
tCO = 2.6 ns
tSUD = 0.4 ns
tHD = 0.0 ns
tRD4 = 2.0 ns
tRD8 = 3.2 ns
Predicted
Routing
Delays
tCKH = 5.7 ns
G
G
FO = 256
tRD2 = 1.3 ns
tLCO = 10.7 ns (64 loads, pad-pad)
Notes:
1. *Values shown for A1225XL-2 at worst-case commercial conditions.†
2. Input Module Predicted Routing Delay
Discontinued – v3.0 17
Integrator Series FPGAs: 1200XL and 3200DX Families
3200DX Timing Model (Logic Functions using Array Clocks)*
Output DelaysInternal DelaysInput Delays
tINH = 0.0 ns
tINSU = 0.4 ns
I/O Module
DQ
tINGO = 2.8 ns
tINPY = 1.2 ns tIRD1 = 2.7 ns Combinatorial
Module
tPD = 2.1 ns
Sequential
Logic Module
I/O Module
tRD1 = 0.3 ns tDLH = 3.2 ns
I/O Module
Array
Clocks
FMAX = 173 MHz
Combin-
atorial
Logic
included
in tSUD
DQDQ
tLH = 0.0 ns
tLSU = 0.4 ns
tGHL= 6.5 ns
tDLH = 3.2 ns
tENHZ = 7.1 ns
tRD1 = 0.3 ns
tCO = 2.0 ns
tSUD = 0.3 ns
tHD = 0.0 ns
Predicted
Routing
Delays
G
G
Decode
Module
tPDD = 2.1 ns
tRDD = 0.4 ns
tRD2 = 0.7 ns
tRD4 = 1.2 ns
tCKH = 5.3 ns
*Values shown for A3265DX-2 at worst-case commercial conditions.
Integrator Series FPGAs: 1200XL and 3200DX Families
18 Discontinued – v3.0
3200DX Timing Model (Logic Functions using Quadrant Clocks)*
Output DelaysInternal DelaysInput Delays
tINH = 0.0 ns
tINSU = 0.45 ns
I/O Module
DQ
tINGO = 3.3 ns
tINPY = 1.4 ns tIRD1 = 1.9 ns Combinatorial
Module
tPD = 2.0 ns
Sequential
Logic Module
I/O Module
tRD1 = 1.1 ns tDLH = 3.7 ns
I/O Module
Quadrant
Clocks
FMAX = 165 MHz
Combin-
atorial
Logic
included
in tSUD
DQDQ
tLH = 0.0 ns
tLSU = 0.26 ns
tGHL= 8.9 ns
tDLH = 3.7 ns
tENHZ = 8.3 ns
tRD1 = 1.1 ns
tCO = 2.3 ns
tSUD = 0.3 ns
tHD = 0.0 ns
Predicted
Routing
Delays
G
G
Decode
Module
tPDD = 2.5 ns
tRDD = 0.3 ns
tRD2 = 1.7 ns
tRD4 = 2.6 ns
tCKH = 5.3 ns**
* Preliminary values shown for A32200DX-3 at worst-case commercial conditions.
** Load-dependent.
Discontinued – v3.0 19
Integrator Series FPGAs: 1200XL and 3200DX Families
3200DX Timing Model (SRAM Functions)*
tINH = 0.05 ns
tINSU = 0.45 ns
Input Delays
I/O Module
DQ
tINGO = 3.3 ns
tINPY = 1.4 ns tIRD1 = 1.9 ns
ARRAY
CLOCKS
FMAX = 165 MHz
G
tGHL= 8.9 ns
tLSU = 0.26 ns
I/O Module
DQ
tLH = 0.0 ns
tDLH = 3.7 ns
G
WD [7:0]
WRAD [5:0]
BLKEN
WEN
WCLK
tADSU = 1.5 ns
tADH = 0.0 ns
tWENSU = 2.6 ns
tBENS = 2.6 ns
RD [7:0]
RDAD [5:0]
REN
RCLK
tADSU = 1.5 ns
tADH = 0.0 ns
tRENSUA = 0.6 ns
tRD1 = 1.1 ns
Predicted
Routing
Delays
tRCO = 3.2 ns
*Values shown for A32200DX-3 at worst-case commercial conditions.
Integrator Series FPGAs: 1200XL and 3200DX Families
20 Discontinued – v3.0
Parameter Measurement
Output Buffer Delays
To AC test loads (shown below)PAD
D
E
TRIBUFF
In 50%
PAD
VOL
VOH
1.5V
tDLH
50%
1.5V
tDHL
E50%
PAD VOL
1.5V
tENZL
50%
10%
tENLZ
E50%
PAD
GND
VOH
1.5V
tENZH
50%
90%
tENHZ
VCC
AC Test Loads
Load 1
(Used to measure propagation delay) Load 2
(Used to measure rising/falling edges)
35 pF
To the output under test VCC GND
35 pF
To the output under test
R to VCC for tPLZ/tPZL
R to GND for tPHZ/tPZH
R = 1 k¾
Input Buffer Delays
PAD Y
INBUF
PAD 3V 0V
1.5V
Y
GND
VCC
50%
tINYH
1.5V
50%
tINYL
Module Delays
S
A
BY
S, A or B
Y
50%
tPLH
Y
50%
50% 50%
50% 50%
tPHL
tPHL
tPLH
Discontinued – v3.0 21
Integrator Series FPGAs: 1200XL and 3200DX Families
Sequential Module Timing Characteristics
Flip-Flops and Latches
(Positive Edge Triggered)
D
E
CLK CLR
PRE Y
D1
G, CLK
E
Q
PRE, CLR
tWCLKA
tWASYN
tHD
tSUENA
tSUD
tRS
tA
tWCLKI
tCO
tHENA
Note: D represents all data functions involving A, B, and S for multiplexed flip-flops.
Integrator Series FPGAs: 1200XL and 3200DX Families
22 Discontinued – v3.0
Sequential Timing Characteristics (continued)
Input Buffer Latches
G
PAD
PAD
CLK
DATA
G
CLK
tINH
CLKBUF
tINSU
tSUEXT
tHEXT
IBDL
DATA
Output Buffer Latches
D
G
tOUTSU
tOUTH
PAD
OBDLHS
D
G
Discontinued – v3.0 23
Integrator Series FPGAs: 1200XL and 3200DX Families
Decode Module Timing
A–G, H
Y
tPLH
50%
VCC
VCC
tPHL
Y
A
B
C
D
E
F
GH
SRAM Timing Characteristics
WRAD [5:0]
BLKEN
WEN
WCLK
RDAD [5:0]
LEW
REN
RCLK
RD [7:0]
WD [7:0]
Write Port Read Port
RAM Array
32x8 or 64x4
(256 Bits)
Integrator Series FPGAs: 1200XL and 3200DX Families
24 Discontinued – v3.0
Dual-Port SRAM Timing Waveforms
3200DX SRAM Write Operation
WCLK
WD[7:0]
WRAD[5:0]
WEN
BLKEN Valid
Valid
tRCKHL
tRCKHL
tWENSU
tBENSU
tWENH
tBENH
tADSU tADH
Note: Identical timing for falling-edge clock.
3200DX SRAM Synchronous Read Operation
RCLK
REN
RDAD[5:0]
RD[7:0] Old Data
Valid
tRCKHL
tCKHL
tRENH
tRCO
tADH
tDOH
tADSU
New Data
tRENSU
Note: Identical timing for falling-edge clock.
Discontinued – v3.0 25
Integrator Series FPGAs: 1200XL and 3200DX Families
3200DX SRAM Asynchronous Read Operation—Type 1
RDAD[5:0]
RD[7:0] Data 1
tRDADV
tDOH
ADDR2ADDR1
Data 2
tRPD
(Read Address Controlled)
3200DX SRAM Asynchronous Read Operation—Type 2
WEN
WD[7:0]
WCLK
RD[7:0] Old Data
Valid
tWENH
tRPD
tWENSU
New Data
tDOH
tADSU
WRAD[5:0]
BLKEN
tADH
(Write Address Controlled)
Integrator Series FPGAs: 1200XL and 3200DX Families
26 Discontinued – v3.0
Predictable Performance:
Tight Delay Distributions
Propagation delay between logic modules depends on the
resistive and capacitive loading of the routing tracks, the
interconnect elements, and the module inputs being driven.
Propagation delay increases as the length of routing tracks,
the number of interconnect elements, or the number of
inputs increase.
From a design perspective, the propagation delay can be
statistically correlated or modeled by the fanout (number of
loads) driven by a module. Higher fanout usually requires
some paths to have longer routing tracks.
The Integrator Series delivers a very tight fanout delay
distribution. This tight distribution is achieved in two ways:
by decreasing the delay of the interconnect elements and by
decreasing the number of interconnect elements per path.
Actel’s patented PLICE antifuse offers a very low
resistive/capacitive interconnect. The antifuses, fabricated
in 0.6 micron lithography, offer nominal levels of 100 ohms
resistance and 7.0 femtofarad (fF) capacitance per antifuse.
The Integrator Series fanout distribution is also tight due to
the low number of antifuses required for each interconnect
path. The proprietary architecture limits the number of
antifuses per path to a maximum of four, with 90% of
interconnects using two antifuses.
Timing Characteristics
Timing characteristics for devices fall into three categories:
family-dependent, device-dependent, and design-dependent.
The input and output buffer characteristics are common to
all Integrator Series members. Internal routing delays are
device-dependent. Design dependency means actual delays
are not determined until after placement and routing of the
user’s design is complete. Delay values may then be
determined by using the Designer Series utility or
performing simulation with post-layout delays.
Critical Nets and Typical Nets
Propagation delays in this data sheet apply to typical nets,
which are used for initial design performance evaluation.
The abundant routing resources in the Integrator Series
architecture allows for deterministic timing. Using
DirectTime, a timing-driven place and route tool in Actel’s
Designer Series development software, the designer may
specify timing-critical nets and system clock frequency.
Using these timing specifications, the place and route
software optimize the design layout to meet the user’s
specifications.
Long Tracks
Some nets in the design use long tracks, which are special
routing resources that span multiple rows, columns, or
modules. Long tracks employ three and sometimes four
antifuse connections. This increases capacitance and
resistance, resulting in longer net delays for macros
connected to long tracks. Typically, up to 6% of nets in a fully
utilized device require long tracks. Long tracks contribute
approximately 3 ns to 6 ns delay, which is represented
statistically in higher fanout (FO=8) routing delays in the
data sheet specifications section.
Timing Derating
A timing derating factor of 0.45 is used to reflect best-case
processing. Note that this factor is relative to the “standard
speed” timing parameters, and must be multiplied by the
appropriate voltage and temperature derating factors for a
given application.
Timing Derating Factor (Temperature and Voltage)
Industrial Military
Min. Max. Min. Max.
(Commercial Specification) x 0.69 1.11 0.67 1.23
Timing Derating Factor for Designs at Typical Temperature (TJ = 25°C)
and Voltage
(Maximum Specification, Worst-Case Condition) x 0.85
(5.0V)
Note: This derating factor applies to all routing and propagation
delays.
Discontinued – v3.0 27
Integrator Series FPGAs: 1200XL and 3200DX Families
Temperature and Voltage Derating Factors
(Normalized to Worst-Case Commercial, TJ = 4.75V, 70°C)
–55 –40 025 70 85 125
4.50 0.75 0.79 0.86 0.92 1.06 1.11 1.23
4.75 0.71 0.75 0.82 0.87 1.00 1.05 1.16
5.00 0.69 0.72 0.80 0.85 0.97 1.02 1.13
5.25 0.68 0.69 0.77 0.82 0.95 0.98 1.09
5.50 0.67 0.69 0.76 0.81 0.93 0.97 1.08
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
4.50 4.75 5.00 5.25 5.50
Derating Factor
Voltage (V)
125˚
C
85˚C
70˚C
25˚C
0˚C
–40˚
C
–55˚
C
Junction Temperatu re and Voltage Derating Curves
(Normalized to Worst-Case Commercial, TJ = 4.75V, 70°C)
Note: This derating factor applies to all routing and propagation delays.
Integrator Series FPGAs: 1200XL and 3200DX Families
28 Discontinued – v3.0
A1225XL Timing Characteristics
(Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C)
‘–3’ Speed ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Logic ModulePropagation Delays1
tPD1 Single Module 2.6 3.0 3.5 5.0 4.2 ns
tCO Sequential Clk-to - Q 2.6 3.0 3.5 5.0 4.2 ns
tGO Latch G-to- Q 2.6 3.0 3.5 5.0 4.2 ns
tRS Flip-Flop (Latch) Reset-to-Q 2.6 3.0 3.5 5.0 4.2 ns
Predicted Routing Delays2
tRD1 FO=1 Routing Delay 0.8 0.9 1.1 1.57 1.3 ns
tRD2 FO=2 Routing Delay 1.3 1.4 1.7 2.43 2.0 ns
tRD3 FO=3 Routing Delay 1.7 1.8 2.2 3.15 2.6 ns
tRD4 FO=4 Routing Delay 2.0 2.3 2.7 3.86 3.2 ns
tRD8 FO=8 Routing Delay 3.2 3.5 4.2 6.00 5.0 ns
Sequential Timing Characteristics3,4
tSUD Flip-Flop (Latch) Data Input Set-Up 0.4 0.4 0.5 0.7 0.6 ns
tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns
tSUENA Flip-Flop (Latch) Enable Set-Up 0.8 0.9 1.0 1.4 1.2 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.2 3.6 4.3 6.1 5.2 ns
tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 3.2 3.6 4.3 6.1 5.2 ns
tAFlip-Flop Clock Input Period 6.5 7.4 8.7 12.4 10.4 ns
tINH Input Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tINSU Input Buffer Latch Set-Up 0.3 0.4 0.4 0.6 0.5 ns
tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tOUTSU Output Buffer Latch Set-Up 0.3 0.4 0.4 0.6 0.5 ns
fMAX Flip-Flop (Latch) Clock
Frequency 225 200 170 120 115 MHz
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from
the DirectTime Analyzer utility.
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External set-up/hold timing
parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts
(adds) to the internal set-up (hold) time.
5. VCC = 3.0V for 3.3V specifications.
Discontinued – v3.0 29
Integrator Series FPGAs: 1200XL and 3200DX Families
A1225XL Timing Characteristics (continued)
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed 3.3V ‘Std’
Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Input Module Propagation Delays
tINYH Pad-to-Y High 1.1 1.2 1.4 2.0 1.7 ns
tINYL Pad-to-Y Low 1.3 1.4 1.7 2.4 2.0 ns
tINGH G-to-Y High 2.0 2.3 2.7 3.9 3.2 ns
tINGL G-to-Y Low 2.6 3.0 3.5 5.0 4.2 ns
Input Module Predicted Routing Delays1
tIRD1 FO=1 Routing Delay 2.9 3.3 3.9 5.6 4.7 ns
tIRD2 FO=2 Routing Delay 3.2 3.6 4.3 6.1 5.2 ns
tIRD3 FO=3 Routing Delay 3.8 4.2 5.0 7.2 6.0 ns
tIRD4 FO=4 Routing Delay 4.1 4.6 5.4 7.7 6.5 ns
tIRD8 FO=8 Routing Delay 5.2 5.9 6.9 9.9 8.3 ns
Global Clock Network
tCKH Input Low to High FO = 32
FO = 256 5.1
5.7 5.8
6.5 6.8
7.6 9.7
10.9 8.2
9.1 ns
tCKL Input High to Low FO = 32
FO = 256 5.0
5.7 5.7
6.5 6.7
7.6 9.6
10.9 8.0
9.1 ns
tPWH Minimum Pulse Width High FO = 32
FO = 256 2.6
2.7 3.0
3.1 3.5
3.6 5.0
5.1 4.2
4.3 ns
tPWL Minimum Pulse Width Low FO = 32
FO = 256 2.6
2.7 3.0
3.1 3.5
3.6 5.0
5.1 4.2
4.3 ns
tCKSW Maximum Skew FO = 32
FO = 256 0.8
0.8 0.9
0.9 1.0
1.0 1.4
1.4 1.2
1.2 ns
tSUEXT Input Latch External Set- Up FO = 32
FO = 256 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 ns
tHEXT Input Latch External Hold FO = 32
FO = 256 2.6
3.2 2.9
3.7 3.4
4.3 4.9
6.1 4.1
5.2 ns
tPMinimum Period FO = 32
FO = 256 5.4
5.6 6.1
6.3 7.2
7.4 10.3
10.6 8.6
8.9 ns
fMAX Maximum Frequency FO = 32
FO = 256 225
200 200
180 170
155 120.
