S6AP412A
3ch DC/DC Converter with I2C Interface
and Internal SW FETs
Cypress Semiconductor Corporation 198 Champion Court San Jose, CA 95134-1709 408-943-2600
Document Number: 002-08447 Rev.*A Revised March 28, 2016
S6AP412A contains 2ch buck DC/DC converter and 1ch buck-boost DC/DC converter. One of the buck DC/DC converter is
available for Multi-phase method. Multi-phase DC/DC converter is possible to load high current until 4A. S6AP412A can supply the
main power line in several systems by using only its chip. The current mode control is adopted for the DC/DC converter, and it is
possible to use the small chip inductor with the high switching frequency operation which contains internal switching FETs.
S6AP412A contains the output setting resistor and the phase compensation circuit, and contributes to reduce the number of
external components and its mount area. Also it contains the CTL input pin which can control the ON/OFF for each DC/DC converter,
the Power Good signal output pin and I2C communication interface, therefore it is easy to design the power supply sequence. It is
possible to tune in the output voltage exactly using the I2C communication.
Features
Operating input voltage range: 2.5V to 5.5V (Maximum rating: 6.5V)
Output voltage setting range: DD1*:0.7V to 1.32V (20mV/step)
DD2*:1.2V to 1.95V (50mV/step)
DD3*:2.8Vto 3.5V (100mV/step)
Maximum output current: DD1:4A, DD2:1.2A, DD3:0.6A
Internal switching FETs, output voltage setting resistor, phase compensation circuit and output discharge resistor (all DC/DC
converters)
Buck-boost DC/DC converter is seamless to change operation mode
Soft start time setting range: 1 ms to 16 ms (approximately 1ms/step)
Switching frequency for the DC/DC converter: 3 MHz
Communication interface: I2C (ON/OFF, Output voltage, Soft start time)
Internal PFM/PWM auto switching mode
Each DC/DC converter Power Good function (open drain)
Several protection functions: Under voltage lockout (UVLO), Over current protection (OCP), Thermal shut down (TSD)
Small package: QFN32 (5mm × 5mm × 0.71mm, 0.5mm pitch)
*: DD1, DD2, DD3 : DC/DC converter block 1,2,3
Applications
Network equipment, Factory automation, Security system, Surveillance camera, Electrical music instrument, Multi-function printer,
Scanner, Printer, Copy machine, Home appliances,Data storage (HDD, SSD), Mobile equipment for Li+ battery (1 cell)
Document Number: 002-08447 Rev.*A March 28, 2016 Page 2 of 68
S6AP412A
Contents
1. Application Circuit Example ............................................................................................................................................ 4
2. Recommended Application Specification ....................................................................................................................... 5
3. Pin Configuration .............................................................................................................................................................. 7
4. Pin Descriptions ................................................................................................................................................................ 8
5. Block Diagram ................................................................................................................................................................. 10
6. Absolute Maximum Ratings ........................................................................................................................................... 11
7. Recommended Operating Conditions ........................................................................................................................... 12
8. Electrical Characteristics ............................................................................................................................................... 13
8.1 Reference Control Block .............................................................................................................................................. 13
8.2 DD1 ............................................................................................................................................................................. 14
8.3 DD2 ............................................................................................................................................................................. 15
8.4 DD3 ............................................................................................................................................................................. 16
8.5 Digital Block ................................................................................................................................................................. 17
9. Operation Mode List ....................................................................................................................................................... 18
10. State Transition Diagram ................................................................................................................................................ 19
11. Turning ON and OFF Sequence (AVCC=CTLMAIN, CTL1, CTL2, CTL3)..................................................................... 20
12. Turning ON and OFF Sequence (AVCC →CTLMAIN→CTL1→CTL2→ CTL3) ............................................................ 21
13. Turning ON and OFF Sequence (AVCC→CTLMAIN→I2C) ........................................................................................... 22
14. CTL Pin, MODE Pin, ADDSEL Pin Threshold Voltage .................................................................................................. 23
15. Protection Operation Sequence..................................................................................................................................... 24
16. Operation Condition, Stop Circuit and Release Condition for Protection Circuit ..................................................... 25
17. DD Soft Start Operation .................................................................................................................................................. 26
18. Discharge Operation ....................................................................................................................................................... 27
19. PG Function ..................................................................................................................................................................... 28
20. I2C Interface ..................................................................................................................................................................... 29
20.1 Structure of I2C Interface ............................................................................................................................................. 29
20.2 Definition of Signal Lines ............................................................................................................................................. 29
20.3 Validity of Data ............................................................................................................................................................ 30
20.4 Definition of Start and Stop Condition.......................................................................................................................... 30
20.5 ACK Signal .................................................................................................................................................................. 31
20.6 I2C Interface Input Timing ............................................................................................................................................ 32
20.7 Slave Address ............................................................................................................................................................. 33
20.8 Bit Structure of Data on I2C Interface .......................................................................................................................... 34
21. Structure of I2C Interface and Data ................................................................................................................................ 36
21.1 About DD1 Output Voltage Setting .............................................................................................................................. 37
21.2 About DD2 Output Voltage Setting .............................................................................................................................. 38
21.3 About DD3 Output Voltage Setting .............................................................................................................................. 39
21.4 About Soft Start Time .................................................................................................................................................. 40
21.5 DC/DC Operation Mode .............................................................................................................................................. 41
21.6 ON/OFF for DC/DC ..................................................................................................................................................... 42
21.7 About Error Monitor ..................................................................................................................................................... 43
21.8 About Power Good Monitor ......................................................................................................................................... 44
22. I/O Pin Equivalent Circuit Diagram ................................................................................................................................ 45
23. Measurement Circuit for Characteristics of General Operation ................................................................................. 48
24. Reference Data ................................................................................................................................................................ 50
25. Ordering Information ...................................................................................................................................................... 62
26. Preset Code List .............................................................................................................................................................. 63
Document Number: 002-08447 Rev.*A March 28, 2016 Page 3 of 68
S6AP412A
27. Layout .............................................................................................................................................................................. 64
28. Package Dimensions ...................................................................................................................................................... 65
