Rev. 1.5 9/13 Copyright © 2013 by Silicon Laboratories Si8450/51/52/55
Not Recommended
for New Designs
Si8450/51/52/55
LOW POWER FIVE-CHANNEL DIGITAL ISOLATOR
Features
Applications
Safety Regulatory Approvals
Description
Silicon Lab's family of ultra-low-power digital isolators are CMOS
devices offering substantial data rate, propagation delay, power, size,
reliability, and external BOM advantages when compared to legacy
isolation technologies. The operating parameters of these products
remain stable across wide temperature ranges throughout their
service life. For ease of design, only VDD bypass capacitors are
required.
Data rates up to 150 Mbps are supported, and all devices achieve
worst-case propagation delays of less than 10 ns. All products are
safety certified by UL, CSA, and VDE and support withstand voltages
of up to 2.5 kVrms. These devices are available in a 16-pin narrow-
body SOIC package.
High-speed operation
DC to 150 Mbps
No start-up initialization required
Wide Operating Supply Voltage:
2.70–5.5 V
Ultra-low-power (typical)
5 V Operation:
< 1.6 mA per channel at 1 Mbps
< 6 mA per channel at 100 Mbps
2.70 V Operation:
< 1.4 mA per channel at 1 Mbps
< 4 mA per channel at 100 Mbps
High electromagnetic immunity
Up to 2500 VRMS isolation
60-year life at rated working
voltage
Precise timing (typica l)
<10 ns worst case
1.5 ns pulse width distortion
0.5 ns channel-channel skew
2 ns propagation delay skew
6 ns minimum pulse width
Transient Immunity 25 kV/µs
Wide temperature range
–40 to 125 °C at 150 Mbps
RoHS-compliant packages
SOIC-16 narrow body
Industrial automation systems
Hybrid electric vehicles
Isolated switch mode supplies
Isolated ADC, DAC
Motor control
Power inverters
Communications systems
UL 1577 recognized
Up to 2500 VRMS for 1 minute
CSA component notice 5A
approval
IEC 60950-1, 61010-1
(reinforced insulation)
VDE certification conformity
IEC 60747-5-2
(VDE0884 Part 2)
Ordering Information:
See p age 29.
Si8450/51/52/55
2 Rev. 1.5
Not Recommended
for New Designs
Si8450/51/52/55
Rev. 1.5 3
Not Recommended
for New Designs
TABLE OF CONTENTS
Section Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
2.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
2.2. Eye Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
2.3. Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
2.4. Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
2.5. Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
3. Errata and Design Migration Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
3.1. Enable Pin Causes Outputs to Go Low (Revision A Only) . . . . . . . . . . . . . . . . . . . .26
3.2. Power Supply Bypass Capacitors (Revision A and Revision B) . . . . . . . . . . . . . . . .26
3.3. Latch Up Immunity (Revision A Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
4. Pin Descriptions (Si8450/51/52) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
5. Pin Descriptions (Si8455) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
7. Package Outline: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
8. Land Pattern: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
9. Top Marking: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
9.1. 16-Pin Narrow Body SOIC Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
9.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Si8450/51/52/55
4 Rev. 1.5
Not Recommended
for New Designs
1. Electrical Specifications
Table 1. Recommended Operating Conditions
Parameter Symbol Test Condition Min Typ Max Unit
Ambient Operating Temperature* TA150 Mbps, 15 pF, 5 V –40 25 125 °C
Supply Volta ge VDD1 2.70 5.5 V
VDD2 2.70 5.5 V
*Note: The maximum ambient temperature is dependent on data frequency, output loading, number of operating channels,
and supply voltage.
Table 2. Absolute Maximum Ratings1
Parameter Symbol Min Typ Max Unit
Storage Temperature2TSTG –65 150 °C
Ambient Temperatur e Unde r Bia s TA–40 125 °C
Supply Voltage (Revision A)3VDD1, VDD2 –0.5 5.75 V
Supply Voltage (Revision B)3VDD1, VDD2 –0.5 6.0 V
Input Voltage VI–0.5 VDD + 0.5 V
Output Voltage VO–0.5 VDD + 0.5 V
Output Current Drive Channel IO——10mA
Lead Solder Temperature (10 s) 260 °C
Maximum Isolation Voltage (1 s) 3600 VRMS
Notes:
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be
restricted to conditions as specified in the operational sections of this data sheet.
2. VDE certifies storage temperature from –40 to 150 °C.
3. See "6. Ordering Guide" on page 29 for more information.
Si8450/51/52/55
Rev. 1.5 5
Not Recommended
for New Designs
Table 3. Electrical Characteristics
(VDD1 =5V±10%, V
DD2 =5V±10%, T
A= –40 to 125 °C)
Parameter Symbol Test Condition Min Typ Max Unit
High Level Input Voltage VIH 2.0 V
Low Level Input Voltage VIL ——0.8V
High Level Output Voltage VOH loh = –4 mA VDD1,VDD2 –0.4 4.8 V
Low Level Output Voltage VOL lol = 4 mA 0.2 0.4 V
Input Leakag e Curr en t IL——±10µA
Output Impedance1ZO—85
Enable Input High Current IENH VENx =V
IH —2.0µA
Enable Input Low Current IENL VENx =V
IL —2.0µA
DC Supply Current (All inputs 0 V or at Supply)
Si8450Ax, Bx, Si8455Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
1.6
2.9
7.0
3.1
2.4
4.4
10.5
4.7
mA
Si8451Ax, Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
2.0
3.0
6.0
4.1
3.0
4.5
9.0
6.2
mA
Si8452Ax, Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
2.3
2.7
5.4
4.7
3.5
4.1
8.1
7.1
mA
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)