105 115
105 MHz
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
Integrator Series FPGAs: 1200XL and 3200DX Families
30 Discontinued – v3.0
A1225XL Timing Characteristics (continued)
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed 3.3V ‘Std”
Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data-to-Pad High 3.8 4.3 5.0 7.1 6.0 ns
tDHL Data-to-Pad Low 4.1 4.6 5.4 7.7 6.5 ns
tENZH Enable-Pad Z to High 3.8 4.3 5.0 7.1 6.0 ns
tENZL Enable-Pad Z to Low 4.1 4.7 5.5 7.9 6.5 ns
tENHZ Enable-Pad High to Z 5.4 6.1 7.2 10.3 8.6 ns
tENLZ Enable-Pad Low to Z 5.4 6.1 7.2 10.3 8.6 ns
tGLH G-to-Pad High 4.2 4.8 5.6 8.0 6.7 ns
tGHL G-to-Pad Low 4.7 5.4 6.3 9.0 7.6 ns
tLCO I/O Latch Clock- Ou t (Pad - to -Pa d ) ,
64 Clock Loading 9.0 10.0 12.0 17.2 14.4 ns
tACO Array Clock-Out (Pad-to-Pad ),
64 Clock Loading 12.8 14.4 17.0 24.3 20.4 ns
dTLH Capacitive Loading, Low to High 0.04 0.04 0.05 0.06 0.06 ns/pF
dTHL Capacitive Loading, High to Low 0.05 0.06 0.07 0.08 0.08 ns/pF
CMOS Output Module Timing1
tDLH Data-to-Pad High 4.8 5.4 6.4 9.1 7.7 ns
tDHL Data-to-Pad Low 3.4 3.8 4.5 6.4 5.4 ns
tENZH Enable-Pad Z to High 3.8 4.3 5.0 7.1 6.0 ns
tENZL Enable-Pad Z to Low 4.1 4.7 5.5 7.9 6.6 ns
tENHZ Enable-Pad High to Z 5.4 6.1 7.2 10.3 8.6 ns
tENLZ Enable-Pad Low to Z 5.4 6.1 7.2 10.3 8.6 ns
tGLH G-to-Pad High 4.2 4.8 5.6 8.0 6.7 ns
tGHL G-to-Pad Low 4.7 5.4 6.3 9.0 7.6 ns
tLCO I/O Latch Clock- Ou t (Pad - to -Pa d ) ,
64 Clock Loading 10.7 11.8 14.2 20.3 17.0 ns
tACO Array Clock-Out (Pad-to-Pad ),
64 Clock Loading 15.0 17.0 20.0 28.6 24.0 ns
dTLH Capacitive Loading, Low to High 0.05 0.06 0.07 0.08 0.08 ns/pF
dTHL Capacitive Loading, High to Low 0.05 0.05 0.06 0.07 0.07 ns/pF
Note:
1. Delays based on 35 pF loading.
Discontinued – v3.0 31
Integrator Series FPGAs: 1200XL and 3200DX Families
A1240XL Timing Characteristics
(Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C)
‘–3’ Speed ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Logic ModulePropagation Delays1
tPD1 Single Module 2.6 3.0 3.5 5.0 4.2 ns
tCO Sequential Clk-to - Q 2.6 3.0 3.5 5.0 4.2 ns
tGO Latch G-to- Q 2.6 3.0 3.5 5.0 4.2 ns
tRS Flip-Flop (Latch) Reset-to-Q 2.6 3.0 3.5 5.0 4.2 ns
Predicted Routing Delays2
tRD1 FO=1 Routing Delay 1.1 1.2 1.4 2.0 1.7 ns
tRD2 FO=2 Routing Delay 1.3 1.4 1.7 2.4 2.0 ns
tRD3 FO=3 Routing Delay 1.7 1.9 2.2 3.1 2.6 ns
tRD4 FO=4 Routing Delay 2.3 2.6 3.0 4.3 3.6 ns
tRD8 FO=8 Routing Delay 3.4 3.8 4.5 6.4 5.4 ns
Sequential Timing Characteristics3, 4
tSUD Flip-Flop (Latch) Data Input Set-Up 0.4 0.4 0.5 0.7 0.6 ns
tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns
tSUENA Flip-Flop (Latch) Enable Set-Up 0.8 0.9 1.0 1.4 1.2 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.4 3.8 4.5 6.4 5.4 ns
tWASYN Fli p-Flop (Latch) Asynchronous Pulse Widt h 3.4 3.8 4.5 6.4 5.4 ns
tAFlip-Flop Clock Input Period 6.8 7.7 9.1 13.0 10.9 ns
tINH Input Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tINSU Input Buffer Latch Set-Up 0.3 0.4 0.4 0.6 0.5 ns
tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tOUTSU Output Buffer Latch Set-Up 0.3 0.4 0.4 0.6 0.5 ns
fMAX Flip-Flop (Latch) Clock Frequency 215 190 160 110 105 MHz
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from
the DirectTime Analyzer utility.
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External set-up/hold timing
parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts
(adds) to the internal set-up (hold) time.
5. VCC = 3.0V for 3.3V specifications.
Integrator Series FPGAs: 1200XL and 3200DX Families
32 Discontinued – v3.0
A1240XL Timing Characteristics (continued)
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed 3.3V ‘Std’
Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Input Module Propagation Delays
tINYH Pad-to-Y High 1.1 1.2 1.4 2.0 1.7 ns
tINYL Pad-to-Y Low 1.3 1.4 1.7 2.4 2.0 ns
tINGH G-to-Y High 2.0 2.3 2.7 3.9 3.2 ns
tINGL G-to-Y Low 2.6 3.0 3.5 5.0 4.2 ns
Input Module Predicted Routing Delays1
tIRD1 FO=1 Routing Delay 2.9 3.3 3.9 5.6 4.7 ns
tIRD2 FO=2 Routing Delay 3.4 3.8 4.5 6.4 5.4 ns
tIRD3 FO=3 Routing Delay 3.8 4.3 5.1 7.3 6.1 ns
tIRD4 FO=4 Routing Delay 4.1 4.7 5.5 7.9 6.6 ns
tIRD8 FO=8 Routing Delay 5.6 6.3 7.4 10.6 8.9 ns
Global Clock Network
tCKH Input Low to High FO = 32
FO = 256 5.1
5.7 5.8
6.5 6.8
7.6 9.7
10.9 8.2
9.1 ns
ns
tCKL Input High to Low FO = 32
FO = 256 5.0
5.7 5.7
6.5 6.7
7.6 9.6
10.9 8.0
9.1 ns
ns
tPWH Minimum Pulse Width High FO = 32
FO = 256 2.7
2.9 3.1
3.3 3.6
3.9 5.1
5.6 4.3
4.7 ns
ns
tPWL Minimum Pulse Width Low FO = 32
FO = 256 2.7
2.9 3.1
3.3 3.6
3.9 5.1
5.6 4.3
4.7 ns
ns
tCKSW Maximum Skew FO = 32
FO = 256 0.8
0.8 0.9
0.9 1.0
1.0 1.4
1.4 1.2
1.2 ns
ns
tSUEXT Input Latch External Set-Up FO = 32
FO = 256 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 ns
ns
tHEXT Input Latch External Hold FO = 32
FO = 256 2.6
3.2 2.9
3.7 3.4
4.3 4.9
6.1 4.1
5.2 ns
ns
tPMinimum Period FO = 32
FO = 256 5.6
6.0 6.3
6.8 7.4
8.0 10.6
11.4 8.9
9.6 ns
ns
fMAX Maximum Frequency FO = 32
FO = 256 215
195 190
170 160
144 110
100 105
95 MHz
MHz
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
Discontinued – v3.0 33
Integrator Series FPGAs: 1200XL and 3200DX Families
A1240XL Timing Characteristics (continued)
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Sp eed 3.3V ‘Std’
Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data-to-Pad High 3.8 4.3 5.0 7.1 6.0 ns
tDHL Data-to-Pad Low 4.1 4.6 5.4 7.7 6.5 ns
tENZH Enable-Pad Z to High 3.8 4.3 5.0 7.1 6.0 ns
tENZL Enable-Pad Z to Low 4.1 4.7 5.5 7.9 6.6 ns
tENHZ Enable-Pad High to Z 5.4 6.1 7.2 10.3 8.6 ns
tENLZ Enable-Pad Low to Z 5.4 6.1 7.2 10.3 8.6 ns
tGLH G-to-Pad High 4.2 4.8 5.6 8.0 6.7 ns
tGHL G-to-Pad Low 4.7 5.4 6.3 9.0 7.6 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad),
64 Clock Loading 9.2 10.5 12.3 17.6 14.8 ns
tACO Array Clock-Out (Pad-to-Pad),
64 Clock Loading 12.9 14.6 17.2 24.6 20.6 ns
dTLH Capacity Loading, Low to High 0.04 0.04 0.05 0.06 0.06 ns/pF
dTHL Capacity Loading, High to Low 0.05 0.06 0.07 0.08 0.08 ns/pF
CMOS Output Module Timing1
tDLH Data-to-Pad High 4.8 5.4 6.4 9.1 7.7 ns
tDHL Data-to-Pad Low 3.4 3.8 4.5 6.4 5.4 ns
tENZH Enable-Pad Z to High 3.8 4.3 5.0 7.1 6.0 ns
tENZL Enable-Pad Z to Low 4.1 4.7 5.5 7.9 6.6 ns
tENHZ Enable-Pad High to Z 5.4 6.1 7.2 10.3 8.6 ns
tENLZ Enable-Pad Low to Z 5.4 6.1 7.2 10.3 8.6 ns
tGLH G-to-Pad High 4.2 4.8 5.6 8.0 6.7 ns
tGHL G-to-Pad Low 4.7 5.4 6.3 9.0 7.6 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad),
64 Clock Loading 10.9 12.4 14.5 20.7 17.4 ns
tACO Array Clock-Out (Pad-to-Pad),
64 Clock Loading 15.2 17.2 20.3 29.0 24.4 ns
dTLH Capacity Loading, Low to High 0.05 0.06 0.07 0.08 0.08 ns/pF
dTHL Capacity Loading, High to Low 0.05 0.05 0.06 0.07 0.07 ns/pF
Note:
1. Delays based on 35 pF loading.
Integrator Series FPGAs: 1200XL and 3200DX Families
34 Discontinued – v3.0
A3265DX Timing Characteristics
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–3’ Speed ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Logic ModulePropagation Delays1
Combinatorial Functions
tPD Internal Array Module Delay 2.1 2.4 2.9 3.7 3.2 ns
tPDD Internal Decode Module Delay 2.5 2.8 3.4 4.4 3.7 ns
Predicted Routing Delays2
tRD1 FO=1 Routing Delay 0.3 0.4 0.5 0.6 0.5 ns
tRD2 FO=2 Routing Delay 0.7 0.8 0.9 1.2 1.0 ns
tRD3 FO=3 Routing Delay 1.0 1.2 1.4 1.8 1.6 ns
tRD4 FO=4 Routing Delay 1.4 1.6 1.9 2.4 2.1 ns
tRD5 FO=8 Routing Delay 2.7 3.2 3.7 4.9 4.1 ns
tRDD Decode-to-Output Routing Delay 0.46 0.5 0.62 0.8 0.7 ns
Sequential Timing Characteristics3, 4
tCO Flip-Flop Clock-to-Output 2.3 2.7 3.1 4.1 3.5 ns
tGO Latch Gat e- t o- Output 2.1 2.4 2.9 3.7 3.2 ns
tSUD Flip-Flop (Latch) Set-Up Time 0.35 0.4 0.47 0.6 0.5 ns
tHD Flip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 0.0 ns
tRO Flip-Flop (Latch) Reset to Output 2.3 2.7 3.1 4.1 3.5 ns
tSUENA Flip-Flop (Latch) Enable Set-Up 0.75 0.9 1.0 1.3 1.1 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.7 4.2 4.9 6.4 5.5 ns
tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 4.9 5.5 6.5 8.4 7.1 ns
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from
the DirectTime Analyzer utility.
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External set-up/hold timing
parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts
(adds) to the internal set-up (hold) time.
5. VCC = 3.0V for 3.3V specifications.
Discontinued – v3.0 35
Integrator Series FPGAs: 1200XL and 3200DX Families
A3265DX Timing Characteristics (continued)
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed 3.3V ‘Std’
Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Input Module Propagation Delays
tINPY Input Data Pad-to-Y 1.4 1.6 1.9 2.4 2.1 ns
tINGO Input Latch Gate-to-Output 3.3 3.7 4.4 5.7 4.8 ns
tINH Input Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tINSU Input Latch Set-Up 0.5 0.6 0.7 0.9 0.8 ns
tILA Latch Active Pulse Width 5.1 5.9 6.9 9.0 7.7 ns
Input Module Predicted Routing Delays1
tIRD1 FO=1 Routing Delay 3.2 3.7 4.3 5.6 4.8 ns
tIRD2 FO=2 Routing Delay 3.6 4.2 4.9 6.4 5.4 ns
tIRD3 FO=3 Routing Delay 3.9 4.5 5.3 6.9 5.9 ns
tIRD4 FO=4 Routing Delay 4.5 5.2 6.1 7.9 6.7 ns
tIRD5 FO=8 Routing Delay 6.6 7.5 8.8 11.4 9.7 ns
tIRDD Decode-to-Output Rout ing Delay 0.37 0.4 0.5 0.7 0.6 ns
Global Clock Network
tCKH Input Low to High FO=32
FO=256 6.3
7.4 7.1
8.4 8.4
9.9 10.9
12.8 9.2
10.9 ns
ns
tCKL Input High to Low FO=32
FO=256 5.9
6.4 6.6
7.3 7.8
8.6 10.1
11.2 8.6
9.5 ns
ns
tPW Minimum Pulse Width FO=32
FO=256 3.2
3.4 3.7
3.9 4.3
4.6 5.6
6.0 4.8
5.1 ns
ns
tCKSW Maximum Skew FO=32
FO=256 0.75
0.75 0.9
0.9 1.0
1.0 1.3
1.3 1.1
1.1 ns
ns
tSUEXT Input Latch External Set-Up FO=32
FO=256 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 ns
ns
tHEXT Input Latch External Hold FO=32
FO=256 2.5
2.5 2.9
2.9 3.4
3.4 4.4
4.4 3.8
3.8 ns
ns
tP Minimum Period (1/fmax) FO=32
FO=256 5.0
6.0 7.2
8.3 8.3
9.5 11.9
13.6 9.2
10.6 ns
ns
fMAX Maximum Datapath Frequency FO=32
FO=256 173
151 138
121 120
105 84
74 108
95 MHz
MHz
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
Integrator Series FPGAs: 1200XL and 3200DX Families
36 Discontinued – v3.0
A3265DX Timing Characteristics (continued)
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed 3.3V ‘Std’
Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data-to-Pad High 3.8 4.3 5.0 6.5 5.5 ns
tDHL Data-to-Pad Low 4.6 5.2 6.1 7.9 6.7 ns
tENZH Enable-Pad Z to High 4.8 5.4 6.4 8.3 7.1 ns
tENZL Enable-Pad Z to Low 5.2 5.9 6.9 9.0 7.6 ns
tENHZ Enable-Pad Hig h to Z 8.3 9.5 11.1 14.5 12.3 ns
tENLZ Enable-Pad Low to Z 8.3 9.5 11.1 14.5 12.3 ns
tGLH G-to-Pad High 8.3 9.4 11.1 14.4 12.3 ns
tGHL G-to-Pad Low 7.7 8.7 10.2 13.3 11.3 ns
tLSU I/O Latch Out pu t Set -Up 0.5 0.6 0.7 0.9 0.8 ns
tLH I/O Latch Outpu t Hold 0.0 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad) 32 I/O 9.8 11.1 13.1 17.0 14.5 ns
tACO Array Latch Clock-Out (P ad-to-Pad)32 I/O 13.9 15.7 18.5 24.1 20.5 ns
dTLH Capacitive Loading, Low to High 0.037 0.04 0.05 0.071 0.06 ns/pF
dTLL Capacitive Loading, High to Low 0.05 0.03 0.07 0.1 0.08 ns/pF
tWDO Hard-Wired Wide-Decode Output 0.3 0.4 0.5 0.7 0.6 ns/pF
CMOS Output Module Timing1
tDLH Data-to-Pad High 4.6 5.2 6.1 7.9 6.7 ns
tDHL Data-to-Pad Low 3.8 4.3 5.0 6.5 5.5 ns
tENZH Enable-Pad Z to High 4.8 5.5 6.4 8.4 7.1 ns
tENZL Enable-Pad Z to Low 5.2 5.9 6.9 9.0 7.6 ns
tENHZ Enable-Pad Hig h to Z 8.3 9.5 11.1 14.5 12.3 ns
tENLZ Enable-Pad Low to Z 8.3 9.5 11.1 14.5 12.3 ns
tGLH G-to-Pad High 8.3 9.4 11.1 14.4 12.3 ns
tGHL G-to-Pad Low 9.0 10.2 12.0 15.6 13.3 ns
tLSU I/O Latch Set-Up 0.5 0.6 0.7 0.9 0.8 ns
tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad) 32 I/O 11.7 13.3 15.6 20.3 17.3 ns
tACO Array Latch Clock-Out (P ad-to-Pad) 32 I/O 16.4 18.5 21.8 28.3 24.1 ns
dTLH Capacitive Loading, Low to High 0.05 0.06 0.07 0.1 0.1 ns/pF
dTLL Capacitive Loading, High to Low 0.04 0.05 0.06 0.1 0.1 ns/pF
tWDO Hard-Wired Wide-Decode Output 0.3 0.4 0.5 0.7 0.6 ns/pF
Note:
