4533E–BLURF–07/04
Features
Single 3-V Supply Voltage
High Power-added Efficient Power Amplifier (Pout Typically 23 dBm)
Ramp-controlled Output Power
Low-noise Preamplifier (NF Typically 2.1 dB)
Biasing for External PIN Diode T/R Switch
Current-saving Standby Mode
Few External Components
Packages:
PSSO20
QFN20 with Extended Performance
Electrostatic sensitive device.
Observe precautions for handling.
Description
The T7024 is a monolithic SiGe transmit/receive front-end IC with power amplifier,
low-noise amplifier and T/R switch driver. It is especially designed for operation in
TDMA systems like Bluetooth and WDCT.
Due to the ramp-control feature and a very low quiescent current, an external switch
transistor for VS is not required.
Figure 1. Block Diagram
PA
PA_IN V3_PA_OUT
RAMP V2_PA
V1_PA
LNA
LNA_OUT LNA_IN
TX/RX/
standby
Control
PU
RX_ON VS_LNA
SWITCH_OUT
R_SWITCH
TX
RX
Bluetooth/ISM
2.4-GHz Front-
End IC
T7024
2T7024
4533E–BLURF–07/04
Pin Configuration
Figure 2. Pinning PSSO20 Figure 3. Pinning QFN20
1
2
3
4
5
6
7
8
10
9
19
18
17
16
14
15
13
12
11
20
LNA_IN
VS_LNA
GND
V3_PA_OUT
V3_PA_OUT
V3_PA_OUT
SWITCH_OUT
GND
GND
PA_IN
V1_PA
GND
V2_PA
V2_PA
RX_ON
LNA_OUT
GND RAMP
R_SWITCH PU
T7024
1
2
3
4
5
15
14
13
12
11
10 6789
16 2019
18
17
LNA_OUT
RX_ON
PU
R_SWITCH
SWITCH_OUT
GND
VS_LNA
GND
LNA_IN
GND
V3_PA_OUT
V3_PA_OUT
V3_PA_OUT
GND
RAMP
V2_PA
V2_PA
GND
V1_PA
PA_IN
T7024
Pin Description
Pins PSSO20 Pins QFN20 Symbol Function
1 4 R_SWITCH Resistor to GND sets the PIN diode current
2 5 SWITCH_OUT Switched current output for PIN diode
36GNDGround
4 7 LNA_IN Low-noise amplifier input
5 9 VS_LNA Supply voltage input for low-noise amplifier
68GNDGround
7 11 V3_PA_OUT Inductor to power supply and matching network for power amplifier output
8 12 V3_PA_OUT Inductor to power supply and matching network for power amplifier output
9 13 V3_PA_OUT Inductor to power supply and matching network for power amplifier output
10 10 GND Ground
11 15 RAMP Power ramping control input
12 16 V2_PA Inductor to power supply for power amplifier
13 17 V2_PA Inductor to power supply for power amplifier
14 14 GND Ground
15 19 V1_PA Supply voltage for power amplifier
16 20 PA_IN Power amplifier input
17 18 GND Ground
18 1 LNA_OUT Low-noise amplifier output
19 2 RX_ON RX active high
20 3 PU Power-up active high
Slug Slug GND Ground
3
T7024
4533E–BLURF–07/04
Handling Do not operate this part near strong electrostatic fields. This IC meets class 1 ESD test
requirement (HBM in accordance to EIA/JESD22-A114-A (October 97) and class A ESD
test requirement (MM) in accordance to EIA/JESD22-A115A.
Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Parameters Symbol Value Unit
Supply voltage
Pins VS_LNA, V1_PA, V2_PA, V3_PA_OUT VS6V
Junction temperature Tj150 °C
Storage temperature Tstg -40 to +125 °C
RF input power LNA PinLNA 5dBm
RF input power PA PinPA 10 dBm
Thermal Resistance
Parameters Symbol Value Unit
Junction ambient PSSOP20, slug soldered on PCB RthJA 19 K/W
Junction ambient QFN20, slug soldered on PCB RthJA 27 K/W
Operating Range
All voltages are referred to ground (pins GND and slug). Power supply points are VS_LNA, V1_PA, V2_PA, V3_PA_OUT. The table
represents the sum of all supply currents depending on the TX/RX mode.