Si8450Ax, Bx, Si8455Bx
VDD1
VDD2
4.3
3.5 6.5
5.3 mA
Si8451Ax, Bx
VDD1
VDD2
4.1
4.0 6.2
6.0 mA
Si8452Ax, Bx
VDD1
VDD2
4.1
4.0 6.2
6.0 mA
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
3. See "3. Errata and Design Migration Guidelines" on page 26 for more details.
4. Start-up time is the time period from the application of power to valid data at the output.
Si8450/51/52/55
6 Rev. 1.5
Not Recommended
for New Designs
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)
Si8450Bx, Si8455Bx
VDD1
VDD2
4.3
4.8 6.5
6.7 mA
Si8451Bx
VDD1
VDD2
4.4
5.0 6.2
7.0 mA
Si8452Bx
VDD1
VDD2
4.6
4.8 6.4
6.7 mA
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)
Si8450Bx, Si8455Bx
VDD1
VDD2
4.6
24 6.9
30 mA
Si8451Bx
VDD1
VDD2
8.6
20.4 10.8
25.5 mA
Si8452Bx
VDD1
VDD2
12.6
16.5 15.8
20.6 mA
Timing Characteristics
Si845xAx
Maximum Data Rate 0 1.0 Mbps
Minimum Pulse Width 250 ns
Propagation Delay tPHL, tPLH See Figure 2 35 ns
Pulse Width Distortion
|tPLH - tPHL|PWD See Figure 2 25 ns
Propagation Delay Skew2tPSK(P-P) 40 ns
Channel-Channel Skew tPSK 35 ns
Table 3. Electrical Characteristics (Continued)
(VDD1 =5V±10%, V
DD2 =5V±10%, T
A= –40 to 125 °C)
Parameter Symbol Test Condition Min Typ Max Unit
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
3. See "3. Errata and Design Migration Guidelines" on page 26 for more details.
4. Start-up time is the time period from the application of power to valid data at the output.
Si8450/51/52/55
Rev. 1.5 7
Not Recommended
for New Designs
Si845xBx
Maximum Data Rate 0 150 Mbps
Minimum Pulse Width 6.0 ns
Propagation Delay tPHL, tPLH See Figure 2 3.0 6.0 9.5 ns
Pulse Width Distortion
|tPLH - tPHL|PWD See Figure 2 1.5 2.5 ns
Propagation Delay Skew2tPSK(P-P) —2.03.0ns
Channel-Channel Skew tPSK —0.51.8ns
All Models
Output Rise Time trCL=15pF
See Figure 2 —3.85.0ns
Output Fall Time tfCL=15pF
See Figure 2 —2.83.7ns
Common Mode Transient
Immunity CMTI VI=V
DD or 0 V 25 kV/µs
Enable to Data Valid3ten1 See Figure 1 5.0 8.0 ns
Enable to Data Tri-State3ten2 See Figure 1 7.0 9.2 ns
Start-up Time3,4 tSU —1540µs
Table 3. Electrical Characteristics (Continued)
(VDD1 =5V±10%, V
DD2 =5V±10%, T
A= –40 to 125 °C)
Parameter Symbol Test Condition Min Typ Max Unit
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
3. See "3. Errata and Design Migration Guidelines" on page 26 for more details.
4. Start-up time is the time period from the application of power to valid data at the output.
Si8450/51/52/55
8 Rev. 1.5
Not Recommended
for New Designs
Figure 1. ENABLE Timing Diagram
Figure 2. Propagation Delay Timing
ENABLE
OUTPUTS
ten1 ten2
Typical
Input tPLH tPHL
Typical
Output trtf
90%
10%
90%
10%
1.4 V
1.4 V
Si8450/51/52/55
Rev. 1.5 9
Not Recommended
for New Designs
Table 4. Electrical Characteristics
(VDD1 = 3.3 V±10%, VDD2 = 3.3 V±10%, TA= –40 to 125 °C)
Parameter Symbol Test Condition Min Typ Max Unit
High Level Input Voltage VIH 2.0 V
Low Level Input Voltage VIL ——0.8V
High Level Output Voltage VOH loh = –4 mA VDD1,VDD2 –0.4 3.1 V
Low Level Output Voltage VOL lol = 4 mA 0.2 0.4 V
Input Leakage Current IL——±10µA
Output Impedance1ZO—85
Enable Input High Current IENH VENx = VIH —2.0µA
Enable Input Low Current IENL VENx = VIL —2.0µA
DC Supply Current (All inputs 0 V or at supply)
Si8450Ax, Bx, Si84 55 Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 dc
All inputs 0 dc
All inputs 1 dc
All inputs 1 dc
1.6
2.9
7.0
3.1
2.4
4.4
10.5
4.7
mA
Si8451Ax, Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 dc
All inputs 0 dc
All inputs 1 dc
All inputs 1 dc
2.0
3.0
6.0
4.1
3.0
4.5
9.0
6.2
mA
Si8452Ax, Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
2.3
2.7
5.4
4.7
3.5
4.1
8.1
7.1
mA
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)
Si8450Ax, Bx, Si84 55 Bx
VDD1
VDD2
4.3
3.5 6.5
5.3 mA
Si8451Ax, Bx
VDD1
VDD2
4.1
4.0 6.2
6.0 mA
Si8452Ax, Bx
VDD1
VDD2
4.1
4.0 6.2
6.0 mA
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
3. See "3. Errata and Design Migration Guidelines" on page 26 for more details.
4. S tart-up time is the time period from the application of power to valid data at the output.
Si8450/51/52/55
10 Rev. 1.5
Not Recommended
for New Designs
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)
Si8450Bx, Si8455B x
VDD1
VDD2
4.3
4.8 6.5
6.7 mA
Si8451Bx
VDD1
VDD2
4.4
5.0 6.2
7.0 mA
Si8452Bx
VDD1
VDD2
4.6
4.8 6.4
6.7 mA
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)
Si8450Bx, Si8455B x
VDD1
VDD2
4.4
16.8 6.6
21 mA
Si8451Bx
VDD1
VDD2
6.9
14.5 8.6
18.1 mA
Si8452Bx
VDD1
VDD2
9.5
12 11.9
15 mA
Timing Characteristics
Si845xAx
Maximum Data Rate 0 1.0 Mbps
Minimum Pulse Width 250 ns
Propagation Delay tPHL,tPLH See Figure 2 35 ns
Pulse Width Distortion
|tPLH - tPHL|PWD See Figure 2 25 ns
Propagation Delay Skew2tPSK(P-P) 40 ns
Channel-Channel Skew tPSK 35 ns
Table 4. Electrical Characteristics (Continued)
(VDD1 = 3.3 V±10%, VDD2 = 3.3 V±10%, TA= –40 to 125 °C)
Parameter Symbol Test Condition Min Typ Max Unit
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
3. See "3. Errata and Design Migration Guidelines" on page 26 for more details.
4. S tart-up time is the time period from the application of power to valid data at the output.
Si8450/51/52/55
Rev. 1.5 11
Not Recommended
for New Designs
Si845xBx
Maximum Data Rate 0 150 Mbps
Minimum Pulse Width 6.0 ns
Propagation Delay tPHL, tPLH See Figure 2 3.0 6.0 9.5 ns
Pulse Width Distortion
|tPLH - tPHL|PWD See Figure 2 1.5 2.5 ns
Propagation Delay Skew2tPSK(P-P) —2.03.0ns
Channel-Channel Skew tPSK —0.51.8ns
All Models
Output Rise Time trCL=15pF
See Figure 2 —4.36.1ns
Output Fall Time tfCL=15pF
See Figure 2 —3.04.3ns
Common Mode Transient
Immunity CMTI VI=V
DD or 0 V 25 kV/µs
Enable to Data Valid3ten1 See Figure 1 5.0 8.0 ns
Enable to Data Tri-State3ten2 See Figure 1 7.0 9.2 ns
Start-up Time3,4 tSU —1540µs
Table 4. Electrical Characteristics (Continued)
(VDD1 = 3.3 V±10%, VDD2 = 3.3 V±10%, TA= –40 to 125 °C)