1. Delays based on 35pF loading.
Discontinued – v3.0 37
Integrator Series FPGAs: 1200XL and 3200DX Families
A1280XL Timing Characteristics
(Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C)
‘–3’ Speed ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Logic ModulePropagation Delays1
tPD1 Single Module 2.6 3.0 3.5 5.0 4.2 ns
tCO Sequential Clk-to-Q 2.6 3.0 3.5 5.0 4.2 ns
tGO Latch G-to-Q 2.6 3.0 3.5 5.0 4.2 ns
tRS Flip-Flop (Latch) Reset-to-Q 2.6 3.0 3.5 5.0 4.2 ns
Predicted Routing Delays2
tRD1 FO=1 Routing Delay 1.3 1.4 1.7 2.4 2.0 ns
tRD2 FO=2 Routing Delay 1.8 2.0 2.4 3.4 2.9 ns
tRD3 FO=3 Routing Delay 2.2 2.5 2.9 4.1 3.5 ns
tRD4 FO=4 Routing Delay 2.6 3.0 3.5 5.0 4.2 ns
tRD8 FO=8 Routing Delay 5.0 5.7 6.7 9.6 8.0 ns
Sequential Timing Characteristics3,4
tSUD Flip-Flop (Latch) Data Input Set-Up 0.4 0.4 0.5 0.7 0.6 ns
tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 0.0 0.0 ns
tSUENA Flip-Flop (Latch) Enable Set-Up 0.8 0.9 1.0 1.4 1.2 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.7 4.3 4.9 7.0 5.9 ns
tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 3.7 4.3 4.9 7.0 5.9 ns
tAFlip-Flop Clock Input Period 8.0 8.7 10.0 14.0 12.0 ns
tINH Input Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tINSU Input Buffer Latch Set-Up 0.3 0.4 0.4 0.6 0.5 ns
tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tOUTSU Output Buffer Latch Set-Up 0.3 0.4 0.4 0.6 0.5 ns
fMAX Flip-Flop (Latch) Clock Frequency 200 167 130 90 110 MHz
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from
the DirectTime Analyzer utility.
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External set-up/hold timing
parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts
(adds) to the internal set-up (hold) time.
5. VCC = 3.0V for 3.3V specifications.
Integrator Series FPGAs: 1200XL and 3200DX Families
38 Discontinued – v3.0
A1280XL Timing Characteristics (continued)
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–2’ Spee d ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed 3.3V ‘Std’
Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Input Module Propagation Delays
tINYH Pad-to-Y High 1.1 1.2 1.4 2.0 1.7 ns
tINYL Pad-to-Y Low 1.3 1.4 1.7 2.4 2.0 ns
tINGH G-to-Y High 2.0 2.3 2.7 3.9 3.2 ns
tINGL G-to-Y Low 2.6 3.0 3.5 5.0 4.2 ns
Input Module Predicted Routing Delays1
tIRD1 FO=1 Routing Delay 3.2 3.7 4.3 6.1 5.2 ns
tIRD2 FO=2 Routing Delay 3.7 4.2 4.9 7.0 5.9 ns
tIRD3 FO=3 Routing Delay 4.0 4.5 5.3 7.6 6.4 ns
tIRD4 FO=4 Routing Delay 4.6 5.2 6.1 8.7 7.3 ns
tIRD8 FO=8 Routing Delay 6.6 7.5 8.8 12.6 10.6 ns
Global Clock Network
tCKH Input Low to High FO = 32
FO = 384 5.1
5.7 5.8
6.5 6.8
7.6 9.7
10.9 8.2
9.1 ns
ns
tCKL Input High to Low FO = 32
FO = 384 5.0
5.7 5.7
6.5 6.7
7.6 9.6
10.9 8.0
9.1 ns
ns
tPWH Minimum Pulse Width High FO = 32
FO = 384 3.2
3.5 3.5
3.9 4.3
4.6 6.1
6.6 5.2
5.5 ns
ns
tPWL Minimum Pulse Width Low FO = 32
FO = 384 3.2
3.5 3.5
3.9 4.3
4.6 6.1
6.6 5.2
5.5 ns
ns
tCKSW Maximum Skew FO = 32
FO = 384 0.8
0.8 0.9
0.9 1.0
1.0 1.4
1.4 1.2
1.2 ns
ns
tSUEXT Input Latch External Set-Up FO = 32
FO = 384 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 ns
ns
tHEXT Input Latch External Hold FO = 32
FO = 384 2.6
3.2 2.9
3.7 3.4
4.3 4.9
6.1 4.1
5.2 ns
ns
tPMinimum Period FO = 32
FO = 384 6.5
7.2 7.4
8.0 8.7
9.6 12.4
13.7 10.4
11.5 ns
ns
fMAX Maximum Frequency FO = 32
FO = 384 200
180 167
150 143
130 100
90 120
110 MHz
MHz
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
Discontinued – v3.0 39
Integrator Series FPGAs: 1200XL and 3200DX Families
A1280XL Timing Characteristics (continued)
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Sp eed 3.3V ‘Std’
Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data-to-Pad High 3.8 4.3 5.0 7.1 6.0 ns
tDHL Data-to-Pad Low 4.1 4.6 5.4 7.7 6.5 ns
tENZH Enable-Pad Z to High 3.8 4.3 5.0 7.1 6.0 ns
tENZL Enable-Pad Z to Low 4.1 4.7 5.5 7.7 6.6 ns
tENHZ Enable-Pad High to Z 5.4 6.1 7.2 10.3 8.6 ns
tENLZ Enable-Pad Low to Z 5.4 6.1 7.2 10.3 8.6 ns
tGLH G-to-Pad High 4.2 4.8 5.6 8.0 6.7 ns
tGHL G-to-Pad Low 4.7 5.4 6.3 9.0 7.6 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad),
64 Clock Loading 9.8 11.0 13.1 18.7 15.7 ns
tACO Array Clock-Out (Pad-to-Pad),
64 Clock Loading 13.9 15.7 18.5 26.4 22.2 ns
dTLH Capacitive Loading, Low to High 0.04 0.04 0.05 0.06 0.06 ns/pF
dTHL Capacitive Loading, High to Low 0.05 0.06 0.07 0.08 0.08 ns/pF
CMOS Output Module Timing1
tDLH Data-to-Pad High 4.8 5.4 6.4 9.1 7.7 ns
tDHL Data-to-Pad Low 3.4 3.8 4.5 6.4 5.4 ns
tENZH Enable-Pad Z to High 3.8 4.3 5.0 7.1 6.0 ns
tENZL Enable-Pad Z to Low 4.1 4.7 5.5 7.9 6.6 ns
tENHZ Enable-Pad High to Z 5.4 6.1 7.2 10.3 8.6 ns
tENLZ Enable-Pad Low to Z 5.4 6.1 7.2 10.3 8.6 ns
tGLH G-to-Pad High 4.2 4.8 5.6 8.0 6.7 ns
tGHL G-to-Pad Low 4.7 5.4 6.3 9.0 7.6 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad),
64 Clock Loading 11.6 13.0 15.5 22.2 18.6 ns
tACO Array Clock-Out (Pad-to-Pad),
64 Clock Loading 16.4 18.5 21.8 31.2 26.2 ns
dTLH Capacitive Loading, Low to High 0.05 0.06 0.07 0.08 0.08 ns/pF
dTHL Capacitive Loading, High to Low 0.05 0.05 0.06 0.07 0.07 ns/pF
Note:
1. Delays based on 35 pF loading.
Integrator Series FPGAs: 1200XL and 3200DX Families
40 Discontinued – v3.0
A32100DX Timing Characteristics
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed 3.3V ‘Std’
Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Logic ModulePropagation Delays
Combinatorial Functions
tPD Internal Array Module Delay 2.2 2.6 3.0 3.5 5.2 4.1 ns
tPDD Internal Decode Module Delay 2.4 2.7 3.1 3.7 5.7 4.3 ns
Predicted Module Routing Delays
tRD1 FO=1 Routing Delay 1.0 1.1 1.3 1.5 3.3 1.7 ns
tRD2 FO=2 Routing Delay 1.4 1.7 1.9 2.2 4.3 2.5 ns
tRD3 FO=3 Routing Delay 1.8 2.1 2.5 2.9 5.2 3.4 ns
tRD4 FO=4 Routing Delay 2.4 2.7 3.1 3.7 6.5 4.3 ns
tRD5 FO=8 Routing Delay 4.2 5.0 5.6 6.6 10.0 7.7 ns
tRDD Decode-to-Output Routing Delay 0.3 0.37 0.4 0.5 0.4 0.6 ns
Sequential Timing Characteristics
tCO Flip-Flop Clock-to-Output 2.2 2.6 3.0 3.5 5.0 4.1 ns
tGO Latch Gate-to- Output 2.2 2.6 3.0 3.5 5.0 4.1 ns
tSU Flip-Flop (Latch) Set-Up Time 0.3 0.37 0.4 0.5 0.7 0.6 ns
tHFlip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 0.0 0.0 ns
tRO Flip-Flop (Latch) Reset to Output 2.2 2.6 3.0 3.5 5.0 4.1 ns
tSUENA Flip-Flop (Latch) Enable Set-Up 0.6 0.75 0.9 1.0 1.4 0.85 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.1 3.7 4.2 4.9 7.0 5.7 ns
tWASYN Flip-Flop (Latch) Asynchronous Pulse
Width 4.1 4.8 5.4 6.4 7.0 7.5 ns
Discontinued – v3.0 41
Integrator Series FPGAs: 1200XL and 3200DX Families
A32100DX Timing Characteristics (continued)
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1’ Sp eed ‘Std’ Speed ‘–F’ Speed 3.3V ‘Std’
Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Logic Module Timing
Synchronous SRAM Operations
tRC Read Cycle Time 6.4 7.5 8.5 10.0 14.3 11.7 ns
tWC Write Cycle Time 6.4 7.5 8.5 10.0 14.3 11.7 ns
tRCKHL Clock High/Low Time 3.2 3.8 4.3 5.0 7.1 5.9 ns
tRCO Data Valid After Clock High/Low 3.2 3.8 4.3 5.0 7.1 5.9 ns
tADSU Address/Data Set-Up Time 1.5 1.8 2.0 2.4 3.4 2.8 ns
tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 0.0 0.0 ns
tRENSU Read Enable Set-Up 0.6 0.7 0.8 0.9 1.3 1.0 ns
tRENH Read Enable Hold 3.2 3.8 4.3 5.0 7.1 5.9 ns
tWENSU Write Enable Set-Up 2.6 3.0 3.4 4.0 5.7 4.7 ns
tWENH Write Enable Hold 0.0 0.0 0.0 0.0 0.0 0.0 ns
tBENS Block Enable Set-Up 2.6 3.1 3.5 4.1 5.8 4.8 ns
tBENH Block Enable Hold 0.0 0.0 0.0 0.0 0.0 0.0 ns
Asynchronous SRAM Operations
tRPD Asynchronous Access Time 7.7 9.0 10.2 12.0 17.2 14.1 ns
tRDADV Read Address Valid 8.3 9.8 11.1 13.0 18.6 15.2 ns
tADSU Address/Data Set-Up Time 1.5 1.8 2.0 2.4 3.4 2.8 ns
tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 0.0 0.0 ns
tRENSUA Read Enable Set-Up to Address Valid 0.57 0.7 0.8 0.9 1.3 1.0 ns
tRENHA Read Enable Hold 3.2 3.8 4.3 5.0 7.1 5.9 ns
tWENSU Write Enable Set-Up 2.6 3.0 3.4 4.0 5.7 4.7 ns
tWENH Write Enable Hold 0.0 0.0 0.0 0.0 0.0 0.0 ns
tDOH Data Out Hold Time 1.1 1.35 1.5 1.8 2.6 2.1 ns
Integrator Series FPGAs: 1200XL and 3200DX Families
42 Discontinued – v3.0
A32100DX Timing Characteristics (continued)
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–3’ Speed ‘–2’ Speed ‘–1’ Sp eed ‘Std’ Sp eed ‘–F’ Speed 3.3V ‘Std’
Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Input Module Propagation Delays
tINPY Input Data Pad-to-Y 1.4 1.65 1.9 2.2 3.1 2.5 ns
tINGO Input Latch Gate-to-Output12.9 3.4 3.8 4.5 6.4 5.3 ns
tINH Input Latch Hold10.0 0.0 0.0 0.0 0.0 0.0 ns
tINSU Input Latch Set-Up10.45 0.5 0.6 0.7 1.0 0.82 ns
tILA Latch Active Pulse Width14.4 4.8 5.9 6.9 9.8 8.1 ns
Input Module Predicted Routing Delays
tIRD1 FO=1 Routing Delay 1.6 1.75 2.1 2.5 3.6 2.9 ns
tIRD2 FO=2 Routing Delay 2.0 2.4 2.7 3.2 4.6 3.8 ns
tIRD3 FO=3 Routing Delay 2.6 3.0 3.4 4.0 5.7 4.7 ns
tIRD4 FO=4 Routing Delay 2.6 3.0 3.4 4.0 5.7 4.7 ns
tIRD8 FO=8 Routing Delay 4.1 4.8 5.4 6.4 9.1 7.5 ns
Global Clock Network
tCKH Input Low to High FO=32
FO=635 4.7
5.7 5.6
6.75 6.3
7.7 7.4
9.0 10.5
12.8 8.7
10.5 ns
ns
tCKL Input High to Low FO=32
FO=635 4.8
6.4 5.6
7.5 6.4
8.5 7.5
10.0 10.7
14.2 8.8
11.7 ns
ns
tPWH Minimum Pulse Width
High FO=32
FO=635 2.5
2.7 2.9
3.2 3.3
3.7 3.9
4.3 5.6
6.1 4.5
5.0 ns
ns
tPWL Minimum Pulse Width
Low FO=32
FO=635 2.5
2.7 2.9
3.2 3.3
3.7 3.9
4.3 5.5
6.1 4.5
5.0 ns
ns
tCKSW Maximum Skew FO=32
FO=635 0.6
0.6 0.75
0.75 0.9
0.9 1.0
1.0 1.4
1.4 1.8
1.8 ns
ns
tSUEXT Input Latch External
Set-Up FO=32
FO=635 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 ns
ns
tHEXT Input Latch External
Hold FO=32
FO=635 2.2
2.7 2.5
3.2 2.9
3.7 3.4
4.3 4.9
6.1 4.0
6.1 ns
ns
tP Minimum Period
(1/fmax) FO=32
FO=635 5.0
5.5 6.0
6.4 7.4
8.2 7.9
8.6 12.4
13.7 9.3
10.1 ns
ns
fHMAX Maximum Datapath
Frequency FO=32
FO=635 183
167 159
145 146
133 127
116 89
81 108
99 MHz
MHz
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
Discontinued – v3.0 43
Integrator Series FPGAs: 1200XL and 3200DX Families
A32100DX Timing Characteristics (continued)
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–3’ Spee d ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed 3.3V ‘Std’
Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data-to-Pad High 3.7 4.3 4.9 5.8 8.2 6.8 ns
tDHL Data-to-Pad Low 4.5 5.3 6.0 7.1 10.1 8.3 ns
tENZH Enable-Pad Z to High 4.8 5.6 6.4 7.5 10.7 8.8 ns
tENZL Enable-Pad Z to Low 5.1 6.0 6.8 8.0 11.4 9.4 ns
tENHZ Enable-Pad High to Z 8.3 9.8 11.1 13.0 18.5 15.2 ns
tENLZ Enable-Pad Low to Z 8.3 9.8 11.1 13.0 18.5 15.2 ns
tGLH G-to-Pad High 8.3 9.8 11.1 13.0 18.5 15.2 ns
tGHL G-to-Pad Low 9.0 10.5 12.0 14.1 20.1 16.4 ns
tLSU I/O Latch Output Set-Up 0.26 0.3 0.34 0.4 0.6 0.6 ns
tLH I/O Latch Output Hold 0.0 0.0 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad) 32 I/O 8.4 9.8 11.1 13.1 18.7 15.3 ns
tACO Array Latch Clock-Out (Pad-to-Pad) 32 I/O 11.8 13.8 15.7 18.5 26.5 21.7 ns
dTLH Capacitive Loading, Low to High 0.03 0.037 0.04 0.05 0.07 0.06 ns/pF
dTHL Capacitive Loading, High to Low 0.04 0.05 0.06 0.07 0.10 0.08 ns/pF
