Micrel, Inc.
MIC2245
January 2006
10
M9999-012406
www.micrel.com
Functional Description
VIN
VIN provides power to the MOSFETs for the switch
mode regulator section, along with the current
limiting sensing. Due to the high switching speeds,
a 1µF capacitor is recommended close to VIN and
the power ground (PGND) pin for bypassing. Please
refer to layout recommendations.
AVIN
Analog V
IN
(AVIN) provides power to the LDO
section. AVIN and VIN must be tied together.
Careful layout should be considered to ensure high
frequency switching noise caused by VIN is reduced
before reaching AVIN.
LDO
The LDO pin is the output of the linear regulator and
should be connected to the output. In LOWQ mode
(LOWQ<1.5V), the LDO provides the output voltage.
In PWM mode (LOWQ>1.5V), the LDO pin is high
impedance.
EN
The enable pin provides a logic level control of the
output. In the off state, supply current of the device
is greatly reduced (typically <1µA). Also, in the off
state, the output drive is placed in a "tri-stated"
condition, where both the high side P-channel
Mosfet and the low-side N-channel are in an “off” or
non-conducting state. Do not drive the enable pin
above the supply voltage.
LOWQ
The LOWQ pin provides a logic level control
between the internal PWM mode and the low noise
linear regulator mode. With LOWQ pulled low
(<0.5V), quiescent current of the device is greatly
reduced by switching to a low noise linear regulator
mode that has a typical I
Q
of 20µA. In linear (LDO)
mode, the output can deliver 60mA of current to the
output. By placing LOWQ high (>1.5V), this
transitions the device into a constant frequency
PWM buck regulator mode. This allows the device
the ability to efficiently deliver up to 500mA of output
current at the same output voltage.
BIAS
The BIAS pin supplies the power to the internal
power to the control and reference circuitry. The
bias is powered from the input voltage through an
RC lowpass filter. The RC lowpass filter frequency
must be ≥
()()
100nF20.5Ω2π
1
.
FB
The feedback pin (FB) provides the control path to
control the output. For adjustable versions, a resistor
divider connecting the feedback to the output is used
to adjust the desired output voltage. The output
voltage is calculated as follows:
V
OUT
=V
REF
×R1
R2 +1
⎝
⎜
⎠
⎟
where V
REF
is equal to 1.0V.
A feedforward capacitor is recommended for most
designs using the adjustable output voltage option.
To reduce battery current draw, a 100K feedback
resistor is recommended from the output to the FB
pin (R1). Also, a feedforward capacitor should be
connected between the output and feedback (across
R1). The large resistor value and the parasitic
capacitance of the FB pin can cause a high
frequency pole that can reduce the overall system
phase margin. By placing a feedforward capacitor,
these effects can be significantly reduced. Typically
an 82pF small ceramic capacitor is recommended.
SW
The switch (SW) pin connects directly to the inductor
and provides the switching current necessary to
operate in PWM mode. Due to the high speed
switching on this pin, the switch node should be
routed away from sensitive nodes.
PGND
Power ground (PGND) is the ground path for the
high current PWM mode. The current loop for the
power ground should be as small as possible and
separate from the Analog ground (AGND) loop.
Refer to the layout considerations for more details.
AGND
Signal ground (AGND) is the ground path for the
biasing and control circuitry. The current loop for the
signal ground should be separate from the Power
ground (PGND) loop. Refer to the layout
considerations for more details.