29. Major Changes ................................................................................................................................................................ 66
Document History ................................................................................................................................................................. 67
Document Number: 002-08447 Rev.*A March 28, 2016 Page 4 of 68
S6AP412A
1. Application Circuit Example
Figure 1. Application Circuit
Document Number: 002-08447 Rev.*A March 28, 2016 Page 5 of 68
S6AP412A
2. Recommended Application Specification
[Input Voltage Range]
Input voltage Vin(V)
Min
Typ
Max
2.5
3.3
5.5
[Output specification]
(Ta=+25°C)
Channel
Symbol
Accuracy
Output Voltage (V)
Output
Current(mA)
Limit
Current(mA)
Mode
Switching
Frequency (MHz)
Inductor(µH)
Output
Capacitance (µF)
Soft-start Time
(ms)
Discharge
Resistance (kΩ)
Remarks
Min
Typ
Max
Max
Min
DD1
VO1
±1.2%
0.692
0.700
0.708
4000
(4800)
Buck
(synchronous
rectification)
Multi Phase
C-mode
3.0
1.0
22
1 to 16ms
At the
time of
1.0V
setting,
the
details
are cf.
Contents
17
5.0
Multi
PhaseBuilt-in
SWFET
Built-in output
setting resistors
Built-in phase
compensation
circuit
0.711
0.720
0.729
0.731
0.740
0.749
0.751
0.760
0.769
0.771
0.780
0.789
0.790
0.800
0.810
0.810
0.820
0.830
0.830
0.840
0.850
0.850
0.860
0.870
0.869
0.880
0.891
0.889
(*1)
0.900
(*1)
0.911
(*1)
0.909
0.920
0.931
0.929
0.940
0.951
0.948
0.960
0.972
0.968
0.980
0.992
0.988
(*1)
1.000
(*1)
1.012
(*1)
1.008
1.020
1.032
1.028
1.040
1.052
1.047
1.060
1.073
1.067
1.080
1.093
1.087
(*1)
1.100
(*1)
1.113
(*1)
1.107
1.120
1.133
1.126
1.140
1.154
1.146
1.160
1.174
1.166
1.180
1.194
1.186
(*1)
1.200
(*1)
1.214
(*1)
1.205
1.220
1.235
1.225
1.240
1.255
1.245
1.260
1.275
1.265
1.280
1.295
1.284
1.300
1.316
1.304
1.320
1.336
Document Number: 002-08447 Rev.*A March 28, 2016 Page 6 of 68
S6AP412A
Channel
Symbol
Accuracy
Output Voltage (V)
Output
Current(mA)
Limit
Current(mA)
Mode
Switching
frequency(MHz)
Inductor(µH)
Output
Capacitance(µF)
Soft-start Time
(ms)
Discharge
Resistance (kΩ)
Remarks
Min
Typ
Max
Max
Min
DD2
VO2
±1.2%
1.186
(*1)
1.200
(*1)
1.214
(*1)
1200
(1500)
Buck
(synchronous
rectification)
C-mode
3.0
1.0
10
1 to 16ms
At the time
of 1.8V
setting, the
details are
cf. Contents
17
5.0
Built-in SWFET
Built-in output
setting resistors
Built-in phase
compensation
circuit
1.235
1.250
1.265
1.284
1.300
1.316
1.334
(*1)
1.350
(*1)
1.366
(*1)
1.383
1.400
1.417
1.433
1.450
1.467
1.482
(*1)
1.500
(*1)
1.518
(*1)
1.531
1.550
1.569
1.581
1.600
1.619
1.630
1.650
1.670
1.680
1.700
1.720
1.729
1.750
1.771
1.778
(*1)
1.800
(*1)
1.822
(*1)
1.828
1.850
1.872
1.877
1.900
1.923
1.927
1.950
1.973
DD3
VO3
±1.8%
2.74
(*1)
2.80
(*1)
2.86
(*1)
600
(750)
Buck-boost
(synchronous
rectification)
C-mode
3.0
1.0
22
1 to 16ms
At the time
of 3.3V
setting, the
details are
cf. Contents
17
5.0
Built-in SWFET
Built-in output
setting resistors
Built-in phase
compensation
circuit
2.84
2.90
2.96
2.94
(*1)
3.00
(*1)
3.06
(*1)
3.04
3.10
3.16
3.14
3.20
3.26
3.23
(*1)
3.30
(*1)
3.37
(*1)
3.33
3.40
3.47
3.43
(*1)
3.50
(*1)
3.57
(*1)
*1: default (It is selectable with the default output voltage)
Document Number: 002-08447 Rev.*A March 28, 2016 Page 7 of 68
S6AP412A
3. Pin Configuration
(TOP VIEW)
(WNT032)
VO3
IN3
PG3
PG2
PG1
AVCC
VREF18
CTLMAIN
LX3-2 1 24 IN1
PGND3 2 23 PVCC1A
LX3-1 3 22 LX1A
PVCC34 21 PGND1A
PVCC25 20 PGND1B
LX2 6 19 LX1B
PGND2 7EP(Exposed Pad) 18 PVCC1B
IN2 8 17 ADDSEL
910 11 12 13 14 15 16
32 31 30 29 28 27 26 25
CTL1
CTL2
CTL3
MODE
GND
SCL
SDA
DVCC
Document Number: 002-08447 Rev.*A March 28, 2016 Page 8 of 68
S6AP412A
4. Pin Descriptions
Block
Pin
Name
Pin
Num
ber
I/O
Description
Pull-
down
Resistor
Unus
ed
DD1
Unused
DD2
Unused
DD3
Unused
I2C
DD1
Multi-phase
IN1
24
I
DD1 output voltage feedback
-
GND
-
-
-
PVCC1A
23
-
DD1 Phase1 output block power
supply
-
AVCC
-
-
-
LX1A
22
O
DD1 Phase1 inductor
connection
-
Open
-
-
-
PG1
28
O
DD1 Power Good output
-
GND
-
-
-
PGND1A
21
-
DD1 Phase1 output block
ground
-
GND
-
-
-
PVCC1B
18
-
DD1 Phase2 output block power
supply
-
AVCC
-
-
-
LX1B
19
O
DD1 Phase2 inductor
connection
-
Open
-
-
-
PGND1B
20
-
DD1 Phase2 output block
ground
-
GND
-
-
-
DD2
Buck
IN2
8
I
DD2 output voltage feedback
-
-
GND
-
-
PVCC2
5
-
DD2 output block power supply
-
-
AVCC
-
-
LX2
6
O
DD2 inductor connection
-
-
Open
-
-
PG2
29
O
DD2 Power Good output
-
-
GND
-
-
PGND2
7
-
DD2 output block ground
-
-
GND
-
-
DD3
Buck-boost
IN3
31
I
DD3 output voltage feedback
-
-
-
GND
-
PVCC3
4
-
Power supply for DD3 output
block
-
-
-
AVCC
-
VO3
32
O
Output voltage for DD3
-
-
-
GND
-
LX3-1
3
O
DD3 inductor connection1
-
-
-
Open
-
LX3-2
1
O
DD3 inductor connection2
-
-
-
Open
-
PG3
30
O
Output for DD3 Power Good
-
-
-
GND
-
PGND3
2
-
Ground for DD3 output block
-
-
-
GND
-
CTL
CTLMAI
N
25
I
Control for reference voltage
output
Exist
-
-
-
-
CTL1
9
I
DD1 control
Exist
Open
-
-
-
CTL2
10
I
DD2 control
Exist
-
Open
-
-
CTL3
11
I
DD3 control
Exist
-
-
Open
-
I2C
DVCC
16
I
Power supply for I2C
communication
-
-
-
-
GND
SCL
14
I
Clock for I2C communication
-
-
-
-
Open
SDA
15
I/O
Data for I2C communication
Exist
-
-
-
Open
ADDSEL
17
I
Switch for slave address
-
-
-
-
Open
Document Number: 002-08447 Rev.*A March 28, 2016 Page 9 of 68
S6AP412A
Block
Pin
Name
Pin
Numb
er
I/
O
Description
Pull-
down
Resist
or
Unuse
d DD1
Unused
DD2
Unused
DD3
Unus
ed
I2C
Reference
control
AVCC
27
-
Power supply for reference
voltage
-
-
-
-
-
MODE
12
I
Select for DC/DC converter
operation mode (H: PFM/PWM
mode, L=PWM mode, common
for all DCDC converter )
Exist
-
-
-
-
VREF18
26
O
Output reference voltage
-
-
-
-
-
GND
13
-
Ground for reference voltage
-
-
-
-
-
GND
EP
-
Ground for reference voltage
-
-
-
-
-
Document Number: 002-08447 Rev.*A March 28, 2016 Page 10 of 68
S6AP412A
5. Block Diagram
ErrAMP
<<DD1>> PVCC1A
SLP
CMP
PWM
Logic
Control
ICOMP
LX1A
LV
CNV
AST
L Priority
PGND1A
VCC VCC VCC
cs1 scp1
mode
UVLO
POR
PG1
ctl1
PVCC1B
SLP
CMP
PWM
Logic
Control
ICOMP
LX1B
LV
CNV
AST
PGND1B
VCC
VCC
xclk
A
IN1
A
VCC:2.5V to 5.5V
ErrAMP
PVCC2
SLP
CMP
PWM
Logic
Control
ICOMP LX2
LV
CNV
AST
L Priority
PGND2
VCC VCC VCC
PG2
B
IN2
B
scp2
SLP
CMP
VCC
AST
LV
CNV
PWM
Logic
Control AST
ErrAMP ICOMP
L Priority
VCC VCC
mode
cs3 scp3
C
IN3 PVCC3
LX3-1
LX3-2
VO3
PGND3
PG3
C
Common Block
VREF BGR
(1.8V)
RT
VREF18
CT
OSC
clk
VREF18
AVCC
GND
cs*
xclk
DAC
VREF18
DAC
VREF18
cs2
<<DD2>>
UVLO
POR
ctl2
DAC
VREF18
<<DD3>>
UVLO
POR
ctl3
clk
mode clk
xclk
Under
Voltage
Locked-Out
Thermal
Shut
Down
scp*
CTL1
CTL2
CTL3
MODE
ctl1
ctl2
ctl3
mode
Logic Control
Short Circuit Protection
(Timer & Latch)
Output Voltage Ajuster
Soft Start Control
CTLMAIN
ADDSEL
DVCC
SCL
SDA
Logic
Control
Document Number: 002-08447 Rev.*A March 28, 2016 Page 11 of 68
S6AP412A
6. Absolute Maximum Ratings
Parameter
Symbol
Condition
Rating
Unit
Min
Max
Power supply voltage
VVCC1
AVCC,PVCC input voltage
-0.3
6.5
V
VVCC2
DVCC input voltage
-0.3
6.5
V
Terminal voltage
VCTL1
CTL1,CTL 2,CTL3 input voltage
-0.3
6.5
V
VCTL2
CTLMAIN input voltage
-0.3
6.5
V
VMODE
MODE input voltage
-0.3
6.5
V
VLOGIC
SDA,SCL input voltage
-0.3
6.5
V
VADD
ADDSEL input voltage
-0.3
6.5
V
VPG
PG1, PG2, PG3 drain voltage
-0.3
6.5
V
VOUT
IN1, IN2, IN3 input voltage
-0.3
6.5
V
LX voltage
VLX
LX1, LX2, LX3 voltage
-1.0
6.5
V
Permission loss
PD
Ta≤+25°C
Thermal resistance (θja): (29.2°C /W(*1))
0
3420
mW
Maximum junction temperature
Tjmax
-
-
+125
°C
Storage temperature
TSTG
-
-55
+125
°C
*1: When the IC is mounted on 74mm × 74mm four-layer square epoxy board. IC is mounted on a four-layer
epoxy board, which terminal bias, and the IC’s thermal pad is connected to the epoxy board.
WARNING:
1. Semiconductor devices may be permanently damaged by application of stress (including, without
limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of
these ratings.
Figure 2. Power Dissipation vs. Operation Ambient Temperature
0
500
1000
1500
2000
2500
3000
3500
4000
-40 -20 0 20 40 60 80 100
Pd [mW]
Temperature[˚C]
Power dissipation vs. Operation ambient temperature
Document Number: 002-08447 Rev.*A March 28, 2016 Page 12 of 68
S6AP412A
7. Recommended Operating Conditions
Parameter
Symbol
Condition
Value
Unit
Min
Typ
Max
1. Reference control block
Power supply voltage
VVCC
AVCC
2.5
3.3
5.5
V
Output current for reference voltage
IREF
VREF18
-1
-
0
mA
Operating temperature
Ta
-
-30
+25
+85
°C
2. DC/DC channel
Power supply voltage
VVCC
PVCC1, PVCC2, PVCC3
2.5
3.3
5.5
V
Input voltage
VOUT
IN1,IN2
0
-
AVCC
V
Input voltage
VOUT
IN3
0
-
5.5
V
PG input voltage
VPG
PG1, PG2, PG3
0
-
5.5
V
3. Input block
Input voltage
VCTL
VMODE
CTL1, CTL 2, CTL3, MODE
CTLMAIN
0
-
AVCC
V
4. I2C communication block
Power supply voltage
VVCC
DVCC
1.70
-
3.50
V
Input voltage
VLOGIC
SDA,SCL
0
-
DVCC
V
Input voltage
VADD
ADDSEL
0
-
AVCC
V
WARNING:
1. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of
the device's electrical characteristics are warranted when the device is operated under these conditions.
2. Any use of semiconductor devices will be under their recommended operating condition.
3. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device
failure.
4. No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you
are considering application under any conditions other than listed herein, please contact sales representatives beforehand.
Document Number: 002-08447 Rev.*A March 28, 2016 Page 13 of 68
S6AP412A
8. Electrical Characteristics
8.1 Reference Control Block (AVCC = PVCC1A=PVCC1B=PVCC2=PVCC3 = 3.3V, supply,
PGND1A=PGND1B=PGND2=PGND3=GND=0V. Ta = +25°C, unless otherwise noted. )
Parameter
Symbol
Condition
Value
Unit
Min
Typ
Max
1. Reference voltage [ VREF18 ]
Output voltage
VVREF1
VREF18 pin = 0mA
1.773
1.800
1.827
V
VVREF2
AVCC pin = 2.5V to 5.5V
VREF18 pin = 0mA
1.768
1.800
1.832
V
VVREF3
VREF18 pin = 0mA to -1mA
1.768
1.800
1.832
V
2. Under voltage lockout [ VCC UVLO ]
Threshold voltage
VTH
AVCC rising
2.156
2.20
2.244
V
Hysteresis width
VH
-
-
0.20(*1)
-
V
3. Over current protection [ OCP ]
Timer
tOCP1
DD1, DD2, DD3
0.9
1
1.1
ms
4. Thermal shut down [ TSD ]
Stop temperature
TTSDH
-
125(*2)
150
-
°C
5. Input block (CTL,MODE,CTLMAIN) [ CTL,MODE,CTLMAIN ]
Input voltage
VIH
CTL1, CTL2, CTL3,MODE pin
CTLMAIN pin
AVCC
×0.7
-
AVCC
V
Input voltage
VIL
CTL1, CTL2, CTL3,MODE pin
CTLMAIN pin
0
-
0.4
V
Input current
ICTLH
IMODEH
CTL1, CTL2, CTL3,MODE pin = 3.3V
CTLMAIN pin = 3.3V
2.5
3.3
4.7
µA
ICTLL
IMODEL
CTL1, CTL2, CTL3,MODE pin = 0V
CTLMAIN pin = 0V
-
-
1
µA
Input pull-down resistor
RP
CTL1, CTL2, CTL3,MODE pin
CTLMAIN pin
-
1(*1)
-
6. Consumption current (DC/DC converter block)
Power supply current
IVCCS1
CTL1, CTL2, CTL3 pin = 0V
CTLMAIN pin = 0V
-
0
1.0
µA
IVCCS2
CTL1, CTL2, CTL3 pin = 0V
CTLMAIN pin =3.3V
-
30
45
µA
IVCC
DD1,DD2,DD3=ON,MODE=3.3V,
All DD are 0mA
(operation mode: PFM/PWM mode)
-
430
630
µA
IVCC
DD1,DD2,DD3=ON,MODE=0V
All DD are 0mA
(operation mode: Fixed PWM mode)
-
18
27
mA
*1: This parameter is not be specified. This should be used as a reference to support designing the circuits.