tWDO Hard-Wired Wide-Decode Output 0.04 0.045 0.05 0.06 0.09 0.07 ns
CMOS Output Module Timing1
tDLH Data-to-Pad High 4.5 5.3 6.0 7.1 10.1 8.3 ns
tDHL Data-to-Pad Low 3.7 4.3 4.9 5.8 8.2 6.8 ns
tENZH Enable-Pad Z to High 4.8 5.6 6.4 7.5 10.7 8.8 ns
tENZL Enable-Pad Z to Low 5.1 6.0 6.8 8.0 11.4 9.4 ns
tENHZ Enable-Pad High to Z 8.3 9.8 11.1 13.0 18.5 15.2 ns
tENLZ Enable-Pad Low to Z 8.3 9.8 11.1 13.0 18.5 15.2 ns
tGLH G-to-Pad High 8.3 9.8 11.1 13.0 18.5 15.2 ns
tGHL G-to-Pad Low 9.0 10.5 12.0 14.1 20.0 16.4 ns
tLSU I/O Latch Set-Up 0.26 0.3 0.3 0.4 0.6 0.6 ns
tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad) 32 I/O 9.9 11.0 13.2 15.5 22.3 18.2 ns
tACO Array Latch Clock-Out (Pad-to-Pad) 32 I/O 13.9 16.4 18.5 21.8 30.0 25.6 ns
dTLH Capacitive Loading, Low to High 0.04 0.052 0.05 0.07 0.10 0.08 ns/pF
dTHL Capacitive Loading, High to Low 0.04 0.045 0.05 0.06 0.09 0.07 ns/pF
tWDO Hard-Wired Wide-Decode Output 0.04 0.045 0.05 0.06 0.09 0.07 ns
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
Integrator Series FPGAs: 1200XL and 3200DX Families
44 Discontinued – v3.0
A32140DX Timing Characteristics
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–2 Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed 3.3V ‘Std’
Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Logic Module Propagation Delays1
Combinatorial Functions
tPD Internal Array Module Delay 1.8 2.3 2.8 3.6 3.2 ns
tPDD Internal Decode Module Delay 1.9 2.5 3.0 3.8 3.5 ns
Predicted Routing Delays2
tRD1 FO=1 Routing Delay 1.0 1.3 1.6 2.0 1.8 ns
tRD2 FO=2 Routing Delay 1.4 1.9 2.2 2.8 2.5 ns
tRD3 FO=3 Routing Delay 1.8 2.4 2.8 3.7 3.3 ns
tRD4 FO=4 Routing Delay 2.2 2.9 3.4 4.5 4.0 ns
tRD5 FO=8 Routing Delay 3.8 5.0 5.9 7.7 7.0 ns
tRDD Decode-to-Output Routing Delay 0.5 0.7 0.78 1.0 0.91 ns
Sequential Timing Characteristics3, 4
tCO Flip-Flop Clock-to-Output 2.1 2.8 3.3 4.3 3.9 ns
tGO Latch Gate-to-Output 1.8 2.3 2.8 3.6 3.2 ns
tSU Flip-Flop (Latch) Set-Up Time 0.3 0.4 0.47 0.6 0.55 ns
tHFlip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 0.0 ns
tRO Flip-Flop (Latch) Reset to Output 2.1 2.8 3.3 4.3 3.9 ns
tSUENA Flip-Flop (Latch) Enable Set-Up 0.6 0.9 1.0 1.3 1.17 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 2.6 3.5 4.1 5.4 4.82 ns
tWASYN Flip-Flop (Latch) Asynchronous Pulse Width 4.1 5.5 6.5 8.4 7.6 ns
Notes:
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from
the DirectTime Analyzer utility.
4. Set-Up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External set-up/hold
timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input
subtracts (adds) to the internal set-up (hold) time.
Discontinued – v3.0 45
Integrator Series FPGAs: 1200XL and 3200DX Families
A32140DX Timing Characteristics (continued)
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed 3.3V ‘Std’
Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Input Module Propagation Delays
tINPY Input Data Pad-to-Y 1.2 1.6 1.9 2.4 2.2 ns
tINGO Input Latch Gate-to-Output 2.3 3.1 3.7 4.7 4.3 ns
tINH Input Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tINSU Input Latch Set-Up 0.3 0.4 0.47 0.6 0.55 ns
tILA Latch Active Pulse Width 3.1 4.2 4.9 6.4 5.7 ns
Input Module Predicted Routing Delays1
tIRD1 FO=1 Routing Delay 2.7 3.7 4.3 5.6 5.0 ns
tIRD2 FO=2 Routing Delay 3.1 4.2 4.9 6.4 5.7 ns
tIRD3 FO=3 Routing Delay 3.4 4.5 5.3 6.9 6.2 ns
tIRD4 FO=4 Routing Delay 3.9 5.2 6.1 7.9 7.1 ns
tIRD5 FO=8 Routing Delay 5.6 7.5 8.8 11.4 10.3 ns
tIRDD Decode-to-Output Routing Delay 0.3 0.4 0.5 0.7 0.6 ns
Global Clock Network
tCKH Input Low to High FO=32
FO=486 6.2
6.8 8.3
9.1 9.7
10.7 12.7
13.9 11.4
12.5 ns
ns
tCKL Input High to Low FO=32
FO=486 6.12
6.7 8.2
8.9 9.6
10.5 12.5
13.6 11.3
12.3 ns
ns
tPW Minimum Pulse Width FO=32
FO=486 2.7
2.9 3.7
3.9 4.3
4.6 5.6
6.0 5.0
5.41 ns
ns
tCKSW Maximum Skew FO=32
FO=486 0.6
0.6 0.9
0.9 1.0
1.0 1.3
1.3 1.17
1.17 ns
ns
tSUEXT Input Latch External Set-Up FO=32
FO=486 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 ns
ns
tHEXT Input Latch External Hold FO=32
FO=486 2.2
2.2 2.9
2.9 3.4
3.4 4.4
4.4 4.0
4.0 ns
ns
tP Minimum Period (1/fmax) FO=32
FO=486 5.7
6.6 7.6
8.3 8.3
9.5 11.9
13.6 9.0
11.1 ns
ns
fMAX Maximum Datapath Frequency FO=32
FO=486 173
151 138
121 120
105 84
74 102
90 MHz
MHz
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
Integrator Series FPGAs: 1200XL and 3200DX Families
46 Discontinued – v3.0
A32140DX Timing Characteristics (continued)
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–2 Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed 3.3V ‘Std’
Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data-to-Pad Hig h 3.3 4.4 5.1 6.7 6.0 ns
tDHL Data-t o- P ad Low 3.5 4.6 5.4 7.1 6.3 ns
tENZH Enable-Pad Z to High 4.1 5.5 6.4 8.4 7.5 ns
tENZL Enable-Pad Z to Low 4.4 5.9 6.9 9.0 8.1 ns
tENHZ Enable-Pad High to Z 7.1 9.5 11.1 14.5 13.0 ns
tENLZ Enable-Pad Low to Z 7.1 9.5 11.1 14.5 13.0 ns
tGLH G-to-Pad High 6.5 8.7 10.2 13.3 12.0 ns
tGHL G-to-Pad Low 6.5 8.7 10.2 13.3 12.0 ns
tLSU I/O Latch Output Set-Up 0.4 0.6 0.7 0.9 0.82 ns
tLH I/O Latch Output Hold 0.0 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad) 32 I/O 8.4 11.1 13.1 17.0 15.4 ns
tACO Array Latch Clock-Out (Pad-to-Pad) 32 I/O 11.8 15.7 18.5 24.1 21.7 ns
dTLH Capacitive Loading, Low to High 0.03 0.04 0.05 0.07 0.06 ns/pF
dTHL Capacitive Loading, High to Low 0.02 0.03 0.07 0.1 0.08 ns/pF
tWDO Hard-Wired Wide-Decode Output 0.03 0.04 0.05 0.07 0.06 ns/pF
CMOS Output Module Timing1
tDLH Data-to-Pad Hig h 3.5 4.6 5.4 7.1 6.0 ns
tDHL Data-t o- P ad Low 3.3 4.4 5.1 6.7 6.3 ns
tENZH Enable-Pad Z to High 4.1 5.5 6.4 8.4 7.5 ns
tENZL Enable-Pad Z to Low 4.4 5.9 6.9 9.0 8.1 ns
tENHZ Enable-Pad High to Z 7.1 9.5 11.1 14.5 13.0 ns
tENLZ Enable-Pad Low to Z 7.1 9.5 11.1 14.5 13.0 ns
tGLH G-to-Pad High 6.5 8.7 10.2 13.3 12.0 ns
tGHL G-to-Pad Low 6.5 8.7 10.2 13.3 12.0 ns
tLSU I/O Latch Set-Up 0.4 0.6 0.7 0.9 0.82 ns
tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad) 32 I/O 9.9 13.3 15.6 20.3 18.3 ns
tACO Array Latch Clock-Out (Pad-to-Pad) 32 I/O 13.9 18.5 21.8 28.3 25.6 ns
dTLH Capacitive Loading, Low to High 0.04 0.06 0.07 0.1 0.08 ns/pF
dTHL Capacitive Loading, High to Low 0.04 0.05 0.06 0.1 0.07 ns/pF
tWDO Hard-Wired Wide-Decode Output 0.3 0.4 0.5 0.7 0.6 ns/pF
Note:
1. Delays based on 35 pF loading.
Discontinued – v3.0 47
Integrator Series FPGAs: 1200XL and 3200DX Families
A32200DX Timing Characteristics
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1’ Sp eed ‘Std’ Speed ‘–F’ Speed 3.3V ‘Std’
Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Logic Module Propagation Delays
Combinatorial Functions
tPD Internal Array Module Delay 2.0 2.4 2.7 3.2 4.5 3.7 ns
tPDD Internal Decode Module Delay 2.5 2.9 3.3 3.9 5.6 4.5 ns
Predicted Module Routing Delays
tRD1 FO=1 Routing Delay 1.1 1.35 1.5 1.8 2.6 2.1 ns
tRD2 FO=2 Routing Delay 1.7 2.0 2.2 2.6 3.7 3.0 ns
tRD3 FO=3 Routing Delay 2.1 2.4 2.8 3.3 4.7 3.8 ns
tRD4 FO=4 Routing Delay 2.6 3.0 3.4 4.0 5.7 4.7 ns
tRD5 FO=8 Routing Delay 4.5 5.3 6.0 7.0 10.0 8.2 ns
tRDD Decode-to-Output Rout ing Delay 0.6 0.67 0.8 0.9 1.3 1.0 ns
Sequential Timing Characteristics
tCO Flip-Flop Clock-to-Output 2.3 2.7 3.1 3.6 5.1 4.2 ns
tGO Latch Gate-to- Output 2.0 2.4 2.7 3.2 4.5 3.7 ns
tSU Flip-Flop (Latch) Set-Up Time 0.3 0.35 0.4 0.47 0.7 0.55 ns
tHFlip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 0.0 0.0 ns
tRO Flip-Flop (Latch) Reset to Output 2.3 2.7 3.1 3.6 5.1 4.2 ns
tSUENA Flip-Flop (Latch) Enable Set-Up 0.6 0.75 0.9 1.0 1.4 1.17 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active
Pulse Width 3.1 3.7 4.2 4.9 7.0 5.7 ns
tWASYN Flip -Flop (Latch) Asynchronous Pulse
Width 4.1 4.9 5.5 6.5 9.2 7.6 ns
Integrator Series FPGAs: 1200XL and 3200DX Families
48 Discontinued – v3.0
A32200DX Timing Characteristics (continued)
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1’ Sp eed ‘Std’ Speed ‘–F’ Speed 3.3V ‘Std’
Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Logic Module Timing
Synchronous SRAM Operations
tRC Read Cycle Time 6.4 7.5 8.5 10.0 14.3 11.7 ns
tWC Write Cycle Time 6.4 7.5 8.5 10.0 14.3 11.7 ns
tRCKHL Clock High/Low Time 3.2 3.9 4.3 5.0 7.1 5.8 ns
tRCO Data Valid After Clock High/Low 3.2 3.8 4.3 5.0 7.1 5.8 ns
tADSU Address/Data Set-Up Time 1.5 1.8 2.0 2.4 3.4 2.8 ns
tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 0.0 0.0 ns
tRENSU Read Enable Set-Up 0.6 0.7 0.8 0.9 1.4 1.0 ns
tRENH Read Enable Hold 3.2 3.8 4.3 5.0 7.0 5.8 ns
tWENSU Write Enable Set-Up 2.6 3.0 3.4 4.0 5.4 4.7 ns
tWENH Write Enable Hold 0.0 0.0 0.0 0.0 0.0 0.0 ns
tBENS Block Enable Set-Up 2.6 3.1 3.5 4.1 5.6 4.8 ns
tBENH Block Enable Hold 0.0 0.0 0.0 0.0 0.0 0.0 ns
Asynchronous SRAM Operations
tRPD Asynchronous Access Time 7.7 9.0 10.2 12.0 17.2 14.1 ns
tRDADV Read Address Valid 8.3 9.75 11.1 13.0 18.6 15.2 ns
tADSU Address/Data Set-Up Time 1.5 1.8 2.0 2.4 3.4 2.8 ns
tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 0.0 0.0 ns
tRENSU Read Enable Set-Up to Address Valid 0.57 0.7 0.8 0.9 1.4 1.0 ns
tRENHA Read Enable Hold 3.2 3.8 4.3 5.0 7.1 5.8 ns
tWENSU Write Enable Set-Up 2.6 3.0 3.4 4.0 5.4 4.7 ns
tWENH Write Enable Hold 0.0 0.0 0.0 0.0 0.0 0.0 ns
tDOH Data Out Hold Time 1.1 1.3 1.5 1.8 2.6 2.1 ns
Discontinued – v3.0 49
Integrator Series FPGAs: 1200XL and 3200DX Families
A32200DX Timing Characteristics (continued)
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–3’ Speed –2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed 3.3V ‘Std’
Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Input Module Propagation Delays
tINPY Input Data Pad-to-Y 1.4 1.65 1.9 2.2 2.9 2.5 ns
tINGO Input Latch Gate-to-Output13.3 3.2 4.3 5.1 7.3 6.0 ns
tINH Input Latch Hold10.0 0.0 0.0 0.0 0.0 0.0 ns
tINSU Input Latch Set-Up10.45 0.52 0.6 0.7 1.0 0.8 ns
tILA Latch Active Pulse Width14.4 5.2 5.9 6.9 9.8 8.1 ns
Input Module Predicted Routing Delays
tIRD1 FO=1 Routing Delay 1.9 2.2 2.6 3.0 4.2 3.5 ns
tIRD2 FO=2 Routing Delay 2.5 2.9 3.3 3.9 5.5 4.5 ns
tIRD3 FO=3 Routing Delay 3.3 3.9 4.4 5.2 7.6 6.1 ns
tIRD4 FO=4 Routing Delay 3.9 4.5 5.2 6.1 8.7 7.1 ns
tIRD5 FO=8 Routing Delay 5.0 6.0 6.7 7.9 11.2 9.3 ns
tIRDD Decode-to-Output Delay 0.3 0.37 0.4 0.5 0.7 0.6 ns
Global Clock Network
tCKH Input Low to High FO=32
FO=635 5.3
6.1 6.2
7.2 7.1
8.2 8.3
9.6 11.8
13.7 9.7
11.3 ns
ns
tCKL Input High to Low FO=32
FO=635 5.2
6.8 6.2
8.0 7.0
9.0 8.2
10.6 11.7
15.1 9.6
12.8 ns
ns
tPWH Minimum Pulse Width High FO=32
FO=635 2.7
2.9 3.2
3.45 3.7
3.9 4.3
4.6 6.1
6.6 5.0
5.4 ns
ns
tPWL Minimum Pulse Width Low FO=32
FO=635 2.7
2.9 3.2
3.45 3.7
3.9 4.3
4.6 6.1
6.6 5.0
5.4 ns
ns
tCKSW Maximum Skew FO=32
FO=635 0.6
0.6 0.75
0.75 0.9
0.9 1.0
1.0 1.4
1.4 1.1
1.1 ns
ns
tSUEXT Input Latch External Set-Up FO=32
FO=635 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 ns
ns
tHEXT Input Latch External
Hold FO=32
FO=635 2.2
2.7 2.6
3.2 2.9
3.7 3.4
4.3 4.9
6.1 4.0
5.0 ns
ns
tP Minimum Period
(1/fmax) FO=32
FO=635 5.5
6.1 6.5
7.2 7.4
8.2 8.7
9.6 12.4
13.7 10.2
11.2 ns
ns
fHMAX Maximum Datapath
Frequency FO=32
FO=635 165
151 153.