Parameter Symbol Test Condition Min Typ Max Unit
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
3. See "3. Errata and Design Migration Guidelines" on page 26 for more details.
4. S tart-up time is the time period from the application of power to valid data at the output.
Si8450/51/52/55
12 Rev. 1.5
Not Recommended
for New Designs
Table 5. Electrical Characteristics1
(VDD1 = 2.70 V, VDD2 = 2.7 0 V, TA= –40 to 125 °C)
Parameter Symbol Test Condition Min Typ Max Unit
High Level Input Voltage VIH 2.0 V
Low Level Input Voltage VIL ——0.8V
High Level Output Voltage VOH lOH = –4mA V
DD1,VDD2 –0.4 2.3 V
Low Level Output Voltage VOL IOL =4mA 0.2 0.4 V
Input Leakage Current IL——±10µA
Output Impedance2ZO—85
Enable Input High Current IENH VENx =V
IH —2.0µA
Enable Input Low Current IENL VENx =V
IL —2.0µA
DC Supply Current (All inputs 0 V or at supply)
Si8450Ax, Bx, Si8455Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
1.6
2.9
7.0
3.1
2.4
4.4
10.5
4.7
mA
Si8451Ax, Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
2.0
3.0
6.0
4.1
3.0
4.5
9.0
6.2
mA
Si8452Ax, Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
2.3
2.7
5.4
4.7
3.5
4.1
8.1
7.1
mA
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)
Si8450Ax, Bx, Si8455Bx
VDD1
VDD2
4.3
3.5 6.5
5.3 mA
Si8451Ax, Bx
VDD1
VDD2
4.1
4.0 6.2
6.0 mA
Si8452Ax, Bx
VDD1
VDD2
4.1
4.0 6.2
6.0 mA
Notes:
1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is
constrained to TA= 0 to 85 °C.
2. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When drivin g loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the
same supply voltages, load, and ambient temperature.
4. See "3. Errata and Design Migration Guidelines" on page 26 for more details.
5. Start-up time is the time period from the application of powe r to valid data at the output.
Si8450/51/52/55
Rev. 1.5 13
Not Recommended
for New Designs
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)
Si8450Bx, Si8455Bx
VDD1
VDD2
4.3
4.8 6.5
6.7 mA
Si8451Bx
VDD1
VDD2
4.4
5.0 6.2
7.0 mA
Si8452Bx
VDD1
VDD2
4.6
4.8 6.4
6.7 mA
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)
Si8450Bx, Si8455Bx
VDD1
VDD2
4.3
13.3 6.5
16.6 mA
Si8451Bx
VDD1
VDD2
6.2
11.7 7.8
14.6 mA
Si8452Bx
VDD1
VDD2
8.0
9.9 10
12.4 mA
Timing Characteristics
Si845xAx
Maximum Data Rate 0 1.0 Mbps
Minimum Pulse Width 250 ns
Propagation Delay tPHL,tPLH See Figure 2 35 ns
Pulse Width Distortion
|tPLH - tPHL|PWD See Figure 2 25 ns
Propagation Delay Skew3tPSK(P-P) 40 ns
Channel-Channel Skew tPSK 35 ns
Table 5. Electrical Characteristics1 (Continued)
(VDD1 = 2.70 V, VDD2 = 2.7 0 V, TA= –40 to 125 °C)
Parameter Symbol Test Condition Min Typ Max Unit
Notes:
1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is
constrained to TA= 0 to 85 °C.
2. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When drivin g loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the
same supply voltages, load, and ambient temperature.
4. See "3. Errata and Design Migration Guidelines" on page 26 for more details.
5. Start-up time is the time period from the application of powe r to valid data at the output.
Si8450/51/52/55
14 Rev. 1.5
Not Recommended
for New Designs
Si845xBx
Maximum Data Rate 0 150 Mbps
Minimum Pulse Width 6.0 ns
Propagation Delay tPHL, tPLH See Figure 2 3.0 6.0 9.5 ns
Pulse Width Distortion
|tPLH - tPHL|PWD See Figure 2 1.5 2.5 ns
Propagation Delay Skew3tPSK(P-P) —2.03.0ns
Channel-Channel Skew tPSK —0.51.8ns
All Models
Output Rise Time trCL=15pF
See Figure 2 —4.86.5ns
Output Fall Time tfCL=15pF
See Figure 2 —3.24.6ns
Common Mode Transient
Immunity CMTI VI=V
DD or 0 V 25 kV/µs
Enable to Data Valid4ten1 See Figure 1 5.0 8.0 ns
Enable to Data Tri-State4ten2 See Figure 1 7.0 9.2 n s
Start-up Time4,5 tSU —1540µs
Table 5. Electrical Characteristics1 (Continued)
(VDD1 = 2.70 V, VDD2 = 2.7 0 V, TA= –40 to 125 °C)
Parameter Symbol Test Condition Min Typ Max Unit
Notes:
1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is
constrained to TA= 0 to 85 °C.
2. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When drivin g loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the
same supply voltages, load, and ambient temperature.
4. See "3. Errata and Design Migration Guidelines" on page 26 for more details.
5. Start-up time is the time period from the application of powe r to valid data at the output.
Si8450/51/52/55
Rev. 1.5 15
Not Recommended
for New Designs
Table 6. Regulatory Information*
CSA
The Si84xx is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.
61010-1: Up to 300 VRMS reinforced insulation working voltage; up to 600 VRMS basic insulation working voltage.
60950-1: Up to 130 VRMS reinforced insulation working voltage; up to 600 VRMS basic insulation working voltage.
VDE
The Si84xx is certified according to IEC 60747-5- 2. For more details, see File 5006301-4880-0001.
60747-5-2: Up to 560 Vpeak for basic insulation working voltage.
UL
The Si84xx is certified under UL1577 component recognition program. For more d etails, see File E257455.
Rated up to 2500 V RMS isolation voltag e for basic insulation.
*Note: Regulatory Certifications apply to 2.5 kVRMS rated devices which are production tested to 3.0 kVRMS for 1 sec.
For more information, see "6. Ordering Guide" on page 29.