*2: No production tested, ensure by design.
Document Number: 002-08447 Rev.*A March 28, 2016 Page 14 of 68
S6AP412A
8.2 DD1
AVCC = PVCC1A=PVCC1B=PVCC2=PVCC3 = 3.3V, supply,
PGND1A=PGND1B=PGND2=PGND3=GND=0V. Ta = +25°C, unless otherwise noted. )
Parameter
Symbol
Condition
Value
Unit
Min
Typ
Max
1. DC/DC converter block [ DD1 ]
Output voltage
VOUT
IOUT = -10mA,
Output voltage setting: 1.0V
0.988
1.000
1.012
V
Input stability
VLINE
IOUT = -10mA,
PVCC1= 2.5V to 5.5V
-5
-
+5
mV
Load stability
VLOAD
IOUT = -1mA to -4000mA
(Fixed PWM mode)
-10
-
+10
mV
Load stability
VLOAD
IOUT = -1mA to -4000mA
(PFM/PWM mode)
-10
-
+15
mV
IN1 input impedance
RIN
IN1 = 2.0V
-
190(*1)
-
SW PMOS-Tr
on resistance
RPMOS
LX1A,1B = -30mA
-
120(*1)
-
SW NMOS-Tr
on resistance
RNMOS
LX1A,1B = 30mA
-
80(*1)
-
SW PMOS-Tr
leakage current
ILEAK
LX1A,1B = 0V
-3
-
-
µA
SW NMOS-Tr
Leakage current
ILEAK
LX1A,1B = 3.3V
-
-
3
µA
Over current
protection value
ILIMIT
L=1.0µH
4900(*2)
-
-
mA
PFM/PWM mode
changeover current
IPFM
L=1.0µH
-
100(*1)
-
mA
Discharge resistor
RDIS
-
-
5(*1)
-
Soft start time
Tss
Soft start time setting: 1ms
0.9
1
1.1
ms
Switching frequency
fOSC
-
2.7
3.0
3.3
MHz
*1: This parameter is not be specified. This should be used as a reference to support designing the circuits.
*2: No production tested, ensure by design.
Document Number: 002-08447 Rev.*A March 28, 2016 Page 15 of 68
S6AP412A
8.3 DD2 (AVCC = PVCC1A=PVCC1B=PVCC2=PVCC3 = 3.3V, supply,
PGND1A=PGND1B=PGND2=PGND3=GND=0V. Ta = +25°C, unless otherwise noted. )
Parameter
Symbol
Condition
Value
Unit
Min
Typ
Max
2. DC/DC converter block [ DD2 ]
Output voltage
VOUT
IOUT = -10mA,
Output voltage setting:1.8V
1.778
1.800
1.822
V
Input stability
VLINE
IOUT = -10mA
PVCC2= 2.5V to 5.5V
-5
-
+5
mV
Load stability
VLOAD
IOUT = -1mA to -1200mA
(Fixed PWM mode)
-10
-
+10
mV
Load stability
VLOAD
IOUT = -1mA to -1200mA
(PFM/PWM mode)
-10
-
+20
mV
IN2 input impedance
RIN
IN2 = 2.0V
-
150(*1)
-
SW PMOS-Tr
on resistance
RPMOS
LX2 = -30mA
-
190(*1)
-
SW NMOS-Tr
on resistance
RNMOS
LX2 = 30mA
-
135(*1)
-
SW PMOS-Tr
leakage current
ILEAK
LX2 = 0V
-3
-
-
µA
SW NMOS-Tr
leakage current
ILEAK
LX2 = 3.3V
-
-
3
μA
Over current
protection value
ILIMIT
L=1.0µH
1500(*2)
-
-
mA
PFM/PWM mode
changeover current
IPFM
L=1.0µH
-
65(*1)
-
mA
Discharge resistor
RDIS
-
-
5
-
Soft start time
Tss
Soft start time setting:1ms
0.9
1
1.1
ms
Switching frequency
fOSC
-
2.7
3.0
3.3
MHz
*1: This parameter is not be specified. This should be used as a reference to support designing the circuits.
*2: No production tested, ensure by design.
Document Number: 002-08447 Rev.*A March 28, 2016 Page 16 of 68
S6AP412A
8.4 DD3 (AVCC = PVCC1A=PVCC1B=PVCC2=PVCC3 = 3.3V,
supply, PGND1A=PGND1B=PGND2=PGND3=GND=0V. Ta = +25°C, unless otherwise noted. )
Parameter
Symbol
Condition
Value
Unit
Min
Typ
Max
3. DC/DC converter block [ DD3 ]
Output voltage
VOUT
IOUT = -10mA,
Output voltage
setting:3.3V
3.241
3.300
3.359
V
Input stability
VLINE
IOUT = -10mA,
PVCC3= 2.5V to 5.5V
-5
-
+5
mV
Load stability
VLOAD
IOUT = -1mA to -600mA
(Fixed PWM mode)
-10
-
+10
mV
Load stability
VLOAD
IOUT = -1mA to -600mA
(PFM/PWM mode)
-10
-
+15
mV
IN2 input impedance
RIN
IN3 = 2.0V
-
550(*1)
-
SW PMOS-Tr
on resistance
RPMOS
LX3-1 = -30mA
-
115(*1)
-
SW NMOS-Tr
on resistance
RNMOS
LX3-1 = 30mA
-
140(*1)
-
SW PMOS-Tr
on resistance
RPMOS
LX3-2 = -30mA
-
155(*1)
-
SW NMOS-Tr
on resistance
RNMOS
LX3-2 = 30mA
-
220(*1)
-
SW PMOS-Tr
leakage current
ILEAK
LX3-1 = 0V
-3
-
-
μA
SW NMOS-Tr
leakage current
ILEAK
LX3-1 = 3.3V
-
-
1
μA
SW PMOS-Tr
leakage current
ILEAK
LX3-2 = 0V
-3
-
-
μA
SW NMOS-Tr
leakage current
ILEAK
LX3-2 = 3.3V
-
-
1
μA
Over current
protection value
ILIMIT
L=1.0µH
1000(*2)
-
-
mA
PFM/PWM mode
changeover current
IPFM
L=1.0µH
-
200(*1)
-
mA
Discharge resistor
RDIS
-
-
5(*1)
-
Soft start time
Tss
Soft start time setting:1ms
0.9
1
1.1
ms
Switching frequency
fOSC
-
2.7
3.0
3.3
MHz
*1: This parameter is not be specified. This should be used as a reference to support designing the circuits.
*2: No production tested, ensure by design.
Document Number: 002-08447 Rev.*A March 28, 2016 Page 17 of 68
S6AP412A
8.5 Digital Block (AVCC = PVCC1A=PVCC1B=PVCC2=PVCC3 = 3.3V, supply,
PGND1A=PGND1B=PGND2=PGND3=GND=0V. Ta = +25°C, unless otherwise noted. )
Parameter
Symbol
Condition
Value
Unit
Min
Typ
Max
1. Power Good block [ Power Good ]
Output voltage
VOL
PG1, PG2, PG3 IOL = 1mA
-
-
0.4
V
Output current
IOL
PG1, PG2, PG3
1
-
-
mA
Low voltage detection
VTH
IN1, IN2, IN3 = falling
-
Vo
×0.90(*1)
-
V
Power on detection
VTH
IN1, IN2, IN3 = rising
-
Vo
×0.93(*1)
-
V
2. I2C block [ I2C ]
Input voltage
VIH
SCL,SDA
DVCC
×0.7
-
DVCC
V
VIL
SCL,SDA
0
-
DVCC
×0.3
V
Input current
IIH
SCL,SDA
DVCC = 3.3V
-
-
10
µA
IIL
SCL,SDA
DVCC = 3.3V
-10
-
-
µA
Output voltage
VOL
SDA IOL = 3mA
-
-
0.4
V
Output current
IOL
SDA
3
-
-
mA
3. ADDSEL block [ ADDSEL ]
Input voltage
VIH
ADDSEL
AVCC
×0.7
-
AVCC
V
Input voltage
VIL
ADDSEL
0
-
0.4
V
Input current
IADD
ADDSEL = 3.3V
2.5
3.3
4.7
µA
IADD
ADDSEL = 0V
-
-
1
µA
Input pull-down
resistor
RP
ADDSEL
-
1(*1)
-
*1: This parameter is not be specified. This should be used as a reference to support designing the circuits.
Document Number: 002-08447 Rev.*A March 28, 2016 Page 18 of 68
S6AP412A
9. Operation Mode List
Table 1. Operation Mode List
Mode
Stand-by
Stand-by2
Normal
Error Detection
CTL signal
CTLMAIN (external)
L
H
H
H
CTL1 (external/I2C)
L
L
H/L(*1)
X
CTL2 (external/I2C)
L
L
H/L(*1)
X
CTL3 (external/I2C)
L
L
H/L(*1)
X
Operation Block
Reference
OFF
ON
ON
ON
Digital
OFF
ON
ON
ON
DD1
OFF
OFF
ON/OFF
OFF
DD2
OFF
OFF
ON/OFF
OFF
DD3
OFF
OFF
ON/OFF
OFF
I2C communication
I2C communication
disable
enable
enable
enable
Protection
operating
Thermal shut down (TSD)
Not available
Not available
available
(*2)
Over current protection (OCP)
Not available
Not available
available
(*2)
*1: normal mode means that CTLMAIN pin is "H" level and each DD CTL pin is "H" level
*2: This state is after each err detection. Error state will release, when the power supply voltage or CTLMAIN
pin will turn off and on.