140 132
121 115
105 80
73 98
90 MHz
MHz
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
Integrator Series FPGAs: 1200XL and 3200DX Families
50 Discontinued – v3.0
A32200DX Timing Characteristics (continued)
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–3’ Speed ‘–2’ Speed ‘–1’ Spee d ‘Std’ Speed ‘–F’ Speed 3.3V ‘Std’
Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data-to-P ad High 3.7 4.3 4.9 5.8 8.3 6.8 ns
tDHL Data-to-Pad Low 4.5 5.3 6.0 7.1 10.1 8.3 ns
tENZH Enable-Pad Z to High 4.8 5.6 6.4 7.5 10.7 8.8 ns
tENZL Enable-Pad Z to Low 5.2 6.0 6.9 8.1 11.5 9.5 ns
tENHZ Enable-Pad High to Z 8.3 9.7 11.1 13.0 18.5 15.2 ns
tENLZ Enable-Pad Low to Z 8.3 9.7 11.1 13.0 18.5 15.2 ns
tGLH G-to-Pad High 8.3 9.7 11.1 13.0 18.5 15.2 ns
tGHL G-to-Pad Low 8.9 10.5 11.9 14.0 20.0 16.5 ns
tLSU I/O Latch Output Set-Up 0.26 0.3 0.3 0.4 0.6 0.5 ns
tLH I/O Latch Output Hold 0.0 0.0 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad) 32 I/O 8.4 9.8 11.1 13.1 18.7 15.4 ns
tACO Array Latch Clock-Out (Pad-to-Pad) 32 I/O 11.8 13.9 15.7 18.5 26.5 21.7 ns
dTLH Capacitive Loading, Low to High 0.03 0.035 0.04 0.05 0.07 0.06 ns/pF
dTHL Capacitive Loading, High to Low 0.04 0.05 0.06 0.07 0.10 0.08 ns/pF
tWDO Hard-Wired Wide-Decode Output 0.04 0.045 0.05 0.06 0.09 0.07 ns
CMOS Output Module Timing1
tDLH Data-to-P ad High 4.5 5.3 6.0 5.8 8.3 6.8 ns
tDHL Data-to-Pad Low 3.7 4.3 4.9 7.1 10.1 8.3 ns
tENZH Enable-Pad Z to High 4.8 5.6 6.4 7.5 10.7 8.8 ns
tENZL Enable-Pad Z to Low 5.2 6.0 6.9 8.1 11.5 9.5 ns
tENHZ Enable-Pad High to Z 8.3 9.7 11.1 13.0 18.5 15.2 ns
tENLZ Enable-Pad Low to Z 8.3 9.7 11.1 13.0 18.5 15.2 ns
tGLH G-to-Pad High 8.3 9.7 11.1 13.0 18.5 15.2 ns
tGHL G-to-Pad Low 8.9 10.5 11.9 14.0 20.0 16.5 ns
tLSU I/O Latch Set-Up 0.26 0.3 0.3 0.4 0.6 0.5 ns
tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad)
32 I/O 9.9 11.6 13.2 15.5 22.3 18.2 ns
tACO Array Latch Clock-Out (Pad-to-Pad) 32 I/O 13.9 16.3 18.5 21.8 31.2 25.6 ns
dTLH Capacitive Loading, Low to High 0.04 0.05 0.06 0.07 0.10 0.08 ns/pF
dTHL Capacitive Loading, High to Low 0.04 0.045 0.05 0.06 0.09 0.07 ns/pF
tWDO Hard-Wired Wide-Decode Output 0.04 0.045 0.05 0.06 0.09 0.07 ns
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
Discontinued – v3.0 51
Integrator Series FPGAs: 1200XL and 3200DX Families
A32300DX Timing Characteristics
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1’ Sp eed ‘Std’ Speed ‘–F’ Speed 3.3V ‘Std’
Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Logic Module Propagation Delays
Combinatorial Functions
tPD Internal Array Module Delay 2.2 2.6 2.9 3.4 4.8 4.0 ns
tPDD Internal Decode Module Delay 2.5 2.9 3.3 3.9 5.6 4.5 ns
Predicted Module Routing Delays
tRD1 FO=1 Routing Delay 1.1 1.4 1.5 1.8 2.5 2.1 ns
tRD2 FO=2 Routing Delay 1.7 2.0 2.3 2.7 3.8 3.2 ns
tRD3 FO=3 Routing Delay 2.4 2.8 3.1 3.7 5.2 4.3 ns
tRD4 FO=4 Routing Delay 2.9 3.6 3.9 4.6 6.5 5.4 ns
tRD5 FO=8 Routing Delay 5.2 6.2 7.0 8.2 10.0 9.6 ns
tRDD Decode-to-Output Rout ing Delay 0.6 0.7 0.8 0.9 1.3 1.0 ns
Sequential Timing Characteristics
tCO Flip-Flop Clock-to-Output 2.3 2.7 3.1 3.6 5.0 4.2 ns
tGO Latch Gate-to- Output 2.2 2.6 2.9 3.4 4.5 4.0 ns
tSU Flip-Flop (Latch) Set-Up Time 0.32 0.4 0.42 0.5 0.7 0.6 ns
tHFlip-Flop (Latch) Hold Time 0.0 0.0 0.0 0.0 0.0 0.0 ns
tRO Flip-Flop (Latch) Reset to Output 2.2 2.6 3.0 3.5 5.0 4.1 ns
tSUENA Flip-Flop (Latch) Enable Set-Up 0.6 0.75 0.9 1.0 1.4 1.1 ns
tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 0.0 0.0 0.0 ns
tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 3.1 3.7 4.2 4.9 7.0 5.7 ns
tWASYN Flip -Flop (Latch) Asynchronous Pulse
Width 3.5 4.1 4.7 5.5 7.9 6.4 ns
Integrator Series FPGAs: 1200XL and 3200DX Families
52 Discontinued – v3.0
A32300DX Timing Characteristics (continued)
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–3 Speed ‘–2 Speed ‘–1’ Sp eed ‘Std’ Speed ‘–F’ Speed 3.3V ‘Std’
Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Logic Module Timing
Synchronous SRAM Operations
tRC Read Cycle Time 6.4 7.5 8.5 10.0 14.3 11.6 ns
tWC Write Cycle Time 6.4 7.5 8.5 10.0 14.3 11.6 ns
tRCKHL Clock High/Low Time 3.2 3.75 4.3 5.0 7.1 5.8 ns
tRCO Data Valid After Clock High/Low 3.2 3.75 4.3 5.0 7.1 5.8 ns
tADSU Address/Data Set-Up Time 1.5 1.8 2.0 2.4 3.4 2.82 ns
tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 0.0 0.0 ns
tRENSU Read Enable Set-Up 0.6 0.68 0.8 0.9 1.3 1.05 ns
tRENH Read Enable Hold 3.2 3.75 4.3 5.0 7.1 5.8 ns
tWENSU Write Enable Set-Up 2.6 3.0 3.4 4.0 5.7 4.7 ns
tWENH Write Enable Hold 0.0 0.0 0.0 0.0 0.0 0.0 ns
tBENS Block Enable Set-Up 2.6 2.3 3.5 4.1 5.9 4.8 ns
tBENH Block Enable Hold 0.0 0.0 0.0 0.0 0.0 0.0 ns
Asynchronous SRAM Operations
tRPD Asynchronous Access Time 7.7 9.0 10.2 12.0 17.2 14.1 ns
tRDADV Read Address Valid 8.3 9.6 11.1 13.0 18.6 15.2 ns
tADSU Address/Data Set-Up Time 1.5 1.8 2.0 2.4 3.4 2.8 ns
tADH Address/Data Hold Time 0.0 0.0 0.0 0.0 0.0 0.0 ns
tRENSUA Read Enable Set-Up to Address Valid 0.57 0.68 0.8 0.9 1.3 1.05 ns
tRENHA Read Enable Hold 3.2 3.75 4.3 5.0 7.1 5.8 ns
tWENSU Write Enable Set-Up 2.6 3.0 3.4 4.0 5.7 4.7 ns
tWENH Write Enable Hold 0.0 0.0 0.0 0.0 0.0 0.0 ns
tDOH Data Out Hold Time 1.1 1.35 1.5 1.8 2.6 2.1 ns
Discontinued – v3.0 53
Integrator Series FPGAs: 1200XL and 3200DX Families
A32300DX Timing Characteristics (continued)
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–3’ Speed ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed 3.3V ‘Std’
Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
Input Module Propagation Delays
tINPY Input Data Pad- to -Y 1.4 1.7 1.9 2.2 3.1 2.5 ns
tINGO Input Latch
Gate-to-Output12.9 3.4 3.8 4.5 6.4 5.2 ns
tINH Input Latch Hold10.0 0.0 0.0 0.0 0.0 0.0 ns
tINSU Input Latch Set-Up10.45 0.5 0.6 0.7 1.0 0.82 ns
tILA Latch Active Pulse Wid th14.4 5.2 5.9 6.9 9.8 8.1 ns
Input Module Predicted Routing Delays
tIRD1 FO=1 Routing Delay 1.9 2.3 2.6 3.0 4.2 3.5 ns
tIRD2 FO=2 Routing Delay 2.5 2.9 3.3 3.9 5.5 4.6 ns
tIRD3 FO=3 Routing Delay 3.3 3.9 4.4 5.2 7.4 6.1 ns
tIRD4 FO=4 Routing Delay 3.9 4.6 5.2 6.1 8.7 7.2 ns
tIRD5 FO=8 Routing Delay 5.0 6.0 6.7 7.9 11.2 9.2 ns
tRDD Decode-to-Output Routing Delay 0.6 0.67 0.8 0.9 1.3 1.05 ns
Global Clock Network
tCKH Input Low to High FO=32
FO=635 6.4
7.3 7.6
8.6 8.6
9.7 10.1
11.4 14.4
16.2 11.8
13.4 ns
ns
tCKL Input High to Low FO=32
FO=635 6.6
7.1 7.7
8.4 8.8
9.5 10.3
11.2 14.7
16.0 12.1
13.1 ns
ns
tPWH Minimum Pulse Width High FO=32
FO=635 3.0
3.3 3.5
3.8 4.0
4.3 4.7
5.1 6.7
7.2 5.5
6.0 ns
ns
tPWL Minimum Pulse Width Low FO=32
FO=635 3.0
3.3 3.8
3.8 4.0
4.3 4.7
5.1 6.7
7.2 5.5
6.0 ns
ns
tCKSW Maximum Skew FO=32
FO=635 0.6
0.6 0.75
0.75 0.9
0.9 1.0
1.0 1.4
1.4 1.17
1.17 ns
ns
tSUEXT Input Latch External
Set-Up FO=32
FO=635 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 ns
ns
tHEXT Input Latch External Hold FO=32
FO=635 2.2
2.7 2.6
3.2 2.9
3.7 3.4
4.3 4.9
6.1 4.0
5.0 ns
ns
tP Minimum Period (1/fmax) FO=32
FO=635 5.5
6.1 6.9
7.7 7.4
8.2 9.3
10.2 13.2
14.5 10.9
12.0 ns
ns
fHMAX Maximum Datapath
Frequency FO=32
FO=635 154
141 142
130 123
113 107
98 75
69 91
83 MHz
MHz
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
Integrator Series FPGAs: 1200XL and 3200DX Families
54 Discontinued – v3.0
A32300DX Timing Characteristics (continued)
(Worst-Case Commercial Conditions VCC = 4.75 V, TJ = 70°C)
‘–3’ Speed ‘–2’ Speed ‘–1’ Speed ‘Std’ Speed ‘–F’ Speed 3.3V ‘Std’
Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units
TTL Output Module Timing1
tDLH Data-to-Pad Hig h 3.7 4.3 4.9 5.8 7.7 8.2 ns
tDHL Data-to-Pad Low 4.4 5.2 5.9 6.9 8.1 9.8 ns
tENZH Enable-Pad Z to High 4.8 5.6 6.4 7.5 8.8 10.7 ns
tENZL Enable-Pad Z to Low 5.1 6.0 6.8 8.0 9.4 11.4 ns
tENHZ Enable-Pad High to Z 8.3 9.75 11.1 13.0 15.2 18.5 ns
tENLZ Enable-Pad Low to Z 8.3 9.75 11.1 13.0 15.2 18.5 ns
tGLH G-to-Pad High 4.3 5.0 5.7 6.7 7.9 9.6 ns
tGHL G-to-Pad Low 5.4 6.3 7.1 8.4 7.9 12.0 ns
tLSU I/O Latch Output Set-Up 0.26 0.3 0.34 0.4 0.47 0.6 ns
tLH I/O Latch Output Hold 0.0 0.0 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad) 32 I/O 8.4 9.7 11.1 13.1 15.4 18.7 ns
tACO Array Latch Clock-Out (Pad-to-Pad) 32 I/O 11.8 13.9 15.7 18.5 21.8 26.5 ns
dTLH Capacitive Loading, Low to High 0.26 0.3 0.34 0.4 0.47 0.6 ns/pF
dTHL Capacitive Loading, High to Low 0.32 0.37 0.4 0.5 0.58 0.7 ns/pF
tWDO Hard-Wired Wide-Decode Output 0.03 0.037 0.04 0.05 0.058 0.07 ns
CMOS Output Module Timing1
tDLH Data-to-Pad Hig h 4.4 5.2 5.9 6.9 8.1 8.2 ns
tDHL Data-to-Pad Low 3.7 4.3 4.9 5.8 7.7 9.8 ns
tENZH Enable-Pad Z to High 4.8 5.6 6.4 7.5 8.8 10.7 ns
tENZL Enable-Pad Z to Low 5.1 6.0 6.8 8.0 9.4 11.4 ns
tENHZ Enable-Pad High to Z 8.3 9.75 11.1 13.0 15.2 18.5 ns
tENLZ Enable-Pad Low to Z 8.3 9.75 11.1 13.0 15.2 18.5 ns
tGLH G-to-Pad High 4.3 5.0 5.7 6.7 7.9 9.6 ns
tGHL G-to-Pad Low 5.4 6.3 7.1 8.4 9.9 12.0 ns
tLSU I/O Latch Set-Up 0.26 0.3 0.34 0.4 0.47 0.6 ns
tLH I/O Latch Hold 0.0 0.0 0.0 0.0 0.0 0.0 ns
tLCO I/O Latch Clock-Out (Pad-to-Pad) 32 I/O 9.9 11.6 13.2 15.5 17.6 22.3 ns
tACO Array Latch Clock-Out (Pad-to-Pad) 32 I/O 13.9 16.4 18.5 21.8 25.6 31.2 ns
dTLH Capacitive Loading, Low to High 0.32 0.37 0.4 0.5 0.6 0.10 ns/pF
dTHL Capacitive Loading, High to Low 0.26 0.3 0.3 0.4 0.5 0.09 ns/pF
tWDO Hard-Wired Wide-Decode Output 0.03 0.037 0.04 0.05 0.06 0.09 ns
Note:
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device
performance. Post-route timing analysis or simulation is required to determine actual performance.