Table 7. Insulation and Safety-Related Specifications
Parameter Symbol Test Condition Value Unit
NB SOIC-16
Nominal Air Gap (Clearance)1L(IO1) 4.9 mm
Nominal External Tracking (Creepage)1L(IO2) 4.01 mm
Minimum Internal Gap (Internal Clearance) 0.008 mm
Tracking Resistance
(Proof Tracking Index) PTI IEC60112 600 VRMS
Erosion Depth ED 0.019 mm
Resistance (Input-Output)2RIO 1012
Capacitance (Input-Output)2CIO f=1MHz 2.0 pF
Input Capacitance3CI4.0 pF
Notes:
1. The values in this table correspond to the nominal creepage and clearance values as detailed in "7. Package Outline:
16-Pin Narrow Body SOIC" on page 31. VDE certifies the clearance and creepage limits as 4.7 mm minimum for the
NB SOIC-16 package. UL does not impose a clearance and creepage minimum for component level certifications. CSA
certifies the cl ea ra n c e a nd cr ee page limits as 3.9 mm minimum for the NB SOIC-16 package.
2. To determine resistance and capacitance, the Si84xx is converted into a 2-termin al device. Pins 1–8 are shorted
together to form the first terminal and pins 9–16 are shorted together to form the second terminal. The parameters are
then measured between these two terminals.
3. Measured from input pin to ground.
Si8450/51/52/55
16 Rev. 1.5
Not Recommended
for New Designs
Table 8. IEC 60664-1 (VDE 0844 Part 2) Ratings
Parameter Test Condition Specification
Basic Isolation Group Material Group I
Installation Classification
Rated Mains Voltages < 150 VRMS I-IV
Rated Mains Voltages < 300 VRMS I-III
Rated Mains Voltages < 400 VRMS I-II
Rated Mains Voltages < 600 VRMS I-II
Table 9. IEC 60747-5-2 Insulation Characteristics for Si84xxxB*
Parameter Symbol Test Condition Characteristic Unit
Maximum Working Insulation Voltage VIORM 560 V peak
Input to Output Test Voltage VPR
Method b1
(VIORM x 1.875 = VPR, 100%
Production Test, tm=1 sec,
Partial Discharge < 5 pC) 1050
V peak
Transient Overvoltage VIOTM t = 60 sec 4000 V peak
Pollution Degree (DIN VDE 0110, Table 1) 2
Insulation Resistance at TS, VIO =500V RS>109
*Note: Maintenance of the safety data is ensured by protective circuits. The Si84xx provides a climate classification of
40/125/21.
Table 10. IEC Safety Limiting Values1
Parameter Symbol Test Cond i tion Min Ty p Max Unit
NB SOIC-16
Case Temper ature TS—— 150 °C
Safety input, output, or
supply current ISJA = 105 °C/W (NB SOIC-16),
VI=5.5V, T
J=15C, T
A=2C —— 215 mA
Device Power Dissipa-
tion2PD—— 415 mW
Notes:
1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figure 3.
2. The Si845x is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 ºC, CL = 15 pF, input a 150 Mbps 50% duty cycle square
wave.
Si8450/51/52/55
Rev. 1.5 17
Not Recommended
for New Designs
Figure 3. (NB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values
with Case Temperature per DIN EN 60747-5-2
Table 11. Thermal Characteristics
Parameter Symbol Typ Unit
NB SOIC-16
IC Junction-to-Air Thermal Resistance JA 105 °C/W
0 20015010050
500
400
200
100
0
Temperature (ºC)
Safety-Limiting Current (mA)
430
300
360
215
VDD1, VDD2 = 2.70 V
VDD1, VDD2 = 3.6 V
VDD1, VDD2 = 5.5 V
Si8450/51/52/55
18 Rev. 1.5
Not Recommended
for New Designs
2. Functional Description
2.1. Theory of Operation
The operation of an Si845x channel is analogous to that of an opto coupler, except an RF carrier is modulated
instead of light. This simple architecture provides a robust isolated data path and requires no special
considerations or initialization at start-up. A simplified block diagram for a single Si845x channel is shown in
Figure 4.
Figure 4. Simplified Channel Diagram
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier.
Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The
Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the
result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it
provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See
Figure 5 for more details.
Figure 5. Modulation Scheme
RF
OSCILLATOR
MODULATOR DEMODULATOR
A B
Semiconductor-
Based Isolation
Barrier
Transmitter Receiver
Input Signal
Output Signal
Modulation Signal
Si8450/51/52/55
Rev. 1.5 19
Not Recommended
for New Designs
2.2. Eye Diagram
Figure 6 illustrates an eye-diagram taken on an Si8450. For the data source, the test used an Anritsu (MP1763C)
Pulse Pattern Generator set to 1000 ns/div. The output of the generator's clock and data from an Si8450 were
captured on an oscilloscope. The results illustrate that data integrity was maintained even at the high data rate of
150 Mbps. The results also show that 2 ns pulse width distortion and 250 ps peak jitter were exhibited.
Figure 6. Eye Diagram
Si8450/51/52/55
20 Rev. 1.5
Not Recommended
for New Designs
2.3. Device Operation
Device behavior during start-up, normal operation, and shutdown is shown in Table 12. Table 13 provides an
overview of the output states when the Enable pins are active.
Table 12. Si845x Logic Operation Table
VI
Input1,2 EN
Input1,2,3,4 VDDI
State1,5,6 VDDO
State1,5,6 VO Output1,2 Comments
H H or NC P P H Enabled, normal operation.
LH or NC P P L
X7L P P Hi-Z or L8Disabled.
X7H or NC UP P L Upon transition of VDDI from unpowered to pow-
ered, VO returns to the same state as VI in less
than 1 µs.
X7L UP P Hi-Z or L8Disabled.
X7X7P UP Undetermined Upon transition of VDDO from unpowered to pow-
ered, VO returns to the same state as VI within
1 µs, if EN is in either the H or NC state. Upon tran-
sition of VDDO from unpowered to powered, VO
returns to Hi-Z within 1 µs if EN is L.
Notes:
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals. EN
is the enable control input located on the same output side.
2. X = not applicable; H = Logic High; L = Logic Low; Hi-Z = High Impedance.
3. It is recommended that the enable inpu ts be connected to an external logic high or low level when the Si845x is
operating in noisy environments.
4. No Connect (NC) replaces EN1 on Si8450. No Connects are not internally connected and can be left floating, tied to
VDD, or tied to GND.
5. “Powered” state (P) is defined as 2.70 V < VDD < 5.5 V.
6. “Unpowered” state (UP) is defined as VDD = 0 V.