Priority of the External CTL pin and I2C Communication
CTLMAIN
(External)
CTL1, CTL2, CTL3
(External)
30h Resistor
(I2C)
Relevant
Channel
H
H
1
ON
H
H
0
ON
H
L
1
ON
H
L
0
OFF
L
X
disable
OFF
Priority of the External MODE pin and I2C Communication
MODE
(External)
20h Resistor
(I2C)
Operation Mode
H
1
PFM/PWM
H
0
PFM/PWM
L
1
PFM/PWM
L
0
Fixed PWM
Notes:
The I2C communication is valid after the reference control block and digital block activation setting the external CTLMAIN pin
to "H" level.
Please attention below note about ON/OFF control of DD1, DD2, DD3 by I2C communication.
When each DD control is turned off by I2C communication and external CTL pin remains "H" level, DCDC converter keep
operating.
Document Number: 002-08447 Rev.*A March 28, 2016 Page 19 of 68
S6AP412A
10. State Transition Diagram
(1)
External CTLMAIN pin is "H" level.
(2)
External CTLMAIN pin is "L" level.
(3)
External CTL pin or I2C communication "relevant CH_ON"
(4)
External CTL pin or I2C communication "relevant CH_OFF"
(5)
Error detection (TSD, OCP 1ms continuation)
(6)
Turning on the power supply again (equal to or less than uvlo_vcc rest voltage) or setting CTLMAIN to
"L" level
Stand-by
Stand-by 2
General
(1)
(4)
(5)
Error
detection
(6)
(2)
(3)
(2)
Document Number: 002-08447 Rev.*A March 28, 2016 Page 20 of 68
S6AP412A
11. Turning ON and OFF Sequence (AVCC=CTLMAIN, CTL1, CTL2, CTL3)
*1: CTL1, CTL2, CTL3
*2: DD1, DD2, DD3
*3: VREF18 activations depend on the VREF18 pin capacitance.
Time in the sequence figure above is applied for the following condition.
VREF18 pin capacitance: 1.0µF
osc
(IC internal signal)
93%
DD1
PG1
CTLMAIN
CTL*
DD2
PG2
Time till start (*1)
Typ : (820)µs
Max : TBD µs
Soft-start time
VREF18
1.8V
Discharge
Discharge
93%
uvlo_vcc
(IC internal signal)
UVLO release to DD* activation
DD3
PG3
Discharge
93%
AVCC
2.2V
2.0V

Document Number: 002-08447 Rev.*A March 28, 2016 Page 21 of 68
S6AP412A
12. Turning ON and OFF Sequence (AVCC CTLMAINCTL1CTL2 CTL3)
*1: DD1, DD2, DD3
*2: VREF18 activations depend on the VREF18 pin capacitance.
Time in the sequence figure above is applied for the following condition.
VREF18 pin capacitance: 1.0µF
AVCC
osc
(IC internal signal)
3.3V
93%
DD1
PG1=CTL2
CTLMAIN
CTL1
DD2
PG2=CTL3
VREF18
1.8V
Discharge
Discharge
93%
uvlo_vcc
(IC internal signal)
UVLO release to DD* activation
DD3
PG3
Discharge
93%
Time till start (*1)
Typ : (820)µs
Max : TBD µs
Document Number: 002-08447 Rev.*A March 28, 2016 Page 22 of 68
S6AP412A
13. Turning ON and OFF Sequence (AVCCCTLMAINI2C)
*1: CTL1, CTL2, CTL3
*2: DD1, DD2, DD3
*3: VREF18 activations depend on the VREF18 pin capacitance.
Time in the sequence figure above is applied for the following condition.
VREF18 pin capacitance: 1.0µF
AVCC
osc
(IC internal signal)
3.3V
93%
DD1
PG1
CTLMAIN
ctl*
DD2
PG2
VREF18
1.8V
Discharge
Discharge
93%
uvlo_vcc
(IC internal signal)
DD3
PG3
Discharge
93%
I2C(DD ON/OFF)
OFF
ON
OFF

Time till start (*1)
Typ : (820)µs
Max : TBD µs
Soft-start time
UVLO release to DD* activation
Document Number: 002-08447 Rev.*A March 28, 2016 Page 23 of 68
S6AP412A
14. CTL Pin, MODE Pin, ADDSEL Pin Threshold Voltage
The input circuit structure for the CTL(*1) pin is the schmitt trigger style, and the threshold voltage shows the hysteresis
characteristics when CTL(*1) OFF to ON and ON to OFF.
(See "CTL(*1) pin equivalent circuit diagram" below.)
Also, the threshold voltage level depends on the VCC pin voltage.
Moreover, make sure to input either the "H" level (>"VCC×0.7"V) or "L" level (<0.4V) to the CTL(*1) and MODE and ADDSEL pin
when in use.
Figure 3. CTL (*1), MODE, ADDSEL Pin Equivalent Circuit Diagram
*1: CTLMAIN, CTL1, CTL2, CTL3
GND
CTL*
MODE
ADDSEL
AVCC
ESD protection
element
The CTL threshold voltage
shows the hysteresis
characteristics.
ESD protection
element
(*1)
Document Number: 002-08447 Rev.*A March 28, 2016 Page 24 of 68
S6AP412A
15. Protection Operation Sequence
Over Current Protection (DD channel)
The DD channel monitors the peak current of FET at any time during the operation. When the DD output becomes the over current
state, the output voltage is decreased. Afterward, the timer operation is performed and the output stops after about 1ms progress.
When one of each DD channel stops operation by over current protection, all DD channels stop operation.
Thermal Shut Down
If the temperature at the junction part reaches +150°C, the thermal shutdown protection circuit turns all channels off.
Error Detection Sequence
Figure 4. Error Detection Sequence
Error Detection Mode Release
It is necessary to turn the power supply turning on again, or to turn CTLMAIN turning on again to release the error detection mode.
DD1,DD2,DD3
Voltage drop
1ms
Continue for 1ms?
No
Normal
operation
Yes
Over current
detection
Normal
operation
Thermal
shutdown
protection
The whole IC
Error detection mode
Error signal output (I2C address 40h)
Document Number: 002-08447 Rev.*A March 28, 2016 Page 25 of 68
S6AP412A
16. Operation Condition, Stop Circuit and Release Condition for Protection Circuit
Channel
Operation
Whilst
Under
Protection
Over Current Protection
(OCP)
Under Voltage
Lockout Protection
(UVLO)
Thermal Shutdown
Protection (TSD)
DD1,DD2,DD3
Discharge
Operating condition:
After about 1ms progress in
the over current condition
Process during protection
operation:
DD1, DD2, DD3 stop
Recovery condition:
(1) Power supply reasserted
(2) CTLMAIN reasserted
Operating condition: Input
voltage drop
Process during protection
operation:
DD1, DD2, DD3 stop
Recovery condition:
Input voltage rise
UVLO operates only when
CTLMAIN is "H" (at VREF18
output).
Operating condition:
Chip temperature increment
Process during protection
operation:
DD1, DD2, DD3 stop
Recovery condition:
(1) Power supply reasserted
(2) CTLMAIN reasserted
Only when CTLMAIN is in the
"H" state and CTL(*1) is in the
"H" state, or when DD(*2) in
operating condition by I2C,
will operate.
Error output
(address 40h)
-
Write "1" when detecting
OCP
No change
Write "1" when detecting TSD
Thermal shutdown protection (TSD) operation during over current protection timer operation
When the thermal shutdown protection (TSD) operated during the over current protection (OCP) timer operation, the thermal
shutdown protection has priority.
Operation when releasing under voltage lockout protection (UVLO)
DD1,DD2,DD3,DD4: Activation following the condition for CTL(*1) pin or I2C
Note:
When VREF18 decreases at the time of UVLO operation, I2C register is reset, and all DD does OFF.
It is necessary to let you do ON by CTL(*1) pin and communication again to let DD have ON."
*1: CTL1, CTL2, CTL3
*2: DD1, DD2, DD3
Document Number: 002-08447 Rev.*A March 28, 2016 Page 26 of 68
S6AP412A
17. DD Soft Start Operation
The soft-start operation for DD1, DD2 and DD3 is enabled in order to prevent the rush current during the DD activation. The
soft-start time can be controlled by I2C.
About output voltage changing option, soft start time is showed by follow equation.
Tss=Tslp × Vset/Vdef (ms)
Tss: soft start time
Tslp: slope coefficient of soft start
Vset: output voltage setting
Vdef: DD1=1.0, DD2=1.8, DD3=3.3
Figure 5. DD Soft Start
t
Output voltage1 setting value
Soft-start time
Channel ON/OFF signal (internal signal)
Output voltage2 setting value
Output voltage3 setting value
Document Number: 002-08447 Rev.*A March 28, 2016 Page 27 of 68
S6AP412A
18. Discharge Operation
DD Channel
When executing the DD OFF operation at the channel ON/OFF signal, the DC/DC smooth capacitance charged for each output
voltage is discharged using resistor for discharge which is set in the IC and the output voltage is decreased gradually. However, the
discharge time changes depending on the DC/DC converter load current.
The discharge time is calculated by the following equation.
Discharge time (time till the output becomes 10% without load)
toff(s) ≈2.3 ×R_DIS ×COUT (F)
Note:
See the table in Electrical Characteristics for the discharge resistor value.
*1: IN1, IN2, IN3
*2: PVCC1, PVCC2, PVCC3
*3: LX1, LX2, LX3
*4: PGND1, PGND2, PGND3
Error
Amp
R1
R2
Channel ON/OFF Cont.
A
LX(*3)
PVCC(*2)
PGND(*4)
A
Resistor for discharge
Cout
IN(*1)
Reference
voltage
DAC
Document Number: 002-08447 Rev.*A March 28, 2016 Page 28 of 68
S6AP412A
19. PG Function
The following pins for each channel Power Good output are prepared.
PG1
It is the pin for DD1 Power Good output.
When the output voltage exceeds 93% of the setting value at the DD1 ON mode, "H" is output.
Also, when the output voltage becomes equal or lower than 90% of the setting value after the "H" output, "L" is output. "L" is output
at the DD1 OFF mode.
PG2
It is the pin for DD2 Power Good output.
When the output voltage exceeds 93% of the setting value at the DD2 ON mode, "H" is output.
Also, when the output voltage becomes equal or lower than 90% of the setting value after the "H" output, "L" is output. "L" is output
at the DD2 OFF mode.
PG3
It is the pin for DD3 Power Good output.
When the output voltage exceeds 93% of the setting value at the DD3 ON mode, "H" is output.
Also, when the output voltage becomes equal or lower than 90% of the setting value after the "H" output, "L" is output. "L" is output
at the DD3 OFF mode.
Document Number: 002-08447 Rev.*A March 28, 2016 Page 29 of 68
S6AP412A
20. I2C Interface
20.1 Structure of I2C Interface
The I2C interface executes the data communication in 1 byte (8-bit) units using two signal lines (bus), a SCL (serial clock line) and a
SDA (serial data line).