Discontinued – v3.0 55
Integrator Series FPGAs: 1200XL and 3200DX Families
Pin Descriptions
CLKA, CLKB Clock A and Clock B (Input)
TTL clock inputs for clock distribution networks. The clock
input is buffered prior to clocking the logic modules. This
pin can also be used as an I/O.
DCLK Diagnostic Clock (Input)
TTL clock input for diagnostic probe and device
programming. DCLK is active when the MODE pin is HIGH.
This pin functions as an I/O when the MODE pin is LOW.
GND Ground (Input)
Input LOW supply voltage.
I/O Input/Output (Input, Output)
I/O pin functions as an input, output, three-state or
bidirectional buffer. Input and output levels are compatible
with standard TTL and CMOS specifications. Unused I/O
pins are automatically driven LOW by the Designer Series
software for XL devices and are automatically tristated for
DX devices.
MODE Mode (Input)
The MODE pin controls the use of multi-function pins
(DCLK, PRA, PRB, SDI, TDO). When the MODE pin is HIGH,
the special functions are active. To provide ActionProbe
capability, the MODE pin should be terminated to GND
through a 10K resistor so the MODE pin can be pulled HIGH
when required.
NC No Connection
This pin is not connected to circuitry within the device.
These pins can be driven to any voltage or can be left
floating with no effect on the operation of the device.
PRA, I/O Probe A (Output)
The Probe A pin is used to output data from any
user-defined design node within the device. This
independent diagnostic pin is used in conjunction with the
Probe B pin to allow real-time diagnostic output of any
signal path within the device. The Probe A pin can be used
as a user-defined I/O when debugging has been completed.
The pin's probe capabilities can be permanently disabled to
protect programmed design confidentiality. PRA is active
when the MODE pin is HIGH. This pin functions as an I/O
when the MODE pin is LOW.
PRB, I/O Probe B (Output)
The Probe B pin is used to output data from any
user-defined design node within the device. This
independent diagnostic pin is used in conjunction with the
Probe A pin to allow real-time diagnostic output of any
signal path within the device. The Probe B pin can be used
as a user-defined I/O when debugging has been completed.
The pin’s probe capabilities can be permanently disabled to
protect programmed design confidentiality. PRB is active
when the MODE pin is HIGH. This pin functions as an I/O
when the MODE pin is LOW.
QCLKA,B,C,D Quadrant Clock (Input/Output)
These four pins are the quadrant clock inputs. When not
used as a register control signal, these pins can function as
general purpose I/O.
SDO Serial Data (Output)
Serial data output for diagnostic probe and device
programming. SDO is active when the MODE pin is HIGH.
This pin functions as an I/O when MODE pin is LOW.
SDI Serial Data Input (Input)
Serial data input for diagnostic probe and device
programming. SDI is active when the MODE pin is HIGH.
This pin functions as an I/O when the MODE pin is LOW.
TCK Test Clock
Clock signal to shift the JTAG data into the device. This pin
functions as an I/O when the JTAG fuse is not programmed.
TDI Test Data In
Serial data input for JTAG instructions and data. Data is
shifted in on the rising edge of TCLK. This pin functions as
an I/O when the JTAG fuse is not programmed.
TDO Test Data Out
Serial data output for JTAG instructions and test data. This
pin functions as an I/O when the JTAG fuse is not
programmed.
TMS Test Mode Select
Serial data input for JTAG test mode. Data is shifted in on
the rising edge of TCLK. This pin functions as an I/O when
the JTAG fuse is not programmed.
VCC Supply Voltage (Input)
Input HIGH supply voltage.
Note: TCK, TDI, TDO, TMS are only available on devices
containing JTAG circuitry.
Integrator Series FPGAs: 1200XL and 3200DX Families
56 Discontinued – v3.0
Package Pin Assignments
84-Pin PLCC Package (Top View)
184
84-Pin
PLCC
84-Pin PLCC Package
Pin
Number A1225XL
Function A1240XL
Function A3265DX
Function A1280XL
Function A32100DX
Function A32140DX
Function
2CLKB, I/O CLKB, I/O CLKB, I/O CLKB, I/ O CLKB, I/ O CLKB, I/O
4PRB, I/O PRB, I/O PRB, I/O PRB, I/O PRB, I/O PRB, I/O
5I/O I/O I/O (WD) I/O I/O (WD) I/O (WD)
6GND GND GND GND GND GND
7I/O I/O I/O I/O QCLKC, I/O I/O
8I/O I/O I/O (WD) I/O I/O (WD) I/O (WD)
9I/O I/O I/O (WD) I/O I/O (WD) I/O (WD)
10 DCLK, I/ O DCLK, I/O DCLK, I/O DCLK, I/O DCLK, I/O DCLK, I/O
12 MODE (GND) MODE (GND) MODE (GND) MODE (GND) MODE (GND) MODE (GND)
22 VCC VCC VCC VCC VCC VCC
23 VCC VCC VCC VCC VCC VCC
28 GND GND GND GND GND GND
34 I/O I/O I/O I/O TMS, I/O TMS, I/O
35 I/O I/O I/O I/O TDI, I/O TDI, I/O
36 I/O I/O I/O I/O I/O (WD) I/O (WD)
37 I/O I/O I/O I/O QCLKA, I/O I/O
38 I/O I/O I/O (WD) I/O I/O (WD) I/O (WD)
39 I/O I/O I/O (WD) I/O I/O (WD) I/O (WD)
43 VCC VCC VCC VCC VCC VCC
44 I/O I/O I/O (WD) I/O I/O (WD) I/O (WD)
45 I/O I/O I/O I/O QCLKB, I/O I/O (WD)
46 I/O I/O I/O (WD) I/O I/O (WD) I/O (WD)
47 I/O I/O I/O (WD) I/O I/O (WD) I/O (WD)
49 GND GND GND GND GND GND
50 I/O I/O I/O I/O I/O (WD) I/O (WD)
51 I/O I/O I/O I/O I/O (WD) I/O (WD)
52 I/O I/O I/O I/O SDO, TDO, I/O SDO, TDO, I/O
62 I/O I/O I/O I/O TCK, I/O TCK, I/O
63 GND GND GND GND GND GND
64 VCC VCC VCC VCC VCC VCC
65 VCC VCC VCC VCC VCC VCC
70 GND GND GND GND GND GND
76 SDI, I/O SD I, I/O SDI, I/O SDI, I/O SD I, I/ O SDI, I/O
78 I/O I/O I/O (WD) I/O I/O (WD) I/O (WD)
79 I/O I/O I/O (WD) I/O I/O (WD) I/O (WD)
80 I/O I/O I/O (WD) I/O QCLKD, I/O I/O (WD)
81 PRA, I/O PRA, I/O PRA, I/O PRA, I/O PRA, I/O PRA, I/O
83 CLKA, I/O CLKA, I/O CLKA, I/O CLKA, I/ O CLKA, I/ O CLKA, I/O
84 VCC VCC VCC VCC VCC VCC
Discontinued – v3.0 57
Integrator Series FPGAs: 1200XL and 3200DX Families
Notes:
1. I/O (WD): Denotes I/O pin with an associated wide-decode module
2. Wide-decode I/O (WD) can also be general purpose user I/O.
3. NC: Denotes ‘No Connection’.
4. All unlisted pin numbers are user I/O’s.
5. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise it can be terminated directly to GND.
Integrator Series FPGAs: 1200XL and 3200DX Families
58 Discontinued – v3.0
Package Pin Assignments (continued)
100-Pin PQFP Package, 100-Pin VQFP Package (Top View)
100-Pin
PQFP
1
100
1
100-Pin
VQFP
100
Discontinued – v3.0 59
Integrator Series FPGAs: 1200XL and 3200DX Families
100-Pin PQFP Package, 100-Pin VQFP Package
Pin Number
A1225XL-
PQ100
Function
A1225XL-
VQ100
Function
A1240XL-
PQ100
Function
A3265DX
PQ100
Function
2DCLK, I/O MODE (GND) DCLK, I/O DCLK, I/O
3I/O I/O I/O I/O
4MODE (GND) I/O MODE (GND) MODE (GND)
7I/O GND I/O I/O
9GND I/O GND GND
14 I/O VCC I/O I/O
15 I/O VCC I/O I/O
16 VCC I/O VCC VCC
17 VCC I/O VCC VCC
20 I/O GND I/O I/O
22 GND I/O GND GND
32 I/O GND I/O I/O
33 I/O I/O I/O I/O
34 GND I/O GND GND
35 I/O I/O I/O I/O (WD)
36 I/O I/O I/O I/O (WD)
37 I/O I/O I/O I/O (WD)
38 I/O VCC I/O I/O (WD)
39 I/O I/O I/O I/O
40 VCC I/O VCC VCC
41 I/O I/O I/O I/O (WD)
42 I/O I/O I/O I/O (WD)
44 I/O GND I/O I/O (WD)
45 I/O I/O I/O I/O (WD)
46 GND I/O GND GND
47 I/O I/O I/O I/O (WD)
48 I/O I/O I/O I/O (WD)
49 I/O I/O I/O I/O
50 I/O SDO, I/O I/O I/O
52 SDO, I/O I/O SDO, I/O SDO, I/O
55 I/O GND I/O I/O
57 GND I/O GND GND
62 I/O GND I/O I/O
63 I/O VCC I/O I/O
64 GND VCC GND GND
65 VCC VCC VCC VCC
66 VCC I/O VCC VCC
67 VCC I/O VCC VCC
70 I/O GND I/O I/O
72 GND I/O GND GND
77 I/O SDI, I/O I/O I/O
81 I/O I/O I/O I/O (WD)
82 I/O GND I/O I/O (WD)
83 I/O I/O I/O I/O (WD)
Integrator Series FPGAs: 1200XL and 3200DX Families
60 Discontinued – v3.0
Notes:
1. NC: Denotes ‘No Connection’.
2. All unlisted pin numbers are user I/O’s.
3. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise it can be terminated directly to GND.
4. I/O (WD): Denotes I/O pin with an associated Wide-Decode Module
84 GND I/O GND GND
85 I/O PRA, I/O I/O I/O (WD)
86 I/O I/O I/O I/O (WD)
87 PRA, I/O CLKA, I/O PRA, I/O PRA, I/O
88 I/O VCC I/O I/O
89 CLKA, I/O I/O CLKA, I/O CLKA, I/O
90 VCC CLKB, I/O VCC VCC
92 CLKB, I/O PRB, I/O CLKB, I/O CLKB, I/O
94 PRB, I/O GND PRB, I/O PRB, I/O
95 I/O I/O I/O I/O (WD)
96 GND I/O GND GND
99 I/O I/O I/O I/O (WD)
100 I/O DCLK, I/O I/O I/O (WD)
100-Pin PQFP Package, 100-Pin VQFP Package
Pin Number
A1225XL-
PQ100
Function
A1225XL-
VQ100
Function
A1240XL-
PQ100
Function
A3265DX
PQ100
Function
Discontinued – v3.0 61
Integrator Series FPGAs: 1200XL and 3200DX Families
Package Pin Assignments (continued)
144-Pin PQFP Package (Top View)
1
144
144-Pin
PQFP
144-Pin PQFP Package
Pin Number A1240XL Function
2MODE (GND)
9GND
10 GND
11 GND
18 VCC
19 VCC
20 VCC
21 VCC
28 GND
29 GND
30 GND
44 GND
45 GND
46 GND
54 VCC
55 VCC
64 GND
65 GND
79 GND
80 GND
81 GND
88 GND
89 VCC
90 VCC
91 VCC
92 VCC
100 GND
101 GND
102 GND
110 SDI, I/O
116 GND
117 GND
118 GND
123 PRA, I/O
125 CLKA, I/O
126 VCC
127 VCC
128 VCC
130 CLKB, I/O
132 PRB, I/O
136 GND
137 GND
138 GND
144 DCLK, I/O
Integrator Series FPGAs: 1200XL and 3200DX Families
62 Discontinued – v3.0
144-Pin PQFP Package
Pin Number A1240XL Function
Notes:
1. NC: Denotes ‘No Connection’.
2. All unlisted pin numbers are user I/O’s.
3. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise it can be terminated directly to GND.
Discontinued – v3.0 63
Integrator Series FPGAs: 1200XL and 3200DX Families
Package Pin Assignments (continued)
160-Pin PQFP Package (Top View)
160
1
160-Pin
PQFP
Notes:
1. I/O (WD): Denotes I/O pin with an associated wide-decode module
2. Wide-Decode I/O (WD) can also be general-purpose user I/O.
3. NC Denotes ‘No Connection’.
4. All unlisted pin numbers are user I/O’s.
5. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise it can be terminated directly to GND.