7. Note that an I/O can power the die for a given side through an internal diod e if its source has adequate current.
8. When using th e enable pin (EN) function, the output pin state is driven to a logic low state when the EN pin is disabled
(EN = 0) in Revision A. Revision B outputs go into a high-impedance state when the EN pin is disabled (EN = 0). See
"3. Errata and Design Migration Guidelines" on page 26 for more details.
Si8450/51/52/55
Rev. 1.5 21
Not Recommended
for New Designs
Table 13. Enable Input Truth Table1
P/N EN11,2 EN21,2 Operation
Si8450 H Outputs B1, B2, B3, B4, B5 are enabled and follow input state.
L Outputs B1, B2, B3, B4, B5 are disabled and Logic Low or in high impedance
state.3
Si8451 H X Output A5 en a ble d an d follow input state.
L X Output A5 disabled and Logic Low or in high impedance state.3
X H Outputs B1, B2, B3, B4 are enabled and follow input state.
X L Outputs B1, B2, B3, B4 are disabled and Logic Low or in hig h impedance state.3
Si8452 H X Outputs A4 and A5 are enab led and follow input state.
L X Outputs A4 and A5 are disabled and Logic Low or in high impedance state .3
X H Outputs B1, B2, B3 are enabled and follow input state.
X L Outputs B1, B2, B3 are disabled and Logic Low or in high impedance state.3
Si8455 Outpu ts B1, B2, B3, B4, B5 are enabled and follow input state.
Notes:
1. Enable inputs EN1 and EN2 can be used for multiplexing, for clock sync, or other output control. These inputs are
internally pulled-up to local VDD by a 3 µA current source allowing them to be connected to an external logic level (high
or low) or left floating. To minimize noise coupling, do not connect circuit traces to EN1 or EN2 if they are left floating. If
EN1, EN2 are unused, it is recommended they be connected to an external logi c level, espe cially if the Si845x is
operating in a noisy environment.
2. X = not applicable; H = Logic High; L = Logic Low.
3. When using th e enable pin (EN) function, the output pin state is driven to a logic low state when the EN pin is disabled
(EN = 0) in Revision A. Revision B outputs go into a high-impedance state when the EN pin is disabled (EN = 0). See
"3. Errata and Design Migration Guidelines" on page 26 for more details.
Si8450/51/52/55
22 Rev. 1.5
Not Recommended
for New Designs
2.4. Layout Recommendations
To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 VAC) must be physically
separated from the safety extra-low voltage circuits (SELV is a circuit with <30 VAC) by a certain distance
(creepage/clear ance). I f a com ponent, such as a digital isolator, straddles this isolation barrier, it must meet those
creepage/clearance requirements and also provide a sufficiently large high-voltage breakdown protection rating
(commonly referred to as working voltage protection). Table 6 on page 15 and Table 7 on page 15 detail the
working voltage and creepage/clearance capabilities of the Si84xx. These tables also detail the component
standards (UL1577, IEC60747, CSA 5A), which are readily accepted by certification bodies to provide proof for
end-system specifications requirements. Refer to the end-system specification (61010-1, 60950-1, etc.)
requirements before starting an y des ign tha t uses a digital isolator.
The following sections detail the recommended bypass and decoupling components necessary to ensure robust
overall performance and reliability for systems using the Si84xx digital isolators.
2.4.1. Supply Bypass
Digital integrated circuit components typically require 0.1 µF (100 nF) bypass capacitors when used in electrically
quiet environments. However, digital isolators are commonly used in hazardous environments with excessively
noisy power supplies. To counteract these harsh conditions, it is recommended that an additional 1 µF bypass
capacitor be added between VDD and GND on both sides of the package. The capacitors should be placed as
close as possible to the package to minimize stray inductance. If the system is excessively noisy, it is
recommended that the designer add 50 to 100 resistors in series with the VDD supply voltage source and 50 to
300 resistors in series with the digital inputs/outputs (see Figure 7). For more details, see "3. Errata and Design
Migration Guidelines" on page 26.
All components upstream or downstream of the isolator should be properly decoup led as well. If these component s
are not properly decoupled, their supply noise can couple to the isolator inputs and outputs, potentially causing
damage if spikes exceed the maximum ratings of the isolator (6 V). In this case, the 50 to 300 resistors protect
the isolator's inputs/outputs (note that permanent device damage may occur if the absolute maximum ratings are
exceeded). Functional operation should be restricted to the conditions specified in Table 1, “Recommended
Operating Conditions,” on page 4.
2.4.2. Pin Connections
No connect pins are not internally connected. They can be left floating, tied to VDD, or tied to GND.
2.4.3. Output Pin Termination
The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination
of the value of the on-chip series termination resistor and cha nnel resist ance of the output driver FET. When driving
loads where transmission line effect s will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces. The series termination resistor values should be scaled appropriately while keeping in
mind the recommendations described in “2.4.1. Supply Bypass” above.
Figure 7. Recommended Bypass Components for the Si84xx Digital Isolator Family
VDD1 VDD2
GND1 GND2
50 – 300 50 – 300
Input/OutputInput/Output
C2 C3
1 F1 F
R1 (50 – 100 )
V Source 1
A1 B1
50 – 300
50 – 300
Ax Bx
C1
R2 (50 – 100 )
V Source 2
C4
0.1 F0.1 F
Si8450/51/52/55
Rev. 1.5 23
Not Recommended
for New Designs
2.5. Typical Performance Characteristics
The typical performance ch ar acteristics depicted in the following diag rams ar e for informa tio n pur pose s only. Refer
to Tables 3, 4, and 5 fo r actual specification limits.
Figure 8. Si8450/55 Typical VDD1 Supply
Current vs. Data Rate 5, 3.3, and 2.70 V
Operation
Figure 9. Si8451 Typical VDD1 Supply Current
vs. Data Rate 5, 3.3, and 2.70 V Operation
(15 pF Load)
Figure 10. Si8452 Typical VDD1 Supply Current
vs. Data Rate 5, 3.3, and 2.70 V Operation
(15 pF Load)
Figure 11. Si8450/55 Typical VDD2 Supply
Current vs. Data Rate 5, 3.3, and 2.70 V
Operation (15 pF Load)
Figure 12. Si8451 Typical VDD2 Supply Current
vs. Data Rate 5, 3.3, and 2.70 V Operation
(15 pF Load)
Figure 13. Si8452 Typical VDD2 Supply Current
vs. Data Rate 5, 3.3, and 2.70 V Operation
(15 pF Load)
0
5
10
15
20
25
30
35
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Data Rate (Mb p s)
Current (mA)
5V
3.3V
2.70V
0
5
10
15
20
25
30
35
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Data Rate (Mbps)
Current (mA)
5V
3.3V
2.70V
0
5
10
15
20
25
30
35
0 102030405060708090100110120130140150
Data Rate (Mb p s)
Cur r en t (mA)
5V
3.3V
2.70V
0
5
10
15
20
25
30
35
0 102030405060708090100110120130140150
Data Rate (Mb p s)
Cur r en t (mA)
5V
3.3V
2.70V
Si8450/51/52/55
24 Rev. 1.5
Not Recommended
for New Designs
Figure 14. Propagation Delay
vs. Temperature
5
6
7
8
9
10
-40 -20 0 20 40 60 80 100 120
Temperature (Degrees C)
Delay (ns)
Risi ng Edge
Falling Edge
Si8450/51/52/55
Rev. 1.5 25
Not Recommended
for New Designs
Figure 15. Si84xx Time-Dependent Dielectric Breakdown
Si8450/51/52/55
26 Rev. 1.5
Not Recommended
for New Designs
3. Errata and Design Migration Guidelines
The following errata apply to Revision A devices only. See "6. Ordering Guide" on page 29 for more details. No
errata exist for Revision B devices.