This bus is connected to multiple devices;
master: device to generate the clock signal and to control the data transfer (CPU and so on)
slave: device that an address is specified by a master.
This IC is set as the slave and has no function to be the master.
Each device is defined due to the communication direction as described below.
transmitter: device to send data to bus
receiver: device to receive data from bus
The IC has the function both transmitter and receiver.
The IC defines the followings;
Write : data is transmitted from master and the IC receives data
Read : The IC transmits data and master receives data.
20.2 Definition of Signal Lines
SCL and SDA are connected to the power supply by the pull-up resistor.
The output circuit is the open Drain output.
When a bus is not used (waiting state), the open "H" is set changing the open Drain to the OFF state.
Note:
SCL and SDA pins adopt a different ESD protection system from standard I2C specification because of ESD enhancement
(see 22 I/O Pin Equivalent Circuit Diagram). When the power supply is in the bus line, do not shut off the power supply for an
IC (DVCC).
SDA
SCL
RR
Pull Up
input
output
input
Inside of IC
I2C bus line power supply
maser
SDA
SCL
slave1 slave2
transmitter
receiver
transmitter
receiver
Document Number: 002-08447 Rev.*A March 28, 2016 Page 30 of 68
S6AP412A
20.3 Validity of Data
Data has the following characteristics;
Change when SCL is the "L" level
Valid if the state is kept while SCL is the "H" level.
The SDA signal change means the start or stop condition when SCL is the "H" level.
20.4 Definition of Start and Stop Condition
The start and stop conditions are output from the master and shows start and stop of communications to the slave.
Start: SDA changes from "H" to "L" when SCL is "H".
Stop: SDA changes from "L" to "H" when SCL is "H".
SDA
SCL
data
state
data
change
data
state
SDA
SCL
S
start
condition
P
stop
condition
Document Number: 002-08447 Rev.*A March 28, 2016 Page 31 of 68
S6AP412A
20.5 ACK Signal
This is a signal to confirm the data reception during communication.
The receiver replies the ACK signal to show the data reception to a transmitter every time
1 byte (8-bit) of data is received. The ACK signal is sent in 9clk after sending data 8-bit matching to the SCL signal that the master
generates.
A transmitter keeps SDA output "open H" in SCL9clk.
A receiver informs the data reception situation to a transmitter outputting the followings in SCL
9 clk;
when data was received : SDA output "L" (ACK)
when no data was received : SDA output "open H" (NACK)
However, if the master is changed to the receiver, ACK is not replied after the last data reception because the bus keeps open
stopping the data transmission to the slave transmitter. In this case, the slave transmitter opens the bus (open H) and is set to the
stop condition reception waiting state from the master.
SDA
by transmitter
SCL
from master
SDA
by receiver
1
bit0
bit7
8
9
10
H hold
ACK
NACK
bit0
Document Number: 002-08447 Rev.*A March 28, 2016 Page 32 of 68
S6AP412A
20.6 I2C Interface Input Timing
(within recommended operating conditions)
Parameter
Symbol
Value
Unit
SCL=100kHz
SCL=400kHz
Min
Max
Min
Max
SCL clock frequency
fSCL
-
100
-
400
kHz
Start condition hold time
tHD:start
4.0
-
0.6
-
µs
Restart condition setup time
tSU:start
4.7
-
0.6
-
µs
Stop condition setup time
tSU:stop
4.0
-
0.6
-
µs
Stop to Start bus open time
tbuf
4.7
-
1.3
-
µs
SCL "L" time
tLow
4.7
-
1.3
-
µs
SCL "H" time
tHigh
4.0
-
0.6
-
µs
SCL/SDA rising time
tr
-
1.0
-
0.3
µs
SCL/SDA falling time
tf
-
0.3
-
0.3
µs
Data hold time
tHD:data
0.0
-
0.0
-
µs
Data setup time
tSU:data
0.25
-
0.10
-
µs
SCL/SDA capacitor load
Cb
-
400
-
400
pF
VIH/VIL level reference
Conform to I2C bus specifications
SDA
SCL
S
Sr
tr
P
tf
tLow
tHigh
tHD:data
tSU:data
tHD:start
tSU:stop
tbuf
tSU:start
Document Number: 002-08447 Rev.*A March 28, 2016 Page 33 of 68
S6AP412A
20.7 Slave Address
This is a slave address when communicating with the I2C interface.
The slave address of this IC is set by the first seven bits as shown below.
The seventh bit follows the ADDSEL pin and "0"/"1" are variable.
The eighth bit is called the least significant bit (LSB) and determines the message direction. The bit "0" shows that information will
be written from the master to the slave.
The bit "1" shows that the master reads information from the slave.
This does not support the general call address.
When the ADDSEL pin is in "H"
When the ADDSEL pin is in "L"
0 1 0 1 1 0 1 R/W
MSB LSB
S
T
A
R
T
slave address
A
C
K
S
T
O
P
0 1 0 1 1 0 0 R/W
MSB LSB
S
T
A
R
T
slave address
A
C
K
S
T
O
P
Document Number: 002-08447 Rev.*A March 28, 2016 Page 34 of 68
S6AP412A
20.8 Bit Structure of Data on I2C Interface
1. Writing Data to Register and Reading Data
The data line is sent/received in the order from the most significant bit (MSB) to the least significant bit (LSB).
Output the "stop" condition after sending the Write data.
: Signal which a master sends, : Signal which this IC sends
No. 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
S 0 1 0 1 1 0 0 W 0 0 0 0 0 0 1 0 a b c d e f g h P
S
T
A
R
T
A
C
K
A
C
K
A
C
K
S
T
O
P
D07 D06 D05 D04 D03 D02 D01 D00
00H
01H
02Ha b c d e f g h
03H
04H
:
:
address
data
register
slave address register address data
Document Number: 002-08447 Rev.*A March 28, 2016 Page 35 of 68
S6AP412A
2. I2C Interface Data Format
About I2C Communication
1. When a different slave address comes, non-matching ID is informed by not replying ACK after receiving the slave address.
2. All registers write to internal registers in the ACK signal after receiving the 8-bit data of each setting.
3. If a non-existing register address is specified, data is not written to a register.
4. Output the "stop" condition after sending the write data.
<Write(W)>
Write is allowed per one address. (Sequential writing is not allowed.)
Send register address and data as one unit.
: Signal which a master sends, : Signal which this IC sends
<Read(R)>
Read is allowed per one address. Be sure to perform read by specifying the register addresses.
(Sequential reading is not allowed.)
: Signal which a master sends, : Signal which this IC sends
S 0 1 0 1 1 0 0 W P
slave address
register address
data
S
T
A
R
T
A
C
K
A
C
K
A
C
K
S
T
O
P
S 0 1 0 1 1 0 0 W S 0 1 0 1 1 0 0 R P
slave address
register address
S
T
A
R
T
A
C
K
A
C
K
A
C
K
S
T
O
P
data
A
C
K
S
T
A
R
T
slave address
Document Number: 002-08447 Rev.*A March 28, 2016 Page 36 of 68
S6AP412A
21. Structure of I2C Interface and Data
Table 2. Register Map
Address
Data
Writin
g
Timing
Remarks
d07
d06
d05
d04
d03
d02
d01
d00
Default
Output
voltage
00H
0
0
0
D04
D03
D02
D01
D00
0FH
ACK
DD1 output voltage
setting
01H
0
0
0
0
D03
D02
D01
D00
0CH
ACK
DD2 output voltage
setting
02H
0
0
0
0
0
D02
D01
D00
05H
ACK
DD3 output voltage
setting
03H
0
0
0
(*1)
(*1)
(*1)
(*1)
(*1)
0FH
ACK
Unused
Soft start
10H
0
0
0
0
D03
D02
D01
D00
00H
ACK
DD1 soft-start time
setting
11H
0
0
0
0
D03
D02
D01
D00
00H
ACK
DD2 soft-start time
setting
12H
0
0
0
0
D03
D02
D01
D00
00H
ACK
DD3 soft-start time
setting
13H
0
0
0
0
(*1)
(*1)
(*1)
(*1)
00H
ACK
Unused
DD
operation
mode
20H
0
0
0
0
(*1)
D02
D01
D00
00H
ACK
DD operation mode
setting
"0": Fixed PWM
mode,
"1": PFM/PWM mode
ON/OFF
30H
0
0
0
0
(*1)
D02
D01
D00
00H
ACK
DD output ON/OFF
setting
"0": Output OFF / "1":
Output ON
Error
40H
0
0
0
D04
(*1)
D02
D01
D00
00H
-
DD error state
monitoring register
(read only)
"0": Normal / "1": Error
detection
PG
50H
0
0
0
0
(*1)
D02
D01
D00
00H
-
DD PG state
monitoring register
(read only)
"0": Non-output / "1":
output
For test
EXH
-
-
-
-
-
-
-
-
-
-
Disabled
For test
FXH
-
-
-
-
-
-
-
-
-
-
Disabled
*1: Unused register. Write/read is possible, but does not influence IC movement.
Note:
Address FXH and address EXH are for test.
Donot write/read FXH and EXH.
Document Number: 002-08447 Rev.*A March 28, 2016 Page 37 of 68
S6AP412A
21.1 About DD1 Output Voltage Setting
Address 00H DD1 is allocated as resisters for the DC/DC output voltage setting.
The DC/DC output voltage setting of DD1 is controlled by writing data to address 00H.
Address 00H: For DD1 output voltage setting
D04 to D00: Set the output voltage
DD1 Output Voltage Setting Table
Data
Output Voltage (V)
Data
Output Voltage (V)
00H
0.700
10H
1.020
01H
0.720
11H
1.040
02H
0.740
12H
1.060
03H
0.760
13H
1.080
04H
0.780
14H
1.100 (*1)
05H
0.800
15H
1.120
06H
0.820
16H
1.140
07H
0.840
17H
1.160
08H
0.860
18H
1.180
09H
0.880
19H
1.200 (*1)
0AH
0.900 (*1)
1AH
1.220
0BH
0.920
1BH
1.240
0CH
0.940
1CH
1.260
0DH
0.960
1DH
1.280
0EH
0.980
1EH
1.300
0FH
1.000 (*1)
1FH
1.320
*1: Preset value
0 0 0 D04 D03 D02 D01 D00
MSB LSB
S
T
A
R
T
Data
A
C
K
S
T
O
P
Document Number: 002-08447 Rev.*A March 28, 2016 Page 38 of 68
S6AP412A
21.2 About DD2 Output Voltage Setting
Address 01H DD2 is allocated as resisters for the DC/DC output voltage setting.