Integrator Series FPGAs: 1200XL and 3200DX Families
64 Discontinued – v3.0
160-Pin PQFP Package
Pin
Number A3265DX
Function A1280XL
Function A32100DX
Function A32140DX
Function
2DCLK, I/O DCLK, I/O DCLK DCLK, I/O
4I/O I/O I/O (WD) I/O (WD)
5I/O (WD) I/O I/O (WD) I/O (WD)
6 VCC VCC VCC VCC
7I/O (WD) I/O I/O I/O
11 GND GND GND GND
12 I/O I/O QCLKC, I/O I/O
13 I/O (WD) I/O I/O (WD) I/O (WD)
14 I/O (WD) I/O I/O (WD) I/O (WD)
16 PRB, I/O PRB , I/ O PRB, I/O PRB, I/O
18 CLKB, I/O CLKB, I/O CLKB, I/O CLKB, I/O
20 VCC VCC VCC VCC
21 CLKA, I/O CLKA, I/O CLKA, I/O CLKA, I/O
23 PRA, I/O PRA , I/ O PRA, I/O PRA, I/O
24 I/O I/O I/O (WD) I/O (WD)
25 I/O (WD) I/O I/O (WD) I/O (WD)
26 I/O (WD) I/O I/O I/O
28 I/O I/O QCLKD I/O
29 I/O (WD) I/O I/O (WD) I/O (WD)
30 GND GND GND GND
31 I/O (WD) I/O I/O (WD) I/O (WD)
33 I/O I/O NC I/O
34 I/O (WD) I/O NC I/O
35 VCC VCC VCC VCC
36 I/O (WD) I/O I/O (WD) I/O (WD)
37 I/O I/O I/O (WD) I/O (WD)
38 SDI, I/O SDI, I/O SDI, I/O SDI, I/O
40 GND GND GND GND
44 GND GND GND GND
49 GND GND GND GND
54 VCC VCC VCC VCC
57 VCC VCC VCC VCC
58 VCC VCC VCC VCC
59 GND GND GND GND
60 VCC VCC VCC VCC
61 GND GND GND GND
62 I/O I/O TCK, I/O TCK, I/O
64 GND GND GND GND
69 GND GND GND GND
80 GND GND GND GND
82 I/O I/O SDO, I/O SDO, TDO, I/O
83 I/O I/O I/O (WD) I/O (WD)
84 I/O I/O I/O (WD) I/O (WD)
86 VCC VCC VCC VCC
87 I/O (WD) I/O I/O I/O
88 I/O (WD) I/O I/O (WD) I/O (WD)
89 GND GND GND GND
90 I/O I/O I/O (WD) I/O
Discontinued – v3.0 65
Integrator Series FPGAs: 1200XL and 3200DX Families
91 I/O I/O QCLKB, I/O I/O
92 I/O (WD) I/O I/O I/O
93 I/O (WD) I/O I/O I/O
95 I/O I/O I/O (WD) I/O
96 I/O (WD) I/O I/O (WD) I/O (WD)
97 I/O (WD) I/O I/O I/O
98 VCC VCC VCC VCC
99 GND GND GND GND
106 I/O (WD) I/O I/O (WD) I/O (WD)
107 I/O (WD) I/O I/O (WD) I/O (WD)
109 GND GND GND GND
110 I/O I/O QCLKA, I/O I/O
111 I/O (WD) I/O I/O I/O (WD)
112 I/O (WD) I/O I/O I/O (WD)
114 VCC VCC VCC VCC
115 I/O I/O I/O (WD) I/O (WD)
116 I/O I/O I/O (WD) I/O (WD)
118 I/O I/O TDI, I/O TDI, I/O
119 I/O I/O TMS, I/O TMS, I/O
120 GND GND GND GND
125 GND GND GND GND
130 GND GND GND GND
135 VCC VCC VCC VCC
138 VCC VCC VCC VCC
139 VCC VCC VCC VCC
140 GND GND GND GND
145 GND GND GND GND
150 VCC VCC VCC VCC
155 GND GND GND GND
159 MODE (GND) MODE (GND) MODE (GND) MODE (GND)
160 GND GND GND GND
160-Pin PQFP Package (Continued)
Pin
Number A3265DX
Function A1280XL
Function A32100DX
Function A32140DX
Function
Integrator Series FPGAs: 1200XL and 3200DX Families
66 Discontinued – v3.0
Package Pin Assignments (continued)
208-Pin PQFP Package, 208-Pin RQFP Package (Top View)
208-Pin PQFP
208-Pin RQFP
1
208
Notes:
1. I/O (WD): Denotes I/O pin with an associated wide-decode module.
2. Wide-Decode I/O (WD) can also be general purpose user I/O.
3. NC: Denotes ‘No Connection’.
4. All unlisted pin numbers are user I/O’s.
5. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise it can be terminated directly to GND.
6. RQFP has an exposed circular metal heat sink on the top surface.
Discontinued – v3.0 67
Integrator Series FPGAs: 1200XL and 3200DX Families
208-Pin PQFP Package, 208-Pin RQFP Package
Pin Number A1280XL
Function A32100DX
Function A32140DX Function A32200DX-
PQ208 Function A32200DX-
RQ208 Function A32300DX
Function
1 GND GND GND GND I/O I/O
2NC VCC VCC VCC DCLK, I/O DCLK, I/O
3MODE (GND) MODE (GND) MODE (GND) MODE (GND) I/O I/O
5I/O I/O I/O I/O I/O (WD) I/O (WD)
6I/O I/O I/O I/O I/O (WD) I/O (WD)
7I/O I/O I/O I/O VCC VCC
9NC NC I/O I/O I/O I/O
10 NC NC I/O I/O I/O I/O
11 NC NC I/O I/O I/O I/O
13 I/O I/O I/O I/O QCLKC, I/O QCLKC, I/O
15 I/O I/O I/O I/O I/O (WD) I/O (WD)
16 NC NC I/O I/O I/O (WD) I/O (WD)
17 VCC VCC VCC VCC I/O I/O
19 I/O I/O I/O I/O I/O (WD) I/O (WD)
20 I/O I/O I/O I/O I/O (WD) I/O (WD)
22 GND GND GND GND PRB, I/ O PRB, I/O
24 I/O I/O I/O I/O CLKB, I/O CLKB, I/O
26 I/O I/O I/O I/O GND GND
27 GND GND GND GND VCC VCC
28 VCC VCC VCC VCC I/O I/O
29 VCC VCC VCC VCC CLKA, I/O CLKA, I/O
30 I/O I/O I/O I/O PRA, I/O PRA, I/O
32 VCC VCC VCC VCC I/O (WD) I/O (WD)
33 I/O I/O I/O I/O I/O (WD) I/O (WD)
38 I/O I/O I/O I/O QCLKD, I/O QCLKD, I/O
40 I/O I/O I/O I/O I/O (WD) I/O (WD)
41 NC NC I/O I/O I/O (WD) I/O (WD)
42 NC NC I/O I/O I/O I/O
43 NC NC I/O I/O I/O I/O
45 I/O I/O I/O I/O VCC VCC
47 I/O I/O I/O I/O I/O (WD) I/O (WD)
48 I/O I/O I/O I/O I/O (WD) I/O (WD)
50 NC NC I/O I/O SDI, I/O SDI, I/O
51 NC NC I/O I/O I/O I/O
52 GND GND GND GND GND GND
53 GND GND GND GND I/O I/O
54 I/O TMS, I/O TMS, I/O TMS, I/O I/O I/O
55 I/O TDI, I/O TDI, I/O TDI, I/O I/O I/O
57 I/O I/O I/O (WD) I/O (WD) I/O I/O
58 I/O I/O (WD) I/O (WD) I/O (WD) I/O I/O
59 I/O I/O (WD) I/O I/O GND GND
60 VCC VCC VCC VCC I/O I/O
61 NC I/O I/O I/O I/O I/O
62 NC I/O I/O I/O I/O I/O
65 I/O QCLKA, I/O I/O QCLKA, I/O I/O I/O
66 I/O I/O I/O (WD) I/O (WD) I/O I/O
67 NC NC I/O (WD) I/ O (W D) I/O I/O
68 NC I/O I/O I/O I/O I/O
70 I/O I/O (WD) I/O (WD) I/O (WD) I/O I/O
71 I/O I/O (WD) I/O (WD) I/O (WD) I/O I/O
74 I/O I/O I/O I/O VCC VCC
77 I/O I/O I/O I/O VCC VCC
78 GND GND GND GND VCC VCC
Integrator Series FPGAs: 1200XL and 3200DX Families
68 Discontinued – v3.0
79 VCC VCC VCC VCC VCC VCC
80 NC VCC VCC VCC GND GND
81 I/O I/O I/O I/O TCK, I/O TCK, I/O
83 I/O I/O I/O I/O GND GND
85 I/O I/O (WD) I/O (WD) I/O (WD) I/O I/O
86 I/O I/O (WD) I/O (WD) I/O (WD) I/O I/O
89 NC I/O I/O I/O I/O I/O
90 NC I/O I/O I/O I/O I/O
91 I/O QCLKB, I/O I/O QCLKB, I/O I/O I/O
93 I/O I/O (WD) I/O (WD) I/O (WD) I/O I/O
94 I/O I/O (WD) I/O (WD) I/O (WD) I/O I/O
95 NC I/O I/O I/O I/O I/O
96 NC NC I/O I/O I/O I/O
97 NC NC I/O I/O I/O I/O
98 VCC VCC VCC VCC I/O I/O
100 I/O I/O (WD) I/O (WD) I/O (WD) I/O I/O
101 I/O I/O (WD) I/O (WD) I/O (WD) I/O I/O
103 I/O SDO, I/O SDO, TDO, I/O SDO, TDO, I/O VCC VCC
104 I/O I/O I/O I/O GND GND
105 GND GND GND GND I/O I/O
106 NC VCC VCC VCC SDO, TDO, I/O SDO, TDO, I/O
107 I/O I/O I/O I/O I/O (WD) I/O (WD)
108 I/O I/O I/O I/O I/O (WD) I/O (WD)
110 I/O I/O I/O I/O VCC VCC
112 NC NC I/O I/O I/O I/O
113 NC NC I/O I/O I/O I/O
114 NC NC I/O I/O I/O (WD) I/O (WD)
115 NC NC I/O I/O I/O (WD) I/O (WD)
117 I/O I/O I/O I/O QCLKB, I/O QCLKB, I/O
121 I/O I/O I/O I/O I/O (WD) I/O (WD)
122 I/O I/O I/O I/O I/O (WD) I/O (WD)
126 GND GND GND GND I/O I/O (WD)
127 I/O I/O I/O I/O I/O I/O (WD)
128 I/O TCK, I/O TCK, I/ O TCK, I/O I/O I/O
129 GND GND GND GND VCC VCC
130 VCC VCC VCC VCC GND GND
131 GND GND GND GND I/O I/O
132 VCC VCC VCC VCC I/O I/O
133 VCC VCC VCC VCC I/O I/O
136 VCC VCC VCC VCC I/O I/O
137 I/O I/O I/O I/O I/O (WD) I/O (WD)
138 I/O I/O I/O I/O I/O (WD) I/O (WD)
141 NC I/O I/O I/O I/O (WD) I/O (WD)
142 I/O I/O I/O I/O I/O (WD) I/O (WD)
144 I/O I/O I/O I/O QCLKA, I/O QCLKA, I/O
146 NC NC I/O I/O I/O I/O
147 NC NC I/O I/O I/O I/O
148 NC NC I/O I/O I/O I/O
149 NC NC I/O I/O VCC VCC
150 GND GND GND GND I/O I/O
151 I/O I/O I/O I/O I/O (WD) I/O (WD)
152 I/O I/O I/O I/O I/O (WD) I/O (WD)
154 I/O I/O I/O I/O TDI, I/O TDI , I/O
208-Pin PQFP Package, 208-Pin RQFP Package (Continued)
Pin Number A1280XL
Function A32100DX
Function A32140DX Function A32200DX-
PQ208 Function A32200DX-
RQ208 Function A32300DX
Function
Discontinued – v3.0 69
Integrator Series FPGAs: 1200XL and 3200DX Families
155 I/O I/O I/O I/O TMS, I/O TMS, I/O
156 I/O I/O I/O I/O GND GND
157 GND GND GND GND VCC VCC
159 SDI, I/O SD I, I/O SDI, I/O SDI, I/O I/O I/O
161 I/O I/O (WD) I/O (WD) I/O (WD) I/O I/O
162 I/O I/O (WD) I/O (WD) I/O (WD) I/O I/O
164 VCC VCC VCC VCC I/O I/O
165 NC NC I/O I/O I/O I/O
166 NC NC I/O I/O I/O I/O
168 I/O I/O (WD) I/O (WD) I/O (WD) I/O I/O
169 I/O I/O (WD) I/O (WD) I/O (WD) I/O I/O
171 NC QCLKD, I/O I/O QCLK D, I/ O I/O I/O
176 I/O I/O (WD) I/O (WD) I/O (WD) I/O I/O
177 I/O I/O (WD) I/O (WD) I/O (WD) I/O I/O
178 PRA, I/O PRA, I/O PRA, I/O PRA, I/O VCC VCC
180 CLKA, I/O CLKA, I/O CLKA, I/O CLKA, I/O I/O I/O
181 NC I/O I/O I/O VCC VCC
182 NC VCC VCC VCC VCC VCC
183 VCC VCC VCC VCC I/O I/O
184 GND GND GND GND I/O I/O
186 CLKB, I/O CLKB CLKB, I/O CLKB, I/O I/O I/O
187 I/O I/O I/O I/O GND GND
188 PRB, I/O PRB, I/O PRB, I/O PRB, I/O I/O I/O
190 I/O I/O (WD) I/O (WD) I/O (WD) I/O I/O
191 I/O I/O (WD) I/O (WD) I/O (WD) I/O I/O
193 NC I/O I/O I/O I/O I/O
194 NC NC I/O (WD) I/O (W D) I/O I/O
195 NC I/O I/O (WD) I/O (WD) I/O I/O
196 I/O QCLKC, I/O I/O QCLKC, I/ O I/O I/O
197 NC NC I/O I/O I/O I/O
201 NC I/O I/O I/O I/O I/O
202 VCC VCC VCC VCC I/O I/O
203 I/O I/O (WD) I/O (WD) I/O (WD) I/O I/O
204 I/O I/O (WD) I/O (WD) I/O (WD) I/O I/O
206 I/O I/O I/O I/O MODE MODE (GND)
207 DCLK, I/O DCLK, I/O DCLK, I/O DCLK, I/O VCC VCC
208 I/O I/O I/O I/O GND GND
208-Pin PQFP Package, 208-Pin RQFP Package (Continued)
Pin Number A1280XL
Function A32100DX
Function A32140DX Function A32200DX-
PQ208 Function A32200DX-
RQ208 Function A32300DX
Function
Integrator Series FPGAs: 1200XL and 3200DX Families
70 Discontinued – v3.0
Package Pin Assignments (continued)
240-Pin RQFP Package (Top View)
240-Pin
RQFP
Exposed
Heatsin
k
1
240
Notes:
1. I/O (WD): Denotes I/O pin with an associated wide-decode module.
2. Wide-Decode I/O (WD) can also be general purpose user I/O.
3. NC: Denotes ‘No Connection.’
4. All unlisted pin numbers are user I/O’s.
5. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise it can be terminated directly to GND.