3.1. Enable Pin Causes Outputs to Go Low (Revision A Only)
When using the enable pin (EN1, EN2) function on the 5-channel (Si8450/1/2) isolators, the corresponding output
pin state s (pin = An, Bn, wher e n can be 1 …5) a re dr iven to a log ic low ( to g ro und ) wh en the ena ble pin is d isa ble d
(EN1 or EN2 = 0). This functionality is different from the legacy 3-channel (Si8430/1) and 4-channel (Si8440/1/2)
isolators. On those devices, the isolator outputs go into a high-impedance state (Hi-Z) when the enable pin is
disabled (EN1 = 0 or EN2 = 0).
3.1.1. Resolution
The enable pin functionality causing the outputs to go low is supported in production for Revision A of the Si845x
devices. Revision B corrects the enable pin functionality (i.e., the outputs will go into the high-impedance state to
match the legacy isolator pr oduct s). Refer to the Ordering Guide section s of the dat a sheet(s) for mo re info rmation.
3.2. Power Supply Bypass Capacitors (Revision A and Revision B)
When using the Si845x isolators with power supplies > 4.5 V, suf ficient VDD bypass capacitors must be presen t on
both the VDD1 and VDD2 pins to ensure the VDD rise time is less than 0.5 V/µs (which is > 9 µs for a > 4.5 V
supply). Although rise time is power supply dependent, > 1 µF capacitors are required on both power supply pins
(VDD1, VDD2) of the isolator device.
3.2.1. Resolution
For recommendations on resolving this issue, see "2.4.1. Supply Bypass" on page 22. Additionally, refer to "6.
Ordering Guide" on page 29 for current ordering information.
3.3. Latch Up Immunity (Revision A Only)
Latch up immunity generally exceeds ± 200 mA per pin. Exceptions: Certain pins provide < 100 mA of latch-up
immunity. To increase latch-up immunity on these pins, 100 of equivalent resistance must be included in series
with all of the pins listed in Table 14. The 100 equivalent resistance can be comprised of the source driver's
output resistance and a series termination resistor.
3.3.1. Resolution
This issue has been corrected with Revision B of the device. Refer to the Ordering Guide for more information.
Table 14. Affected Ordering Part Numbers (Revision A Only)
Affected Ordering Part Numbers* Device
Revision Pin# Name Pin Type
SI8450SV-A-IS/IS1, SI8451SV-A-IS/IS1,
SI8452SV-A-IS/IS1 A
2 A1 Input
6 A5 Input or Output
10 EN2 Input
14 B2 Output
SI8455SV-A-IS/IS1 A
2 A1 Input
6 A5 Input
14 B2 Output
*Note: SV = Speed Grade/Isolation Rating (AA, AB, BA, BB).
Si8450/51/52/55
Rev. 1.5 27
Not Recommended
for New Designs
4. Pin Descriptions (Si8450/51/52)
Name SOIC-16 Pin# Type Description
VDD1 1 Supply Side 1 power supply.
A1 2 Digital Input Side 1 digital input.
A2 3 Digital Input Side 1 digital input.
A3 4 Digital Input Side 1 digital input.
A4 5 Digital I/O Side 1 digital input or output.
A5 6 Digital I/O Side 1 digital input or output.
EN1/NC* 7 Digital Input Side 1 active high enable. NC on Si8450.
GND1 8 Ground Side 1 ground.
GND2 9 Ground Side 2 ground.
EN2 10 Digital Input Side 2 active high enable.
B5 11 Digital I/O Side 2 digital input or output.
B4 12 Digital I/O Side 2 digital input or output.
B3 13 Digital Output Side 2 di gital output.
B2 14 Digital Output Side 2 di gital output.
B1 15 Digital Output Side 2 di gital output.
VDD2 16 Supply Side 2 power supply.
*Note: No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.
VDD1
A1
A3
A4
NC
GND1
A2
VDD2
B2
B1
B4
B3
GND2
EN2/NC
I
s
o
l
a
t
i
o
n
RF
XMITR RF
RCVR
RF
XMITR RF
RCVR
RF
XMITR RF
RCVR
RF
XMITR RF
RCVR
Si8450
A5
RF
XMITR RF
RCVR
B5
VDD1
A1
A3
A4
EN1
GND1
A2
VDD2
B2
B1
B4
B3
GND2
EN2
I
s
o
l
a
t
i
o
n
RF
XMITR RF
RCVR
RF
XMITR RF
RCVR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
Si8452
RF
XMITR RF
RCVR
A5 B5
VDD1
A1
A3
A4
EN1
GND1
A2
VDD2
B2
B1
B4
B3
GND2
EN2
I
s
o
l
a
t
i
o
n
RF
XMITR RF
RCVR
RF
XMITR RF
RCVR
RF
XMITR RF
RCVR
RF
XMITR
RF
RCVR
Si8451
RF
XMITR RF
RCVR
A5 B5
Si8450/51/52/55
28 Rev. 1.5
Not Recommended
for New Designs
5. Pin Descriptions (Si8455)
Name SOIC-16 Pin# Type Description*
VDD1 1 Supply Side 1 power supply.
GND1 2 Ground Side 1 ground.
A1 3 Digital Input Side 1 digital input.
A2 4 Digital Input Side 1 digital input.
A3 5 Digital Input Side 1 digital input.
A4 6 Digital Input Side 1 digital input.
A5 7 Digital Input Side 1 digital input.
GND1 8 Ground Side 1 ground.
GND2 9 Ground Side 2 ground.
B5 10 Digital Output Side 2 di gital output.
B4 11 Digital Output Side 2 digital output.
