BGB741L7ESD
Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications
Product description
The BGB741L7ESD is a high performance broadband low noise amplifier (LNA) MMIC
based on Infineons silicon germanium carbon (SiGe:C) bipolar technology.
Feature list
Minimum noise figure NFmin = 1.05 dB at 2.4 GHz, 3 V, 10 mA
Supply voltage range VCC = 1.8 to 4.0 V at TA = 25 °C
High RF input power robustness of 20 dBm
Integrated ESD protection: 2 kV HBM at all pins
Product validation
Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.
Potential applications
Satellite navigation systems (e.g. GPS, GLONASS, BeiDou, Galileo)
Wireless communications: WLAN 2.4 GHz and 5-6 GHz bands, broadband LTE or WiMAX LNA
ISM applications like RKE and smart meter, as well as for emerging wireless applications such as DVB-
Terrestrial
Device information
Table 1 Part information
Product name /
Ordering code
Package Pin configuration Marking Pieces /
Reel
BGB741L7ESD /
BGB741L7ESDE6327XTSA1
TSLP-7-1 1 = VCC 2 = VBias 3 = RFin 4 = RFout AY 7500
5 = VCtrl 6 = Current
adjust
7 = Ground
Attention:ESD (Electrostatic discharge) sensitive device, observe handling precautions
Datasheet Please read the Important Notice and Warnings at the end of this document v3.0
www.infineon.com 2018-09-26
Functional block diagram
This functional block diagram explains how the BGB707L7ESD is used. The RF power on/o function is
controlled by applying VCtrl. By using an external resistor Rext, the pre-set current of 5.5 mA (when Rext is
omitted) can be increased. Base VB and collector VC voltages are applied to the respective pins RFin and RFout by
external inductors LB and LC.
internal
Biasing
DC,
VCC
DC,
Vctrl
RF-In RF-Out
VCC
On/OffBias-Out
Current Adjust
1
2
34
5
6
7(on package backside)
GND
Cin Cout
LC
LB
Rext
In Out
BGB7XXL7ESD functional block
7
1 2 3
654
Figure 1 Functional block diagram
BGB741L7ESD
Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications
Functional block diagram
Datasheet 2 v3.0
2018-09-26
Table of contents
Product description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Feature list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Device information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
3 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1 DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Characteristic DC diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5 Package information TSLP-7-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
BGB741L7ESD
Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications
Table of contents
Datasheet 3 v3.0
2018-09-26
1 Operating conditions
Table 2 Operation conditions at TA = 25 °C
Parameter Symbol Values Unit Note or test
condition
Min. Typ. Max.
Supply voltage VCC 1.8 3 4 V
Control voltage in on-mode VCtrl-on 1.2 VCC
Control voltage in o-mode VCtrl-o -0.3 0.3
BGB741L7ESD
Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications
Operating conditions
Datasheet 4 v3.0
2018-09-26
2 Absolute maximum ratings
Table 3 Absolute maximum ratings at TA = 25 °C (unless otherwise specified)
Parameter Symbol Values Unit Note or test condition
Min. Max.
Supply voltage VCC 4
3.5
VTA = 25 °C
TA = -55 °C
Supply current ICC 30 mA
DC current at RFin IB3
Control voltage VCtrl VCC V
ESD stress pulse (HBM) VESD +/- 2 kV
RF input power PRFin 20 dBm
Total power dissipation1) Ptot 120 mW TS ≤ 117 °C
Junction temperature TJ150 °C
Storage temperature TStg -55
Attention:Stresses above the max. values listed here may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may aect device
reliability. Exceeding only one of these values may cause irreversible damage to the integrated
circuit.
1TS is the soldering point temperature. TS is measured on the emitter lead at the soldering point of the PCB
BGB741L7ESD
Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications
Absolute maximum ratings
Datasheet 5 v3.0
2018-09-26
3 Thermal characteristics
Table 4 Thermal resistance
Parameter Symbol Values Unit Note or test condition
Min. Typ. Max.
Junction - soldering point RthJS 275 K/W
0
20
40
60
80
100
120
140
0 50 100 150
Ts [°C]
Ptot [mW]
Figure 2 Total power dissipation Ptot = f(TS)
BGB741L7ESD
Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications
Thermal characteristics
Datasheet 6 v3.0
2018-09-26
4 Electrical characteristics
4.1 DC characteristics
Table 5 DC characteristics at VCC = 3 V, TA = 25 °C
Parameter Symbol Values Unit Note or test
condition
Min. Typ. Max.