6. RQFP has an exposed circular metal heat sink on the top surface.
240-Pin RQFP Package
Pin Number A32200DX Function A32300DX
Function Pin Number A32200DX Function A32300DX
Function
2DCLK, I/O DCLK, I/O 120 GND GND
6I/O (WD) I/O (WD) 121 GND GND
7I/O (WD) I/O (WD) 123 SDO, TDO, I/O SDO, TDO, I/O
8 VCC VCC 125 I/O (WD) I/O (WD)
15 QCLKC, I/O QCL K C, I/O 126 I/O (WD) I/O (WD)
17 I/O (WD) I/O (WD) 128 VCC VCC
18 I/O (WD) I/O (WD) 132 I/O (WD) I/O (WD)
21 I/O (WD) I/O (WD) 133 I/O (WD) I/O (WD)
22 I/O (WD) I/O (WD) 135 QCLKB, I/O QCLKB, I/O
24 PRB, I/O PRB , I/ O 142 I/O (WD) I/O (WD)
26 CLKB, I/O CLKB, I/O 143 I/O (WD) I/O (WD)
28 GND GND 147 I/O I/O (WD)
29 VCC VCC 148 I/O I/O (WD)
30 VCC VCC 150 VCC VCC
32 CLKA, I/O CLKA, I/O 151 VCC VCC
33 I/O I/O (WD) 152 GND GND
34 PRA, I/O PRA , I/ O 159 I/O (WD) I/O (WD)
37 I/O (WD) I/O (WD) 160 I/O (WD) I/O (WD)
38 I/O (WD) I/O (WD) 163 I/O (WD) I/O (WD)
45 QCLKD, I/O QCL K D, I/O 164 I/O (WD) I/O (WD)
47 I/O (WD) I/O (WD) 166 QCLKA, I/O QCLKA, I/O
48 I/O (WD) I/O (WD) 172 VCC VCC
52 VCC VCC 174 I/O (WD) I/O (WD)
54 I/O (WD) I/O (WD) 175 I/O (WD) I/O (WD)
55 I/O (WD) I/O (WD) 178 TDI, I/O TDI, I/O
57 SDI, I/O SDI, I/O 179 TMS, I/O TMS, I/O
59 VCC VCC 180 GND GND
60 GND GND 181 VCC VCC
61 GND GND 182 GND GND
71 VCC VCC 192 VCC VCC
85 VCC VCC 206 VCC VCC
88 VCC VCC 209 VCC VCC
89 VCC VCC 210 VCC VCC
90 VCC VCC 219 VCC VCC
91 GND GND 227 VCC VCC
92 TCK, I/O TCK, I/O 237 GND GND
94 GND GND 238 MODE (GND) MODE (GND)
108 VCC VCC 239 VCC VCC
118 VCC VCC 240 GND GND
119 GND GND
Discontinued – v3.0 71
Integrator Series FPGAs: 1200XL and 3200DX Families
Integrator Series FPGAs: 1200XL and 3200DX Families
72 Discontinued – v3.0
Package Pin Assignments (continued)
176-Pin TQFP Package (Top View)
176-Pin
TQFP
176
1
Notes:
1. I/O (WD): Denotes I/O pin with an associated wide-decode module.
2. Wide-Decode I/O (WD) can also be general-purpose user I/O.
3. NC: Denotes ‘No Connection.’
4. All unlisted pin numbers are user I/O’s.
5. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise it can be terminated directly to GND.
Discontinued – v3.0 73
Integrator Series FPGAs: 1200XL and 3200DX Families
176-pin TQFP Package
Pin Number A1240XL
Function A3265DX
Function A1280XL
Function A32100DX
Function A32140DX
Function
1GND GND GND GND GND
2MODE MODE MODE MODE MODE
8NC NC NC NC I/O
10 NC NC I/O I/O I/O
11 NC NC I/O I/O I/O
13 NC VCC VCC VCC VCC
18 GND GND GND GND GND
19 NC I/O I/O I/O I/O
20 NC I/O I/O I/O I/O
22 NC I/O I/O I/O I/O
23 GND GND GND GND GND
24 NC VCC VCC VCC VCC
25 VCC VCC VCC VCC VCC
26 NC I/O I/O I/O I/O
27 NC I/O I/O I/O I/O
28 VCC VCC VCC VCC VCC
29 NC NC I/O I/O I/O
33 NC NC NC NC I/O
37 NC NC I/O I/O I/O
38 NC NC NC NC I/O
45 GND GND GND GND GND
46 I/O I/O I/O TMS, I/O TMS, I/O
47 I/O I/O I/O TDI, I/O TDI, I/O
48 I/O NC I/O I/O I/O
49 I/O I/O I/O I/O I/O (WD)
50 I/O I/O I/O I/O (WD) I/O (WD)
51 I/O I/O I/O I/O (WD) I/O
52 NC VCC VCC VCC VCC
54 NC I/O (WD) I/O I/O I/O
55 NC I/O (WD) I/O I/O I/O (WD)
56 I/O I/O I/O I/O I/O (WD)
57 NC NC NC QCLKA, I/O I/O
59 I/O I/O (WD) I/O I/O (WD) I/O (WD)
60 I/O I/O (WD) I/O I/O (WD) I/O (WD)
61 NC I/O I/O I/O I/O
64 NC I/O I/O I/O I/O
66 NC I/O I/O I/O I/O
67 GND GND GND GND GND
68 VCC VCC VCC VCC VCC
69 I/O I/O (WD) I/O I/O I/O (WD)
70 I/O I/O (WD) I/O I/O I/O (WD)
72 I/O I/O I/O I/O (WD) I/O
73 I/O I/O (WD) I/O I/O (WD) I/O
74 NC NC I/O I/O I/O
75 I/O I/O (WD) I/O I/O I/O
76 I/O I/O I/O QCLKB, I/O I/O
77 NC NC NC I/O I/O (WD)
78 NC NC I/O I/O (WD) I/O (WD)
79 I/O I/O I/O I/O (WD) I/O
80 NC I/O (WD) I/O NC I/O
Integrator Series FPGAs: 1200XL and 3200DX Families
74 Discontinued – v3.0
81 I/O I/O (WD) I/O I/O I/O
82 NC VCC VCC VCC VCC
84 I/O I/O I/O I/O (WD) I/O (WD)
85 I/O I/O I/O I/O (WD) I/O (WD)
86 NC NC I/O I/O I/O
87 I/O I/O I/O SDO, TDO, I/O SDO, TDO, I/O
89 GND GND GND GND GND
96 NC NC I/O I/O I/O
97 NC I/O I/O I/O I/O
101 NC NC NC NC I/O
103 NC I/O I/O I/O I/O
106 GND GND GND GND GND
107 NC I/O I/O I/O I/O
108 NC I/O I/O TCK, I/O TCK, I/O
109 GND GND GND GND GND
110 VCC VCC VCC VCC VCC
111 GND GND GND GND GND
112 VCC VCC VCC VCC VCC
113 VCC VCC VCC VCC VCC
114 NC I/O I/O I/O I/O
115 NC I/O I/O I/O I/O
116 NC VCC VCC VCC VCC
117 I/O NC I/O I/O I/O
121 NC NC NC I/O I/O
124 NC NC I/O I/O I/O
125 NC NC I/O I/O I/O
126 NC NC NC NC I/O
133 GND GND GND GND GND
135 SDI, I/O SDI, I/O SDI, I/O SDI, I/O SDI, I/O
136 NC NC I/O I/O I/O
137 I/O I/O I/O I/O (WD) I/O (WD)
138 I/O I/O I/O I/O (WD) I/O (WD)
139 I/O I/O (WD) I/O I/O I/O
140 NC VCC VCC VCC VCC
141 I/O I/O (WD) I/O I/O I/O
142 I/O I/O I/O I/O (WD) I/O
143 NC I/O I/O I/O (WD) I/O
144 NC I/O (WD) I/O I/O I/O (WD)
145 NC NC NC NC I/O (WD)
146 I/O I/O (WD) I/O QCLKD, I/O I/O
147 NC I/O I/O I/O I/O
149 I/O I/O (WD) I/O I/O I/O
150 I/O I/O (WD) I/O I/O (WD) I/O (WD)
151 NC I/O I/O I/O (WD) I/O (WD)
152 PRA, I/O PRA, I/ O PRA, I/O PRA, I/O PRA, I/O
154 CLKA, I/O CLKA, I/O CLKA, I/O CLKA, I/O CLKA, I/ O
155 VCC VCC VCC VCC VCC
156 GND GND GND GND GND
158 CLKB, I/O CLKB, I/O CLKB, I/O CLKB, I/O CLKB, I/ O
160 PRB, I/O PRB, I/ O PRB, I/O PRB, I/O PRB, I/O
176-pin TQFP Package (Continued)
Pin Number A1240XL
Function A3265DX
Function A1280XL
Function A32100DX
Function A32140DX
Function
Discontinued – v3.0 75
Integrator Series FPGAs: 1200XL and 3200DX Families
161 NC I/O I/O I/O (WD) I/O (WD)
162 I/O I/O (WD) I/O I/O (WD) I/O (WD)
163 I/O I/O (WD) I/O I/O I/O
164 I/O I/O I/O QCLKC, I/O I/O
165 NC NC NC NC I/O (WD)
166 NC I/O I/O I/O I/O (WD)
168 NC I/O I/O I/O I/O
169 I/O I/O (WD) I/O I/O I/O
170 NC VCC VCC VCC VCC
171 I/O I/O (WD) I/O I/O (WD) I/O (WD)
172 I/O I/O I/O I/O (WD) I/O (WD)
173 NC NC I/O I/O I/O
175 DCLK, I/O DCLK, I/O DCLK, I/O DCLK, I/O DCLK, I/O
176-pin TQFP Package (Continued)
Pin Number A1240XL
Function A3265DX
Function A1280XL
Function A32100DX
Function A32140DX
Function
Integrator Series FPGAs: 1200XL and 3200DX Families
76 Discontinued – v3.0
Package Pin Assignments (continued)
100-Pin CPGA (Top View)
1
A
234567891011
B
C
D
E
F
G
H
J
K
L
A
B
C
D
E
F
G
H
J
K
L
100-Pin
CPGA
1234567891011
Orientation Pin
Signal Pad Number Location
PRA or I/O 85 A7
PRB or I/O 92 A4
MODE 2C2
SDI or I/O 77 C8
DCLK or I/O 100 C3
CLKA or I/O 87 C6
CLKB or I/O 90 D6
GND 7, 20, 32, 44, 55, 70, 82, 94 E3, G3, J5, J7, G9, F11, D10, C7, C5
VCC 15, 38, 64, 88 F3, G1, K6, F9, F10, E11, B6
Notes:
1. Unused I/O pins are designated as outputs by ALS and are driven LOW.
2. All unassigned pins are available for use as I/Os.
3. MODE = GND, except during device programming or debugging.
Discontinued – v3.0 77
Integrator Series FPGAs: 1200XL and 3200DX Families
Package Pin Assignments (continued)
132-Pin CPGA (Top View)
132-Pin
CPGA
A
B
C
D
E
F
G
H
J
K
L
M
N
A
B
C
D
E
F
G
H
J
K
L
M
N
Orientation Pin
1 2345678910111213
1 2345678910111213
Signal Pad Number Location
PRA or I/O 113 B8
PRB or I/O 121 C6
MODE 2A1
SDI or I/O 101 B12
DCLK or I/O 132 C3
CLKA or I/O 115 B7
CLKB or I/O 119 B6
GND 9, 10, 26, 27, 41, 58, 59, 73, 74, 92, 93, 107, 108, 125, 126 E3, F4, J2, J3, L5, L9, M9, K12, J11, H13, E12, E11, C9, B9, B5, C5
VCC 18, 19, 49, 50, 83, 84, 116, 117 G3, G2, G4, L7, K7, G10, G11, G12, G13, D7, C7
Notes:
1. Unused I/O pins are designated as outputs by ALS and are driven LOW.
2. All unassigned pins are available for use as I/Os.
3. MODE = GND, except during device programming or debugging.
Integrator Series FPGAs: 1200XL and 3200DX Families
78 Discontinued – v3.0
Package Pin Assignments (continued)
176-Pin CPGA (Top View)
1
A
234567891011
B
C
D
E
F
G
H
J
K
L
176-Pin
CPGA
1234567891011
12
12
13
13
14
14
15
15
M
N
P
R
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
Signal Pad Number Location
PRA or I/O 152 C9
PRB or I/O 160 D7
MODE 2C3
SDI or I/O 135 B14
DCLK or I/O 175 B3
CLKA or I/O 154 A9
CLKB or I/O 158 B8
GND 1, 8, 18, 23, 33, 38, 45, 57, 67, 77, 89
101, 106, 111, 121, 126, 133, 145, 156, 165 D4, E4, G4, H4, K4, L4, M4, M6, M8, M10, M12
K12, J12, J13, H12, F12, E12, D12, D10, C8, D6
VCC 13, 24, 28, 52, 68, 82, 112, 116, 140, 155, 170 F4, H2, H3, J4, M5, N8, M11, J14, H13, H14, G12, D11, D8, D5
Notes:
1. Unused I/O pins are designated as outputs by ALS and are driven LOW.
2. All unassigned pins are available for use as I/Os.
3. MODE = GND, except during device programming or debugging.
Discontinued – v3.0 79
Integrator Series FPGAs: 1200XL and 3200DX Families
Package Pin Assignments (continued)
84-Pin CQFP
Pin #1
Index
1
84
84-Pin
CQFP
Notes:
1. Unused I/O pins are designated as outputs by ALS and are driven LOW.
2. All unassigned pins are available for use as I/Os.
3. MODE = GND, except during device programming or debugging.
84-pin CQFP Package
Pin Number A32100DX Function
1 GND
2MODE (GND)
7 VCC
10 GND
11 VCC
12 VSV (VCC)
17 GND
22 GND
23 TMS, I/O
24 TDI, I/O
25 I/O (WD)
26 I/O (WD)
28 QCLKA, I/O
30 I/O (WD)
32 GND
33 VCC
34 I/O (WD)
35 I/O (WD)
36 QCLKB, I/O
37 I/O (WD)
38 GND
39 I/O (WD)
40 I/O (WD)
41 I/O (WD)
42 SDO, I/O
43 GND
50 GND
51 TCK, I/O
52 VKS (GND)
53 VPP (VCC)
55 VSV (VCC)
56 VCC
59 GND
63 GND
64 SDI
65 I/O (WD)
66 I/O (WD)
67 I/O (WD)
68 I/O (WD)
69 QCLKD, I/O
70 I/O (WD)
71 I/O (WD)
72 PRA, I/O
73 CLKA, I/O
74 VCC
76 CLKB, I/O
77 PRB, I/O
78 I/O (WD)
79 I/O (WD)
80 QCLKC, I/O
81 GND
82 I/O (WD)
83 I/O (WD)
84 DCLK, I/O
Integrator Series FPGAs: 1200XL and 3200DX Families
80 Discontinued – v3.0
84-pin CQFP Package
Pin Number A32100DX Function
Discontinued – v3.0 81
Integrator Series FPGAs: 1200XL and 3200DX Families
Package Pin Assignments (continued)
172-Pin CQFP
172-Pin
CQFP
Pin #1
Index
172
1
Signal Pad Number
CLKA or I/O 150
CLKB or I/O 154
DCLK or I/O 171
GND 7, 17, 22, 32, 37, 55, 65, 75, 98, 103, 106, 118, 123, 141, 152, 161
MODE 1
PRA or I/O 148
PRB or I/O 156
SDI or I/O 131
VCC 12, 23, 24, 27, 50, 66, 80, 107, 109, 110, 113, 136, 151, 166
Notes:
1. Unused I/O pins are designated as outputs by ALS and are driven LOW.
2. All unassigned pins are available for use as I/Os.
3. MODE = GND, except during device programming or debugging.
Integrator Series FPGAs: 1200XL and 3200DX Families
82 Discontinued – v3.0
List of Changes
The following table lists critical changes that were made in the current version of the document.
Previous version Changes in current version (v3.0) Page
Unspecified
Because the changes in this data sheet are extensive and technical in nature—due to th e elimination of 32400DX
product—this should be viewed as a new document. Please read it as you would a data sheet that is published for
the first time. Note that the “Package and Mechanical Drawings” section has been eliminated from the data sheet
and can now be found on the Actel web site.
ALL
Note that the “Package Charact eristics an d Mechanical Drawings” secti on has bee n elimin ated fr om the dat a shee t.
The mechanical drawings are now cont ained in a separate document, “Package Characteristics and Mechanical
Drawings,” available on the Actel web site.
Data Sheet Categories
In order to provide the latest information to designers, some data sheets are published before data has been fully
characterized. These data sheets are marked as “Advanced” or Preliminary” data sheets. The definition of these categories
are as follows:
Advanced
The data sheet contains initial estimated information based on simulation, other products, devices, or speed grades. This
information can be used as estimates, but not for production.
Preliminary
The data sheet contains information based on simulation and/or initial characterization. The information is believed to be
correct, but changes are possible.
Unmarked (production)
The data sheet contains information that is considered to be final.
Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.
http://www.actel.com
Actel Europe Ltd.
Daneshi ll Ho us e, Luty en s Close
Basingstoke, Hampshire RG24 8AG
United Kingdom
Tel: +44 (0)1256 305600
Fax: +44 (0)1256 355420
Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
USA
Tel: (408) 739-1010
Fax: (408) 739-1540
Actel Asia-Pacific
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Tel: +81 03-3445-7671
Fax: +81 03-3445-7668
5172135-1/2.01
Integrator Series FPGAs: 1200XL and 3200DX Families
84 Discontinued – v3.0