B3 12 Digital Output Side 2 di gital output.
B2 13 Digital Output Side 2 di gital output.
B1 14 Digital Output Side 2 di gital output.
GND2 15 Ground Side 2 ground.
VDD2 16 Supply Side 2 power supply.
*Note: For narrow-body devices, Pin 2 and Pin 8 GND must be externally connected to respective ground. Pin 9 and Pin 15
must also be connected to external ground.
VDD1
A1
A3
A4
GND1
A2
VDD2
B2
B1
B4
B3
GND2
I
s
o
l
a
t
i
o
n
RF
XMITR RF
RCVR
RF
XMITR RF
RCVR
RF
XMITR RF
RCVR
RF
XMITR RF
RCVR
Si8455
A5
RF
XMITR RF
RCVR
B5
GND1 GND2
Si8450/51/52/55
Rev. 1.5 29
Not Recommended
for New Designs
6. Ordering Guide
These devices are not recommended for new designs. Please see the Si865x data sheet for replacement options.
Table 15. Ordering Guide for Valid OPNs1
Ordering Part
Number
(OPN)
Alternative Pa rt
Number
(APN)
Number of
Inputs VDD1
Side
Number of
Inputs VDD2
Side
Maximum
Data Rate
(Mbps)
Isolation
Rating Package Type
Revision B Devices2
Si8450AA-B-IS1 Si8650AB-B-IS1 5 0 1
1 kVrms NB SOIC-16
Si8450BA-B-IS1 Si8650BB-B-IS1 5 0 150
Si8451AA-B-IS1 Si8651AB-B-IS1 4 1 1
Si8451BA-B-IS1 Si8651BB-B-IS1 4 1 150
Si8452AA-B-IS1 Si8652AB-B-IS1 3 2 1
Si8452BA-B-IS1 Si8652BB-B-IS1 3 2 150
Si8455BA-B-IS1 Si8655BB-B-IS1 5 0 150
Si8450AB-B-IS1 Si8650AB-B-IS1 5 0 1
2.5 kVrms NB SOIC-16
Si8450BB-B-IS1 Si8650BB-B-IS1 5 0 150
Si8451AB-B-IS1 Si8651AB-B-IS1 4 1 1
Si8451BB-B-IS1 Si8651BB-B-IS1 4 1 150
Si8452AB-B-IS1 Si8652AB-B-IS1 3 2 1
Si8452BB-B-IS1 Si8652BB-B-IS1 3 2 150
Si8455BB-B-IS1 Si8655BB-B-IS1 5 0 150
Notes:
1. All packages are RoHS-compliant. Moisture sensitivity level is MSL2A with peak reflow temperature of 260 °C
according to the JEDEC industry standard classifications and peak solder temperature.
2. Revision A and Revision B devices are supported for existing designs.
Si8450/51/52/55
30 Rev. 1.5
Not Recommended
for New Designs
Revision A Devices2
Si8450AA-A-IS1 Si8650AB-B-IS1 5 0 1
1 kVrms NB SOIC-16
Si8450BA-A-IS1 Si8650BB-B-IS1 5 0 150
Si8451AA-A-IS1 Si8651AB-B-IS1 4 1 1
Si8451BA-A-IS1 Si8651BB-B-IS1 4 1 150
Si8452AA-A-IS1 Si8652AB-B-IS1 3 2 1
Si8452BA-A-IS1 Si8652BB-B-IS1 3 2 150
Si8455BA-A-IS1 Si8655BB-B-IS1 5 0 150
Si8450AB-A-IS1 Si8650AB-B-IS1 5 0 1
2.5 kVrms NB SOIC-16
Si8450BB-A-IS1 Si8650BB-B-IS1 5 0 150
Si8451AB-A-IS1 Si8651AB-B-IS1 4 1 1
Si8451BB-A-IS1 Si8651BB-B-IS1 4 1 150
Si8452AB-A-IS1 Si8652AB-B-IS1 3 2 1
Si8452BB-A-IS1 Si8652BB-B-IS1 3 2 150
Si8455BB-A-IS1 Si8655BB-B-IS1 5 0 150
Table 15. Ordering Guide for Valid OPNs1 (Continued)
Ordering Part
Number
(OPN)
Alternative Pa rt
Number
(APN)
Number of
Inputs VDD1
Side
Number of
Inputs VDD2
Side
Maximum
Data Rate
(Mbps)
Isolation
Rating Package Type
Notes:
1. All packages are RoHS-compliant. Moisture sensitivity level is MSL2A with peak reflow temperature of 260 °C
according to the JEDEC industry standard classifications and peak solder temperature.
2. Revision A and Revision B devices are supported for existing designs.
Si8450/51/52/55
Rev. 1.5 31
Not Recommended
for New Designs
7. Package Outline: 16-Pin Narrow Body SOIC
Figure 16 illustrates the package details for the Si845x in a 16-pin narrow-body SOIC (SO-16). Table 16 lists the
values for the dimensions shown in the illustration.
Figure 16. 16-pin Small Outline Integrated Circuit (SOIC) Package
Table 16. Package Diagram Dimensions
Dimension Min Max
A 1.75
A1 0.10 0.25
A2 1.25
b 0.31 0.51
c 0.17 0.25
D9.90 BSC
E6.00 BSC
E1 3.90 BSC
e1.27 BSC
L 0.40 1.27
L2 0.25 BSC
Si8450/51/52/55
32 Rev. 1.5
Not Recommended
for New Designs
h 0.25 0.50
θ
aaa 0.10
bbb 0.20
ccc 0.10
ddd 0.25
Notes:
1. All dimensions shown are in millimeters (mm) unl ess otherwise noted.
2. Dimensioning and Tolerancin g per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MS-012,
Variation AC.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020
specification for Small Body Components.
Table 16. Package Diagram Dimensions (Continued)
Dimension Min Max
Si8450/51/52/55
Rev. 1.5 33
Not Recommended
for New Designs
8. Land Pattern: 16-Pin Narrow Body SOIC
Figure 17 illustrates the recommended land pattern details for the Si845x in a 16-pin narrow-body SOIC. Table 17
lists the values for the dimensions shown in the illustration.
Figure 17. 16-Pin Narrow Body SOIC PCB Land Pattern
Table 17. 16-Pin Narrow Body SOIC Land Pattern Dimensions
Dimension Feature (mm)
C1 Pad Column Spacing 5.40
E Pad Row Pitch 1.27
X1 Pad Width 0.60
Y1 Pad Length 1.55
Notes:
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N
for Density Level B (Median Land Protrusion).
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card
fabrication tolerance of 0.05 mm is assumed.