Parameters Symbol Min. Typ. Max. Unit
Supply voltage
Pins V1_PA, V2_PA and V3_PA_OUT VS2.7 3.0 4.6 V
Supply voltage, pin VS_LNA VS2.7 3.0 5.5 V
Supply current TX, PSSO20
QFN20
Supply current RX
IS
IS
IS
190
165
8
mA
mA
mA
Standby current, PU = 0 IS_standby 10 µA
Ambient temperature Tamb -25 +25 +85 °C
4T7024
4533E–BLURF–07/04
Electrical Characteristics
Test conditions (unless otherwise specified): VS = 3.0 V, Tamb = 25°C
Parameters Test Conditions Symbol Min. Typ. Max. Unit
Power Amplifier(1)
Supply voltage Pins V1_PA, V2_PA, V3_PA_OUT VS2.7 3.0 4.6 V
Supply current
TX PSSO20
TX QFN20
IS_TX
IS_TX
190
165
mA
mA
RX (PA off), VRAMP 0.1 V IS_RX 10 µA
Standby current Standby IS_standby 10 µA
Frequency range TX f2.4 2.5 GHz
Gain-control range TX Gp 60 42 dB
Power gain maximum TX, pin PA_IN to V3_PA_OUT Gp 28 30 33 dB
Power gain minimum TX, pin PA_IN to V3_PA_OUT Gp -40 -17 dB
Ramping voltage maximum TX, power gain (maximum)
Pin RAMP VRAMP max 1.7 1.75 1.83 V
Ramping voltage minimum TX, power gain (minimum)
Pin RAMP VRAMP min 0.1 V
Ramping current maximum TX, VRAMP = 1.75 V, pin RAMP IRAMP max 0.5 mA
Power-added efficiency TX PSSO20
TX QFN20
PAE
PAE
30
35
35
40
%
%
Saturated output power TX, input power = 0 dBm referred to
pins V3_PA_OUT Psat 22 23 24 dBm
Input matching(2) TX, pin PA_IN Load
VSWR < 1.5:1
Output matching(2) TX, pins V3_PA_OUT Load
VSWR < 1.5:1
Harmonics at Psat = 23 dBm TX, pins V3_PA_OUT 2 fo -30 dBc
TX, pins V3_PA_OUT 3 fo -30 dBc
T/R Switch Driver (Current Programming by External Resistor from R_SWITCH to GND)
Switch-out current output
Standby, pin SWITCH_OUT IS_O_standby 1µA
RX IS_O_RX 1µA
TX at 100 IS_O_100 1.7 mA
TX at 1.2 kIS_O_1k2 7mA
TX at 33 kIS_O_33k 17 mA
TX at IS_O_R 19 mA
Low-noise Amplifier(3)
Supply voltage All, pin VS_LNA VS2.7 3.0 5.5 V
Supply current RX IS8 9 mA
Notes: 1. Power amplifier shall be unconditionally stable, maximum duty cycle 100%, true CW operation, maximum load mismatch
and duration: load VSWR = 10:1 (all phases) 10 s, ZG = 50 .
2. With external matching network, load impedance 50 .
3. Low-noise amplifier shall be unconditionally stable.
4. With external matching components.
5. LNA gain can be adjusted with RX_ON voltage according to Figure 19 on page 11. Please note, that for RX_ON below
1.4 V the T/R switch driver switches to TX mode.
5
T7024
4533E–BLURF–07/04
Supply current
(LNA and control logic)
TX (control logic active)
Pin VS_LNA IS0.5 mA
Standby current Standby, pin VS_LNA IS_standby 110 µA
Frequency range RX f2.4 2.5 GHz
Power gain(5) RX, pin LNA_IN to LNA_OUT Gp 15 16 19 dB
Noise figure RX PSSO20
RX QFN20
NF
NF
2.5
2.1
2.8
2.3
dB
dB
Gain compression RX, referred to pin LNA_OUT O1dB -9 -7 -6 dBm
3rd-order input interception point RX IIP3 -16 -14 -13 dBm
Input matching(4) RX, pin LNA_IN VSWRin 2:1
Output matching(4) RX, pin LNA_OUT VSWRout 2:1
Logic Input Levels (RX_ON, PU)(5)
High input level = ‘1’ pins RX_ON and PU ViH 2.4 VS, LNA V
Low input level = ‘0’ ViL 00.5 V
High input current = ‘1’ ViH = 2.4 V IiH 40 60 µA
Low input current = ‘0’ IiL 0.2 µA
Electrical Characteristics (Continued)
Test conditions (unless otherwise specified): VS = 3.0 V, Tamb = 25°C
Parameters Test Conditions Symbol Min. Typ. Max. Unit
Notes: 1. Power amplifier shall be unconditionally stable, maximum duty cycle 100%, true CW operation, maximum load mismatch
and duration: load VSWR = 10:1 (all phases) 10 s, ZG = 50 .