The DC/DC output voltage setting of DD2 is controlled by writing data to address 01H.
address01H: For DD2 output voltage setting
D03 to D00: Set the output voltage
DD2 Output Voltage Setting Table
Data
Output Voltage
(V)
00H
1.200 (*1)
01H
1.250
02H
1.300
03H
1.350 (*1)
04H
1.400
05H
1.450
06H
1.500 (*1)
07H
1.550
08H
1.600
09H
1.650
0AH
1.700
0BH
1.750
0CH
1.800 (*1)
0DH
1.850
0EH
1.900
0FH
1.950
*1: Preset value
0 0 0 0 D03 D02 D01 D00
MSB LSB
S
T
A
R
T
Data
A
C
K
S
T
O
P
Document Number: 002-08447 Rev.*A March 28, 2016 Page 39 of 68
S6AP412A
21.3 About DD3 Output Voltage Setting
Address 02H DD3 is allocated as resisters for the DC/DC output voltage setting.
The DC/DC output voltage setting of DD3 is controlled by writing data to address 02H.
address02H: For DD3 output voltage setting
D02 to D00: Set the output voltage
DD3 Output Voltage Setting Table
Data
Output Voltage(V)
00H
2.80 (*1)
01H
2.90
02H
3.00 (*1)
03H
3.10
04H
3.20
05H
3.30 (*1)
06H
3.40
07H
3.50 (*1)
*1: Preset value
0 0 0 0 0 D02 D01 D00
MSB LSB
S
T
A
R
T
Data
A
C
K
S
T
O
P
Document Number: 002-08447 Rev.*A March 28, 2016 Page 40 of 68
S6AP412A
21.4 About Soft Start Time
Address 10H to 12H are allocated as registers for the soft start time control.
The soft start time control is controlled by writing data to addresses 10H to 12H.
address10H: For DD1 soft start time setting
address11H: For DD2 soft start time setting
address12H: For DD3 soft start time setting
D03 to D00: Set the soft start time
Tss=Tslp × Vset/Vdef (ms)
Tss: soft start time
Tslp: slope coefficient of soft start:refer to follow table
Vset: output voltage setting
Vdef: DD1=1.0, DD2=1.8, DD3=3.3
Soft Start Time Setting
Data
Tslp
Remarks
00H
1.0
DD1,DD2,DD3 (*1)
01H
2.0
02H
3.0
03H
4.0
04H
5.0
05H
6.0
06H
7.0
07H
8.0
08H
9.0
09H
10.0
0AH
11.0
0BH
12.0
0CH
13.0
0DH
14.0
0EH
15.0
0FH
16.0
*1: Preset value
0 0 0 0 D03 D02 D01 D00
MSB LSB
S
T
A
R
T
Data
A
C
K
S
T
O
P
Document Number: 002-08447 Rev.*A March 28, 2016 Page 41 of 68
S6AP412A
21.5 DC/DC Operation Mode
Address 20H is allocated as a register for the DC/DC operation mode control.
The DC/DC operation mode is controlled by writing data to address 20H.
address20H: For DC/DC operation mode setting
D01 to D00: Set the DC/DC operation mode
Address
Bit
Description
20H
D00
0: DD1 Fixed PWM (*1)
1: DD1 PFM/PWM
20H
D01
0: DD2 Fixed PWM (*1)
1: DD2 PFM/PWM
20H
D02
0: DD3 Fixed PWM (*1)
1: DD3 PFM/PWM
20H
D03
Out of use
*1: Preset value
0 0 0 0 D03 D02 D01 D00
MSB LSB
S
T
A
R
T
Data
A
C
K
S
T
O
P
Document Number: 002-08447 Rev.*A March 28, 2016 Page 42 of 68
S6AP412A
21.6 ON/OFF for DC/DC
Address 30H is allocated as a register for the DC/DC ON/OFF.
The DC/DC ON/OFF is controlled by writing data to address 30H.
address30H: For DC/DC ON/OFF
D02 to D00: Set ON/OFF for DC/DC
Address
Bit
Description
30H
D00
0: DD1 output OFF (*1)
1: DD1 output ON
30H
D01
0: DD2 output OFF (*1)
1: DD2 output ON
30H
D02
0: DD3 output OFF (*1)
1: DD3 output ON
30H
D03
Out of use
*1: Preset value
0 0 0 0 D03 D02 D01 D00
MSB LSB
S
T
A
R
T
Data
A
C
K
S
T
O
P
Document Number: 002-08447 Rev.*A March 28, 2016 Page 43 of 68
S6AP412A
21.7 About Error Monitor
Address 40H is allocated as error status monitor of each DC/DC output and thermal shut down.
Address 40H is read only resistor.
address40H: For error monitor of each DC/DC output and thermal shut down
D04 to D00: read only resistor. (Not allowed write resistor)
Address
Bit
Description
40H
D00
0: DD1 OCP non detection (*1)
1: DD1 OCP detection
40H
D01
0: DD2 OCP non detection (*1)
1: DD2 OCP detection
40H
D02
0: DD3 OCP non detection (*1)
1: DD3 OCP detection
40H
D03
Out of use
40H
D04
0: TSD non detection (*1)
1: TSD detection
*1:Preset value
0 0 0 D04 D03 D02 D01 D00
MSB LSB
S
T
A
R
T
Data
A
C
K
S
T
O
P
Document Number: 002-08447 Rev.*A March 28, 2016 Page 44 of 68
S6AP412A
21.8 About Power Good Monitor
Address 50H is allocated as output monitor of each DC/DC output.
Address 50H is read only resistor.
address50H: For output monitor of each DC/DC output.
Detection level is over 93% of DCDC output voltage setting.
D04 to D00: read only resistor. (Not allowed write resistor)
Address
Bit
Description
50H
D00
0: DD1 non output (*1)
1: DD1 output
50H
D01
0: DD2 non output (*1)
1: DD2 output
50H
D02
0: DD3 non output (*1)
1: DD3 output
50H
D03
Out of use
*1: Preset value
0 0 0 0 D03 D02 D01 D00
MSB LSB
S
T
A
R
T
Data
A
C
K
S
T
O
P
Document Number: 002-08447 Rev.*A March 28, 2016 Page 45 of 68
S6AP412A
22. I/O Pin Equivalent Circuit Diagram
<<AVCC>>
<<VREF18>>
<<IN1,IN2, LX1,LX2, PGND1<PGND2>>
AVCC
GND
ESD
protection
element
AVCC
VREF18
GND
IN*: IN1, IN2
LX*: LX1, LX2
PGND*: PGND1, PGND2
IN*
AVCC
GND
LX*
PGND*
Document Number: 002-08447 Rev.*A March 28, 2016 Page 46 of 68
S6AP412A
<<PVCC1,PVCC2>
<<IN3,PGND3 >
<<PVCC3,LX3-1,LX3-2,VO3>>
IN3
GND
PGND3
PGND3
PVCC3
VO3
GND
AVCC
LX3-1
LX3-2
LX*
PGND*
PVCC*
AVCC
GND
PVCC*: PVCC1, PVCC2
LX*: LX1, LX2
PGND*: PGND1, PGND2
Document Number: 002-08447 Rev.*A March 28, 2016 Page 47 of 68
S6AP412A
<<CTL*, ADDSEL, MODE>> <<PG*>>
<<SCL>> <<SDA>>
GND
SCL
DVCC
GND
SDA
DVCC
GND
AVCC
CTL*
ADDSEL
MODE
CTL*: CTLMAIN, CTL1,
CTL2, CTL3
GND
PG*
AVCC PG*: PG1, PG2, PG3
Document Number: 002-08447 Rev.*A March 28, 2016 Page 48 of 68
S6AP412A
23. Measurement Circuit for Characteristics of General Operation
PVCC3
DD1:1.0V
Io(max):4000mA
PVCC1A LX1A
PGND1A
PG1
DD2:1.80V
Io(max):1200mA
LX2
PGND2
PG2
C2
4.7mF
L1 C7
22mF
R1
100kW
C9
22mF
C5
4.7mF
C1
0.1mF
C6
1.0mF
IN1
CTL1
CTL3
AVCC
CTLMAIN
DVCC
SCL
SDA
ADDSEL
VREF18 GND
S6AP412A
SCL
SDA
3.3V
PVCC2
C4
4.7mF
CTL2 L3
PG1
PVCC1B
C3
4.7mFLX1B L2
PGND1B
IN2
R2
100kW
PG2
LX3-1
LX3-2
VO3 C10
33mF
L4
IN3
PG3
R3
100kW
PG3
PGND3
MODE
C8
22mF
DD3:3.30V
Io(max):600mA
Input Voltage:
2.5V to 5.5V
1.0mH
1.0mH
1.0mH
1.0mH
Document Number: 002-08447 Rev.*A March 28, 2016 Page 49 of 68
S6AP412A
Table 3. Parts list
Symbol
Parts
Part number
Specifications
Vendor
L1
Inductor
1276AS-H-1R0M
1.0µH
TOKO
L2
Inductor
1276AS-H-1R0M
1.0µH
TOKO
L3
Inductor
1276AS-H-1R0M
1.0µH
TOKO
L4
Inductor
1276AS-H-1R0M
1.0µH
TOKO
C1
Ceramic Capacitor
C1608X5R1H104K
0.1µF
TDK
C2
Ceramic Capacitor
C1608X5R1V475K
4.7µF
TDK
C3
Ceramic Capacitor
C1608X5R1V475K
4.7µF
TDK
C4
Ceramic Capacitor
C1608X5R1V475K
4.7µF
TDK
C5
Ceramic Capacitor
C1608X5R1V475K
4.7µF
TDK
C6
Ceramic Capacitor
C2012X5R1A336M
1.0µF
TDK
C7
Ceramic Capacitor
C1608X5R1H105K
22µF
TDK
C8
Ceramic Capacitor
C1608X5R1H105K
22µF
TDK
C9
Ceramic Capacitor
C1608X5R1H105K
22µF
TDK
C10
Ceramic Capacitor
C2012X5R1A336M
33µF
TDK
R1
Resistor
RR0816P-104-D
100kΩ
SSM
R2
Resistor
RR0816P-104-D
100kΩ
SSM
R3
Resistor
RR0816P-104-D
100kΩ
SSM
TOKO : TOKO, INC.
TDK : TDK Corporation
SSM : SUSUMU CO., LTD.
Document Number: 002-08447 Rev.*A March 28, 2016 Page 50 of 68
S6AP412A
24. Reference Data
DCDC Convertor Efficiency Data
DD1
Input voltage = 3.3V, Vo=1.0V setting Input voltage = 3.3V, Vo=1.2V setting
Input voltage = 5.5V, Vo = 1.0V setting Input voltage = 5.5V, Vo = 1.2V setting
DD2
Input Voltage = 3.3V, Vo = 1.5V setting Input voltage = 3.3V, Vo = 1.8V setting
Inductor and capacitor value refer to section 26.