Si8450/51/52/55
34 Rev. 1.5
Not Recommended
for New Designs
9. Top Marking: 16-Pin Narrow Body SOIC
9.1. 16-Pin Narrow Body SOIC Top Marking
9.2. Top Marking Explanation
Table 18. 16-Pin Narrow Body SOIC Top Marking Table
Line 1 Marking:
Base Part Number
Ordering Options
(See Ordering Guide for more
information).
Si84 = Isolator product series
XY = Channel Configuration
X = # of data channels (5, 4, 3, 2, 1)
Y = # of reverse channels (2, 1, 0)*
S = Speed Grade
A = 1 Mbps; B = 150 Mbps
V = Insulation rating
A=1kV; B=2.5kV
Line 2 Marking:
Circle = 1.2 mm Diameter “e3” Pb-Free Symbol
YY = Year
WW = Work Week Assigned by the Asse m bly Hous e. Corr es po n ds to the
year and work week of the mold date.
TTTTTT = Mfg code Manufacturing Code from Assembly Purchase Order
form.
Circle = 1.2 mm diameter “e3” Pb-Free Symbol.
*Note: Si8455 has 0 reverse channels.
Si84XYSV
YYWWTTTTTT
e3
Si8450/51/52/55
Rev. 1.5 35
Not Recommended
for New Designs
DOCUMENT CHANGE LIST
Revision 0.1 to Revision 0.2
Updated all specs to reflect latest silicon.
Added "3. Errata and Design Migration Guidelines"
on page 26.
Added "9. Top Marking: 16-Pin Narrow Body SOIC"
on page 34.
Revision 0.2 to Revision 1.0
Updated document to reflect availability of Revision
B silicon.
Updated Tables 3,4, and 5.
Updated all supply currents and channel-channel skew .
Updated Table 2.
Updated absolute maximum supply voltage.
Updated Table 7.
Updated clearance and creepage dimensions.
Updated Table 12.
Updated Note 7.
Updated Table 13.
Updated Note 3.
Updated "3. Errat a and Design Migration Guidelin es"
on page 26.
Updated "6. Ordering Guide" on page 29.
Revision 1.0 to Revision 1.1
Updated Tables 3, 4, and 5.
Updated notes in both tables to reflect output
impedance of 85 .
Updated rise and fall time specifications.
Updated CMTI value.
Revision 1.1 to Revision 1.2
Updated document throughout to include MSL
improveme nts to MSL2A.
Updated "6. Ordering Guide" on page 29.
Updated Note 1 in ordering guide table to reflect
improvement and compliance to MSL2A moisture
sensitivity level.
Revision 1.2 to Revision 1.3
Updated " Features" on page 1.
Moved Tables 1 and 2 to page 4.
Updated Tables 6, 7, 8, and 9.
Updated Table 12 foot no te s.
Added Figure 15, “Si84xx Time-Dependent
Dielectric Breakdown,” on page 25.
Revision 1.3 to Revision 1.4
Removed wide-body SOIC-16 package information
and references throughout document.
Updated "2.4.1. Supply Bypass" on page 22.
Added Figure 7, “Recommended Bypass
Components for the Si84xx Digital Isolator Family,”
on page 22.
Updated "3.2. Power Supply Bypass Capacitors
(Revision A and Revision B)" on page 26.
Revision 1.4 to Revision 1.5
Updated "6. Ordering Guide" on page 29 to include
new title note and “ Alternative Part Number (APN)”
column.
Si8450/51/52/55
36 Rev. 1.5
Not Recommended
for New Designs
CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Please visit the Silicon Labs Techn ical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.
Patent Notice
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-
intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademar ks of their respective holders.
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed fea-
tures or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warran-
ty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intend-
ed to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Silicon Laboratories:
Si8450AA-B-IS1 Si8450AB-B-IS1 Si8450BA-B-IS1 Si8450BB-B-IS1 Si8451AA-B-IS1 Si8451AB-B-IS1 Si8451BA-
B-IS1 Si8451BB-B-IS1 Si8452AB-B-IS1 Si8452BA-B-IS1 Si8452BB-B-IS1 Si8455BA-B-IS Si8455BA-B-IS1
Si8455BB-B-IS Si8455BB-B-IS1 SI8450AA-B-IS1R SI8450AB-B-IS1R SI8450BA-B-IS1R SI8450BB-B-IS1R
SI8451AA-B-IS1R SI8451AB-B-IS1R SI8451BA-B-IS1R SI8451BB-B-IS1R SI8452AB-B-IS1R SI8452BA-B-IS1R
SI8452BB-B-IS1R SI8455BA-B-IS1R SI8455BB-B-IS1R SI8455BA-B-IUR Si8450AB-A-IS1R Si8450BA-A-IS1R
Si8452BA-A-IS1R Si8452AA-A-IS1R Si8451BA-A-IS1R Si8455BA-A-IS1R Si8455BB-A-IS1R Si8451AB-A-IS1R
Si8450BB-A-IS1R Si8452BB-A-IS1R Si8450AA-A-IS1R Si8451AA-A-IS1R Si8451BB-A-IS1R Si8452AB-A-IS1R
SI8450AA-A-IS1 SI8450AB-A-IS1 SI8450BA-A-IS1 SI8450BB-A-IS1 SI8451AA-A-IS1 SI8451AB-A-IS1 SI8451BA-A-
IS1 SI8451BB-A-IS1 SI8452AA-A-IS1 SI8452AB-A-IS1 SI8452BA-A-IS1 SI8452BB-A-IS1 Si8455BA-B-IU
SI8451BA-A-IS1R SI8450BA-A-IS1R SI8450BB-B-IS1 SI8451AA-B-IS1 SI8451BA-B-IS1 SI8455BA-B-IS SI8452AB-
B-IS1 SI8451AB-B-IS1 SI8451BB-B-IS1 SI8455BA-B-IS1 SI8450AB-A-IS1R SI8455BA-B-IU SI8451AA-A-IS1R
SI8452AA-A-IS1R SI8450AA-B-IS1 SI8452BB-B-IS1 SI8455BB-B-IS SI8455BB-B-IS1 SI8450BA-B-IS1 SI8450AB-
B-IS1 SI8452AB-A-IS1R SI8452BA-B-IS1 SI8451AB-A-IS1R SI8450AA-A-IS1 SI8450AB-A-IS1 SI8450BA-A-IS1
SI8450BB-A-IS1 SI8451AA-A-IS1 SI8452BB-A-IS1 SI8451AB-A-IS1 SI8451BA-A-IS1 SI8451BB-A-IS1 SI8452AA-A-
IS1 SI8452AB-A-IS1 SI8452BA-A-IS1