2. With external matching network, load impedance 50 .
3. Low-noise amplifier shall be unconditionally stable.
4. With external matching components.
5. LNA gain can be adjusted with RX_ON voltage according to Figure 19 on page 11. Please note, that for RX_ON below
1.4 V the T/R switch driver switches to TX mode.
Control Logic for LNA and T/R Switch Driver
Operation Mode PU RX_ON
Standby 0 0
TX 1 0
RX 1 1
6T7024
4533E–BLURF–07/04
Typical Operating
Characteristics
Figure 4. LNA (PSSO20): Gain and Noise Figure versus Frequency
Figure 5. LNA (N20): Gain and Noise Figure versus Frequency
Figure 6. LNA: NF and Gain versus Temperature
0
5
10
15
20
2000 2200 2400 2600 2800 3000
Frequency (MHz)
Gain (dB)
0
1
2
3
4
5
6
7
8
NF (dB)
NF
Gain
0
5
10
15
20
25
2000 2200 2400 2600 2800 3000
Frequency (MHz)
Gain (dB)
0
1
2
3
4
5
NF (dB)
NF
Gain
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
-40-20 0 20406080
Temperature (°C)
Relative gain,
relative NF (dB)
NF
Gain
VS = 3 V
7
T7024
4533E–BLURF–07/04
Figure 7. LNA: Typical Switch-out Current versus Rswitch
Figure 8. PA (PSSO20): Output Power and PAE versus Supply
Figure 9. PA (PSSO20): Output Power and PAE versus Ramp Voltage
0
4
8
12
16
20
1 10 100 1000 10000 100000 1000000 10000000
Rswitch()
I
S_O
(mA)
0
10
20
30
40
50
2.7 3.1 3.5 3.9 4.3 4.7
Supply Voltage (V)
Pout (dBm), PAE (%)
100
130
160
190
220
250
I
S_TX
(mA)
PAE
Pout
I_S_TX
f = 2.4 GHz
Vramp = 1.75 V
PinPA = 0 dBm
-50
-30
-10
10
30
50
1.2 1.4 1.6 1.8 2.0
Vramp (V)
Pout (dBm), PAE (%)
0
50
100
150
200
250
I
S_TX
(mA)
PAE
Pout
I_S_TX f = 2.4 GHz
VS = 3 V
PinPA = 0 dBm
8T7024
4533E–BLURF–07/04
Figure 10. PA (PSSO20): Output Power and PAE versus Input Power
Figure 11. PA (PSSO20): Output Power and PAE versus Frequency
Figure 12. PA (QFN20): Output Power and PAE versus Supply Voltage
-10
0
10
20
30
40
-40 -30 -20 -10 0 10
Input Power (dBm)
Pout (dBm), PAE (%), Gp (dB)
0
50
100
150
200
250
PAE
Pout
I_S_TX
VS = 3 V
f = 2.4 GHz
Vramp = 1.75 V
PinPA = 0 dBm
Gain
I
S_TX
(mA)
0
10
20
30
40
50
2400 2420 2440 2460 2480 2500
Frequency (MHz)
Pout (dBm), PAE (%)
0
50
100
150
200
250
I
S_TX
(mA)
PAE
Pout
I_S_TX
VS = 3 V
Vramp = 1.7 V
PinPA = 0 dBm
0
10
20
30
40
50
2.7 3.1 3.5 3.9 4.3 4.7
Supply Voltage (V)
Pout (dBm), PAE (%)
100
130
160
190
220
250
I
S_TX
(mA)
PAE
Pout
I_S_TX
f = 2.4 GHz
Vramp = 1.8 V
PinPA = 0 dBm
9
T7024
4533E–BLURF–07/04
Figure 13. PA (QFN20) Output Power and PAE versus Ramp Voltage
Figure 14. PA (QFN20): Output Power and PAE versus Input Power
Figure 15. PA (QFN20): Output Power and PAE versus Frequency
-50
-30
-10
10
30
50
1.2 1.4 1.6 1.8 2.0
Vramp (V)
Pout (dBm), PAE (%)
0
50
100
150
200
250
I
S_TX
(mA)
PAE
Pout
I_S_TX
f = 2.4 GHz
VS = 3 V
PinPA = 0 dBm
-10
0
10
20
30
40
50
-40 -30 -20 -10 0 10
Input Power (dBm)
Pout (dBm), PAE (%), Gp (dB)
0
50
100
150
200
250
300
I
S_TX
(mA)
PAE
Pout
I_S_TX
VS = 3 V
f = 2.4 GHz
Vramp = 1.8 V
PinPA = 0 dBm
Gain
0
10
20
30
40
50
2400 2420 2440 2460 2480 2500
Frequency (MHz)
Pout (dBm), PAE (%)
0
50
100
150
200
250
I
S_TX
(mA)
PAE
Pout
I_S_TX
VS = 3 V
Vramp = 1.8 V
PinPA = 0 dBm
10 T7024
4533E–BLURF–07/04
Figure 16. LNA: Supply Current versus Temperature
Figure 17. PA (PSSO20): Supply Current versus Iramp and Temperature
Figure 18. PA (PSSO20, QFN20): Pout versus Vramp and Temperature
6.0
6.2
6.4
6.6
6.8
7.0
7.2
7.4
7.6