0
10
20
30
40
50
60
70
80
90
100
0.00001 0.001 0.1 10
Efficiency[%]
Load current[A]
Fixed PWM
PFM/PWM
0
10
20
30
40
50
60
70
80
90
100
0.00001 0.001 0.1 10
Efficiency[%]
Load current[A]
Fixed PWM
PFM/PWM
0
10
20
30
40
50
60
70
80
90
100
0.00001 0.001 0.1 10
Efficiency[%]
Load current[A]
Fixed PWM
PFM/PWM
0
10
20
30
40
50
60
70
80
90
100
0.00001 0.001 0.1 10
Efficiency[%]
Load current[A]
Fixed PWM
PFM/PWM
0
10
20
30
40
50
60
70
80
90
100
0.00001 0.001 0.1 10
Efficiency[%]
Load current[A]
Fixed PWM
PFM/PWM
0
10
20
30
40
50
60
70
80
90
100
0.00001 0.001 0.1 10
Efficiency[%]
Load current[A]
Fixed PWM
PFM/PWM
Document Number: 002-08447 Rev.*A March 28, 2016 Page 51 of 68
S6AP412A
DD2
Input voltage = 5.5V, Vo = 1.5V setting Input Voltage = 5.5V, Vo = 1.8V setting
DD3
Input voltage = 3.3V, Vo = 3.3V setting Input Voltage = 5.5V, Vo = 3.3V setting
0
10
20
30
40
50
60
70
80
90
100
0.00001 0.001 0.1 10
Efficiency[%]
Load current[A]
Fixed PWM
PFM/PWM
0
10
20
30
40
50
60
70
80
90
100
0.00001 0.001 0.1 10
Efficiency[%]
Load current[A]
Fixed PWM
PFM/PWM
0
10
20
30
40
50
60
70
80
90
100
0.00001 0.001 0.1 10
Efficiency[%]
Load current[A]
Fixed PWM
PFM/PWM
0
10
20
30
40
50
60
70
80
90
100
0.00001 0.001 0.1 10
Efficiency[%]
Load current[A]
Fixed PWM
PFM/PWM
Document Number: 002-08447 Rev.*A March 28, 2016 Page 52 of 68
S6AP412A
DCDC Convertor Regulation Data
DD1
Input voltage = 3.3V, Vo = 1.0V setting Input voltage = 3.3V, Vo=1.2V setting
Input voltage = 5.5V, Vo = 1.0V setting Input voltage = 5.5V, Vo = 1.2V setting
DD2
Input Voltage = 3.3V, Vo = 1.5V setting Input voltage = 3.3V, Vo = 1.8V setting
1.180
1.185
1.190
1.195
1.200
1.205
1.210
1.215
1.220
0.0 1.0 2.0 3.0 4.0
Output voltage[V]
Load current[A]
Fixed PWM
PFM/PWM
1.180
1.185
1.190
1.195
1.200
1.205
1.210
1.215
1.220
0.0 1.0 2.0 3.0 4.0
Output voltage[V]
Load current[A]
Fixed PWM
PFM/PWM
0.980
0.985
0.990
0.995
1.000
1.005
1.010
1.015
1.020
0.0 1.0 2.0 3.0 4.0
Output voltage[V]
Load current[A]
Fixed PWM
PFM/PWM
0.980
0.985
0.990
0.995
1.000
1.005
1.010
1.015
1.020
0.0 1.0 2.0 3.0 4.0
Output voltage[V]
Load current[A]
Fixed PWM
PFM/PWM
1.480
1.485
1.490
1.495
1.500
1.505
1.510
1.515
1.520
0.0 0.4 0.8 1.2
Output voltage[V]
Load current[A]
Fixed PWM
PFM/PWM
1.780
1.785
1.790
1.795
1.800
1.805
1.810
1.815
1.820
0.0 0.4 0.8 1.2
Output voltage[V]
Load current[A]
Fixed PWM
PFM/PWM
Document Number: 002-08447 Rev.*A March 28, 2016 Page 53 of 68
S6AP412A
DD2
Input voltage = 5.5V, Vo = 1.5V setting Input Voltage = 5.5V, Vo = 1.8V setting
DD3
Input voltage = 3.3V, Vo = 3.3V setting Input Voltage = 5.5V, Vo = 3.3V setting
3.280
3.285
3.290
3.295
3.300
3.305
3.310
3.315
3.320
0.0 0.2 0.4 0.6
Output voltage[V]
Load current[A]
Fixed PWM
PFM/PWM
3.280
3.285
3.290
3.295
3.300
3.305
3.310
3.315
3.320
0.0 0.2 0.4 0.6
Output voltage[V]
Load current[A]
Fixed PWM
PFM/PWM
1.480
1.485
1.490
1.495
1.500
1.505
1.510
1.515
1.520
0.0 0.4 0.8 1.2
Output voltage[V]
Load current[A]
Fixed PWM
PFM/PWM
1.780
1.785
1.790
1.795
1.800
1.805
1.810
1.815
1.820
0.0 0.4 0.8 1.2
Output voltage[V]
Load current[A]
Fixed PWM
PFM/PWM
Document Number: 002-08447 Rev.*A March 28, 2016 Page 54 of 68
S6AP412A
DCDC Convertor Output Ripple Voltage
DD1
Input voltage = 3.3V, Vo = 1.0V setting Input voltage = 3.3V, Vo=1.0V setting
Load current = 0mA , Fixed PWM Load current = 4000mA, Fixed PWM
10mV/div, 0.5μs/div 10mV/div, 0.5μs/div
Input voltage = 5.5V, Vo = 1.0V setting Input voltage = 5.5V, Vo = 1.0V setting
Load current = 0mA , Fixed PWM Load current = 4000mA, Fixed PWM
10mV/div, 0.5μs/div 10mV/div, 0.5μs/div
Input voltage = 3.3V, Vo = 1.0V setting Input voltage = 3.3V, Vo=1.0V setting
Load current = 0mA , PFM/PWM Load current = 4000mA,PFM/PWM
10mV/div, 2ms/div 10mV/div, 0.5μs/div
Input voltage = 5.5V, Vo = 1.0V setting Input voltage = 5.5V, Vo = 1.0V setting
Load current = 0mA , PFM/PWM Load current = 4000mA,PFM/PWM
10mV/div, 2ms/div 10mV/div, 0.5μs/div
Document Number: 002-08447 Rev.*A March 28, 2016 Page 55 of 68
S6AP412A
DD2
Input voltage = 3.3V, Vo = 1.8V setting Input voltage = 3.3V, Vo=1.8V setting
Load current = 0mA , Fixed PWM Load current = 1200mA, Fixed PWM
10mV/div, 0.5μs/div 10mV/div, 0.5μs/div
Input voltage = 5.5V, Vo = 1.8V setting Input voltage = 5.5V, Vo = 1.8V setting
Load current = 0mA , Fixed PWM Load current =1200mA, Fixed PWM
10mV/div, 0.5μs/div 10mV/div, 0.5μs/div
Input voltage = 3.3V, Vo = 1.8V setting Input voltage = 3.3V, Vo=1.8V setting
Load current = 0mA , PFM/PWM Load current =1200mA,PFM/PWM
10mV/div, 2ms/div 10mV/div, 0.5μs/div
Input voltage = 5.5V, Vo = 1.8V setting Input voltage = 5.5V, Vo = 1.8V setting
Load current = 0mA , PFM/PWM Load current = 1200mA,PFM/PWM
10mV/div, 2ms/div 10mV/div, 0.5μs/div
Document Number: 002-08447 Rev.*A March 28, 2016 Page 56 of 68
S6AP412A
Input voltage = 3.3V, Vo = 3.3V setting Input voltage = 3.3V, Vo=3.3V setting
Load current = 0mA , Fixed PWM Load current = 600mA, Fixed PWM
10mV/div, 0.5μs/div 10mV/div, 0.5μs/div
Input voltage = 5.5V, Vo = 3.3V setting Input voltage = 5.5V, Vo = 3.3V setting
Load current = 0mA , Fixed PWM Load current =600mA, Fixed PWM
10mV/div, 0.5μs/div 10mV/div, 0.5μs/div
Input voltage = 3.3V, Vo = 3.3V setting Input voltage = 3.3V, Vo=3.3V setting
Load current = 0mA , PFM/PWM Load current = 600mA,PFM/PWM
10mV/div, 2ms/div 10mV/div, 0.5μs/div
Input voltage = 5.5V, Vo = 1.0V setting Input voltage = 3.3V, Vo =3.3V setting
Load current = 0mA , PFM/PWM Load current = 600mA,PFM/PWM
10mV/div, 2ms/div 10mV/div, 0.5μs/div
Document Number: 002-08447 Rev.*A March 28, 2016 Page 57 of 68
S6AP412A
DCDC Convertor Enable/Disable
DD1(Fixed PWM)
Input voltage = 3.3V, Vo = 1.0V setting Input voltage = 3.3V, Vo=1.0V setting
Load current = 4000mA, Tss = 1ms setting Load current = 0mA, Tss = 1ms setting
DD1(PFM/PWM)
Input voltage = 3.3V, Vo = 1.0V setting Input voltage = 3.3V, Vo=1.0V setting
Load current = 4000mA, Tss = 1ms setting Load current = 0mA, Tss = 1ms setting
8
DD2(Fixed PWM)
Input voltage = 3.3V, Vo = 1.8V setting Input voltage = 3.3V, Vo=1.8V setting
Load current = 1200mA, Tss = 1ms setting Load current = 0mA, Tss = 1ms setting
SCL(3V/div)
PG1(6V/div)
Vo(0.5V/div)
IIN(1.0A/div)
1.01ms
200us/div
SCL(3V/div)
PG1(6V/div)
200ms/div
Vo(0.5V/div)
IIN(40mA/div)
510ms
SCL(3V/div)
PG1(6V/div)
Vo(0.5V/div)
IIN(1.0A/div)
1.01ms
200us/div
SCL(3V/div)
PG1(6V/div)
200ms/div
Vo(0.5V/div)
IIN(40mA/div)
515ms
SCL(3V/div)
PG2(6V/div)
Vo(1V/div)
IIN(500mA/div)
1.02ms
200us/div
SCL(3V/div)
PG2(6V/div)
50ms/div
Vo(1V/div)
IIN(40mA/div)
200ms
Document Number: 002-08447 Rev.*A March 28, 2016 Page 58 of 68
S6AP412A
DD2(PFM/ PWM)
Input voltage = 3.3V, Vo = 1.8V setting Input voltage = 3.3V, Vo=1.8V setting
Load current = 1200mA, Tss = 1ms setting Load current = 0mA, Tss = 1ms setting
DD3 (Fixed PWM)
Input voltage = 3.3V, Vo = 3.3V setting Input voltage = 3.3V, Vo=3.3 V setting
Load current = 600mA, Tss = 1ms setting Load current = 0mA, Tss = 1ms setting
DD3 (Fixed PWM)
Input voltage = 3.3V, Vo = 3.3V setting Input voltage = 3.3V, Vo=3.3 V setting
Load current = 600mA, Tss = 1ms setting Load current = 0mA, Tss = 1ms setting
SCL(3V/div)
PG2(6V/div)
Vo(1V/div)
IIN(500mA/div)
1.03ms
200us/div
SCL(3V/div)
PG2(6V/div)
50ms/div
Vo(1V/div)
IIN(40mA/div)
204ms
SCL(3V/div)
PG3(6V/div)
Vo(2V/div)
IIN(500mA/div)
0.99ms
200us/div
SCL(3V/div)
PG3(6V/div)
100ms/div
Vo(2V/div)
IIN(40mA/div)
270ms
SCL(3V/div)
PG3(6V/div)
Vo(2V/div)
IIN(500mA/div)
1.0ms
200us/div
SCL(3V/div)
PG3(6V/div)
100ms/div
Vo(2V/div)
IIN(40mA/div)
270ms
Document Number: 002-08447 Rev.*A March 28, 2016 Page 59 of 68
S6AP412A
DCDConvertor Load Transient
DD1(Fixed PWM)
Input voltage = 3.3V, Vo = 1.0V setting Input voltage = 3.3V, Vo=1.0V setting
Load current = from 0mA to 4000mA per 10us Load current = from 4000mA to 0mA per 10us
DD1(PFM/PWM)