Supply current in on-mode ICC-on
5.0
5.5
6
10
6.5
mA VCtrl = 3 V
Rext = open
Rext = 30 kΩ
Rext = 3 kΩ
Supply current in o-mode ICC-o 6 μA VCtrl = 0 V
Control current in on-mode ICtrl-on 14 20 VCtrl = 3 V
Control current in o-mode ICtrl-o 0.1 VCtrl = 0 V
BGB741L7ESD
Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications
Electrical characteristics
Datasheet 7 v3.0
2018-09-26
4.2 Characteristic DC diagrams
The measurement setup is an application circuit according to Figure 1 on page 2, using the integrated biasing.
TA = 25 °C (unless otherwise specified).
Figure 3 Supply current vs external resistance ICC = f(Rext), VCtrl = 3 V, VCC = parameter
Figure 4 Supply current vs supply voltage ICC = f(VCC), VCtrl = 3 V, Rext = parameter
BGB741L7ESD
Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications
Electrical characteristics
Datasheet 8 v3.0
2018-09-26
Figure 5 Supply current vs control voltage ICC = f(VCtrl), VCC = 3 V, Rext = parameter
Figure 6 Supply current vs temperature ICC = f(TA), VCtrl = VCC = 3 V, Rext = open
BGB741L7ESD
Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications
Electrical characteristics
Datasheet 9 v3.0
2018-09-26
4.3 AC characteristics
The measurement setup is a test fixture with Bias-T’s in a 50 Ω system, TA = 25 °C.
Bias-TBias-T
RF-In
VCC
Current
Adjust
RF-Out
Bias-
Out
On/Off
Control
VB
In
VC
Out
GND
Top View
1
2
3 4
5
6
7
Figure 7 Testing setup
BGB741L7ESD
Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications
Electrical characteristics
Datasheet 10 v3.0
2018-09-26
Table 6 AC characteristics, VC = 3 V, f = 150 MHz
Parameter Symbol Values Unit Note or test condition
Min. Typ. Max.
Minimum noise figure 1) NFmin 1.05
0.95
dB IC = 6 mA
IC = 10 mA
ZS = ZS,opt
Noise figure in 50 Ω system 2) NF50 1.1
1.05
IC = 6 mA
IC = 10 mA
ZS = ZL = 50 Ω
Transducer gain |S21 19
21
IC = 6 mA
IC = 10 mA
Maximum stable power gain Gms 20
21.5
IC = 6 mA
IC = 10 mA
Input 1 dB gain compression point IP1dB -5.5
-8
dBm ICq = 6 mA
ICq = 10 mA
Input 3rd order intercept point IIP35.5
3.5
IC = 6 mA
IC = 10 mA
Input return loss RLin 14
18
dB IC = 6 mA
IC = 10 mA
Output return loss RLout 12.5
18.5
IC = 6 mA
IC = 10 mA
1Test fixture losses are extracted
2Parameter measured on an application board according to Figure 1 on page 2 presenting a 50 Ω system to
the device. ICq is the quiescent current, that is at small RF input power level. IC increases as RF input power
level approaches IP1dB.
BGB741L7ESD
Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications
Electrical characteristics
Datasheet 11 v3.0
2018-09-26
Table 7 AC characteristics, VC = 3 V, f = 450 MHz
Parameter Symbol Values Unit Note or test condition
Min. Typ. Max.
Minimum noise figure 1) NFmin 1.05
0.95
dB IC = 6 mA
IC = 10 mA
ZS = ZS,opt
Noise figure in 50 Ω system 2) NF50 1.1
1.05
IC = 6 mA
IC = 10 mA
ZS = ZL = 50 Ω
Transducer gain |S21 18.5
20.5
IC = 6 mA
IC = 10 mA
Maximum available power gain Gma 19
20.5
IC = 6 mA
IC = 10 mA
Input 1 dB gain compression point IP1dB -5
-7.5
dBm ICq = 6 mA
ICq = 10 mA
Input 3rd order intercept point IIP34
2.5
IC = 6 mA
IC = 10 mA
Input return loss RLin 15.5
21
dB IC = 6 mA
IC = 10 mA
Output return loss RLout 14.5
28
IC = 6 mA
IC = 10 mA
1Test fixture losses are extracted
2Parameter measured on an application board according to Figure 1 on page 2 presenting a 50 Ω system to
the device. ICq is the quiescent current, that is at small RF input power level. IC increases as RF input power
level approaches IP1dB.
BGB741L7ESD
Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications
Electrical characteristics
Datasheet 12 v3.0
2018-09-26
Table 8 AC characteristics, VC = 3 V, f = 900 MHz
Parameter Symbol Values Unit Note or test condition
Min. Typ. Max.