7.8
8.0
-40 -20 0 20 40 60 80
Temperature (°C)
Supply current (mA)
0
20
40
60
80
100
120
140
160
180
200
0.1 1.0 10.0 100.0 1000.0
Iramp (µA)
Supply current (mA)
-40°C
80°C
40°C
0°C
-20
-10
0
10
20
30
1.0 1.2 1.4 1.6 1.8
Vramp (V)
Pout (dBm)
-40°C
5
80
25
-15
f = 2.4 GHz
VS = 3 V
Pin = 0 dBm
11
T7024
4533E–BLURF–07/04
Figure 19. (PSSO20, QFN20): LNA Gain (dB) versus RX_ON (V)
Input/Output Circuits
Figure 20. Input Circuit PA_IN/V1_PA
Figure 21. Input Circuit RAMP/V1_PA
-25.0
-20.0
-15.0
-10.0
-5.0
0.0
5.0
10.0
15.0
20.0
1.0 1.5 2.0 2.5 3.0
RX_ON (V)
Gain (dB)
VS = 3 V
PA_IN
V1_PA
GND
V1_PA
RAMP
12 T7024
4533E–BLURF–07/04
Figure 22. Input Circuit V2_PA
Figure 23. Input/Output Circuit V3_PA_OUT
Figure 24. Input Circuit SWITCH_OUT/R_SWITCH
V2_PA
GND
V3_PA_OUT
GND
V1_PA
GND
SWITCH_OUT
R_SWITCH
13
T7024
4533E–BLURF–07/04
Figure 25. Input Circuit LNA_IN/VS_LNA
Figure 26. Input Circuit PU/RX_ON
Figure 27. Output Circuit LNA_OUT
VS_LNA
GND
LNA_IN
VS_LNA
LNA_IN /
PU
VS_LNA
GND
LNA_OUT
14 T7024
4533E–BLURF–07/04
Figure 28. Typical Application T7024 (PSSO20 Package)
Blocking capacitors
depending on application
Pin-diode replaced
by LED on
application-board
R1 is selected
with DIL-switch
1
2
3
4
5
6
7
8
9
10
20
19
18
17
16
15
14
13
12
11
PU
RX ON
3.9p
3.9nH
LNA OUT PA IN
V1_PA
V2_PA
3p3
PA ramp
15nH
VS_LNA
1.8p
LNA IN
Switch Out
R1
5.6nH
V3_PA
0p8
PA OUT
harm. termination
T7024
1p5
15
T7024
4533E–BLURF–07/04
Figure 29. Typical Application T7024 (QFN20 Package)
20 19 18 17 16
6 7 8 9 10
1
2
3
4
5
15
14
13
12
11
T7024
3p3
V2_PA
1p2.2p
RX ON
PU
Switch Out
1.8p
LNA IN
VS_LNA
18nH
V3_PA
0p8
2p2
PA OUT
PA ramp
R1
Var
V1_PA
PA IN
LNA OUT
harm. termination
blocking capacitors
depending on application
Pin-diode replaced by
LED on application-board
R1 is selected
with DIL-switch
16 T7024
4533E–BLURF–07/04
Package Information
Ordering Information
Extended Type Number Package Remarks MOQ
T7024-TRS PSSO20 Tube 830 pcs.
T7024-TRQ PSSO20 Taped and reeled 4000 pcs.
T7024-PGP QFN20 Taped and reeled 1500 pcs.
T7024-PGQ QFN20 Taped and reeled 6000 pcs.
T7024-PGPM QFN20 Taped and reeled
Pb free, halogen free 1500 pcs.
T7024-PGQM QFN20 Taped and reeled
Pb free, halogen free 6000 pcs.
Demoboard-T7024-PG QFN20 Evaluation board QFN 1
Demoboard-T7024-TR PSSO20 Evaluation board PSSO 1
17
T7024
4533E–BLURF–07/04
18 T7024
4533E–BLURF–07/04
Recommended PCB Land Pattern
Figure 30. Recommended PCB Land Pattern
Table 1. Recommended PCB Land Pattern Signs
Sign Description Size
A Distance of vias 1.6 mm
B Size of slug pattern 3.1 mm
C Distance slug to pins 0.33 mm
D Diameter of vias 1 mm
E Width of pin pattern 0.3 mm
F Distance of pin pattern 0.33 mm
Printed on recycled paper.
Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are
granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use
as critical components in life support devices or systems.
Atmel Corporation Atmel Operations
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80
Literature Requests
www.atmel.com/literature
4533E–BLURF–07/04
© Atmel Corporation 2004. All rights reserved.
Atmel® and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries.
The Bluetooth name and the Bluetooth trademarks are owned By Bluetooth SIG, and are used by Atmel Corporation under license.
Other terms and product names may be the trademarks of others.