Input voltage = 3.3V, Vo = 1.0V setting Input voltage = 3.3V, Vo=1.0V setting
Load current = from 0mA to 4000mA per 10us Load current = from 4000mA to 0mA per 10us
DD2(Fixed PWM)
Input voltage = 3.3V, Vo = 1.8V setting Input voltage = 3.3V, Vo=1.8V setting
Load current = from 0mA to 1200mA per 10us Load current = from 1200mA to 0mA per 10us
10us
Io(2.0A/div)
82.5mV
Vo1(100mV/div)
offset1.000V
10us
82.5mV
Io(2.0A/div)
Vo1(100mV/div)
offset1.000V
10us
Io(2.0A/div)
82.5mV
Vo1(100mV/div)
offset1.000V
50ms
84.1mV
Io(2.0A/div)
Vo1(100mV/div)
offset1.000V
10us
Io(1.0A/div)
54.8mV
Vo2(50mV/div)
offset1.8V
10us
54.1mV
Io(1.0A/div)
Vo1(50mV/div)
offset1.8V
Document Number: 002-08447 Rev.*A March 28, 2016 Page 60 of 68
S6AP412A
DD2(PFM/ PWM)
Input voltage = 3.3V, Vo = 1.8V setting Input voltage = 3.3V, Vo=1.8V setting
Load current = from 0mA to 1200mA per 10us Load current = from 1200mA to 0mA per 10us
DD3 (Fixed PWM)
Input voltage = 3.3V, Vo = 3.3V setting Input voltage = 3.3V, Vo=3.3 V setting
Load current = 600mA, Tss = 1ms setting Load current = 0mA, Tss = 1ms setting
DD3 (Fixed PWM)
Input voltage = 3.3V, Vo = 3.3V setting Input voltage = 3.3V, Vo=3.3 V setting
Load current = 600mA, Tss = 1ms setting Load current = 0mA, Tss = 1ms setting
10us
Io(1.0A/div)
54.0mV
Vo2(50mV/div)
offset1.8V
10us
Io(500mA/div)
59.5mV
Vo3(50mV/div)
offset3.3V
10us
54.7mV
Io(500mA/div)
Vo3(50mV/div)
offset3.3V
10us
Io(500mA/div)
83mV
Vo3(50mV/div)
offset3.3V
20ms
84mV
Io(500mA/div)
Vo3(50mV/div)
offset3.3V
10ms
57.1mV
Io(1.0A/div)
Vo1(50mV/div)
offset1.8V
Document Number: 002-08447 Rev.*A March 28, 2016 Page 61 of 68
S6AP412A
DCDC Convertor DVFS Function
DD1 (Fixed PWM)
Input voltage = 3.3V, Input voltage = 3.3V
Vo =from 0.7V to 1.32V setting by I2C Vo =from 1.32V to 0.7V setting by I2C
SCL
(2V/div)
PG
(5V/div)
Vo1
(200mV/div)
offset0.7V
100us
SCL
(2V/div)
PG
(5V/div)
Vo1
(200mV/div)
offset0.7V
100us
Document Number: 002-08447 Rev.*A March 28, 2016 Page 62 of 68
S6AP412A
25. Ordering Information
Table 4. Ordering Information
Part Number
Package
Remarks
S6AP412A18GN1C000
32-pin plastic QFN
(WNT032)
S6AP412A28GN1C000
S6AP412A38GN1C000
S6AP412A58GN1C000
S6AP412A68GN1C000
S6AP412A78GN1C000
S6AP412A98GN1C000
S6AP412AA8GN1C000
S6AP412AB8GN1C000
S6AP412AD8GN1C000
S6AP412AE8GN1C000
S6AP412AF8GN1C000
Document Number: 002-08447 Rev.*A March 28, 2016 Page 63 of 68
S6AP412A
26. Preset Code List
Preset Code
DD1 Output Voltage
Preset Code Value
DD2 Output Voltage
Preset Code Value
DD3 Output Voltage
Preset Code Value
18
0.90V
1.35V
3.30V
28
0.90V
1.50V
3.30V
38
0.90V
1.80V
3.30V
58
1.00V
1.35V
3.30V
68
1.00V
1.50V
3.30V
78
1.00V
1.80V
3.30V
98
1.10V
1.35V
3.30V
A8
1.10V
1.50V
3.30V
B8
1.10V
1.80V
3.30V
D8
1.20V
1.35V
3.30V
E8
1.20V
1.50V
3.30V
F8
1.20V
1.80V
3.30V
Document Number: 002-08447 Rev.*A March 28, 2016 Page 64 of 68
S6AP412A
27. Layout
Consider the points listed below and do the layout design.
Provide the ground plane as much as possible on the IC mounted face. GND and PGNDx provide the through hole proximal to
GND and PGNDx pins of IC, and connect it with GND of internal layer.
Provide the power plane as much as possible to lower impedance of VCC.
Play the most attention to the loop composed of input capacitor (CPVCCx) and SWFET. Input capacitor (CPVCCx) connected
with PVCCx should be placed close to the pin as much as possible to make the current loop as small as possible. Also connect
the GND pin of the input capacitor with PGNDx.
Output capacitor (CVO3) connected with VO3 should be placed close to the pin as much as possible. Also connect the GND pin
of the output capacitor with PGND3.
GND pins of the switching system parts provide the through hole at the proximal place, and connect it with GND of internal layer.
By-pass capacitor (CVREF, CAVCC) connected with VREF and AVCC should be placed close to the pin as much as possible.
Also connect the GND pin of the by-pass capacitor with GND of internal layer in the proximal through-hole.
Pull the feedback line to be connected to the INx pin of the IC separately from near the output capacitor pin, whenever possible.
Consider the line connected with INx pins to keep away from a switching system parts as much as possible because it is
sensitive to the noise.
There is leaked magnetic flux around the inductor or backside of place equipped with inductor.
Line and parts sensitive to noise should be considered to be placed away from the inductor (or backside of place equipped with
inductor).
Switching system parts: Input capacitor(CPVCCx), Inductor(L), Output capacitor(CVOx)
Note:
x: Each channel number
Figure 6. Layout Example
Layout example of IC
Layout example of switching components 1
(Top View)
EP(Exposed Pad)
C
AVCC
C
VREF
C
VO3
1pin
GND
Surface
Layer
Inner
Layer
Through Hole
C
PVCC1A
C
PVCC1B
C
PVCC3
C
PVCC2
GND
PVCC3
PVCC2
PGND3
PGND2
PGND1A
PGND1B
PVCC1A
PVCC1B
VREF
AVCC
VO3
CPVCCx
L
CVOx
To the LXx pin
Output voltage
VOx
feedback
GND
PVCCx
PGNDx
Layout example of switching components 2
PVCC3
L
To the LX3-2 pin
To
the LX3-1
pin
GND
C
VO3
Output voltage
VO
3 feedback
C
PVCC
3
PGND3
Document Number: 002-08447 Rev.*A March 28, 2016 Page 65 of 68
S6AP412A
28. Package Dimensions
Document Number: 002-08447 Rev.*A March 28, 2016 Page 66 of 68
S6AP412A
29. Major Changes
Spansion Publication Number: S6AP412A_DS405-00018
Page
Section
Change Results
Revision 0.1
-
-
Initial release
Revision 1.0
-
-
Preliminary → Full production
50
26. Measurement Circuit for Characteristics of General
Operation
Revised the Parts number of Component list
1278AS-H-1R0M → 1276AS-H-1R0M
63
28. Ordering Information
Revised the Part number of Ordering
Information
NOTE: Please see “Document History” about later revised information.
Document Number: 002-08447 Rev.*A March 28, 2016 Page 67 of 68
S6AP412A
Document History
Document Title: S6AP412A 3ch DC/DC Converter with I2C Interface and Internal SW FETs
Document Number: 002-08447
Revision
ECN
Orig. of
Change
Submission
Date
Description of Change
**
TAOA
12/26/2014
Migrated to Cypress and assigned document number 002-08447.
No change to document contents or format.
*A
5157734
TAOA
03/28/2016
Updated to Cypress template
Document Number: 002-08447 Rev.*A March 28, 2016 Page 68 of 68
S6AP412A
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.
Products
ARM® Cortex® Microcontrollers
cypress.com/arm
Automotive
cypress.com/automotive
Clocks & Buffers
cypress.com/clocks
Interface
cypress.com/interface
Lighting & Power Control
cypress.com/powerpsoc
Memory
cypress.com/memory
PSoC
cypress.com/psoc
Touch Sensing
cypress.com/touch
USB Controllers
cypress.com/usb
Wireless/RF
cypress.com/wireless
PSoC® Solutions
psoc.cypress.com/solutions
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP
Cypress Developer Community
Community | Forums | Blogs | Video | Training
Technical Support
cypress.com/go/support
ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.
© Cypress Semiconductor Corporation 2014-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then
Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form,
to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license
(without the right to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software
solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or
compilation of the Software is prohibited.
CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not
assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or
programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application
made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of
weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or
hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in
whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall
indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the
United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.