Minimum noise figure 1) NFmin 1.05
0.95
dB IC = 6 mA
IC = 10 mA
ZS = ZS,opt
Noise figure in 50 Ω system 2) NF50 1.1
1.05
IC = 6 mA
IC = 10 mA
ZS = ZL = 50 Ω
Transducer gain |S21 18.5
20
IC = 6 mA
IC = 10 mA
Maximum available power gain Gma 19
20.5
IC = 6 mA
IC = 10 mA
Input 1 dB gain compression point IP1dB -5
-7
dBm ICq = 6 mA
ICq = 10 mA
Input 3rd order intercept point IIP33
1.5
IC = 6 mA
IC = 10 mA
Input return loss RLin 15.5
19
dB IC = 6 mA
IC = 10 mA
Output return loss RLout 14.5
28.5
IC = 6 mA
IC = 10 mA
1Test fixture losses are extracted
2Parameter measured on an application board according to Figure 1 on page 2 presenting a 50 Ω system to
the device. ICq is the quiescent current, that is at small RF input power level. IC increases as RF input power
level approaches IP1dB.
BGB741L7ESD
Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications
Electrical characteristics
Datasheet 13 v3.0
2018-09-26
Table 9 AC characteristics, VC = 3 V, f = 1.5 GHz
Parameter Symbol Values Unit Note or test condition
Min. Typ. Max.
Minimum noise figure 1) NFmin 1.05
1.0
dB IC = 6 mA
IC = 10 mA
ZS = ZS,opt
Noise figure in 50 Ω system 2) NF50 1.1
1.05
IC = 6 mA
IC = 10 mA
ZS = ZL = 50 Ω
Transducer gain |S21 18
19.5
IC = 6 mA
IC = 10 mA
Maximum available power gain Gma 18.5
20
IC = 6 mA
IC = 10 mA
Input 1 dB gain compression point IP1dB -4.5
-6.5
dBm ICq = 6 mA
ICq = 10 mA
Input 3rd order intercept point IIP32.5
1
IC = 6 mA
IC = 10 mA
Input return loss RLin 14.5
16
dB IC = 6 mA
IC = 10 mA
Output return loss RLout 14
23
IC = 6 mA
IC = 10 mA
1Test fixture losses are extracted
2Parameter measured on an application board according to Figure 1 on page 2 presenting a 50 Ω system to
the device. ICq is the quiescent current, that is at small RF input power level. IC increases as RF input power
level approaches IP1dB.
BGB741L7ESD
Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications
Electrical characteristics
Datasheet 14 v3.0
2018-09-26
Table 10 AC characteristics, VC = 3 V, f = 1.9 GHz
Parameter Symbol Values Unit Note or test condition
Min. Typ. Max.
Minimum noise figure 1) NFmin 1.05
1.05
dB IC = 6 mA
IC = 10 mA
ZS = ZS,opt
Noise figure in 50 Ω system 2) NF50 1.15
1.1
IC = 6 mA
IC = 10 mA
ZS = ZL = 50 Ω
Transducer gain |S21 17.5
19
IC = 6 mA
IC = 10 mA
Maximum available power gain Gma 18
19.5
IC = 6 mA
IC = 10 mA
Input 1 dB gain compression point IP1dB -4
-6
dBm ICq = 6 mA
ICq = 10 mA
Input 3rd order intercept point IIP32.5
1
IC = 6 mA
IC = 10 mA
Input return loss RLin 13.5
15
dB IC = 6 mA
IC = 10 mA
Output return loss RLout 13.5
21
IC = 6 mA
IC = 10 mA
1Test fixture losses are extracted
2Parameter measured on an application board according to Figure 1 on page 2 presenting a 50 Ω system to
the device. ICq is the quiescent current, that is at small RF input power level. IC increases as RF input power
level approaches IP1dB.
BGB741L7ESD
Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications
Electrical characteristics
Datasheet 15 v3.0
2018-09-26
Table 11 AC characteristics, VC = 3 V, f = 2.4 GHz
Parameter Symbol Values Unit Note or test condition
Min. Typ. Max.
Minimum noise figure 1) NFmin 1.1
1.05
dB IC = 6 mA
IC = 10 mA
ZS = ZS,opt
Noise figure in 50 Ω system 2) NF50 1.15
1.1
IC = 6 mA
IC = 10 mA
ZS = ZL = 50 Ω
Transducer gain |S21 17
18.5
IC = 6 mA
IC = 10 mA
Maximum available power gain Gma 17.5
19
IC = 6 mA
IC = 10 mA
Input 1 dB gain compression point IP1dB -3.5
-5.5
dBm ICq = 6 mA
ICq = 10 mA
Input 3rd order intercept point IIP33
1
IC = 6 mA
IC = 10 mA
Input return loss RLin 12.5
13.5
dB IC = 6 mA
IC = 10 mA
Output return loss RLout 12.5
18
IC = 6 mA
IC = 10 mA
1Test fixture losses are extracted
2Parameter measured on an application board according to Figure 1 on page 2 presenting a 50 Ω system to
the device. ICq is the quiescent current, that is at small RF input power level. IC increases as RF input power
level approaches IP1dB.
BGB741L7ESD
Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications
Electrical characteristics
Datasheet 16 v3.0
2018-09-26
Table 12 AC characteristics, VC = 3 V, f = 3.5 GHz
Parameter Symbol Values Unit Note or test condition
Min. Typ. Max.
Minimum noise figure 1) NFmin 1.25
1.2
dB IC = 6 mA
IC = 10 mA
ZS = ZS,opt
Noise figure in 50 Ω system 2) NF50 1.35
1.25
IC = 6 mA
IC = 10 mA
ZS = ZL = 50 Ω
Transducer gain |S21 15
16.5
IC = 6 mA
IC = 10 mA
Maximum available power gain Gma 16
17.5
IC = 6 mA
IC = 10 mA
Input 1 dB gain compression point IP1dB -2.5
-4.5
dBm ICq = 6 mA
ICq = 10 mA
Input 3rd order intercept point IIP33.5
1.5
IC = 6 mA
IC = 10 mA
Input return loss RLin 10
10.5
dB IC = 6 mA
IC = 10 mA
Output return loss RLout 10
13.5
IC = 6 mA
IC = 10 mA
1Test fixture losses are extracted
2Parameter measured on an application board according to Figure 1 on page 2 presenting a 50 Ω system to
the device. ICq is the quiescent current, that is at small RF input power level. IC increases as RF input power
level approaches IP1dB.
BGB741L7ESD
Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications
Electrical characteristics
Datasheet 17 v3.0
2018-09-26
Table 13 AC characteristics, VC = 3 V, f = 5.5 GHz
Parameter Symbol Values Unit Note or test condition
Min. Typ. Max.
Minimum noise figure 1) NFmin 1.8
1.75
dB IC = 6 mA
IC = 10 mA
ZS = ZS,opt
Noise figure in 50 Ω system 2) NF50 1.95
1.85
IC = 6 mA
IC = 10 mA
ZS = ZL = 50 Ω
Transducer gain |S21 12
13
IC = 6 mA
IC = 10 mA
Maximum available power gain Gma 14
15
IC = 6 mA
IC = 10 mA
Input 1 dB gain compression point IP1dB -1
-3
dBm ICq = 6 mA
ICq = 10 mA
Input 3rd order intercept point IIP38.5
4
IC = 6 mA
IC = 10 mA
Input return loss RLin 7
8
dB IC = 6 mA
IC = 10 mA
Output return loss RLout 7
8.5
IC = 6 mA
IC = 10 mA
1Test fixture losses are extracted
2Parameter measured on an application board according to Figure 1 on page 2 presenting a 50 Ω system to
the device. ICq is the quiescent current, that is at small RF input power level. IC increases as RF input power
level approaches IP1dB.
BGB741L7ESD
Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications
Electrical characteristics
Datasheet 18 v3.0
2018-09-26
5 Package information TSLP-7-1
Figure 8 Package outline
Figure 9 Foot print
BGB741L7ESD
Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications
Package information TSLP-7-1
Datasheet 19 v3.0
2018-09-26
Figure 10 Marking layout example
ALL DIMENSIONS ARE IN UNITS MM
THE DRAWING IS IN COMPLIANCE WITH ISO 128 & PROJECTION METHOD 1 [ ]
4
2
8
2.3
1.6
0.5
INDEX MARKING
PIN 1
Figure 11 Tape information
Note: See our Recommendations for Printed Circuit Board Assembly of TSLP/TSSLP/TSNP Packages .
The marking layout is an example. For the real marking code refer to the device information on the
first page. The number of characters shown in the layout example is not necessarily the real one. The
marking layout can consist of less characters.
BGB741L7ESD
Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications
Package information TSLP-7-1
Datasheet 20 v3.0
2018-09-26
Revision history
Document
version
Date of
release
Description of changes
3.0 2018-09-26 New datasheet layout.
BGB741L7ESD
Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications
Revision history
Datasheet 21 v3.0
2018-09-26
Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2018-09-26
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2018 Infineon Technologies AG
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
Document reference
IFX-zev1491985034409
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaenheitsgarantie”) .
With respect to any examples, hints or any typical values
stated herein and/or any information regarding the
application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities of
any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer’s compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer’s products and any use of the product of
Infineon Technologies in customer’s applications.
The data contained in this document is exclusively
intended for technically trained sta. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies oice.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury