Hardware Design Guide, Revision 1
April 29, 2003
TMXF33625 Hypermapper
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
1 Introduction
The last issue of this data sheet was February 21, 2003. Red change bars have been installed on all text, figures and tables
that were added or changed. All changes to the text are highlighted in red. Changes within figures, and the figure title itself,
are highlighted in red, if feasible. See Section 12 on page 70 for a list of changes.
The documentation package for the TMXF33625 Hypermapper 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 system
chip consists of the following documents:
The Register Description and the System Design Guide. These documenst are available on a password protected web-
site.
The Hypermapper Product Description and the Hypermapper Hardware Design Guide (this document). These docu-
ments are available on the public website shown below (select Mappers/MUXes).
http://www.agere.com/enterprise_metro_access/index.html
This document describes the hardware interfaces of the Agere Systems TMXF33625 Hypermapper device. Information rel-
evant to the use of the device in a board design is covered. Pin descriptions, dc electrical characteristics, timing diagrams,
ac timing parameters, packaging, and operating conditions are covered.
To contact Agere Systems, see the last page of this document or contact your Agere representative.
Figure 1-1. Hypermapper Block Diagram and High-Level Interface Definition
TMUX-A
CDR
CDR
W8
P8
6
Clock & Data
Clock/Sync
TMUX-B
CDR
CDR
W8
P8
6
Clock & Data
Clock/Sync
TMUX-C
CDR
CDR
W8
P8
6
Clock & Data
Clock/Sync
TMUX-D
CDR
CDR
W8
P8
6
Clock & Data
Clock/Sync
Miscellaneous
54
622/155Mb/s
High-Speed IF
STSPP
A
STS
XC
A
STSPP
B
STS
XC
B
STSPP
C
STS
XC
C
STSPP
D
STS
XC
D
622/155 Mbits/s SONET/SDH
ADM Front End
DS3/E3/DS1/E1/DS0 PDH
Tributary Termination
5
JTAG IF
JTAG A B C D
48
Mate Interconnect
MCDR
(x12)
LOPOH
24LOPOH
From/To
TMUX A,B,C,D
A B
C D
SPEMPR x12
(3-5)
A B
C D
SPEMPR x12
(0-2)
A B
C D
STS1LT x12
MPU
51
MPU IF
A B C D
CS
A,B,C,D
A
B
C
D
MRXC
A B
C D
VTMPR (x12)
x28/x21
A B
C D
DS1/E1 DJA
x28/x21 (x12)
4
DS1XCLK,
E1XCLK
A B
C D
DS3/E3 DJA
x6 (x4)
2
DS3XCLK,
E3XCLK
TOAC
24 24
POAC
A B
C D
TPGM
(x4)
A B
C D
E13 MUX
(x12)
A B
C D
M13 MUX
(x12)
3
1
3
1
CG
A B
C D
FRM (x12)
x28/x21
DS1/J1/E1
DS1/J1/E1
VT/TU
DS3/E3
5
8
CHI/PSB
Rx/Tx Clocks/Syncs
FRM PLL IF
System
Interfaces
Power & GND
pins not shown
168
96
144
CHI/PSB
(x24) DS3/E3
(x12) STS-1
(x12) NSMI
(x12) STS-1
(Total of 3 STS-1
max/partition)
032303
Partitions (A, B, C, and D)
are totally separate and can-
not be interconnected
internally. For example, a
DS1 out of a VTMPR from
partition A, cannot be sent to
the MRXC of partition B.
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
22 Agere Systems Inc.
Table of Contents
Contents Page
1 Introduction ........................................................................................................................................................................1
2 Pin Information ...................................................................................................................................................................6
2.1 Ball Diagram ................................................................................................................................................................6
2.2 Pin Assignments ..........................................................................................................................................................7
2.3 Pin Matrix ...................................................................................................................................................................20
2.4 Pin Types ...................................................................................................................................................................24
2.5 Pin Definitions ............................................................................................................................................................25
3 Absolute Maximum Ratings .............................................................................................................................................44
3.1 Handling Precautions ................................................................................................................................................44
4 Electrical Characteristics .................................................................................................................................................45
4.1 Recommended Operating Voltages ..........................................................................................................................45
4.2 Recommended Powerup Sequence ..........................................................................................................................45
4.3 Power Consumption ..................................................................................................................................................45
4.4 ac and dc Characteristics ..........................................................................................................................................46
4.4.1 LVCMOS Interface Characteristics ..................................................................................................................46
4.4.2 LVDS Interface Characteristics ........................................................................................................................48
5 Timing ..............................................................................................................................................................................49
5.1 TMUX High-Speed Interface Timing ..........................................................................................................................49
5.2 THSSYNC Characteristics .........................................................................................................................................50
5.3 STS-3/STM-1 Mate Interconnect Timing ...................................................................................................................51
5.4 TOAC, POAC, and LOPOH Timing ...........................................................................................................................52
5.5 DS3/E3/STS-1 Timing ...............................................................................................................................................53
5.6 NSMI Timing ..............................................................................................................................................................54
5.7 CHI Timing .................................................................................................................................................................55
5.8 Parallel System Bus (PSB) Timing ............................................................................................................................58
6 Reference Clocks ............................................................................................................................................................59
7 Microprocessor Interface Timing .....................................................................................................................................63
7.1 Synchronous Write Mode ..........................................................................................................................................63
7.2 Synchronous Read Mode ..........................................................................................................................................64
7.3 Asynchronous Write Mode ........................................................................................................................................65
7.4 Asynchronous Read Mode ........................................................................................................................................66
7.5 Accessing the Same Register Sequentially Across Multiple Partitions. .....................................................................67
8 Other Timing ....................................................................................................................................................................68
9 Hardware Design File References ...................................................................................................................................68
10 Ordering Information ......................................................................................................................................................68
11 1152-Pin PBGA Diagrams ..............................................................................................................................................69
12 Change History ...............................................................................................................................................................70
12.1 Navigating Through an Adobe Acrobat Document ..................................................................................................70
13 Glossary .........................................................................................................................................................................71
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 3
Table of Contents (continued)
Tables Page
Table 2-1. Pin Assignments....................................................................................................................................................7
Table 2-2. Pin Matrix ............................................................................................................................................................20
Table 2-3. Pin Types ............................................................................................................................................................24
Table 2-4. TMUX Blocks, High-Speed Interface I/O.............................................................................................................25
Table 2-5. TMUX Blocks, Protection Link I/O .......................................................................................................................27
Table 2-6. TMUX Blocks, Clock and Sync I/O......................................................................................................................28
Table 2-7. STS Cross Connect (STSXC) Blocks, STS-3/STM-1 Mate Interconnect............................................................29
Table 2-8. Multirate Cross Connect (MRXC) Blocks, TOAC Input and Output Channels ....................................................30
Table 2-9. Multirate Cross Connect (MRXC) Blocks, POAC Input and Output Channels ....................................................31
Table 2-10. DS3/E3/STS-1 Out ............................................................................................................................................32
Table 2-11. DS3/E3/STS-1 In...............................................................................................................................................33
Table 2-12. NSMI/STS-1 In ..................................................................................................................................................34
Table 2-13. NSMI/STS-1 Out ...............................................................................................................................................35
Table 2-14. TDM Concentration Highway (CHI) In...............................................................................................................35
Table 2-15. TDM Concentration Highway (CHI) Out ............................................................................................................36
Table 2-16. Framer (FRM) Blocks, CHI/Parallel System Bus (PSB) Clock and Sync ..........................................................36
Table 2-17. Reference Clocks ..............................................................................................................................................37
Table 2-18. Low-Order Path Overhead Access, Transmit Direction ....................................................................................37
Table 2-19. Low-Order Path Overhead Access, Receive Direction .....................................................................................38
Table 2-20. Clock Generator ................................................................................................................................................38
Table 2-21. Microprocessor Interface...................................................................................................................................38
Table 2-22. Boundary Scan (IEEE 1149.1) ........................................................................................................................40
Table 2-23. General-Purpose Interface ................................................................................................................................40
Table 2-24. CDR Interface....................................................................................................................................................41
Table 2-25. Analog Power and Ground Signals ...................................................................................................................41
Table 2-26. Digital Power and Ground Signals ....................................................................................................................42
Table 3-1. Absolute Maximum Ratings.................................................................................................................................44
Table 3-2. ESD Tolerance ....................................................................................................................................................44
Table 4-1. Recommended Operating Conditions .................................................................................................................45
Table 4-2. Typical Power Consumption by Application ........................................................................................................45
Table 4-3. Typical Power Consumption Per Block ...............................................................................................................45
Table 4-4. LVCMOS Inputs Specifications 1 ........................................................................................................................46
Table 4-5. LVCMOS Inputs Specifications 2 ........................................................................................................................46
Table 4-6. LVCMOS Inputs Specifications 3 ........................................................................................................................46
Table 4-7. LVCMOS Outputs Specifications ........................................................................................................................47
Table 4-8. LVCMOS Bidirectionals Specifications................................................................................................................47
Table 4-9. LVDS Interface dc Characteristics ......................................................................................................................48
Table 5-1. High-Speed Interface Inputs Specifications ........................................................................................................49
Table 5-2. Protection Link Inputs Specifications...................................................................................................................49
Table 5-3. High-Speed Interface Outputs Specifications......................................................................................................50
Table 5-4. Protection Link Outputs Specifications................................................................................................................50
Table 5-5. STS-3/STM-1 Mate Interconnect Inputs Specifications.......................................................................................51
Table 5-6. STS-3/STM-1 Mate Interconnect Outputs Specifications....................................................................................51
Table 5-7. TOAC and POAC and LOPOH Input Specifications ...........................................................................................52
Table 5-8. TOAC and POAC and LOPOH Output Specifications.........................................................................................52
Table 5-9. DS3/E3 Input Specifications................................................................................................................................53
Table 5-10. STS-1 Input Specifications ................................................................................................................................53
Table 5-11. DS3/E3/STS-1 Output Specifications................................................................................................................53
Table 5-12. NSMI Input Specifications .................................................................................................................................54
Table 5-13. NSMI Output Specifications ..............................................................................................................................54
Table 5-14. CHIRXGCLK and CHITXGCLK Timing Specifications......................................................................................55
Table 5-15. CHI Interface Timing Specifications ..................................................................................................................55
Table 5-16. PSB Input Specifications ...................................................................................................................................58
Table 5-17. PSB Output Specifications ................................................................................................................................58
Table 6-1. High-Speed Interface Input Clocks Specifications ..............................................................................................59
Table 6-2. Protection Link Input Clock Specifications ..........................................................................................................59
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
44 Agere Systems Inc.
Table of Contents (continued)
Tables Page
Table 6-3. DS3/E3/STS-1 Input Clocks Specifications.........................................................................................................59
Table 6-4. DS1/E1 DJA Input Clocks Specifications ............................................................................................................59
Table 6-5. DS3/E3 DJA Input Clocks Specifications ............................................................................................................60
Table 6-6. LOPOH Input Clock Specifications......................................................................................................................60
Table 6-7. Microprocessor Interface Input Clocks Specifications.........................................................................................60
Table 6-8. Framer PLL Input Clocks Specifications .............................................................................................................60
Table 6-9. CHI Input Clocks Specifications ..........................................................................................................................60
Table 6-10. PSB Input Clocks Specifications .......................................................................................................................60
Table 6-11. High-Speed Interface Output Clocks Specifications..........................................................................................60
Table 6-12. Protection Link Output Clocks Specifications....................................................................................................61
Table 6-13. Line Timing Interface Output Clocks Specifications ..........................................................................................61
Table 6-14. TOAC Output Clocks Specifications..................................................................................................................61
Table 6-15. POAC Output Clocks Specifications .................................................................................................................62
Table 6-16. DS3/E3/STS-1 Output Clocks Specifications ....................................................................................................62
Table 6-17. LOPOH Output Clock Specifications.................................................................................................................62
Table 6-18. NSMI Output Clocks Specifications...................................................................................................................62
Table 6-19. Framer PLL Output Clocks Specifications.........................................................................................................62
Table 6-20. NSMI Input/Output Clocks Specifications..........................................................................................................62
Table 7-1. Microprocessor Interface Synchronous Write Cycle Specifications ....................................................................63
Table 7-2. Microprocessor Interface Synchronous Read Cycle Specifications ....................................................................64
Table 7-3. Microprocessor Interface Asynchronous Write Cycle Specifications ..................................................................66
Table 7-4. Microprocessor Interface Asynchronous Read Cycle Specifications ..................................................................67
Table 8-1. General-Purpose Inputs Specifications ...............................................................................................................68
Table 8-2. Miscellaneous Output Specifications...................................................................................................................68
Table 8-3. General-Purpose Output Specifications ..............................................................................................................68
Table 10-1. Ordering Information .........................................................................................................................................68
Table 12-1. Document Changes...........................................................................................................................................70
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 5
Table of Contents (continued)
Figures Page
Figure 1-1. Hypermapper Block Diagram and High-Level Interface Definition.......................................................................1
Figure 2-1. Hypermapper Pin-Package Diagram (Top View) .................................................................................................6
Figure 5-1. TMUX LVDS Signal Rise/Fall Timing.................................................................................................................49
Figure 5-2. TMUX LVDS Clock and Data Timing .................................................................................................................49
Figure 5-3. THSSYNC Timing Diagram (MPU_MASTER_SLAVE = 1)................................................................................50
Figure 5-4. THSSYNC Timing Diagram (MPU_MASTER_SLAVE = 0)................................................................................50
Figure 5-5. STS-3/STM-1 Mate Rise/Fall Timing .................................................................................................................51
Figure 5-6. STS-3/STM-1 Mate Clock and Data Timing.......................................................................................................51
Figure 5-7. TOAC, POAC Timing .........................................................................................................................................52
Figure 5-8. LOPOH Timing...................................................................................................................................................52
Figure 5-9. DS3/E3 Interface Diagram in M13/E13 Block ....................................................................................................53
Figure 5-10. NSMI Clock and Data Timing (STS-1 Mode) ...................................................................................................54
Figure 5-11. CHI Clock Timing .............................................................................................................................................55
Figure 5-12. CHI Bus Timing ................................................................................................................................................55
Figure 5-13. Typical Receive CHI Timing (Non-CMS Mode—FRM_CMS = 0) ....................................................................56
Figure 5-14. Transmit CHI Timing (Non-CMS Mode—FRM_CMS = 0)................................................................................56
Figure 5-15. Typical Receive CHI Timing (CMS Mode—FRM_CMS = 1) ............................................................................57
Figure 5-16. Transmit CHI Timing (CMS Mode—FRM_CMS = 1) .......................................................................................57
Figure 5-17. PSB Clock and Data Timing.............................................................................................................................58
Figure 7-1. Microprocessor Interface Synchronous Write Cycle (MPMODE = 1).................................................................63
Figure 7-2. Microprocessor Interface Synchronous Read Cycle (MPMODE = 1) ................................................................64
Figure 7-3. Microprocessor Interface Asynchronous Write Cycle (MPMODE = 0)...............................................................65
Figure 7-4. Microprocessor Interface Asynchronous Read Cycle (MPMODE = 0)...............................................................66
Figure 11-1. 1152-Pin PBGA Physical Dimensions..............................................................................................................69
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
66 Agere Systems Inc.
2 Pin Information
2.1 Ball Diagram
The TMXF33625 Hypermapper is housed in an 1152-pin plastic ball grid array (PBGA), which is 45 mm2 with a
1.27 mm2 ball pitch. Figure 2-1 shows the ball assignment viewed from the top of the package.
Figure 2-1. Hypermapper Pin-Package Diagram (Top View)
T
D
H
AL
F
K
B
P
M
L
J
AH
R
C
E
Y
N
U
AN
G
AD
V
AM
AJ
AG
AE
AC
AA
W
AP
AK
AF
AB
A
30
26 28
24 32
22
20
18
46810
12
14 16
234
T
D
H
AL
F
K
B
P
M
L
J
AH
R
C
E
Y
N
U
AN
G
AD
V
AM
AJ
AG
AE
AC
AA
W
AP
AK
AF
AB
A
19
523
25
731
2915 21
327
11 17913133
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 7
2.2 Pin Assignments
Table 2-1. Pin Assignments
Signal Name Pin
MPMODE AG20
MPCLK AG21
CSN_A D15
CSN_B R31
CSN_D AL20
CSN_C Y4
ADSN AE21
RWN AJ20
DSN T28
ADDR[0] AH19
ADDR[1] AJ21
ADDR[2] AH21
ADDR[3] R29
ADDR[4] R27
ADDR[5] AF21
ADDR[6] AH20
ADDR[7] AE22
ADDR[8] T26
ADDR[9] R28
ADDR[10] AD22
ADDR[11] T27
ADDR[12] R26
ADDR[13] AJ22
ADDR[14] AC22
ADDR[15] P29
ADDR[16] AG22
ADDR[17] N24
ADDR[18] N25
ADDR[19] N29
ADDR[20] AB22
DATA[0] Y8
DATA[1] P28
DATA[2] L22
DATA[3] AA6
DATA[4] P25
DATA[5] AA8
DATA[6] M22
DATA[7] AB6
DATA[8] AA7
DATA[9] AF22
DATA[10] P27
DATA[11] P26
DATA[12] AB8
DATA[13] AB9
Signal Name Pin
DATA[14] N22
DATA[15] N26
PAR[0] AB23
PAR[1] N23
DTN AB24
HP_INTN_1 AB10
HP_INTN_2 M33
LP_INTN_1 F13
LP_INTN_2 AB11
APS_INTN_A G14
APS_INTN_B J33
APS_INTN_D AN26
APS_INTN_C AC2
DS3POSDATAIN_A[1] A14
DS3POSDATAIN_B[1] P34
DS3POSDATAIN_D[1] AP21
DS3POSDATAIN_C[1] AA1
DS3NEGDATAIN_A[1] E11
DS3NEGDATAIN_B[1] L30
DS3NEGDATAIN_D[1] AK24
DS3NEGDATAIN_C[1] AD5
DS3DATAINCLK_A[1] C11
DS3DATAINCLK_B[1] L32
DS3DATAINCLK_D[1] AM24
DS3DATAINCLK_C[1] AD3
DS3POSDATAIN_A[2] A13
DS3POSDATAIN_B[2] N34
DS3POSDATAIN_D[2] AP22
DS3POSDATAIN_C[2] AB1
DS3NEGDATAIN_A[2] A12
DS3NEGDATAIN_B[2] M34
DS3NEGDATAIN_D[2] AP23
DS3NEGDATAIN_C[2] AC1
DS3DATAINCLK_A[2] H12
DS3DATAINCLK_B[2] M27
DS3DATAINCLK_D[2] AG23
DS3DATAINCLK_C[2] AC8
DS3POSDATAIN_A[3] B11
DS3POSDATAIN_B[3] L33
DS3POSDATAIN_D[3] AN24
DS3POSDATAIN_C[3] AD2
DS3NEGDATAIN_A[3] C10
DS3NEGDATAIN_B[3] K32
DS3NEGDATAIN_D[3] AM25
DS3NEGDATAIN_C[3] AE3
DS3DATAINCLK_A[3] F11
Table 2-1. Pin Assignments (continued)
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
88 Agere Systems Inc.
Signal Name Pin
DS3DATAINCLK_B[3] L29
DS3DATAINCLK_D[3] AJ24
DS3DATAINCLK_C[3] AD6
DS3POSDATAIN_A[4] G11
DS3POSDATAIN_B[4] L28
DS3POSDATAIN_D[4] AH24
DS3POSDATAIN_C[4] AD7
DS3NEGDATAIN_A[4] A11
DS3NEGDATAIN_B[4] L34
DS3NEGDATAIN_D[4] AP24
DS3NEGDATAIN_C[4] AD1
DS3DATAINCLK_A[4] B10
DS3DATAINCLK_B[4] K33
DS3DATAINCLK_D[4] AN25
DS3DATAINCLK_C[4] AE2
DS3POSDATAIN_A[5] D10
DS3POSDATAIN_B[5] K31
DS3POSDATAIN_D[5] AL25
DS3POSDATAIN_C[5] AE4
DS3NEGDATAIN_A[5] A10
DS3NEGDATAIN_B[5] K34
DS3NEGDATAIN_D[5] AP25
DS3NEGDATAIN_C[5] AE1
DS3DATAINCLK_A[5] C9
DS3DATAINCLK_B[5] J32
DS3DATAINCLK_D[5] AM26
DS3DATAINCLK_C[5] AF3
DS3POSDATAIN_A[6] E10
DS3POSDATAIN_B[6] K30
DS3POSDATAIN_D[6] AK25
DS3POSDATAIN_C[6] AE5
DS3NEGDATAIN_A[6] A9
DS3NEGDATAIN_B[6] J34
DS3NEGDATAIN_D[6] AP26
DS3NEGDATAIN_C[6] AF1
DS3DATAINCLK_A[6] A8
DS3DATAINCLK_B[6] H34
DS3DATAINCLK_D[6] AP27
DS3DATAINCLK_C[6] AG1
DS3POSDATAOUT_A[1] F10
DS3POSDATAOUT_B[1] K29
DS3POSDATAOUT_D[1] AJ25
DS3POSDATAOUT_C[1] AE6
DS3NEGDATAOUT_A[1] B8
DS3NEGDATAOUT_B[1] H33
DS3NEGDATAOUT_D[1] AN27
Table 2-1. Pin Assignments (continued)
Signal Name Pin
DS3NEGDATAOUT_C[1] AG2
DS3RXCLKOUT_A[1] C8
DS3RXCLKOUT_B[1] H32
DS3RXCLKOUT_D[1] AM27
DS3RXCLKOUT_C[1] AG3
DS3DATAOUTCLK_A[1] A7
DS3DATAOUTCLK_B[1] G34
DS3DATAOUTCLK_D[1] AP28
DS3DATAOUTCLK_C[1] AH1
DS3POSDATAOUT_A[2] H11
DS3POSDATAOUT_B[2] L27
DS3POSDATAOUT_D[2] AG24
DS3POSDATAOUT_C[2] AD8
DS3NEGDATAOUT_A[2] B7
DS3NEGDATAOUT_B[2] G33
DS3NEGDATAOUT_D[2] AN28
DS3NEGDATAOUT_C[2] AH2
DS3RXCLKOUT_A[2] A6
DS3RXCLKOUT_B[2] F34
DS3RXCLKOUT_D[2] AP29
DS3RXCLKOUT_C[2] AJ1
DS3DATAOUTCLK_A[2] E9
DS3DATAOUTCLK_B[2] J30
DS3DATAOUTCLK_D[2] AK26
DS3DATAOUTCLK_C[2] AF5
DS3POSDATAOUT_A[3] C7
DS3POSDATAOUT_B[3] G32
DS3POSDATAOUT_D[3] AM28
DS3POSDATAOUT_C[3] AH3
DS3NEGDATAOUT_A[3] B6
DS3NEGDATAOUT_B[3] F33
DS3NEGDATAOUT_D[3] AN29
DS3NEGDATAOUT_C[3] AJ2
DS3RXCLKOUT_A[3] E8
DS3RXCLKOUT_B[3] H30
DS3RXCLKOUT_D[3] AK27
DS3RXCLKOUT_C[3] AG5
DS3DATAOUTCLK_A[3] A5
DS3DATAOUTCLK_B[3] E34
DS3DATAOUTCLK_D[3] AP30
DS3DATAOUTCLK_C[3] AK1
DS3POSDATAOUT_A[4] A4
DS3POSDATAOUT_B[4] D34
DS3POSDATAOUT_D[4] AP31
DS3POSDATAOUT_C[4] AL1
DS3NEGDATAOUT_A[4] C6
Table 2-1. Pin Assignments (continued)
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 9
Signal Name Pin
DS3NEGDATAOUT_B[4] F32
DS3NEGDATAOUT_D[4] AM29
DS3NEGDATAOUT_C[4] AJ3
DS3RXCLKOUT_A[4] D7
DS3RXCLKOUT_B[4] G31
DS3RXCLKOUT_D[4] AL28
DS3RXCLKOUT_C[4] AH4
DS3DATAOUTCLK_A[4] B4
DS3DATAOUTCLK_B[4] D33
DS3DATAOUTCLK_D[4] AN31
DS3DATAOUTCLK_C[4] AL2
DS3POSDATAOUT_A[5] C5
DS3POSDATAOUT_B[5] E32
DS3POSDATAOUT_D[5] AM30
DS3POSDATAOUT_C[5] AK3
DS3NEGDATAOUT_A[5] A3
DS3NEGDATAOUT_B[5] C34
DS3NEGDATAOUT_D[5] AP32
DS3NEGDATAOUT_C[5] AM1
DS3RXCLKOUT_A[5] G10
DS3RXCLKOUT_B[5] K28
DS3RXCLKOUT_D[5] AH25
DS3RXCLKOUT_C[5] AE7
DS3DATAOUTCLK_A[5] A2
DS3DATAOUTCLK_B[5] B34
DS3DATAOUTCLK_D[5] AP33
DS3DATAOUTCLK_C[5] AN1
DS3POSDATAOUT_A[6] B3
DS3POSDATAOUT_B[6] C33
DS3POSDATAOUT_D[6] AN32
DS3POSDATAOUT_C[6] AM2
DS3NEGDATAOUT_A[6] C4
DS3NEGDATAOUT_B[6] D32
DS3NEGDATAOUT_D[6] AM31
DS3NEGDATAOUT_C[6] AL3
DS3RXCLKOUT_A[6] E7
DS3RXCLKOUT_B[6] G30
DS3RXCLKOUT_D[6] AK28
DS3RXCLKOUT_C[6] AH5
DS3DATAOUTCLK_A[6] D5
DS3DATAOUTCLK_B[6] E31
DS3DATAOUTCLK_D[6] AL30
DS3DATAOUTCLK_C[6] AK4
REF10_A F4
REF10_B D29
REF10_D AJ31
Table 2-1. Pin Assignments (continued)
Signal Name Pin
REF10_C AL6
REF14_A G9
REF14_B J28
REF14_D AH26
REF14_C AF7
RESHI_A F9
RESHI_B J29
RESHI_D AJ26
RESHI_C AF6
RESLO_A G8
RESLO_B H28
RESLO_D AH27
RESLO_C AG7
RHSC_AP E4
RHSC_BP D30
RHSC_DP AK31
RHSC_CP AL5
RHSC_AN E3
RHSC_BN C30
RHSC_DN AK32
RHSC_CN AM5
CTAPRH_A F6
CTAPRH_B F29
CTAPRH_D AJ29
CTAPRH_C AJ6
RHSD_AP D3
RHSD_BP C31
RHSD_DP AL32
RHSD_CP AM4
RHSD_AN C3
RHSD_BN C32
RHSD_DN AM32
RHSD_CN AM3
THSCO_AP B2
THSCO_BP B33
THSCO_DP AN33
THSCO_CP AN2
THSCO_AN B1
THSCO_BN A33
THSCO_DN AN34
THSCO_CN AP2
CTAPTH_A F7
CTAPTH_B G29
CTAPTH_D AJ28
CTAPTH_C AH6
THSD_AP C2
Table 2-1. Pin Assignments (continued)
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
1010 Agere Systems Inc.
Signal Name Pin
THSD_BP B31
THSD_DP AL33
THSD_CP AN4
THSD_AN C1
THSD_BN A31
THSD_DN AL34
THSD_CN AP4
THSC_AP E2
THSC_BP B30
THSC_DP AK33
THSC_CP AN5
THSC_AN E1
THSC_BN A30
THSC_DN AK34
THSC_CN AP5
RPSD_AP F3
RPSD_BP C29
RPSD_DP AJ32
RPSD_CP AM6
RPSD_AN G3
RPSD_BN C28
RPSD_DN AH32
RPSD_CN AM7
CTAPRP_A G7
CTAPRP_B G28
CTAPRP_D AH28
CTAPRP_C AH7
RPSC_AP H4
RPSC_BP D27
RPSC_DP AG31
RPSC_CP AL8
RPSC_AN G4
RPSC_BN D28
RPSC_DN AH31
RPSC_CN AL7
TPSC_AP G2
TPSC_BP B28
TPSC_DP AH33
TPSC_CP AN7
TPSC_AN G1
TPSC_BN A28
TPSC_DN AH34
TPSC_CN AP7
TPSD_AP H2
TPSD_BP B27
TPSD_DP AG33
Table 2-1. Pin Assignments (continued)
Signal Name Pin
TPSD_CP AN8
TPSD_AN H1
TPSD_BN A27
TPSD_DN AG34
TPSD_CN AP8
RLSDATA_AP[1] J1
RLSDATA_BP[1] A26
RLSDATA_DP[1] AF34
RLSDATA_CP[1] AP9
RLSDATA_AN[1] K1
RLSDATA_BN[1] A25
RLSDATA_DN[1] AE34
RLSDATA_CN[1] AP10
RLSDATA_AP[2] L1
RLSDATA_BP[2] A24
RLSDATA_DP[2] AD34
RLSDATA_CP[2] AP11
RLSDATA_AN[2] M1
RLSDATA_BN[2] A23
RLSDATA_DN[2] AC34
RLSDATA_CN[2] AP12
TLSDATA_AP[3] H7
TLSDATA_BP[3] G27
TLSDATA_DP[3] AG28
TLSDATA_CP[3] AH8
TLSDATA_AN[3] H8
TLSDATA_BN[3] H27
TLSDATA_DN[3] AG27
TLSDATA_CN[3] AG8
RLSDATA_AP[3] M2
RLSDATA_BP[3] B23
RLSDATA_DP[3] AC33
RLSDATA_CP[3] AN12
RLSDATA_AN[3] L2
RLSDATA_BN[3] B24
RLSDATA_DN[3] AD33
RLSDATA_CN[3] AN11
TLSDATA_AP[1] H3
TLSDATA_BP[1] C27
TLSDATA_DP[1] AG32
TLSDATA_CP[1] AM8
TLSDATA_AN[1] J3
TLSDATA_BN[1] C26
TLSDATA_DN[1] AF32
TLSDATA_CN[1] AM9
VDD15A_CDR2_A H5
Table 2-1. Pin Assignments (continued)
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 11
Signal Name Pin
VDD15A_CDR2_B E27
VDD15A_CDR2_D AG30
VDD15A_CDR2_C AK8
VSSA_CDR2_A J4
VSSA_CDR2_B D26
VSSA_CDR2_D AF31
VSSA_CDR2_C AL9
TLSDATA_AP[2] J2
TLSDATA_BP[2] B26
TLSDATA_DP[2] AF33
TLSDATA_CP[2] AN9
TLSDATA_AN[2] K2
TLSDATA_BN[2] B25
TLSDATA_DN[2] AE33
TLSDATA_CN[2] AN10
CTAPTL_A H9
CTAPTL_B J27
CTAPTL_D AG26
CTAPTL_C AF8
VSSA_CDR1_A K3
VSSA_CDR1_B C25
VSSA_CDR1_D AE32
VSSA_CDR1_C AM10
VDD15A_CDR1_A L3
VDD15A_CDR1_B C24
VDD15A_CDR1_D AD32
VDD15A_CDR1_C AM11
RTOACCLK_A K4
RTOACCLK_B D25
RTOACCLK_D AE31
RTOACCLK_C AL10
RTOACDATA_A J5
RTOACDATA_B E26
RTOACDATA_D AF30
RTOACDATA_C AK9
TLSCLK_A L4
TLSCLK_B D24
TLSCLK_D AD31
TLSCLK_C AL11
RLSCLK_A H10
RLSCLK_B K27
RLSCLK_D AG25
RLSCLK_C AE8
THSSYNC_A K5
THSSYNC_B E25
THSSYNC_D AE30
Table 2-1. Pin Assignments (continued)
Signal Name Pin
THSSYNC_C AK10
BYPASS_1 H13
BYPASS_2 AN23
TSTPHASE J13
ECSEL_1 H15
ECSEL_2 AH29
ETOGGLE_1 J14
ETOGGLE_2 AF28
EXDNUP_1 K13
EXDNUP_2 D31
TSTMODE H14
TSTSFTLD J15
VDD15A_X4PLL_A K7
VDD15A_X4PLL_B G25
VDD15A_X4PLL_D AE28
VDD15A_X4PLL_C AH10
VSSA_X4PLL_A K6
VSSA_X4PLL_B F25
VSSA_X4PLL_D AE29
VSSA_X4PLL_C AJ10
RTOACSYNC_A K8
RTOACSYNC_B H25
RTOACSYNC_D AE27
RTOACSYNC_C AG10
TTOACCLK_A J6
TTOACCLK_B F26
TTOACCLKD AF29
TTOACCLK_C AJ9
TTOACSYNC_A L6
TTOACSYNC_B F24
TTOACSYNC_D AD29
TTOACSYNC_C AJ11
TTOACDATA_A L7
TTOACDATA_B G24
TTOACDATA_D AD28
TTOACDATA_C AH11
RPOACCLK_A M6
RPOACCLK_B F23
RPOACCLK_D AC29
RPOACCLK_C AJ12
RPOACDATA_A J8
RPOACDATA_B H26
RPOACDATA_D AF27
RPOACDATA_C AG9
RPOACSYNC_A M5
RPOACSYNC_B E23
Table 2-1. Pin Assignments (continued)
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
1212 Agere Systems Inc.
Signal Name Pin
RPOACSYNC_D AC30
RPOACSYNC_C AK12
TPOACCLK_A N5
TPOACCLK_B E22
TPOACCLK_D AB30
TPOACCLK_C AK13
TPOACDATA_A N7
TPOACDATA_B G22
TPOACDATA_D AB28
TPOACDATA_C AH13
TPOACSYNC_A M3
TPOACSYNC_B C23
TPOACSYNC_D AC32
TPOACSYNC_C AM12
E1XCLK_1 W9
E1XCLK_2 F28
DS1XCLK_1 AA11
DS1XCLK_2 E33
LOSEXT_A L8
LOSEXT_B H24
LOSEXT_D AD27
LOSEXT_C AG11
RHSFSYNCN_A N2
RHSFSYNCN_B B22
RHSFSYNCN_D AB33
RHSFSYNCN_C AN13
RSTN_A N1
RSTN_B A22
RSTN_D AB34
RSTN_C AP13
PMRST N14
TCK AC21
TDI P15
TMS_1 Y6
TMS_2 AC31
TRST L14
TDO AD21
IC3STATEN M13
SCK1_1 W8
SCK1_2 AA31
SCK2_1 W7
SCK2_2 AL26
SCAN_EN N13
SCANMODE_1 L13
SCANMODE_2 AK30
IDDQ_A N3
Table 2-1. Pin Assignments (continued)
Signal Name Pin
IDDQ_B C22
IDDQ_D AB32
IDDQ_C AM13
NSMIRXDATA_A[1] P1
NSMIRXDATA_B[1] A21
NSMIRXDATA_D[1] AA34
NSMIRXDATA_C[1] AP14
NSMIRXCLK_A[1] M7
NSMIRXCLK_B[1] G23
NSMIRXCLK_D[1] AC28
NSMIRXCLK_C[1] AH12
NSMIRXSYNC_A[1] P2
NSMIRXSYNC_B[1] B21
NSMIRXSYNC_D[1] AA33
NSMIRXSYNC_C[1] AN14
RXDATAEN_A[1] P3
RXDATAEN_B[1] C21
RXDATAEN_D[1] AA32
RXDATAEN_C[1] AM14
NSMIRXDATA_A[2] P6
NSMIRXDATA_B[2] F21
NSMIRXDATA_D[2] AA29
NSMIRXDATA_C[2] AJ14
NSMIRXCLK_A[2] N6
NSMIRXCLK_B[2] F22
NSMIRXCLK_D[2] AB29
NSMIRXCLK_C[2] AJ13
NSMIRXSYNC_A[2] R1
NSMIRXSYNC_B[2] A20
NSMIRXSYNC_D[2] Y34
NSMIRXSYNC_C[2] AP15
RXDATAEN_A[2] R2
RXDATAEN_B[2] B20
RXDATAEN_D[2] Y33
RXDATAEN_C[2] AN15
NSMIRXDATA_A[3] R3
NSMIRXDATA_B[3] C20
NSMIRXDATA_D[3] Y32
NSMIRXDATA_C[3] AM15
NSMIRXCLK_A[3] M8
NSMIRXCLK_B[3] H23
NSMIRXCLK_D[3] AC27
NSMIRXCLK_C[3] AG12
NSMIRXSYNC_A[3] P5
NSMIRXSYNC_B[3] E21
NSMIRXSYNC_D[3] AA30
Table 2-1. Pin Assignments (continued)
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 13
Signal Name Pin
NSMIRXSYNC_C[3] AK14
RXDATAEN_A[3] T1
RXDATAEN_B[3] A19
RXDATAEN_D[3] W34
RXDATAEN_C[3] AP16
NSMITXDATA_A[1] T2
NSMITXDATA_B[1] B19
NSMITXDATA_D[1] W33
NSMITXDATA_C[1] AN16
NSMITXCLK_A[1] P7
NSMITXCLK_B[1] G21
NSMITXCLK_D[1] AA28
NSMITXCLK_C[1] AH14
NSMITXSYNC_A[1] R7
NSMITXSYNC_B[1] G20
NSMITXSYNC_D[1] Y28
NSMITXSYNC_C[1] AH15
TXDATAEN_A[1] R6
TXDATAEN_B[1] F20
TXDATAEN_D[1] Y29
TXDATAEN_C[1] AJ15
NSMITXDATA_A[2] U1
NSMITXDATA_B[2] A18
NSMITXDATA_D[2] V34
NSMITXDATA_C[2] AP17
NSMITXCLK_A[2] R5
NSMITXCLK_B[2] E20
NSMITXCLK_D[2] Y30
NSMITXCLK_C[2] AK15
NSMITXSYNC_A[2] R4
NSMITXSYNC_B[2] D20
NSMITXSYNC_D[2] Y31
NSMITXSYNC_C[2] AL15
TXDATAEN_A[2] V1
TXDATAEN_B[2] A17
TXDATAEN_D[2] U34
TXDATAEN_C[2] AP18
NSMITXDATA_A[3] U2
NSMITXDATA_B[3] B18
NSMITXDATA_D[3] V33
NSMITXDATA_C[3] AN17
NSMITXCLK_A[3] P8
NSMITXCLK_B[3] H21
NSMITXCLK_D[3] AA27
NSMITXCLK_C[3] AG14
NSMITXSYNC_A[3] T3
Table 2-1. Pin Assignments (continued)
Signal Name Pin
NSMITXSYNC_B[3] C19
NSMITXSYNC_D[3] W32
NSMITXSYNC_C[3] AM16
TXDATAEN_A[3] U3
TXDATAEN_B[3] C18
TXDATAEN_D[3] V32
TXDATAEN_C[3] AM17
CHITXDATA_A[1] N9
CHITXDATA_B[1] J22
CHITXDATA_D[1] AB26
CHITXDATA_C[1] AF13
CHITXDATA_A[2] V2
CHITXDATA_B[2] B17
CHITXDATA_D[2] U33
CHITXDATA_C[2] AN18
CHITXDATA_A[3] T4
CHITXDATA_B[3] D19
CHITXDATA_D[3] W31
CHITXDATA_C[3] AL16
CHITXDATA_A[4] V3
CHITXDATA_B[4] C17
CHITXDATA_D[4] U32
CHITXDATA_C[4] AM18
MODE2_PLL F15
CHITXDATA_A[5] N10
CHITXDATA_B[5] K22
CHITXDATA_D[5] AB25
CHITXDATA_C[5] AE13
CHITXDATA_A[6] V4
CHITXDATA_B[6] D17
CHITXDATA_D[6] U31
CHITXDATA_C[6] AL18
CHITXDATA_A[7] U4
CHITXDATA_B[7] D18
CHITXDATA_D[7] V31
CHITXDATA_C[7] AL17
CG_PLLCLKOUT_A P9
CG_PLLCLKOUT_B J21
CG_PLLCLKOUT_D AA26
CG_PLLCLKOUT_C AF14
MODE0_PLL F14
VDD33A_SFPLL_A T7
VDD33A_SFPLL_B G19
VDD33A_SFPLL_D W28
VDD33A_SFPLL_C AH16
CLKIN_PLL G16
Table 2-1. Pin Assignments (continued)
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
1414 Agere Systems Inc.
Signal Name Pin
VSSA_SFPLL_A U5
VSSA_SFPLL_B E18
VSSA_SFPLL_D V30
VSSA_SFPLL_C AK17
MODE1_PLL AD13
CHITXDATA_A[8] R8
CHITXDATA_B[8] H20
CHITXDATA_D[8] Y27
CHITXDATA_C[8] AG15
CHITXDATA_A[9] T6
CHITXDATA_B[9] F19
CHITXDATA_D[9] W29
CHITXDATA_C[9] AJ16
CHITXDATA_A[10] V5
CHITXDATA_B[10] E17
CHITXDATA_D[10] U30
CHITXDATA_C[10] AK18
CHITXDATA_A[11] T8
CHITXDATA_B[11] H19
CHITXDATA_D[11] W27
CHITXDATA_C[11] AG16
CHITXDATA_A[12] U6
CHITXDATA_B[12] F18
CHITXDATA_D[12] V29
CHITXDATA_C[12] AJ17
CHITXDATA_A[13] V6
CHITXDATA_B[13] F17
CHITXDATA_D[13] U29
CHITXDATA_C[13] AJ18
CHITXDATA_A[14] R9
CHITXDATA_B[14] J20
CHITXDATA_D[14] Y26
CHITXDATA_C[14] AF15
CHITXDATA_A[15] U7
CHITXDATA_B[15] G18
CHITXDATA_D[15] V28
CHITXDATA_C[15] AH17
CHITXDATA_A[16] P10
CHITXDATA_B[16] K21
CHITXDATA_D[16] AA25
CHITXDATA_C[16] AE14
CHITXDATA_A[17] N11
CHITXDATA_B[17] L21
CHITXDATA_D[17] AA24
CHITXDATA_C[17] AD14
CHITXDATA_A[18] R10
Table 2-1. Pin Assignments (continued)
Signal Name Pin
CHITXDATA_B[18] K20
CHITXDATA_D[18] Y25
CHITXDATA_C[18] AE15
CHITXGCLK AF20
CHITXGFS AG19
CHIRXGTCLK AF19
CHIRXGCLK AC13
CHIRXGFS AB13
CHIRXDATA_A[1] P11
CHIRXDATA_B[1] L20
CHIRXDATA_D[1] Y24
CHIRXDATA_C[1] AC14
CHIRXDATA_A[2] T10
CHIRXDATA_B[2] K19
CHIRXDATA_D[2] W25
CHIRXDATA_C[2] AE16
CHIRXDATA_A[3] U10
CHIRXDATA_B[3] K18
CHIRXDATA_D[3] V25
CHIRXDATA_C[3] AE17
CHIRXDATA_A[4] R11
CHIRXDATA_B[4] L19
CHIRXDATA_D[4] AA23
CHIRXDATA_C[4] AD15
CHIRXDATA_A[5] T11
CHIRXDATA_B[5] M21
CHIRXDATA_D[5] W24
CHIRXDATA_C[5] AD16
CHIRXDATA_A[6] N12
CHIRXDATA_B[6] M20
CHIRXDATA_D[6] AA22
CHIRXDATA_C[6] AA13
CHIRXDATA_A[7] P12
CHIRXDATA_B[7] N21
CHIRXDATA_D[7] Y23
CHIRXDATA_C[7] AB14
CHIRXDATA_A[8] R12
CHIRXDATA_B[8] P22
CHIRXDATA_D[8] Y22
CHIRXDATA_C[8] AC15
CHIRXDATA_A[9] T12
CHIRXDATA_B[9] M19
CHIRXDATA_D[9] W23
CHIRXDATA_C[9] Y14
CHIRXDATA_A[10] P13
CHIRXDATA_B[10] N20
Table 2-1. Pin Assignments (continued)
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 15
Signal Name Pin
CHIRXDATA_D[10] Y21
CHIRXDATA_C[10] AC16
CHIRXDATA_A[11] R13
CHIRXDATA_B[11] P21
CHIRXDATA_D[11] AA19
CHIRXDATA_C[11] AB15
CHIRXDATA_A[12] U12
CHIRXDATA_B[12] M18
CHIRXDATA_D[12] V23
CHIRXDATA_C[12] AC17
CHIRXDATA_A[13] P14
CHIRXDATA_B[13] R21
CHIRXDATA_D[13] Y20
CHIRXDATA_C[13] AA14
CHIRXDATA_A[14] R14
CHIRXDATA_B[14] P20
CHIRXDATA_D[14] W22
CHIRXDATA_C[14] AB16
CHIRXDATA_A[15] T13
CHIRXDATA_B[15] N19
CHIRXDATA_D[15] W21
CHIRXDATA_C[15] AA15
CHIRXDATA_A[16] T14
CHIRXDATA_B[16] P19
CHIRXDATA_D[16] W20
CHIRXDATA_C[16] AA16
CHIRXDATA_A[17] R15
CHIRXDATA_B[17] R20
CHIRXDATA_D[17] Y19
CHIRXDATA_C[17] Y15
CHIRXDATA_A[18] T15
CHIRXDATA_B[18] R19
CHIRXDATA_D[18] W19
CHIRXDATA_C[18] Y16
LOPOHCLKIN_A T16
LOPOHCLKIN_B T19
LOPOHCLKIN_D AA20
LOPOHCLKIN_C W16
LOPOHDATAIN_A R16
LOPOHDATAIN_B T20
LOPOHDATAIN_D AA21
LOPOHDATAIN_C W15
LOPOHVALIDIN_A P16
LOPOHVALIDIN_B T21
LOPOHVALIDIN_D AB19
LOPOHVALIDIN_C W14
Table 2-1. Pin Assignments (continued)
Signal Name Pin
LOPOHCLKOUT_A N16
LOPOHCLKOUT_B T22
LOPOHCLKOUT_D AC19
LOPOHCLKOUT_C W13
LOPOHDATAOUT_A M16
LOPOHDATAOUT_B T23
LOPOHDATAOUT_D AB20
LOPOHDATAOUT_C W12
LOPOHVALIDOUT_A N15
LOPOHVALIDOUT_B R22
LOPOHVALIDOUT_D AB21
LOPOHVALIDOUT_C Y13
VDD15A_DS3PLL_A M15
VDD15A_DS3PLL_B R23
VDD15A_DS3PLL_D AC20
VDD15A_DS3PLL_C Y12
DS3XCLK P23
VSSA_DS3PLL_A L15
VSSA_DS3PLL_B R24
VSSA_DS3PLL_D AD20
VSSA_DS3PLL_C Y11
VDD15A_E3PLL_A K15
VDD15A_E3PLL_B R25
VDD15A_E3PLL_D AE20
VDD15A_E3PLL_C Y10
E3XCLK P24
VSSA_E3PLL_A K16
VSSA_E3PLL_B T25
VSSA_E3PLL_D AE19
VSSA_E3PLL_C W10
VDD15 A15
VDD15 A16
VDD15 AA9
VDD15 AA18
VDD15 AB7
VDD15 AB12
VDD15 AB17
VDD15 AB27
VDD15 AC7
VDD15 AC12
VDD15 AC18
VDD15 AC26
VDD15 AD30
VDD15 AF18
VDD15 AG4
VDD15 AG29
Table 2-1. Pin Assignments (continued)
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
1616 Agere Systems Inc.
Signal Name Pin
VDD15 AH22
VDD15 AH23
VDD15 AJ5
VDD15 AJ8
VDD15 AJ19
VDD15 AJ30
VDD15 AK2
VDD15 AK6
VDD15 AK11
VDD15 AK16
VDD15 AK29
VDD15 AL4
VDD15 AL14
VDD15 AM19
VDD15 AN19
VDD15 AN20
VDD15 AN30
VDD15 AP19
VDD15 AP20
VDD15 B5
VDD15 B12
VDD15 B15
VDD15 B16
VDD15 C16
VDD15 D8
VDD15 D21
VDD15 E6
VDD15 E19
VDD15 E24
VDD15 E29
VDD15 F5
VDD15 F16
VDD15 F27
VDD15 F30
VDD15 G12
VDD15 G13
VDD15 G15
VDD15 H6
VDD15 H16
VDD15 H31
VDD15 J16
VDD15 J17
VDD15 L5
VDD15 M14
VDD15 M17
VDD15 M28
Table 2-1. Pin Assignments (continued)
Signal Name Pin
VDD15 N18
VDD15 N28
VDD15 P4
VDD15 P17
VDD15 R17
VDD15 R33
VDD15 R34
VDD15 T5
VDD15 T17
VDD15 T29
VDD15 T32
VDD15 T33
VDD15 T34
VDD15 U13
VDD15 U19
VDD15 U20
VDD15 U21
VDD15 U23
VDD15 U26
VDD15 V9
VDD15 V12
VDD15 V14
VDD15 V15
VDD15 V16
VDD15 V22
VDD15 W1
VDD15 W2
VDD15 W3
VDD15 W6
VDD15 W18
VDD15 W30
VDD15 Y1
VDD15 Y2
VDD15 Y7
VDD15 Y9
VDD15 Y18
VDD33 AA5
VDD33 AA10
VDD33 AA12
VDD33 AB5
VDD33 AB18
VDD33 AB31
VDD33 AC5
VDD33 AC6
VDD33 AD17
VDD33 AD18
Table 2-1. Pin Assignments (continued)
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 17
Signal Name Pin
VDD33 AE18
VDD33 AE26
VDD33 AF2
VDD33 AF4
VDD33 AF10
VDD33 AF11
VDD33 AF17
VDD33 AF26
VDD33 AG6
VDD33 AG17
VDD33 AH18
VDD33 AH30
VDD33 AJ23
VDD33 AJ27
VDD33 AK5
VDD33 AK7
VDD33 AK19
VDD33 AK22
VDD33 AK23
VDD33 AL13
VDD33 AL19
VDD33 AL21
VDD33 AL27
VDD33 AL31
VDD33 B9
VDD33 D4
VDD33 D9
VDD33 D14
VDD33 D16
VDD33 D22
VDD33 E5
VDD33 E12
VDD33 E13
VDD33 E16
VDD33 E28
VDD33 E30
VDD33 F8
VDD33 F12
VDD33 G5
VDD33 G17
VDD33 H18
VDD33 H29
VDD33 J18
VDD33 J25
VDD33 J26
VDD33 J31
Table 2-1. Pin Assignments (continued)
Signal Name Pin
VDD33 K9
VDD33 K14
VDD33 K17
VDD33 L9
VDD33 L17
VDD33 L18
VDD33 M29
VDD33 M30
VDD33 N4
VDD33 N17
VDD33 N30
VDD33 P31
VDD33 R18
VDD33 T30
VDD33 T31
VDD33 U8
VDD33 U9
VDD33 U11
VDD33 U15
VDD33 U17
VDD33 U18
VDD33 U22
VDD33 U24
VDD33 U25
VDD33 U28
VDD33 V7
VDD33 V10
VDD33 V11
VDD33 V13
VDD33 V17
VDD33 V18
VDD33 V20
VDD33 V24
VDD33 V26
VDD33 V27
VDD33 W4
VDD33 W5
VDD33 Y17
VSS A29
VSS A32
VSS AA2
VSS AA3
VSS AA4
VSS AA17
VSS AB2
VSS AB3
Table 2-1. Pin Assignments (continued)
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
1818 Agere Systems Inc.
Signal Name Pin
VSS AB4
VSS AC3
VSS AC4
VSS AC9
VSS AC10
VSS AC11
VSS AC23
VSS AC24
VSS AC25
VSS AD4
VSS AD9
VSS AD10
VSS AD11
VSS AD12
VSS AD19
VSS AD23
VSS AD24
VSS AD25
VSS AD26
VSS AE9
VSS AE10
VSS AE11
VSS AE12
VSS AE23
VSS AE24
VSS AE25
VSS AF9
VSS AF12
VSS AF16
VSS AF23
VSS AF24
VSS AF25
VSS AG13
VSS AG18
VSS AH9
VSS AJ4
VSS AJ7
VSS AJ33
VSS AJ34
VSS AK20
VSS AK21
VSS AL12
VSS AL22
VSS AL23
VSS AL24
VSS AL29
Table 2-1. Pin Assignments (continued)
Signal Name Pin
VSS AM20
VSS AM21
VSS AM22
VSS AM23
VSS AM33
VSS AM34
VSS AN3
VSS AN6
VSS AN21
VSS AN22
VSS AP3
VSS AP6
VSS B13
VSS B14
VSS B29
VSS B32
VSS C12
VSS C13
VSS C14
VSS C15
VSS D1
VSS D2
VSS D6
VSS D11
VSS D12
VSS D13
VSS D23
VSS E14
VSS E15
VSS F1
VSS F2
VSS F31
VSS G6
VSS G26
VSS H17
VSS H22
VSS J7
VSS J9
VSS J10
VSS J11
VSS J12
VSS J19
VSS J23
VSS J24
VSS K10
VSS K11
Table 2-1. Pin Assignments (continued)
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 19
Signal Name Pin
VSS K12
VSS K23
VSS K24
VSS K25
VSS K26
VSS L10
VSS L11
VSS L12
VSS L16
VSS L23
VSS L24
VSS L25
VSS L26
VSS L31
VSS M4
VSS M9
VSS M10
VSS M11
VSS M12
VSS M23
VSS M24
VSS M25
VSS M26
VSS M31
VSS M32
VSS N8
VSS N27
Table 2-1. Pin Assignments (continued)
Signal Name Pin
VSS N31
VSS N32
VSS N33
VSS P18
VSS P30
VSS P32
VSS P33
VSS R30
VSS R32
VSS T9
VSS T18
VSS T24
VSS U14
VSS U16
VSS U27
VSS V8
VSS V19
VSS V21
VSS W11
VSS W17
VSS W26
VSS Y3
VSS Y5
Table 2-1. Pin Assignments (continued)
TMXF33625 Hypermapper
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Hardware Design Guide, Revision 1
April 29, 2003
20 Agere Systems Inc.
2.3 Pin Matrix
Table 2-2. Pin Matrix
123456789
A DS3DATAOUTCLK_A[5] DS3NEGDATAOUT_A[5] DS3POSDATAOUT_A[4] DS3DATAOUTCLK_A[3] DS3RXCLKOUT_A[2] DS3DATAOUTCLK_A[1] DS3DATAINCLK_A[6] DS3NEGDATAIN_A[6]
B THSCO_AN THSCO_AP DS3POSDATAOUT_A[6] DS3DATAOUTCLK_A[4] VDD15 DS3NEGDATAOUT_A[3] DS3NEGDATAOUT_A[2] DS3NEGDATAOUT_A[1] VDD33
C THSD_AN THSD_AP RHSD_AN DS3NEGDATAOUT_A[6] DS3POSDATAOUT_A[5] DS3NEGDATAOUT_A[4] DS3POSDATAOUT_A[3] DS3RXCLKOUT_A[1] DS3DATAINCLK_A[5]
D VSS VSS RHSD_AP VDD33 DS3DATAOUTCLK_A[6] VSS DS3RXCLKOUT_A[4] VDD15 VDD33
E THSC_AN THSC_AP RHSC_AN RHSC_AP VDD33 VDD15 DS3RXCLKOUT_A[6] DS3RXCLKOUT_A[3] DS3DATAOUTCLK_A[2]
F VSS VSS RPSD_AP REF10_A VDD15 CTAPRH_A CTAPTH_A VDD33 RESHI_A
G TPSC_AN TPSC_AP RPSD_AN RPSC_AN VDD33 VSS CTAPRP_A RESLO_A REF14_A
H TPSD_AN TPSD_AP TLSDATA_AP[1] RPSC_AP VDD15A_CDR2_A VDD15 TLSDATA_AP[3] TLSDATA_AN[3] CTAPTL_A
J RLSDATA_AP[1] TLSDATA_AP[2] TLSDATA_AN[1] VSSA_CDR2_A RTOACDATA_A TTOACCLK_A VSS RPOACDATA_A VSS
K RLSDATA_AN[1] TLSDATA_AN[2] VSSA_CDR1_A RTOACCLK_A THSSYNC_A VSSA_X4PLL_A VDD15A_X4PLL_A RTOACSYNC_A VDD33
L RLSDATA_AP[2] RLSDATA_AN[3] VDD15A_CDR1_A TLSCLK_A VDD15 TTOACSYNC_A TTOACDATA_A LOSEXT_A VDD33
M RLSDATA_AN[2] RLSDATA_AP[3] TPOACSYNC_A VSS RPOACSYNC_A RPOACCLK_A NSMIRXCLK_A[1] NSMIRXCLK_A[3] VSS
N RSTN_A RHSFSYNCN_A IDDQ_A VDD33 TPOACCLK_A NSMIRXCLK_A[2] TPOACDATA_A VSS CHITXDATA_A[1]
P NSMIRXDATA_A[1] NSMIRXSYNC_A[1] RXDATAEN_A[1] VDD15 NSMIRXSYNC_A[3] NSMIRXDATA_A[2] NSMITXCLK_A[1] NSMITXCLK_A[3] CG_PLLCLKOUT_A
R NSMIRXSYNC_A[2] RXDATAEN_A[2] NSMIRXDATA_A[3] NSMITXSYNC_A[2] NSMITXCLK_A[2] TXDATAEN_A[1] NSMITXSYNC_A[1] CHITXDATA_A[8] CHITXDATA_A[14]
T RXDATAEN_A[3] NSMITXDATA_A[1] NSMITXSYNC_A[3] CHITXDATA_A[3] VDD15 CHITXDATA_A[9] VDD33A_SFPLL_A CHITXDATA_A[11] VSS
U NSMITXDATA_A[2] NSMITXDATA_A[3] TXDATAEN_A[3] CHITXDATA_A[7] VSSA_SFPLL_A CHITXDATA_A[12] CHITXDATA_A[15] VDD33 VDD33
V TXDATAEN_A[2] CHITXDATA_A[2] CHITXDATA_A[4] CHITXDATA_A[6] CHITXDATA_A[10] CHITXDATA_A[13] VDD33 VSS VDD15
W VDD15 VDD15 VDD15 VDD33 VDD33 VDD15 SCK2_1 SCK1_1 E1XCLK_1
Y VDD15 VDD15 VSS CSN_C VSS TMS_1 VDD15 DATA[0] VDD15
AA DS3POSDATAIN_C[1] VSS VSS VSS VDD33 DATA[3] DATA[8] DATA[5] VDD15
AB DS3POSDATAIN_C[2] VSS VSS VSS VDD33 DATA[7] VDD15 DATA[12] DATA[13]
AC DS3NEGDATAIN_C[2] APS_INTN_C VSS VSS VDD33 VDD33 VDD15 DS3DATAINCLK_C[2] VSS
AD DS3NEGDATAIN_C[4] DS3POSDATAIN_C[3] DS3DATAINCLK_C[1] VSS DS3NEGDATAIN_C[1] DS3DATAINCLK_C[3] DS3POSDATAIN_C[4] DS3POSDATAOUT_C[2] VSS
AE DS3NEGDATAIN_C[5] DS3DATAINCLK_C[4] DS3NEGDATAIN_C[3] DS3POSDATAIN_C[5] DS3POSDATAIN_C[6] DS3POSDATAOUT_C[1] DS3RXCLKOUT_C[5] RLSCLK_C VSS
AF DS3NEGDATAIN_C[6] VDD33 DS3DATAINCLK_C[5] VDD33 DS3DATAOUTCLK_C[2] RESHI_C REF14_C CTAPTL_C VSS
AG DS3DATAINCLK_C[6] DS3NEGDATAOUT_C[1] DS3RXCLKOUT_C[1] VDD15 DS3RXCLKOUT_C[3] VDD33 RESLO_C TLSDATA_CN[3] RPOACDATA_C
AH DS3DATAOUTCLK_C[1] DS3NEGDATAOUT_C[2] DS3POSDATAOUT_C[3] DS3RXCLKOUT_C[4] DS3RXCLKOUT_C[6] CTAPTH_C CTAPRP_C TLSDATA_CP[3] VSS
AJ DS3RXCLKOUT_C[2] DS3NEGDATAOUT_C[3] DS3NEGDATAOUT_C[4] VSS VDD15 CTAPRH_C VSS VDD15 TTOACCLK_C
AK DS3DATAOUTCLK_C[3] VDD15 DS3POSDATAOUT_C[5] DS3DATAOUTCLK_C[6] VDD33 VDD15 VDD33 VDD15A_CDR2_C RTOACDATA_C
AL DS3POSDATAOUT_C[4] DS3DATAOUTCLK_C[4] DS3NEGDATAOUT_C[6] VDD15 RHSC_CP REF10_C RPSC_CN RPSC_CP VSSA_CDR2_C
AM DS3NEGDATAOUT_C[5] DS3POSDATAOUT_C[6] RHSD_CN RHSD_CP RHSC_CN RPSD_CP RPSD_CN TLSDATA_CP[1] TLSDATA_CN[1]
AN DS3DATAOUTCLK_C[5] THSCO_CP VSS THSD_CP THSC_CP VSS TPSC_CP TPSD_CP TLSDATA_CP[2]
AP THSCO_CN VSS THSD_CN THSC_CN VSS TPSC_CN TPSD_CN RLSDATA_CP[1]
Hardware Design Guide, Revision 1
April 29, 2003
TMXF33625 Hypermapper
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 21
Table 2-2. Pin Matrix (continued)
10 11 12 13 14 15 16 17 18
A DS3NEGDATAIN_A[5] DS3NEGDATAIN_A[4] DS3NEGDATAIN_A[2] DS3POSDATAIN_A[2] DS3POSDATAIN_A[1] VDD15 VDD15 TXDATAEN_B[2] NSMITXDATA_B[2]
B DS3DATAINCLK_A[4] DS3POSDATAIN_A[3] VDD15 VSS VSS VDD15 VDD15 CHITXDATA_B[2] NSMITXDATA_B[3]
C DS3NEGDATAIN_A[3] DS3DATAINCLK_A[1] VSS VSS VSS VSS VDD15 CHITXDATA_B[4] TXDATAEN_B[3]
D DS3POSDATAIN_A[5] VSS VSS VSS VDD33 CSN_A VDD33 CHITXDATA_B[6] CHITXDATA_B[7]
E DS3POSDATAIN_A[6] DS3NEGDATAIN_A[1] VDD33 VDD33 VSS VSS VDD33 CHITXDATA_B[10] VSSA_SFPLL_B
F DS3POSDATAOUT_A[1] DS3DATAINCLK_A[3] VDD33 LP_INTN_1 MODE0_PLL MODE2_PLL VDD15 CHITXDATA_B[13] CHITXDATA_B[12]
G DS3RXCLKOUT_A[5] DS3POSDATAIN_A[4] VDD15 VDD15 APS_INTN_A VDD15 CLKIN_PLL VDD33 CHITXDATA_B[15]
H RLSCLK_A DS3POSDATAOUT_A[2] DS3DATAINCLK_A[2] BYPASS_1 TSTMODE ECSEL_1 VDD15 VSS VDD33
J VSS VSS VSS TSTPHASE ETOGGLE_1 TSTSFTLD VDD15 VDD15 VDD33
K VSS VSS VSS EXDNUP_1 VDD33 VDD15A_E3PLL_A VSSA_E3PLL_A VDD33 CHIRXDATA_B[3]
L VSS VSS VSS SCANMODE_1 TRST VSSA_DS3PLL_A VSS VDD33 VDD33
M VSS VSS VSS IC3STATEN VDD15 VDD15A_DS3PLL_A LOPOHDATAOUT_A VDD15 CHIRXDATA_B[12]
N CHITXDATA_A[5] CHITXDATA_A[17] CHIRXDATA_A[6] SCAN_EN PMRST LOPOHVALIDOUT_A LOPOHCLKOUT_A VDD33 VDD15
P CHITXDATA_A[16] CHIRXDATA_A[1] CHIRXDATA_A[7] CHIRXDATA_A[10] CHIRXDATA_A[13] TDI LOPOHVALIDIN_A VDD15 VSS
R CHITXDATA_A[18] CHIRXDATA_A[4] CHIRXDATA_A[8] CHIRXDATA_A[11] CHIRXDATA_A[14] CHIRXDATA_A[17] LOPOHDATAIN_A VDD15 VDD33
T CHIRXDATA_A[2] CHIRXDATA_A[5] CHIRXDATA_A[9] CHIRXDATA_A[15] CHIRXDATA_A[16] CHIRXDATA_A[18] LOPOHCLKIN_A VDD15 VSS
U CHIRXDATA_A[3] VDD33 CHIRXDATA_A[12] VDD15 VSS VDD33 VSS VDD33 VDD33
V VDD33 VDD33 VDD15 VDD33 VDD15 VDD15 VDD15 VDD33 VDD33
W VSSA_E3PLL_C VSS LOPOHDATAOUT_C LOPOHCLKOUT_C LOPOHVALIDIN_C LOPOHDATAIN_C LOPOHCLKIN_C VSS VDD15
Y VDD15A_E3PLL_C VSSA_DS3PLL_C VDD15A_DS3PLL_C LOPOHVALIDOUT_C CHIRXDATA_C[9] CHIRXDATA_C[17] CHIRXDATA_C[18] VDD33 VDD15
AA VDD33 DS1XCLK_1 VDD33 CHIRXDATA_C[6] CHIRXDATA_C[13] CHIRXDATA_C[15] CHIRXDATA_C[16] VSS VDD15
AB HP_INTN_1 LP_INTN_2 VDD15 CHIRXGFS CHIRXDATA_C[7] CHIRXDATA_C[11] CHIRXDATA_C[14] VDD15 VDD33
AC VSS VSS VDD15 CHIRXGCLK CHIRXDATA_C[1] CHIRXDATA_C[8] CHIRXDATA_C[10] CHIRXDATA_C[12] VDD15
AD VSS VSS VSS MODE1_PLL CHITXDATA_C[17] CHIRXDATA_C[4] CHIRXDATA_C[5] VDD33 VDD33
AE VSS VSS VSS CHITXDATA_C[5] CHITXDATA_C[16] CHITXDATA_C[18] CHIRXDATA_C[2] CHIRXDATA_C[3] VDD33
AF VDD33 VDD33 VSS CHITXDATA_C[1] CG_PLLCLKOUT_C CHITXDATA_C[14] VSS VDD33 VDD15
AG RTOACSYNC_C LOSEXT_C NSMIRXCLK_C[3] VSS NSMITXCLK_C[3] CHITXDATA_C[8] CHITXDATA_C[11] VDD33 VSS
AH VDD15A_X4PLL_C TTOACDATA_C NSMIRXCLK_C[1] TPOACDATA_C NSMITXCLK_C[1] NSMITXSYNC_C[1] VDD33A_SFPLL_C CHITXDATA_C[15] VDD33
AJ VSSA_X4PLL_C TTOACSYNC_C RPOACCLK_C NSMIRXCLK_C[2] NSMIRXDATA_C[2] TXDATAEN_C[1] CHITXDATA_C[9] CHITXDATA_C[12] CHITXDATA_C[13]
AK THSSYNC_C VDD15 RPOACSYNC_C TPOACCLK_C NSMIRXSYNC_C[3] NSMITXCLK_C[2] VDD15 VSSA_SFPLL_C CHITXDATA_C[10]
AL RTOACCLK_C TLSCLK_C VSS VDD33 VDD15 NSMITXSYNC_C[2] CHITXDATA_C[3] CHITXDATA_C[7] CHITXDATA_C[6]
AM VSSA_CDR1_C VDD15A_CDR1_C TPOACSYNC_C IDDQ_C RXDATAEN_C[1] NSMIRXDATA_C[3] NSMITXSYNC_C[3] TXDATAEN_C[3] CHITXDATA_C[4]
AN TLSDATA_CN[2] RLSDATA_CN[3] RLSDATA_CP[3] RHSFSYNCN_C NSMIRXSYNC_C[1] RXDATAEN_C[2] NSMITXDATA_C[1] NSMITXDATA_C[3] CHITXDATA_C[2]
AP RLSDATA_CN[1] RLSDATA_CP[2] RLSDATA_CN[2] RSTN_C NSMIRXDATA_C[1] NSMIRXSYNC_C[2] RXDATAEN_C[3] NSMITXDATA_C[2] TXDATAEN_C[2]
TMXF33625 Hypermapper
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Hardware Design Guide, Revision 1
April 29, 2003
22 Agere Systems Inc.
Table 2-2. Pin Matrix (continued)
19 20 21 22 23 24 25 26 27
A RXDATAEN_B[3] NSMIRXSYNC_B[2] NSMIRXDATA_B[1] RSTN_B RLSDATA_BN[2] RLSDATA_BP[2] RLSDATA_BN[1] RLSDATA_BP[1] TPSD_BN
B NSMITXDATA_B[1] RXDATAEN_B[2] NSMIRXSYNC_B[1] RHSFSYNCN_B RLSDATA_BP[3] RLSDATA_BN[3] TLSDATA_BN[2] TLSDATA_BP[2] TPSD_BP
C NSMITXSYNC_B[3] NSMIRXDATA_B[3] RXDATAEN_B[1] IDDQ_B TPOACSYNC_B VDD15A_CDR1_B VSSA_CDR1_B TLSDATA_BN[1] TLSDATA_BP[1]
D CHITXDATA_B[3] NSMITXSYNC_B[2] VDD15 VDD33 VSS TLSCLK_B RTOACCLK_B VSSA_CDR2_B RPSC_BP
E VDD15 NSMITXCLK_B[2] NSMIRXSYNC_B[3] TPOACCLK_B RPOACSYNC_B VDD15 THSSYNC_B RTOACDATA_B VDD15A_CDR2_B
F CHITXDATA_B[9] TXDATAEN_B[1] NSMIRXDATA_B[2] NSMIRXCLK_B[2] RPOACCLK_B TTOACSYNC_B VSSA_X4PLL_B TTOACCLK_B VDD15
G VDD33A_SFPLL_B NSMITXSYNC_B[1] NSMITXCLK_B[1] TPOACDATA_B NSMIRXCLK_B[1] TTOACDATA_B VDD15A_X4PLL_B VSS TLSDATA_BP[3]
H CHITXDATA_B[11] CHITXDATA_B[8] NSMITXCLK_B[3] VSS NSMIRXCLK_B[3] LOSEXT_B RTOACSYNC_B RPOACDATA_B TLSDATA_BN[3]
J VSS CHITXDATA_B[14] CG_PLLCLKOUT_B CHITXDATA_B[1] VSS VSS VDD33 VDD33 CTAPTL_B
K CHIRXDATA_B[2] CHITXDATA_B[18] CHITXDATA_B[16] CHITXDATA_B[5] VSS VSS VSS VSS RLSCLK_B
L CHIRXDATA_B[4] CHIRXDATA_B[1] CHITXDATA_B[17] DATA[2] VSS VSS VSS VSS DS3POSDATAOUT_B[2]
M CHIRXDATA_B[9] CHIRXDATA_B[6] CHIRXDATA_B[5] DATA[6] VSS VSS VSS VSS DS3DATAINCLK_B[2]
N CHIRXDATA_B[15] CHIRXDATA_B[10] CHIRXDATA_B[7] DATA[14] PAR[1] ADDR[17] ADDR[18] DATA[15] VSS
P CHIRXDATA_B[16] CHIRXDATA_B[14] CHIRXDATA_B[11] CHIRXDATA_B[8] DS3XCLK E3XCLK DATA[4] DATA[11] DATA[10]
R CHIRXDATA_B[18] CHIRXDATA_B[17] CHIRXDATA_B[13] LOPOHVALIDOUT_B VDD15A_DS3PLL_B VSSA_DS3PLL_B VDD15A_E3PLL_B ADDR[12] ADDR[4]
T LOPOHCLKIN_B LOPOHDATAIN_B LOPOHVALIDIN_B LOPOHCLKOUT_B LOPOHDATAOUT_B VSS VSSA_E3PLL_B ADDR[8] ADDR[11]
U VDD15 VDD15 VDD15 VDD33 VDD15 VDD33 VDD33 VDD15 VSS
V VSS VDD33 VSS VDD15 CHIRXDATA_D[12] VDD33 CHIRXDATA_D[3] VDD33 VDD33
W CHIRXDATA_D[18] CHIRXDATA_D[16] CHIRXDATA_D[15] CHIRXDATA_D[14] CHIRXDATA_D[9] CHIRXDATA_D[5] CHIRXDATA_D[2] VSS CHITXDATA_D[11]
Y CHIRXDATA_D[17] CHIRXDATA_D[13] CHIRXDATA_D[10] CHIRXDATA_D[8] CHIRXDATA_D[7] CHIRXDATA_D[1] CHITXDATA_D[18] CHITXDATA_D[14] CHITXDATA_D[8]
AA CHIRXDATA_D[11] LOPOHCLKIN_D LOPOHDATAIN_D CHIRXDATA_D[6] CHIRXDATA_D[4] CHITXDATA_D[17] CHITXDATA_D[16] CG_PLLCLKOUT_D NSMITXCLK_D[3]
AB LOPOHVALIDIN_D LOPOHDATAOUT_D LOPOHVALIDOUT_D ADDR[20] PAR[0] DTN CHITXDATA_D[5] CHITXDATA_D[1] VDD15
AC LOPOHCLKOUT_D VDD15A_DS3PLL_D TCK ADDR[14] VSS VSS VSS VDD15 NSMIRXCLK_D[3]
AD VSS VSSA_DS3PLL_D TDO ADDR[10] VSS VSS VSS VSS LOSEXT_D
AE VSSA_E3PLL_D VDD15A_E3PLL_D ADSN ADDR[7] VSS VSS VSS VDD33 RTOACSYNC_D
AF CHIRXGTCLK CHITXGCLK ADDR[5] DATA[9] VSS VSS VSS VDD33 RPOACDATA_D
AG CHITXGFS MPMODE MPCLK ADDR[16] DS3DATAINCLK_D[2] DS3POSDATAOUT_D[2] RLSCLK_D CTAPTL_D TLSDATA_DN[3]
AH ADDR[0] ADDR[6] ADDR[2] VDD15 VDD15 DS3POSDATAIN_D[4] DS3RXCLKOUT_D[5] REF14_D RESLO_D
AJ VDD15 RWN ADDR[1] ADDR[13] VDD33 DS3DATAINCLK_D[3] DS3POSDATAOUT_D[1] RESHI_D VDD33
AK VDD33 VSS VSS VDD33 VDD33 DS3NEGDATAIN_D[1] DS3POSDATAIN_D[6] DS3DATAOUTCLK_D[2] DS3RXCLKOUT_D[3]
AL VDD33 CSN_D VDD33 VSS VSS VSS DS3POSDATAIN_D[5] SCK2_2 VDD33
AM VDD15 VSS VSS VSS VSS DS3DATAINCLK_D[1] DS3NEGDATAIN_D[3] DS3DATAINCLK_D[5] DS3RXCLKOUT_D[1]
AN VDD15 VDD15 VSS VSS BYPASS_2 DS3POSDATAIN_D[3] DS3DATAINCLK_D[4] APS_INTN_D DS3NEGDATAOUT_D[1]
AP VDD15 VDD15 DS3POSDATAIN_D[1] DS3POSDATAIN_D[2] DS3NEGDATAIN_D[2] DS3NEGDATAIN_D[4] DS3NEGDATAIN_D[5] DS3NEGDATAIN_D[6] DS3DATAINCLK_D[6]
Hardware Design Guide, Revision 1
April 29, 2003
TMXF33625 Hypermapper
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 23
Table 2-2. Pin Matrix (continued)
28 29 30 31 32 33 34
A TPSC_BN VSS THSC_BN THSD_BN VSS THSCO_BN
B TPSC_BP VSS THSC_BP THSD_BP VSS THSCO_BP DS3DATAOUTCLK_B[5]
C RPSD_BN RPSD_BP RHSC_BN RHSD_BP RHSD_BN DS3POSDATAOUT_B[6] DS3NEGDATAOUT_B[5]
D RPSC_BN REF10_B RHSC_BP EXDNUP_2 DS3NEGDATAOUT_B[6] DS3DATAOUTCLK_B[4] DS3POSDATAOUT_B[4]
E VDD33 VDD15 VDD33 DS3DATAOUTCLK_B[6] DS3POSDATAOUT_B[5] DS1XCLK_2 DS3DATAOUTCLK_B[3]
F E1XCLK_2 CTAPRH_B VDD15 VSS DS3NEGDATAOUT_B[4] DS3NEGDATAOUT_B[3] DS3RXCLKOUT_B[2]
G CTAPRP_B CTAPTH_B DS3RXCLKOUT_B[6] DS3RXCLKOUT_B[4] DS3POSDATAOUT_B[3] DS3NEGDATAOUT_B[2] DS3DATAOUTCLK_B[1]
H RESLO_B VDD33 DS3RXCLKOUT_B[3] VDD15 DS3RXCLKOUT_B[1] DS3NEGDATAOUT_B[1] DS3DATAINCLK_B[6]
J REF14_B RESHI_B DS3DATAOUTCLK_B[2] VDD33 DS3DATAINCLK_B[5] APS_INTN_B DS3NEGDATAIN_B[6]
K DS3RXCLKOUT_B[5] DS3POSDATAOUT_B[1] DS3POSDATAIN_B[6] DS3POSDATAIN_B[5] DS3NEGDATAIN_B[3] DS3DATAINCLK_B[4] DS3NEGDATAIN_B[5]
L DS3POSDATAIN_B[4] DS3DATAINCLK_B[3] DS3NEGDATAIN_B[1] VSS DS3DATAINCLK_B[1] DS3POSDATAIN_B[3] DS3NEGDATAIN_B[4]
M VDD15 VDD33 VDD33 VSS VSS HP_INTN_2 DS3NEGDATAIN_B[2]
N VDD15 ADDR[19] VDD33 VSS VSS VSS DS3POSDATAIN_B[2]
P DATA[1] ADDR[15] VSS VDD33 VSS VSS DS3POSDATAIN_B[1]
R ADDR[9] ADDR[3] VSS CSN_B VSS VDD15 VDD15
T DSN VDD15 VDD33 VDD33 VDD15 VDD15 VDD15
U VDD33 CHITXDATA_D[13] CHITXDATA_D[10] CHITXDATA_D[6] CHITXDATA_D[4] CHITXDATA_D[2] TXDATAEN_D[2]
V CHITXDATA_D[15] CHITXDATA_D[12] VSSA_SFPLL_D CHITXDATA_D[7] TXDATAEN_D[3] NSMITXDATA_D[3] NSMITXDATA_D[2]
W VDD33A_SFPLL_D CHITXDATA_D[9] VDD15 CHITXDATA_D[3] NSMITXSYNC_D[3] NSMITXDATA_D[1] RXDATAEN_D[3]
Y NSMITXSYNC_D[1] TXDATAEN_D[1] NSMITXCLK_D[2] NSMITXSYNC_D[2] NSMIRXDATA_D[3] RXDATAEN_D[2] NSMIRXSYNC_D[2]
AA NSMITXCLK_D[1] NSMIRXDATA_D[2] NSMIRXSYNC_D[3] SCK1_2 RXDATAEN_D[1] NSMIRXSYNC_D[1] NSMIRXDATA_D[1]
AB TPOACDATA_D NSMIRXCLK_D[2] TPOACCLK_D VDD33 IDDQ_D RHSFSYNCN_D RSTN_D
AC NSMIRXCLK_D[1] RPOACCLK_D RPOACSYNC_D TMS_2 TPOACSYNC_D RLSDATA_DP[3] RLSDATA_DN[2]
AD TTOACDATA_D TTOACSYNC_D VDD15 TLSCLK_D VDD15A_CDR1_D RLSDATA_DN[3] RLSDATA_DP[2]
AE VDD15A_X4PLL_D VSSA_X4PLL_D THSSYNC_D RTOACCLK_D VSSA_CDR1_D TLSDATA_DN[2] RLSDATA_DN[1]
AF ETOGGLE_2 TTOACCLK_D RTOACDATA_D VSSA_CDR2_D TLSDATA_DN[1] TLSDATA_DP[2] RLSDATA_DP[1]
AG TLSDATA_DP[3] VDD15 VDD15A_CDR2_D RPSC_DP TLSDATA_DP[1] TPSD_DP TPSD_DN
AH CTAPRP_D ECSEL_2 VDD33 RPSC_DN RPSD_DN TPSC_DP TPSC_DN
AJ CTAPTH_D CTAPRH_D VDD15 REF10_D RPSD_DP VSS VSS
AK DS3RXCLKOUT_D[6] VDD15 SCANMODE_2 RHSC_DP RHSC_DN THSC_DP THSC_DN
AL DS3RXCLKOUT_D[4] VSS DS3DATAOUTCLK_D[6] VDD33 RHSD_DP THSD_DP THSD_DN
AM DS3POSDATAOUT_D[3] DS3NEGDATAOUT_D[4] DS3POSDATAOUT_D[5] DS3NEGDATAOUT_D[6] RHSD_DN VSS VSS
AN DS3NEGDATAOUT_D[2] DS3NEGDATAOUT_D[3] VDD15 DS3DATAOUTCLK_D[4] DS3POSDATAOUT_D[6] THSCO_DP THSCO_DN
AP DS3DATAOUTCLK_D[1] DS3RXCLKOUT_D[2] DS3DATAOUTCLK_D[3] DS3POSDATAOUT_D[4] DS3NEGDATAOUT_D[5] DS3DATAOUTCLK_D[5]
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
2424 Agere Systems Inc.
2.4 Pin Types
Table 2-3 describes each type of input, output, and I/O pin used in the Hypermapper.
Table 2-3. Pin Types
Type Label Description
ILVCMOS Input, LVTTL Switching Thresholds.
I pd LVCMOS Input, LVTTL Switching Thresholds With Internal 50 k
Pull-Down Resistor.
I pd 1 LVCMOS Input, LVTTL Switching Thresholds With Internal 25 k
Pull-Down Resistor.
I pd 2 LVCMOS Input, LVTTL Switching Thresholds With Internal 12.5 k
Pull-Down Resistor.
I pu LVCMOS Input, LVTTL Switching Thresholds With Internal 50 k
Pull-Up Resistor.
I pu 1 LVCMOS Input, LVTTL Switching Thresholds With Internal 25 k
Pull-Up Resistor.
I pu 2 LVCMOS Input, LVTTL Switching Thresholds With Internal 12.5 k
Pull-Up Resistor.
OLVCMOS Output.
O od Open-Drain Output.
LIN LVDS Inputs.
LOUT LVDS Outputs.
I/O Bidirectional Pin. LVCMOS input with LVTTL switching thresholds and LVCMOS output.
I/O pd Bidirectional Pin. LVCMOS input with LVTTL switching thresholds with internal 50 kpull-down resistor
and LVCMOS output.
Power, Ground, Analog Inputs for External Resistors, Capacitors, Voltage References, etc.
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 25
2.5 Pin Definitions
This section describes the function of each of the device pins. All LVDS input buffers have built-in 100 terminating
resistor with a center tap pin available for external capacitor connection. All unused LVDS inputs may be left unconnected.
Pin functionality is descriptive information. The actual functionality is dependent upon the device configuration via the
registers.
Table 2-4. TMUX Blocks, High-Speed Interface I/O
Symbol Pin Type Name/Description
RHSD_AP D3 LIN Receive High-Speed Data. 622/155 Mbits/s input data; also, input to internal clock
and data recovery (CDR). CDR may be bypassed in 155 Mbits/s mode. The internal
CDR must be used in 622 Mbits/s mode.
RHSD_BP C31
RHSD_CP AM4
RHSD_DP AL32
RHSD_AN C3
RHSD_BN C32
RHSD_CN AM3
RHSD_DN AM32
RHSC_AP E4 LIN Receive High-Speed Clock. 155 MHz input clock for 155 Mbits/s data if CDR is by-
passed. Not used in 622 Mbits/s mode.
RHSC_BP D30
RHSC_CP AL5
RHSC_DP AK31
RHSC_AN E3
RHSC_BN C30
RHSC_CN AM5
RHSC_DN AK32
CTAPRH_A F6 Center Tap RH. LVDS buffer terminator center tap for RHSDP/N and RHSCP/N. An op-
tional 0.1 µF capacitor, connected between CTAP pin and ground, will improve the com-
mon-mode rejection of the LVDS input buffers.
CTAPRH_B F29
CTAPRH_C AJ6
CTAPRH_D AJ29
LOSEXT_A L8 I pu External Loss of Signal Input. Active level is programmable by register
TMUX_LOSEXT_LEVEL, defaults to active-low. This pin can be part of the high-priority
interrupt when active. Usually connected to optical transceiver to indicate loss of signal.
LOSEXT_B H24
LOSEXT_C AG11
LOSEXT_D AD27
THSD_AP C2 LOUT Transmit High-Speed Data. 622/155 Mbits/s output data. The frame location in slave
mode is determined by THSSYNC and transmit high-speed control parameter register
(TMUX_TFRAMEOFFSETA). In master mode, the frame timing is arbitrary.
THSD_BP B31
THSD_CP AN4
THSD_DP AL33
THSD_AN C1
THSD_BN A31
THSD_CN AP4
THSD_DN AL34
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
2626 Agere Systems Inc.
THSCO_AP B2 LOUT Transmit High-Speed Clock Output. 622/155 MHz transmit output clock associated
with THSDP/N.
THSCO_BP B33
THSCO_CP AN2
THSCO_DP AN33
THSCO_AN B1
THSCO_BN A33
THSCO_CN AP2
THSCO_DN AN34
RESHI_A F9 Resistor. A 100 , 1% resistor is required between the RESHI_X and RESLO_X pins
as a reference for the LVDS input buffer termination.
RESHI_B J29
RESHI_C AF6
RESHI_D AJ26
RESLO_A G8
RESLO_B H28
RESLO_C AG7
RESLO_D AH27
REF10_A*F4 I Reference 1.0 V. External 1 V reference voltage pin. (Optional.)
REF10_B*D29
REF10_C*AL6
REF10_D*AJ31
REF14_A*G9 I Reference 1.4 V. External 1.4 V reference voltage pin. (Optional.)
REF14_B*J28
REF14_C*AF7
REF14_D*AH26
* Optional: selected by MPU/top-level register. External reference voltage can be sourced from a low-impedance resistor (less than 1 k) divider
circuit decoupled with a 0.1 µF capacitor.
Table 2-4. TMUX Blocks, High-Speed Interface I/O (continued)
Symbol Pin Type Name/Description
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 27
Table 2-5. TMUX Blocks, Protection Link I/O
Symbol Pin Type Name/Description
RPSD_AP F3 LIN Receive Protection High-Speed Data. 622/155 Mbits/s protection input data; also input
to internal protection CDR. CDR may be bypassed in 155 Mbits/s mode. The internal
CDR must be used in 622 Mbits/s mode.
RPSD_BP C29
RPSD_CP AM6
RPSD_DP AJ32
RPSD_AN G3
RPSD_BN C28
RPSD_CN AM7
RPSD_DN AH32
RPSC_AP H4 LIN Receive Protection High-Speed Clock. 155 MHz input clock for 155 Mbits/s data if pro-
tection CDR is bypassed. Not used in 622 Mbits/s mode.
RPSC_BP D27
RPSC_CP AL8
RPSC_DP AG31
RPSC_AN G4
RPSC_BN D28
RPSC_CN AL7
RPSC_DN AH31
CTAPRP_A G7 Center Tap RP. LVDS buffer terminator center tap for RPSDP/N and RPSCP/N. An op-
tional 0.1 µF capacitor, connected between the CTAP pin and ground, will improve the
common-mode rejection of the LVDS input buffers.
CTAPRP_B G28
CTAPRP_C AH7
CTAPRP_D AH28
TPSD_AP H2 LOUT Transmit Protection High-Speed Data. 622/155 Mbits/s protection output data.
TPSD_BP B27
TPSD_CP AN8
TPSD_DP AG33
TPSD_AN H1
TPSD_BN A27
TPSD_CN AP8
TPSD_DN AG34
TPSC_AP G2 LOUT Transmit Protection High-Speed Clock. 622/155 MHz transmit output clock associated
with TPSDP/N.
TPSC_BP B28
TPSC_CP AN7
TPSC_DP AH33
TPSC_AN G1
TPSC_BN A28
TPSC_CN AP7
TPSC_DN AH34
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
2828 Agere Systems Inc.
Table 2-6. TMUX Blocks, Clock and Sync I/O
Symbol Pin Type Name/Description
THSC_AP E2 LIN Transmit High-Speed Clock. 622/155 MHz input clock for the transmit 622/155 Mbits/s
data; also used as a reference clock for all CDRs. There are five CDR circuits per parti-
tion (A—D). The high-speed data and protection high-speed data have CDRs that oper-
ate at 155 MHz or 622 MHz. The mate inputs have three CDRs that operate at 155 MHz.
The clock on this pin is also internally routed to the DS1/E1 framers and is used as an
internal master clock.
THSC_BP B30
THSC_CP AN5
THSC_DP AK33
THSC_AN E1
THSC_BN A30
THSC_CN AP5
THSC_DN AK34
CTAPTH_A F7 Center Tap TH. LVDS buffer terminator center tap for THSCP/N. An optional 0.1 µF ca-
pacitor, connected between the CTAP pin and ground, will improve the common-mode re-
jection of the LVDS input buffers.
CTAPTH_B G29
CTAPTH_C AH6
CTAPTH_D AJ28
RHSFSYNCN_A N2 O Receive High-Speed Frame Sync. This output indicates the start of the frame in the
high-speed data input. Only present when a valid frame signal is detected on the
RHSDP/N inputs. It is an active-low pulse with width almost equal to one E1 clock period
or approximately 500 ns.
RHSFSYNCN_B B22
RHSFSYNCN_C AN13
RHSFSYNCN_D AB33
RLSCLK_A H10 O Receive Low-Speed Clock. 19.44 MHz receive output clock divided down from
RHSCP/N. May be used as a system timing reference.
RLSCLK_B K27
RLSCLK_C AE8
RLSCLK_D AG25
TLSCLK_A L4 O Transmit Low-Speed Clock. 19.44 MHz transmit output clock divided down from
THSCP/N.
TLSCLK_B D24
TLSCLK_C AL11
TLSCLK_D AD31
THSSYNC_A K5 I/O pd Transmit High-Speed Frame Sync. 2 kHz/8 kHz composite frame sync signal that iden-
tifies the locations of the J0, J1-1, J1-2, J1-3 . . . J1-12, and V1-1 bytes. This signal is used to
align transmit frames before multiplexing.
Note: J0, J1-1, J1-2, and J1-3 . . . , J1-12 occur every 125 µs. V1-1 occurs every 500 µs.
If the register MPU_MASTER_SLAVE = 1, THSSYNC is an output; otherwise,
THSSYNC is an input.
The positive 8 kHz and 2 kHz pulses are synchronized to TLSCLK. The rising edge is
referenced for frame location. For master/slave configuration, the THSSYNC of Hyper-
mapper partitions (A, B, C, and D; up to four) must be connected together. The master
can be one of the Hypermapper partitions (A, B, C, or D), and it sources the frame sync
pulse to other Hypermapper partitions. All Hypermapper partitions (A, B, C, and D) can
also be configured as slaves and receive frame sync from the external system frame
sync.
THSSYNC_B E25
THSSYNC_C AK10
THSSYNC_D AE30
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 29
Table 2-7. STS Cross Connect (STSXC) Blocks, STS-3/STM-1 Mate Interconnect
Symbol Pin Type Name/Description
RLSDATA_AP[3:1] M2, L1, J1 LOUT Receive Low-Speed Data. These pins are only used in 622 Mbits/s
applications. They are used only on the master partition (A, B, C, or D).
Connect these pins to the high-speed data inputs (RHSDP/N) of the
slave partitions.
This 155 Mbits/s signal uses a SONET structure. The overheads sup-
ported are the A1/A2 and B2 bytes and line RDI. The data is scrambled.
Data from the RHSD is routed via the STSXC.
RLSDATA_BP[3:1] B23, A24, A26
RLSDATA_CP[3:1] AN12, AP11, AP9
RLSDATA_DP[3:1] AC33, AD34, AF34
RLSDATA_AN[3:1] L2, M1, K1
RLSDATA_BN[3:1] B24, A23, A25
RLSDATA_CN[3:1] AN11, AP12, AP10
RLSDATA_DN[3:1] AD33, AC34, AE34
TLSDATA_AP[3:1] H7, J2, H3 LIN Transmit Low-Speed Data. These pins are only used in 622 Mbits/s ap-
plications. They are used only on the master partition (A, B, C, or D). Con-
nect these pins to the high-speed data outputs (THSDP/N) of the slave
partitions. This 155 Mbits/s input receives data from the slave high-speed
outputs.
These inputs have built-in clock and data recovery (CDR). The frame lo-
cation expects a fixed relationship to the high-speed transmit frame sync
(THSSYNC).
TLSDATA_BP[3:1] G27, B26, C27
TLSDATA_CP[3:1] AH8, AN9, AM8
TLSDATA_DP[3:1] AG28, AF33, AG32
TLSDATA_AN[3:1] H8, K2, J3
TLSDATA_BN[3:1] H27, B25, C26
TLSDATA_CN[3:1] AG8, AN10, AM9
TLSDATA_DN[3:1] AG27, AE33, AF32
CTAPTL_A H9 Center Tap TL. LVDS buffer terminator center tap for TLSDATAP/N. An
optional 0.1 µF capacitor, connected between the CTAP pin and ground,
will improve the common-mode rejection of the LVDS input buffers.
CTAPTL_B J27
CTAPTL_C AF8
CTAPTL_D AG26
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
3030 Agere Systems Inc.
Table 2-8. Multirate Cross Connect (MRXC) Blocks, TOAC Input and Output Channels
Symbol Pin Type Name/Description
RTOACCLK_A K4 O Receive Transport Overhead Access Channel Clock. The frequency of this clock is
determined by the TOAC provisioning registers.
RTOACCLK_B D25
RTOACCLK_C AL10
RTOACCLK_D AE31
RTOACDATA_A J5 O Receive Transport Overhead Access Channel Data. 622/155 Mbits/s transport
overhead bytes are output on this pin. The content is determined by the TOAC
provisioning registers.
RTOACDATA_B E26
RTOACDATA_C AK9
RTOACDATA_D AF30
RTOACSYNC_A K8 O Receive Transport Overhead Access Channel Sync. Active-high 8 kHz frame sync. It
is active during the clock period of the first bit of each frame.
RTOACSYNC_B H25
RTOACSYNC_C AG10
RTOACSYNC_D AE27
TTOACCLK_A J6 O Transmit Transport Overhead Access Channel Clock. The frequency of this clock is
determined by the TOAC provisioning registers.
TTOACCLK_B F26
TTOACCLK_C AJ9
TTOACCLK_D AF29
TTOACDATA_A L7 I pd Transmit Transport Overhead Access Channel Data. Input for the transport overhead
bytes.
TTOACDATA_B G24
TTOACDATA_C AH11
TTOACDATA_D AD28
TTOACSYNC_A L6 O Transmit Transport Overhead Access Channel Sync. Active-high 8 kHz frame sync.
It is active during the clock period of the first bit of each frame.
TTOACSYNC_B F24
TTOACSYNC_C AJ11
TTOACSYNC_D AD29
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 31
Table 2-9. Multirate Cross Connect (MRXC) Blocks, POAC Input and Output Channels
Symbol Pin Type Name/Description
RPOACCLK_A M6 O Receive Path Overhead Access Channel Clock. Output for the path overhead bytes.
This is a 3-state output pin controlled by register provisioning.
RPOACCLK_B F23
RPOACCLK_C AJ12
RPOACCLK_D AC29
RPOACDATA_A J8 O Receive Path Overhead Access Channel Data. Output for the path overhead bytes.
This pin can be 3-stated.
RPOACDATA_B H26
RPOACDATA_C AG9
RPOACDATA_D AF27
RPOACSYNC_A M5 O Receive Path Overhead Access Channel Sync. Output for POAC channel. Active-
high during the first bit of each frame. This pin can be individually 3-stated.
RPOACSYNC_B E23
RPOACSYNC_C AK12
RPOACSYNC_D AC30
TPOACCLK_A N5 O Transmit Path Overhead Access Channel Clock. Serial access channel clock output
for the path overhead bytes. This pin can be individually 3-stated.
TPOACCLK_B E22
TPOACCLK_C AK13
TPOACCLK_D AB30
TPOACDATA_A N7 I pd Transmit Path Overhead Access Channel Data. Serial access channel data input for
the path overhead bytes.
TPOACDATA_B G22
TPOACDATA_C AH13
TPOACDATA_D AB28
TPOACSYNC_A M3 O Transmit Path Overhead Access Channel Sync. Sync output for POAC channel. Ac-
tive-high during the first bit of each frame. This pin can be individually 3-stated.
TPOACSYNC_B C23
TPOACSYNC_C AM12
TPOACSYNC_D AC32
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
3232 Agere Systems Inc.
Table 2-10. DS3/E3/STS-1 Out
Symbol Pin Type Name/Description
DS3POSDATAOUT_A[6:1] B3, C5, A4, C7, H11,
F10
ODS3/E3/STS-1 Positive Data Output. Either contains the
positive-rail of the B3ZS/HDB3 encoded output data, or
single-rail NRZ data.
DS3POSDATAOUT_B[6:1] C33, E32, D34, G32,
L27, K29
DS3POSDATAOUT_C[6:1] AM2, AK3, AL1, AH3,
AD8, AE6
DS3POSDATAOUT_D[6:1] AN32, AM30, AP31,
AM28, AG24, AJ25
DS3NEGDATAOUT_A[6:1] C4, A3, C6, B6, B7, B8 O DS3/E3/STS-1 Negative Data Output. Negative-rail B3ZS/
HDB3 encoded output data. Not used in single-rail mode
(held low in this case).
DS3NEGDATAOUT_B[6:1] D32, C34, F32, F33,
G33, H33
DS3NEGDATAOUT_C[6:1] AL3, AM1, AJ3, AJ2,
AH2, AG2
DS3NEGDATAOUT_D[6:1] AM31, AP32, AM29,
AN29, AN28, AN27
DS3DATAOUTCLK_A[6:1] D5, A2, B4, A5, E9, A7 I pd DS3/E3/STS-1 Data Output Clock. 44.736 MHz,
34.368 MHz, or 51.84 MHz clock input.
This clock is required for M13, E13, or STS1LT applications
and is typically connected to a crystal oscillator or clocking
chip.
For DS3/E3 to SONET/SDH mapping applications, the DS3/
E3 DJA is used, and this clock is therefore not required.
DS3XCLK/E3XCLK is needed for DS3/E3 DJA in this case.
For STS-1 to SONET mapping applications, the TMUX can
be used to supply the STS-1 rate DATAOUT clock and there-
fore this clock is not needed.
DS3DATAOUTCLK_B[6:1] E31, B34, D33, E34,
J30, G34
DS3DATAOUTCLK_C[6:1] AK4, AN1, AL2, AK1,
AF5, AH1
DS3DATAOUTCLK_D[6:1] AL30, AP33, AN31,
AP30, AK26, AP28
DS3RXCLKOUT_A[6:1] E7, G10, D7, E8, A6,
C8
ODS3/E3/STS-1 Receive Clock Output. 44.736 MHz
DS3, 34.368 MHz E3, and 51.84 MHz STS-1 clock out to ex-
ternal circuit.
DS3RXCLKOUT_B[6:1] G30, K28, G31, H30,
F34, H32
DS3RXCLKOUT_C[6:1] AH5, AE7, AH4, AG5,
AJ1, AG3
DS3RXCLKOUT_D[6:1] AK28, AH25, AL28,
AK27, AP29, AM27
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 33
Table 2-11. DS3/E3/STS-1 In
Symbol Pin Type Name/Description
DS3POSDATAIN_A[6:1] E10, D10, G11, B11, A13, A14 I pd DS3/E3/STS-1 Positive Data Input. Either contains the
positive rail of the B3ZS/HDB3 encoded input data or sin-
gle-rail NRZ data.
DS3POSDATAIN_B[6:1] K30, K31, L28, L33, N34, P34
DS3POSDATAIN_C[6:1] AE5, AE4, AD7, AD2, AB1,
AA1
DS3POSDATAIN_D[6:1] AK25, AL25, AH24, AN24,
AP22, AP21
DS3NEGDATAIN_A[6:1] A9, A10, A11, C10, A12, E11 I pd DS3/E3/STS-1 Negative Data Input. Either contains the
negative rail of the B3ZS/HDB3 encoded input data or, in
single-rail mode, this input may be used to count bipolar
violations.
DS3NEGDATAIN_B[6:1] J34, K34, L34, K32, M34, L30
DS3NEGDATAIN_C[6:1] AF1, AE1, AD1, AE3, AC1,
AD5
DS3NEGDATAIN_D[6:1] AP26, AP25, AP24, AM25,
AP23, AK24
DS3DATAINCLK_A[6:1] A8, C9, B10, F11, H12, C11 I pd DS3/E3/STS-1 Data Input Clock. 44.736 MHz,
34.368 MHz, or 51.84 MHz clock for the DS3/E3/STS-1
positive and negative data inputs.
DS3DATAINCLK_B[6:1] H34, J32, K33, L29, M27, L32
DS3DATAINCLK_C[6:1] AG1, AF3, AE2, AD6, AC8,
AD3
DS3DATAINCLK_D[6:1] AP27, AM26, AN25, AJ24,
AG23, AM24
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
3434 Agere Systems Inc.
Table 2-12. NSMI/STS-1 In
Symbol Pin Type Name/Description
NSMIRXDATA_A[3:1] R3, P6, P1 I pd Network Serial Multiplex Interface (NSMI) Receive* Data.
Used in the following applications:
51.84 Mbits/s serial data input that is used to bring in multi-
plexed DS1 or E1 channels to FRM.
STS-1 rate clear-channel receive data to SPEMPR.
DS3/E3 rate clear-channel receive data to M13/E13.
Additionally, it could be used as a SONET compliant STS-1 input
signal to STS1LT from external LIU.
* The transmit path is toward the high-speed fiber output and the receive path is from the high-speed input. Low-speed inputs, e.g., NSMIRXDATA,
on the transmit path are labeled receive. Low-speed outputs, e.g., NSMITXDATA on the receive path are labeled transmit.
NSMIRXDATA_B[3:1] C20, F21, A21
NSMIRXDATA_C[3:1] AM15, AJ14, AP14
NSMIRXDATA_D[3:1] Y32, AA29, AA34
NSMIRXCLK_A[3:1] M8, N6, M7 I/O pd NSMI Receive Clock. Used in the following applications:
Input (51.84 MHz) for the DS1/E1 application.
Output (51.84 MHz) for the STS-1 rate clear-channel applica-
tion.
Output (44.736 MHz/34.368 MHz) for the DS3/E3 application.
Additionally, it could be used as an input clock for SONET compli-
ant STS-1 to STS1LT from external LIU.
NSMIRXCLK_B[3:1] H23, F22, G23
NSMIRXCLK_C[3:1] AG12, AJ13, AH12
NSMIRXCLK_D[3:1] AC27, AB29, AC28
NSMIRXSYNC_A[3:1] P5, R1, P2 I/O pd NSMI Receive Frame Sync. Used in the following applications:
Input receive NSMI control for FRM.
Output receive control frame sync signal for M13/E13.
Output receive control frame sync signal for SPEMPR.
Additionally, it could be used to carry STS-1 input transmit clock
for STS1LTs.
NSMIRXSYNC_B[3:1] E21, A20, B21
NSMIRXSYNC_C[3:1] AK14, AP15, AN14
NSMIRXSYNC_D[3:1] AA30, Y34, AA33
RXDATAEN_A[3:1] T1, R2, P3 O NSMI Receive Data Enable. This is used for an 8-pin NSMI mode
receive clock. More information will be published in a separate op-
erational guide.
RXDATAEN_B[3:1] A19, B20, C21
RXDATAEN_C[3:1] AP16, AN15, AM14
RXDATAEN_D[3:1] W34, Y33, AA32
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 35
Note: The transmit path is toward the high-speed fiber output and the receive path is from the high-speed input. Low-speed inputs, e.g., CHIRXDATA, on
the transmit path are labeled receive. Low-speed outputs, e.g., CHITXDATA, on the receive path are labeled transmit.
Table 2-13. NSMI/STS-1 Out
Symbol Pin Type Name/Description
NSMITXDATA_A[3:1] U2, U1, T2 O NSMI Transmit Data. NSMI outputs or STS-1 Tx data outputs
from STS1LTs. NSMI output data from either the FRM, SPEMPR,
or M13/E13 block.
NSMITXDATA_B[3:1] B18, A18, B19
NSMITXDATA_C[3:1] AN17, AP17, AN16
NSMITXDATA_D[3:1] V33, V34, W33
NSMITXCLK_A[3:1] P8, R5, P7 O NSMI Transmit Clock Output or STS-1 Tx Clock Outputs from
STS1LTs. Output clock at 51.84 MHz for the DS1/E1 application,
the (51.84 MHz) STS-1 rate clear-channel application, or a
(44.736 MHz/34.368 MHz) output clock for the DS3/E3 application.
NSMITXCLK_B[3:1] H21, E20, G21
NSMITXCLK_C[3:1] AG14, AK15, AH14
NSMITXCLK_D[3:1] AA27, Y30, AA28
NSMITXSYNC_A[3:1] T3, R4, R7 O Transmit System Frame Sync Output. Output transmit control
frame sync signal from FRM, M13/E13 or SPEMPR.
NSMITXSYNC_B[3:1] C19, D20, G20
NSMITXSYNC_C[3:1] AM16, AL15, AH15
NSMITXSYNC_D[3:1] W32, Y31, Y28
TXDATAEN_A[3:1] U3, V1, R6 O Transmit Data Enable for NSMI Mode. This is used for an 8-pin
NSMI mode transmit control frame sync. More information will be
published in a separate operational guide.
TXDATAEN_B[3:1] C18, A17, F20
TXDATAEN_C[3:1] AM17, AP18, AJ15
TXDATAEN_D[3:1] V32, U34, Y29
Note: The transmit path is toward the high-speed fiber output and the receive path is from the high-speed input. Low-speed inputs, e.g., NSMIRXDATA,
on the transmit path are labeled receive. Low-speed outputs, e.g., NSMITXDATA on the receive path are labeled transmit.
Table 2-14. TDM Concentration Highway (CHI) In
Symbol Pin Type Name/Description
CHIRXDATA_A[18:1] T15, R15, T14, T13, R14, P14,
U12, R13, P13, T12, R12, P12,
N12, T11, R11, U10, T10, P11
I pd CHI Receive Data [18:1]. Configurable synchronous
TDM inputs to the internal multirate cross connect. Can
be used in one of the following modes:
CHI mode: Receive TDM input highways. Can be con-
figured to operate at 8.192 Mbits/s or 16.384 Mbits/s.
Parallel system bus mode: The parallel system bus is
a 16-bit wide 19.44 Mbits/s synchronous TDM high-
way. Bits [8:1] are used for time-slot data. Bits [16:9]
are used for robbed-bit signaling data in an ASM like
fashion and are optional. CHIRXGFS is the frame syn-
chronization input for the parallel system bus, and
CHIRXGCLK is the 19.44 MHz clock input.
CHIRXDATA[18:17] are not used.
CHIRXDATA_B[18:1] R19, R20, P19, N19, P20, R21,
M18, P21, N20, M19, P22, N21,
M20, M21, L19, K18, K19, L20
CHIRXDATA_C[18:1] Y16, Y15, AA16, AA15, AB16,
AA14, AC17, AB15, AC16, Y14,
AC15, AB14, AA13, AD16,
AD15, AE17, AE16, AC14
CHIRXDATA_D[18:1] W19, Y19, W20, W21, W22,
Y20, V23, AA19, Y21, W23,
Y22, Y23, AA22, W24, AA23,
V25, W25, Y24
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
3636 Agere Systems Inc.
Note: The transmit path is toward the high-speed fiber output and the receive path is from the high-speed input. Low-speed inputs, e.g., CHIRXDATA, on
the transmit path are labeled receive. Low-speed outputs, e.g., CHITXDATA, on the receive path are labeled transmit.
Table 2-15. TDM Concentration Highway (CHI) Out
Symbol Pin Type Name/Description
CHITXDATA_A[18:1] R10, N11, P10, U7, R9, V6, U6, T8, V5,
T6, R8, U4, V4, N10, V3, T4, V2, N9
OCHI Transmit Data [18:1]. Configurable synchronous
TDM outputs from the internal multirate cross con-
nect. Can be used in one of the following modes:
CHI mode: Transmit TDM output highways. Can be
configured to operate at 8.192 Mbits/s or at
16.384 Mbits/s.
Parallel system bus mode: The parallel system bus
is a 16-bit wide 19.44 Mbits/s synchronous TDM
highway. Bits [8:1] are used for time-slot data.
Bits [16:9] are used for robbed-bit signaling data in
an ASM like fashion and are optional. CHITXGFS is
the frame synchronization input for the parallel sys-
tem bus, and CHITXGCLK is the 19.44 MHz clock
input. CHITXDATA[18:17] are not used.
Each of these outputs comes from the internal MRXC
and can be individually set to high impedance.
CHITXDATA_B[18:1] K20, L21, K21, G18, J20, F17, F18,
H19, E17, F19, H20, D18, D17, K22,
C17, D19, B17, J22
CHITXDATA_C[18:1] AE15, AD14, AE14, AH17, AF15,
AJ18, AJ17, AG16, AK18, AJ16,
AG15, AL17, AL18, AE13, AM18,
AL16, AN18, AF13
CHITXDATA_D[18:1] Y25, AA24, AA25, V28, Y26, U29, V29,
W27, U30, W29, Y27, V31, U31, AB25,
U32, W31, U33, AB26
Table 2-16. Framer (FRM) Blocks, CHI/Parallel System Bus (PSB) Clock and Sync
Symbol Pin Type Name/Description
CHIRXGTCLK AF19 I pd 2Global Transmit Line Clock. This is the transmit line clock for the DS1 or E1
framer. Normally, this input is not used and the transmit clock is generated by an
internal phase-lock loop, which uses CLKIN_PLL as a reference. Note that if this
input is used, all transmit framers must run at the same rate, either 1.544 MHz or
2.048 MHz. This signal could be used for both CHI and parallel system buses.
CHIRXGCLK AC13 I pd 2Receive Global System Clock. This signal is used for both CHI and parallel sys-
tem buses. In CHI mode, it is a 8.192 MHz or a 16.384 MHz TDM clock. In parallel
system bus mode, it is a 19.44 MHz clock.
CHIRXGFS AB13 I pd 2Receive System Frame Sync. This signal is used for both CHI and parallel sys-
tem buses. In CHI mode, it is an 8 kHz pulse that references the location of time
slots in the receive CHI inputs. Its polarity, sampling edge, and offset from time
slots in the concentration highways may all be programmed.
In parallel system bus mode, it is an 8 kHz reference for time slots within the paral-
lel system bus input highways. In this mode, the frame strobe is a positive pulse
with an active edge provisioned by a register.
CHITXGFS AG19 I pd 2Transmit System Frame Sync. This signal is used for both CHI and parallel sys-
tem buses. In CHI mode, it is an 8 kHz pulse that references the location of time
slots in the transmit CHI outputs. Its polarity, sampling edge, and offset from time
slots in the concentration highways may all be programmed.
In parallel system bus mode, it is an 8 kHz reference for time slots within the paral-
lel system bus output highways. In this mode, the frame strobe is a positive pulse
with active edge provisioned by a register.
CHITXGCLK AF20 I pd 2Transmit Global System Clock. This signal is used for both CHI and parallel sys-
tem buses. In CHI mode, it is an 8.192 MHz or a 16.384 MHz TDM clock. In paral-
lel system bus mode, it is a 19.44 MHz clock.
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 37
Table 2-17. Reference Clocks
Symbol Pin Type Name/Description
E1XCLK_1 W9 I pd 1 E1 X Clock. This clock signal is used for three purposes as follows:
To generate E1 AIS (all 1s).
As a reference to the E1 DJA.
As a clock source for the E1 test pattern generator and test pattern monitor.
This input may be provided by a 2.048 MHz, a 32.768 MHz, or a 65.536 MHz ± 50 ppm
free-running crystal oscillator, or clocking chip. E1XCLK_1 and E1XCLK_2 should be
tied together.
Note: For the E1 DJA, an input of 32.768 MHz or 65.536 MHz must be used.
E1XCLK_2 F28
DS1XCLK_1 AA11 I pd 1 DS1 X Clock. This clock signal is used for three purposes as follows:
To generate DS1 AIS (all 1s).
As a reference to the DS1 DJA.
As a clock source for the DS1 test pattern generator and test pattern monitor.
This input may be provided by a 1.544 MHz, a 24.704 MHz, or a 49.408 MHz ± 32 ppm
free-running crystal oscillator, or clocking chip. DS1XCLK_1 and DS1XCLK_2 should
be tied together.
Note: For the DS1 DJA, an input of 24.704 MHz or 49.408 MHz must be used.
DS1XCLK_2 E33
DS3XCLK P23 I pd 2 DS3 X Clock. A 44.736 MHz ± 20 ppm clock input for DS3 DJA and TPG. This input
may be provided by a 44.736 MHz ± 20 ppm free-running crystal oscillator, or clocking
chip.
E3XCLK P24 I pd 2 E3 X Clock. A 34.368 MHz ± 20 ppm clock input for E3 DJA and TPG. This input may
be provided by a 34.368 MHz ± 20 ppm free-running crystal oscillator, or clocking chip.
Table 2-18. Low-Order Path Overhead Access, Transmit Direction
Symbol Pin Type Name/Description
LOPOHCLKIN_A T16 I pd Low-Order Path Overhead Clock. 19.44 MHz clock supplied from external cir-
cuits that provides the low-order path overhead data.
LOPOHCLKIN_B T19
LOPOHCLKIN_C W16
LOPOHCLKIN_D AA20
LOPOHDATAIN_A R16 I pd Low-Order Path Overhead Data. The following parts of the low-order (VT) over-
head are presented at these pins: communication channel bits (O bits), V5, J2,
Z6/N2, Z7, and K4 byte.
LOPOHDATAIN_B T20
LOPOHDATAIN_C W15
LOPOHDATAIN_D AA21
LOPOHVALIDIN_A P16 I pd Low-Order Path Overhead Data Input Valid. This signal is a mask that indicates
the location of the overhead bytes in the LOPOHDATAIN.
LOPOHVALIDIN_B T21
LOPOHVALIDIN_C W14
LOPOHVALIDIN_D AB19
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
3838 Agere Systems Inc.
Table 2-19. Low-Order Path Overhead Access, Receive Direction
Symbol Pin Type Name/Description
LOPOHCLKOUT_A N16 O Low-Order Path Overhead Clock. 19.44 MHz clock supplied to external cir-
cuits that receive the low-order path overhead data.
LOPOHCLKOUT_B T22
LOPOHCLKOUT_C W13
LOPOHCLKOUT_D AC19
LOPOHDATAOUT_A M16 O Low-Order Path Overhead Data. (Line and path REI and RDI, O bits, V5,
J2, Z6/N2, and Z7/K4 byte.)
LOPOHDATAOUT_B T23
LOPOHDATAOUT_C W12
LOPOHDATAOUT_D AB20
LOPOHVALIDOUT_A N15 O Low-Order Path Overhead Data Output Valid. This signal is a mask which
indicates the location of the overhead bytes in the LOPOHDATAOUT.
LOPOHVALIDOUT_B R22
LOPOHVALIDOUT_C Y13
LOPOHVALIDOUT_D AB21
Table 2-20. Clock Generator
Symbol Pin Type Name/Description
CLKIN_PLL G16 I pd 2 Transmit Line Clock Generator Reference Input. The clock generator is
used to derive the transmit line clocks for DS1/E1 synchronized to
CLKIN_PLL. The derived clock is used in the DS1/E1 transmit framer sec-
tions.
CG_PLLCLKOUT_A P9 O Framer PLL Test Mode Output. Framer PLL clock (1.544 MHz, 2.048 MHz)
selected by device register.
CG_PLLCLKOUT_B J21
CG_PLLCLKOUT_C AF14
CG_PLLCLKOUT_D AA26
MODE[2:0]_PLL F15, AD13,
F14
I pd 2 Framer PLL Input Clock Mode Select Bits. The settings of these mode
select pins must correspond to the frequency of CLKIN_PLL as shown below.
MODE[2:0]_PLL CLKIN_PLL MODE[2:0]_PLL CLKIN_PLL
000 Reserved 100 16.384 MHz
001 51.840 MHz 101 8.192 MHz
010 26.624 MHz 110 4.096 MHz
011 19.440 MHz 111 2.048 MHz
Table 2-21. Microprocessor Interface
Symbol Pin Type Name/Description
MPCLK AG21 I Microprocessor Clock. This clock is required to properly sample address,
data, and control signals from the microprocessor in both asynchronous and
synchronous modes of operation.
MPMODE AG20 I Microprocessor Mode. If the microprocessor interface is synchronous,
MPMODE should be set to 1. If the microprocessor interface is asynchronous,
MPMODE should be set to 0.
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 39
CSN_A D15 I pu Chip Select. Active-low, high-order address signals. Chip select must be set
low at the beginning of any read or write access and returned high at the end
of the cycle. There are four chip selects in the Hypermapper to determine
which partition is being addressed (A, B, C, or D). Only one of these can be
active-low at any time.
CSN_B R31
CSN_C Y4
CSN_D AL20
ADSN AE21 I Address Strobe. Active-low address strobe that indicates the beginning of a
read or write access. It is a one MPCLK cycle-wide pulse for synchronous
mode. In asynchronous mode, it is active for the entire read/write cycle.
Address bus signals, ADDR[20:0], are available to the Hypermapper when
ADSN is low. The address bus should remain valid for the duration of ADSN.
RWN AJ20 I Read/Write. RWN is set high during a read cycle, or set low during a write
cycle.
DSN T28 I Data Strobe. For a read cycle, the contents of the internal register will be out-
put on DATA [15:0]; and for a write cycle, the DATA [15:0] will be clocked into
the internal register. To initiate the start of the read/write operation, DSN must
be low during the entire read/write cycle. This signal should only be used for
asynchronous mode.
ADDR[20:0] AB22, N29, N25,
N24, AG22, P29,
AC22, AJ22, R26,
T27, AD22, R28,
T26, AE22, AH20,
AF21, R27, R29,
AH21, AJ21, AH19
IAddress [20:0]. ADDR[20] is the most significant bit and ADDR[0] is the least
significant bit for addressing all the internal registers during microprocessor
access cycles. All addresses are 21-bit word addresses; hence, in a typical
application ADDR[0] of the TMXF33625 device would be connected to
address bit 1 of a byte addressable system address bus.
Note: The Hypermapper is little endian, i.e., the least significant byte is stored
in the lowest address and the most significant byte is stored in the highest
address. Care must be exercised when connecting to microprocessors
that use big endian byte ordering.
DATA[15:0] N26, N22, AB9, AB8,
P26, P27, AF22,
AA7, AB6, M22,
AA8, P25, AA6, L22,
P28, Y8
I/O Data [15:0]. 16-bit data bus input for write operations and output for read
operations. DATA[15] is the MSB, and DATA[0] is the LSB.
PAR[1:0] N23, AB23 I/O Data Parity. Byte-wide parity bits for data. PAR[1] is the parity for DATA[15:8],
and PAR[0] is the parity for DATA[7:0]
DTN AB24 O Data Transfer Acknowledge. The delay associated with DTN going low de-
pends on the Hypermapper block being accessed. In asynchronous mode,
when ADSN or DSN is deasserted, the deassertion will drive the DTN signal
high. When inactive, CSN will drive DTN to be 3-stated. The microprocessor
should wait after DTN is deasserted before starting the next operation.
HP_INTN_1 AB10 O od High-Priority and Low-Priority Interrupts. Active-low. Each of the functional
blocks contain their individual low-priority interrupts. High-priority interrupts are
generated by TMUX, STS1LT, and E13 blocks. Each interrupt is individually
maskable. Requires an external 5 k pull-up resistor.
HP_INTN_1 and HP_INTN_2 should be tied together; LP_INTN_1 and
LP_INTN_2 should be tied together.
HP_INTN_2 M33
LP_INTN_1 F13
LP_INTN_2 AB11
APS_INTN_A G14 O od Automatic Protection Switch Interrupts. Active-low. See the TMUX and
STS1LT sections in the Register Description document for specific interrupts.
Each interrupt is individually maskable. Requires an external 5 k pull-up re-
sistor.
APS_INTN_B J33
APS_INTN_C AC2
APS_INTN_D AN26
Table 2-21. Microprocessor Interface (continued)
Symbol Pin Type Name/Description
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
4040 Agere Systems Inc.
Table 2-22. Boundary Scan (IEEE 1149.1)
Symbol Pin Type Name/Description
TCK AC21 I Test Clock. This signal provides timing for boundary-scan test operations.
TDI P15 I pu 2 Test Data In. Boundary-scan test data input signal, sampled on the rising edge of TCK.
TMS_1 Y6 I pu 1 Test Mode Select. Controls boundary-scan test operations. TMS is sampled on the ris-
ing edge of TCK. TMS_1 and TMS_2 should be connected.
TMS_2 AC31
TRST L14 I pu 2 Test Reset (Active-Low). This signal provides an asynchronous reset for the boundary-
scan TAP controller.
TDO AD21 O Test Data Out. Boundary-scan test data output signal is updated on the falling edge of
TCK. The TDO output will be high-impedance, except when transmitting test data.
Table 2-23. General-Purpose Interface
Symbol Pin Type Name/Description
RSTN_A N1 I pu Global Hardware Reset. Active-low. Initializes all internal registers to their default
state. This is an asynchronous reset, which occurs on the falling edge, but RSTN
should be held low for at least 1 µs. RSTN should be held low until both power sup-
plies (1.5 V and 3.3 V) are stabilized upon powerup.
RSTN_B A22
RSTN_C AP13
RSTN_D AB34
PMRST N14 I/O pd Performance Monitor Reset. Resets error counters. When enabled as an input, it
is a 1s square wave that forces an update of PM counters upon the rising edge.
When the PMRST is generated internally from the MPU clock, this pin is an output.
IC3STATEN M13 I pu 2 Output Enable. When high, output buffers will operate normally. When low, all out-
puts will be forced to a high-impedance state. IC3STATEN should be held low until
both power supplies (1.5 V and 3.3 V) are stabilized upon powerup.
SCK1_1 W8 I pd 1 Scan Clock 1. Reserved. Do not connect.
SCK1_2 AA31
SCK2_1 W7 I pd 1 Scan Clock 2. Reserved. Do not connect.
SCK2_2 AL26
SCAN_EN N13 I pd 2 Scan Enable. Reserved. Do not connect.
SCANMODE_1 L13 I pd 1 Serial Scan Input for Testing. Reserved. Do not connect.
SCANMODE_2 AK30
IDDQ_A N3 I IDDQ Input. This pin must be externally pulled down with a 1 k resistor.
IDDQ_B C22
IDDQ_C AM13
IDDQ_D AB32
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 41
Table 2-24. CDR Interface
Symbol Pin Type Name/Description
BYPASS_1 H13 I pd 1 High-Speed CDR Bypass. Reserved. Do not connect.
BYPASS_2 AN23
TSTPHASE J13 I pd 2 Test Phase. Reserved. Do not connect.
ECSEL_1 H15 I pd 1 External Clock Select. Reserved. Do not connect.
ECSEL_2 AH29
ETOGGLE_1 J14 I pd 1 External Toggle. Reserved. Do not connect.
ETOGGLE_2 AF28
EXDNUP_1 K13 I pd 1 External Down Up. Reserved. Do not connect.
EXDNUP_2 D31
TSTMODE H14 I pd 2 Test Mode. Reserved. Do not connect.
TSTSFTLD J15 I pd 2 Test Shift Load. Reserved. Do not connect.
Table 2-25. Analog Power and Ground Signals
Symbol Pin Type Name/Description
VSSA_CDR1_A K3 CDR1 Ground. Isolated ground for the internal CDR1.
VSSA_CDR1_B C25
VSSA_CDR1_C AM10
VSSA_CDR1_D AE32
VSSA_CDR2_A J4 CDR2 Ground. Isolated ground for the internal CDR2.
VSSA_CDR2_B D26
VSSA_CDR2_C AL9
VSSA_CDR2_D AF31
VSSA_X4PLL_A K6 X4PLL Ground. Isolated ground for the internal X4PLL.
VSSA_X4PLL_B F25
VSSA_X4PLL_C AJ10
VSSA_X4PLL_D AE29
VSSA_SFPLL_A U5 SFPLL Ground. Isolated ground for the internal SFPLL.
VSSA_SFPLL_B E18
VSSA_SFPLL_C AK17
VSSA_SFPLL_D V30
VSSA_DS3PLL_A L15 DS3PLL Ground. Isolated ground for the internal DS3PLL.
VSSA_DS3PLL_B R24
VSSA_DS3PLL_C Y11
VSSA_DS3PLL_D AD20
VSSA_E3PLL_A K16 E3PLL Ground. Isolated ground for the internal E3PLL.
VSSA_E3PLL_B T25
VSSA_E3PLL_C W10
VSSA_E3PLL_D AE19
VDD15A_CDR1_A L3 CDR1 Power. 1.5 V power supply for the internal CDR1, which is used by
the high-speed receive CDR, the protection receive CDR and the three
CDRs associated with the mate interconnect ports. Good engineering prac-
tice needs to be applied; refer to the System Design Guide.
VDD15A_CDR1_B C24
VDD15A_CDR1_C AM11
VDD15A_CDR1_D AD32
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
4242 Agere Systems Inc.
VDD15A_CDR2_A H5 CDR2 Power. 1.5 V power supply for the internal CDR2, which is used by
the high-speed receive CDR, the protection receive CDR and the three
CDRs associated with the mate interconnect ports. Good engineering prac-
tice needs to be applied; refer to the System Design Guide.
VDD15A_CDR2_B E27
VDD15A_CDR2_C AK8
VDD15A_CDR2_D AG30
VDD15A_X4PLL_A K7 X4PLL Power. 1.5 V power supply for the internal X4PLL, which is used for
the transmit protection 1 + 1 port. Good engineering practice needs to be
applied; refer to the System Design Guide.
VDD15A_X4PLL_B G25
VDD15A_X4PLL_C AH10
VDD15A_X4PLL_D AE28
VDD15A_DS3PLL_A M15 DS3PLL Power. 1.5 V power supply for the internal DS3PLL, which is used
by the DS3DJA. Good engineering practice needs to be applied; refer to the
System Design Guide.
VDD15A_DS3PLL_B R23
VDD15A_DS3PLL_C Y12
VDD15A_DS3PLL_D AC20
VDD15A_E3PLL_A K15 E3PLL Power. 1.5 V power supply for the internal E3PLL, which is used by
the E3DJA. Good engineering practice needs to be applied; refer to the Sys-
tem Design Guide.
VDD15A_E3PLL_B R25
VDD15A_E3PLL_C Y10
VDD15A_E3PLL_D AE20
VDD33A_SFPLL_A T7 SFPLL Power. 3.3 V power supply for the internal SFPLL, which is used by
the CG block (framer PLL). Good engineering practice needs to be applied;
refer to the System Design Guide.
VDD33A_SFPLL_B G19
VDD33A_SFPLL_C AH16
VDD33A_SFPLL_D W28
Table 2-26. Digital Power and Ground Signals
Pin Symbol Type Name/Description
A15, A16, AA9, AA18, AB7, AB12, AB17, AB27, AC7, AC12, AC18,
AC26, AD30, AF18, AG4, AG29, AH22, AH23, AJ5, AJ8, AJ19,
AJ30, AK2, AK6, AK11, AK16, AK29, AL4, AL14, AM19, AN19,
AN20, AN30, AP19, AP20, B5, B12, B15, B16, C16, D8, D21, E6,
E19, E24, E29, F5, F16, F27, F30, G12, G13, G15, H6, H16, H31,
J16, J17, L5, M14, M17, M28, N18, N28, P4, P17, R17, R33, R34,
T5, T17, T29, T32, T33, T34, U13, U19, U20, U21, U23, U26, V9,
V12, V14, V15, V16, V22, W1, W2, W3, W6, W18, W30, Y1, Y2,
Y7, Y9, Y18
VDD15 Common power signals for 1.5 V VDD.
AA5, AA10, AA12, AB5, AB18, AB31, AC5, AC6, AD17, AD18,
AE18, AE26, AF2, AF4, AF10, AF11, AF17, AF26, AG6, AG17,
AH18, AH30, AJ23, AJ27, AK5, AK7, AK19, AK22, AK23, AL13,
AL19, AL21, AL27, AL31, B9, D4, D9, D14, D16, D22, E5, E12,
E13, E16, E28, E30, F8, F12, G5, G17, H18, H29, J18, J25, J26,
J31, K9, K14, K17, L9, L17, L18, M29, M30, N4, N17, N30, P31,
R18, T30, T31, U8, U9, U11, U15, U17, U18, U22, U24, U25, U28,
V7, V10, V11, V13, V17, V18, V20, V24, V26, V27, W4, W5, Y17
VDD33 Common power signals for 3.3 V VDD.
Table 2-25. Analog Power and Ground Signals (continued)
Symbol Pin Type Name/Description
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 43
A29, A32, AA2, AA3, AA4, AA17, AB2, AB3, AB4, AC3, AC4, AC9,
AC10, AC11, AC23, AC24, AC25, AD4, AD9, AD10, AD11, AD12,
AD19, AD23, AD24, AD25, AD26, AE9, AE10, AE11, AE12, AE23,
AE24, AE25, AF9, AF12, AF16, AF23, AF24, AF25, AG13, AG18,
AH9, AJ4, AJ7, AJ33, AJ34, AK20, AK21, AL12, AL22, AL23,
AL24, AL29, AM20, AM21, AM22, AM23, AM33, AM34, AN3, AN6,
AN21, AN22, AP3, AP6, B13, B14, B29, B32, C12, C13, C14, C15,
D1, D2, D6, D11, D12, D13, D23, E14, E15, F1, F2, F31, G6, G26,
H17, H22, J7, J9, J10, J11, J12, J19, J23, J24, K10, K11, K12, K23,
K24, K25, K26, L10, L11, L12, L16, L23, L24, L25, L26, L31, M4,
M9, M10, M11, M12, M23, M24, M25, M26, M31, M32, N8, N27,
N31, N32, N33, P18, P30, P32, P33, R30, R32, T9, T18, T24, U14,
U16, U27, V8, V19, V21, W11, W17, W26, Y3, Y5
VSS Common ground signals.
Table 2-26. Digital Power and Ground Signals (continued)
Pin Symbol Type Name/Description
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
4444 Agere Systems Inc.
3 Absolute Maximum Ratings
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute
stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those
given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can
adversely affect device reliability.
3.1 Handling Precautions
Although electrostatic discharge (ESD) protection circuitry has been designed into this device, proper precautions must be
taken to avoid exposure to ESD and electrical overstress (EOS) during all handling, assembly, and test operations. Agere
employs both a human-body model (HBM) and a charged-device model (CDM) qualification requirement in order to
determine ESD-susceptibility limits and protection design evaluation. ESD voltage thresholds are dependent on the circuit
parameters used in each of the models, as defined by JEDEC’s JESD22-A114 (HBM) and JESD22-C101 (CDM)
standards.
Table 3-1. Absolute Maximum Ratings
Parameter Min Max Unit
Supply Voltage (VDD33) –0.5 4.2 V
Supply Voltage (VDD15) –0.3 2.0 V
Input Voltage:
LVCMOS
LVDS
–0.3
–0.3
5.25
VDD33 + 0.3
V
V
Power Dissipation mW
Storage Temperature Range –65 125 °C
Table 3-2. ESD Tolerance
Device Minimum Threshold
HBM CDM
TMXF33625 2000 V 500 V
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 45
4 Electrical Characteristics
4.1 Recommended Operating Voltages
The following table lists the voltages, along with the tolerances, required for proper operation of the TMXF33625 device.
Internal reference voltage is used if bit LVDS_REF_SEL = 1, or else external voltage is used.
4.2 Recommended Powerup Sequence
The Hypermapper device requires dual power supplies, a 3.3 V supply for the I/O, and a 1.5 V supply for the core.
During power up, RSTN should be held low (holding the device in reset) and IC3STATEN should be held low (3-stating all
output buffers). After the 3.3 V and 1.5 V supplies are stable, MPCLK (which affects the device reset) should be applied and
must be present for at least two clock cycles before RSTN and IC3STATEN are released. It is then recommended that
IC3STATEN be released concurrent with, or after, the release of RSTN. There are no constraints as to which supply (3.3 V
or 1.5 V) must come up first, nor does it matter how long it takes the second supply to come up after the first supply.
4.3 Power Consumption
The thermal resistance (ΘJA) between junction and ambient with zero airflow is 7.1 °C/Watt.
The power consumption of the device is application dependent since it is not possible to use all the device features simul-
taneously. The nominal measured values for power per block are shown in Table 4-3.
Typical power by block refers to all instances being used.
Table 4-1. Recommended Operating Conditions
Parameter Symbol Min Typ Max Unit
3.3 V Power Supply VDD33 3.14 3.3 3.47 V
1.5 V Power Supply VDD15 1.4 1.5 1.6 V
Ground VSS —0.0 V
1.0 V: LVDS Reference* REF10 1.0 V
1.4 V: LVDS Reference* REF14 1.4 V
Ambient Temperature TA–40 85 °C
Table 4-2. Typical Power Consumption by Application
Application Conditions Typ Unit
TBD
Table 4-3. Typical Power Consumption Per Block
Block Maximum Instance Typical, Per Single Instance Unit
TMUX 4 0.120 W
STSPP 4 0.020 W
STSXC 4 0.200 W
MRXC 4 0.050 W
SPEMPR 24 0.009 W
STS1LT 12 0.028 W
VTMPR 12 0.015 W
E13 12 0.013 W
M13 12 0.013 W
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
4646 Agere Systems Inc.
4.4 ac and dc Characteristics
4.4.1 LVCMOS Interface Characteristics
The following table applies to pins with the designations I, Ipd, and Ipu.
* Excludes current due to pull-up or pull-down resistors.
The following table applies to pins with the designations Ipd 1and Ipu 1.
* Excludes current due to pull-up or pull-down resistors.
The following table applies to pins with the designations Ipd 2 and Ipu 2.
* Excludes current due to pull-up or pull-down resistors.
TPG/TPM 4 TBD W
FRM 12 0.195 W
DS1DJA 12 0.026 W
DS3DJA 4 0.050 W
MPU 4 0.420 W
CDR/PLL 4 0.150 W
LVDS I/O 60 0.020 W
NSMI I/O 12 0.032 W
DS3 I/O 24 0.050 W
Table 4-4. LVCMOS Inputs Specifications 1
Parameter Symbol Conditions Min Typ Max Unit
Input Leakage Current IIVSS < VIN < VDD33 1.0* µA
High-input Voltage VIH —2.0V
Low-input Voltage VIL —V
SS —0.8 V
Input Capacitance CI——1.5pF
Table 4-5. LVCMOS Inputs Specifications 2
Parameter Symbol Conditions Min Typ Max Unit
Input Leakage Current IIVSS < VIN < VDD33 —— 2.0* µA
High-input Voltage VIH —2.0V
Low-input Voltage VIL —V
SS —0.8 V
Input Capacitance CI——1.5 pF
Table 4-6. LVCMOS Inputs Specifications 3
Parameter Symbol Conditions Min Typ Max Unit
Input Leakage Current IIVSS < VIN < VDD33 —— 4.0* µA
High-input Voltage VIH —2.0V
Low-input Voltage VIL —V
SS —0.8 V
Input Capacitance CI——1.5 pF
Table 4-3. Typical Power Consumption Per Block (continued)
Block Maximum Instance Typical, Per Single Instance Unit
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 47
* Output current is 10 mA max for NSMITXCLK[3:1], CHITXDATA1, 3, 4, 5, 6, 10, and 11.
Output leakage current of 20 µA for HP_INTN_1, HP_INTN_2, LP_INTN_1, and LP_INTN_2.
Output leakage current of 40 µA for DTN.
Output capacitance of 6 pF for HP_INTN_1, HP_INTN_2, LP_INTN_1, and LP_INTN_2.
Output capacitance of 12 pF for DTN.
* Output current is 10 mA max for NSMIRXCLK[3:1].
Output leakage current of 44 µA for DATA[15:1], PAR[1:0], and PMRST.
Biput capacitance of 20 pF for DATA[15:1], PAR[1:0], and PMRST.
Table 4-7. LVCMOS Outputs Specifications
Parameter Symbol Conditions Min Typ Max Unit
Output Voltage Low VOL IOL = max VSS —0.5V
Output Voltage High VOH IOL = max VDD – 0.5 VDD V
Output Current Low IOL ——6*mA
Output Current High IOH ——6*mA
Output Capacitance CO——3
—pF
HIZ Output Leakage Current IOZ ——10
µA
Table 4-8. LVCMOS Bidirectionals Specifications
Parameter Symbol Conditions Min Typ Max Unit
Leakage Current ILVSS < VIN < VDD33 ——11
µA
High-input Voltage VIH —2.0V
DD33 + 0.3 V
Low-input Voltage VIL —V
SS —0.8V
Biput Capacitance CIB ——5.0
—pF
Output Voltage Low VOL IOL = –6 mA 0.5 V
Output Voltage High VOH IOH = 6 mA 2.4 V
Output Current Low IOL ——6mA
Output Current High IOH ——6*mA
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
4848 Agere Systems Inc.
4.4.2 LVDS Interface Characteristics
3.3 V ± 5% VDD, –40 °C to +125 °C junction temperature.
.
* The buffer will not produce output transitions when input is open-circuited. When the true and complement inputs are floating, the input buffer will not
oscillate.
Table 4-9. LVDS Interface dc Characteristics
Parameter Symbol Test Conditions Min Typ Max Unit
Input Buffer Parameters
Input Voltage Range
High (VIA or VIB)
Low (VIA or VIB)
VI
VIH
VIL
|VGPD| < 925 mV, dc—1 MHz
0
2.4
V
V
Input Differential Threshold VIDTH dc— 450 MHz –100 100 mV
Input Differential Hysteresis VHYST (+VIDTH) – (–VIDTH)—*mV
Receiver Differential Input
Impedance
RIN With build-in termination, center-tapped 80 100 120
Output Buffer Parameters
Output Voltage:
High (VOA or VOB)
Low (VOA or VOB)
VOH
VOL
RLOAD = 100 ± 1%
RLOAD = 100 ± 1%
0.925
1.475
V
V
Output Differential Voltage |VOD|R
LOAD = 100 ± 1% 0.25 0.45 V
Output Offset Voltage VOS RLOAD = 100 ± 1% 1.125 1.275 V
Output Impedance, Single Ended ROVCM = 1.0 V and 1.4 V 80 100 120
RO Mismatch Between A and B ROVCM = 1.0 V and 1.4 V 10 %
Change in Differential Voltage
Between Complementary States
|VOD|R
LOAD = 100 ± 1% 25 mV
Change in Output Offset Voltage
Between Complementary States
VOS RLOAD = 100 ± 1% 25 mV
Output Current ISA, ISB Driver shorted to VSS ——24mA
Output Current ISAB Drivers shorted together 12 mA
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 49
5 Timing
5.1 TMUX High-Speed Interface Timing
Figure 5-1. TMUX LVDS Signal Rise/Fall Timing
Figure 5-2. TMUX LVDS Clock and Data Timing
Table 5-1. High-Speed Interface Inputs Specifications
Name Reference Edge
Rising/Falling
Max Rise
Time (ns)
Max Fall
Time (ns)
Min Setup
(ns)
Min Hold
(ns)
RHSDP/N (622 MHz)*Asynchronous 0.5 0.5
RHSDP/N (155 MHz)*Asynchronous 0.5 0.5
RHSDP/N (155 MHz) RHSCP/N R/F 1.0 1.0 2 0
THSSYNCTHSCP/N (155.52 MHz) R 1.0 1.0 2 1.5
THSSYNCTHSCP/N (622.08 MHz) R 1.0 1.0 1.7 1.5
* Input serial data stream should have minimum eye opening of 0.4 UIp-p, and no more than 60 consecutive bits that have no transitional edge within one
minute. It must meet 100 ps maximum phase variation limit over a 200 ns interval; this translates to a frequency change of 500 ppm.
When MPU_MASTER_SLAVE = 0, then refer to Figure 5-4.
Table 5-2. Protection Link Inputs Specifications
Name Reference Edge
Rising/Falling
Max Rise
Time (ns)
Max Fall
Time (ns)
Min Setup
(ns)
Min Hold
(ns)
RPSDP/N (622 MHz)*Asynchronous 0.5 0.5
RPSDP/N (155 MHz)*Asynchronous 0.5 0.5
RPSDP/N (155 MHz) RPSCP/N R 1.0 1.0 2 0
* Input serial data stream should have minimum eye opening of 0.4 UIp-p, and no more than 60 consecutive bits that have no transitional edge within one
minute. It must meet 100 ps maximum phase variation limit over a 200 ns interval; this translates to a frequency change of 500 ppm.
tF
tR
80%
20%
THSCOP/N
RHSCP/N
tSU tH
tPD
50%
50%
50%
50%
RHSDP/N
THSDP/N
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
5050 Agere Systems Inc.
5.2 THSSYNC Characteristics
THSSYNC is an 8 kHz composite frame sync pulse for STS-3 or STS-12. THSSYNC contains J0, J1, and V1-1 information
as shown in Figure 5-3. The time delay from any rising edge of a J0 (8 kHz) to the rising edge of the next J0 is 125 µs. The
time delay between any two V1-1 (2 kHz) pulses is 500 µs. This is true whether in STS-3 or in STS-12 mode.
When MPU_MASTER_SLAVE = 1, then THSSYNC is according to Figure 5-3.
Figure 5-3. THSSYNC Timing Diagram (MPU_MASTER_SLAVE = 1)
When MPU_MASTER_SLAVE = 0, then THSSYNC (supplied from an external source) can be according to Figure 5-4.
Figure 5-4. THSSYNC Timing Diagram (MPU_MASTER_SLAVE = 0)
Table 5-3. High-Speed Interface Outputs Specifications
Name Reference Edge
Rising/Falling
Propagation Delay
Min (ns) Max (ns)
THSDP/N (622.08 MHz or 155.52 MHz) THSCOP/N R 0.3 0.8
THSSYNC (MPU_MASTER_SLAVE = 1) TLSCLK –0.5 0.2
Table 5-4. Protection Link Outputs Specifications
Name Reference Edge
Rising/Falling
Propagation Delay
Min (ns) Max (ns)
TPSDP/N (622.08 MHz or 155.52 MHz) TPSCP/N R 0.3 0.8
STS-3
J
0
J
1-1
J
0
J
1-2
J
1-3
V
1-1
J
1-1
J
1-2
J
1-3
FIRST FRAME
50 ns
SECOND FRAME THIRD FRAME FOURTH FRAME
STS-12
V
1-2
V
1-3
J
0
J
0
J
1-1
J
1-2
J
1-3
J
1-1
J
1-2
J
1-3
V
1-1
V
1-2
V
1-3
J
1-1
J
1-2
J
1-3
J
1-5
J
1-7
J
1-9
J
1-11
J
1-4
J
1-6
J
1-8
J
1-10
J
1-12
50 ns
J
1-1
J
1-2
J
1-3
J
1-5
J
1-7
J
1-9
J
1-11
J
1-4
J
1-6
J
1-8
J
1-10
J
1-12
J
1-1
J
1-2
J
1-3
J
1-5
J
1-7
J
1-9
J
1-11
J
1-4
J
1-6
J
1-8
J
1-10
J
1-12
J
1-1
J
1-2
J
1-3
J
1-5
J
1-7
J
1-9
J
1-11
J
1-4
J
1-6
J
1-8
J
1-10
J
1-12
J
0
J
0
J
0
J
0
12.5 ns
FIRST FRAME SECOND FRAME THIRD FRAME FOURTH FRAME
STS-3 J0
FIRST FRAME
50 ns
STS-12
50 ns
125
µ
s
125
µ
s
J0 J0 J0
SECOND FRAME THIRD FRAME FOURTH FRAME
SECOND FRAME THIRD FRAME FOURTH FRAME
FIRST FRAME
J0 J0 J0 J0
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 51
When supplied externally, the 8 kHz THSSYNC may have a 50/50 duty cycle since the signal will only be sampled on the
rising edge.
However, if the system needs to synchronize VTs, generated from different Hypermappers or other external devices, then
THSSYNC needs to look like the waveform representation in Figure 5-3, i.e., THSSYNC must be composed of both the
8 kHz and the 2 kHz sync components (J0 + J1-1—J1-12 + V1-1); V1-2 and V1-3 are not needed.
5.3 STS-3/STM-1 Mate Interconnect Timing
Figure 5-5. STS-3/STM-1 Mate Rise/Fall Timing
Figure 5-6. STS-3/STM-1 Mate Clock and Data Timing
Table 5-5. STS-3/STM-1 Mate Interconnect Inputs Specifications
Name Reference Max Rise Time
(ns)
Max Fall Time
(ns)
Min Setup (ns) Min Hold
(ns)
TLSDATAP/N[3:1]Asynchronous ————
Table 5-6. STS-3/STM-1 Mate Interconnect Outputs Specifications
Name Reference Propagation Delay
Min (ns) Max (ns)
RLSDATAP/N[3:1] Asynchronous
tF
tR
80%
20%
CLOCK
CLOCK
tSU tH
tPD
50%
50%
50%
50%
TLSDATAP/N
RLSDATAP/N
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
5252 Agere Systems Inc.
5.4 TOAC, POAC, and LOPOH Timing
The relationships between data, clock, and sync signals are specific to the TOAC and POAC operation mode selected.
This is explained in detail in the TOAC/POAC chapter of the System Design Guide.
Figure 5-7. TOAC, POAC Timing
Note: For all modes, SYNC signals are high during the clock period of the first bit of each frame.
Figure 5-8. LOPOH Timing
Table 5-7. TOAC and POAC and LOPOH Input Specifications
Name Reference Edge
Rising/Falling
Max Rise
Time (ns)
Max Fall
Time (ns)
Min Setup
(ns)
Min Hold
(ns)
TTOACDATA TTOACCLK (output) R 10 10 3.50
TPOACDATA TPOACCLK (output) R 10 10 3.50
LOPOHDATAIN and
LOPOHVALIDIN
LOPOHCLKIN F 8 8 5 5
* Preliminary estimate, additional simulation underway.
Table 5-8. TOAC and POAC and LOPOH Output Specifications
Name Reference Edge
Rising/Falling
Propagation Delay
Min (ns) Max (ns)
RTOACDATA, RTOACSYNC RTOACCLK R 0 3.5
TTOACSYNC TTOACCLK R 0 3.5
RPOACDATA, RPOACSYNC RPOACCLK R 0 3.5
TPOACSYNC TPOACCLK R 0 3.5
LOPOHDATAOUT and LOPOHVALIDOUT LOPOHCLKOUT R 0 5
TPOACCLK
tPD
W68 W+
TTOACCLK
TPOACDATA
TTOACDATA
RPOACDATA
RTOACDATA
RPOACCLK
RTOACCLK
W68 W+
LOPOHCLKIN
LOPOHDATAIN
LOPOHDATAOUT
tPD
LOPOHCLKOUT
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 53
5.5 DS3/E3/STS-1 Timing
Figure 5-9 shows a simplified representation of the DS3/E3/STS-1 I/O.
Figure 5-9. DS3/E3 Interface Diagram in M13/E13 Block
Table 5-9. DS3/E3 Input Specifications
Name Reference Edge
Rising/Falling
Max Rise
Time (ns)
Max Fall
Time (ns)
Min Setup
(ns)
Min Hold
(ns)
DS3POSDATAIN[6:1]
DS3NEGDATAIN[6:1]
DS3DATAINCLKR/F 5533
Table 5-10. STS-1 Input Specifications
Name Reference Edge
Rising/Falling
Max Rise
Time (ns)
Max Fall
Time (ns)
Min Setup
(ns)
Min Hold
(ns)
DS3POSDATAIN[6:1]
DS3NEGDATAIN[6:1]
DS3DATAINCLK F 5 5 3 3
Table 5-11. DS3/E3/STS-1 Output Specifications
Name Reference Edge
Rising/Falling
Propagation Delay
Min (ns) Max (ns)
DS3POSDATAOUT[6:1]
DS3NEGDATAOUT[6:1]
DS3RXCLKOUT R/F 0 3
M13/E13 BLOCK
DEMUX MUX
Q
Q
CLK
CLK D
D
DS3DATAINCLK
DS3POSDATAIN
DS3NEGDATAIN DS3DATAOUTCLK
DS3POSDATAOUT
DS3NEGDATAOUT
DS3RXCLKOUT
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
5454 Agere Systems Inc.
5.6 NSMI Timing
For clock and data timing diagrams, related to other NSMI modes, refer to the appropriate System Design Guide section.
Figure 5-10. NSMI Clock and Data Timing (STS-1 Mode)
Table 5-12. NSMI Input Specifications
Name Reference Edge
Rising/Falling
Max Rise
Time (ns)
Max Fall
Time (ns)
Min Setup
(ns)
Min Hold
(ns)
NSMIRXDATA[3:1] NSMIRXCLK R 3.5 3.5 5 0
NSMIRXSYNC[3:1] NSMIRXCLK R 3.5 3.5 5 0
Table 5-13. NSMI Output Specifications
Name Reference Edge
Rising/Falling
Propagation Delay
Min (ns) Max (ns)
NSMITXDATA[3:1] NSMITXCLK R 0.5 8.75
NSMITXSYNC[3:1] NSMITXCLK R 0.5 8.75
RXDATAEN[3:1] NSMIRXCLK R 0.5 8.75
TXDATAEN[3:1] NSMITXCLK R 0.5 8.75
NSMIRXSYNC[3:1] NSMIRXCLK R 0.5 8.75
160,7;&/.
tPD
W68 W+
NSMIRXCLK
NSMIRXDATA
NSMITXDATA
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 55
5.7 CHI Timing
Figure 5-11. CHI Clock Timing
* VIH to VIH or VIL to VIL.
Note: This figure assumes TMXF33625 is programmed to sample the frame sync signal on the rising edge of the bit clock.
Figure 5-12. CHI Bus Timing
Table 5-14. CHIRXGCLK and CHITXGCLK Timing Specifications
Parameter Description Min Typ Max Unit
t1Rise Time 2 7 ns
t2Width (8.192 MHz)* 48.84 73.24 ns
t2Width (16.384 MHz)* 24.42 36.62 ns
t3Fall Time 2 7 ns
t4Period (8.192 MHz) 122.07 ns
t4Period (16.384 MHz) 61.03 ns
Table 5-15. CHI Interface Timing Specifications
Parameter Description Min Max Unit
t5Frame Sync Setup Time to Active CHI Clock Edge. 15 ns
t5Frame Sync Hold Time from Active CHI Clock Edge. 4 ns
t7CHIRXDATA Setup to Active CHI Clock Edge. 15 ns
t8CHIRXDATA Hold Time from Active CHI Clock Edge. 4 ns
t9CHITXDATA Propagation Delay from Active CHI Clock Edge. 4 30 ns
W
9''
9,/
9,+ 9,+
9,/
t3
t4
50%
W2
W9
CHITXDATA
&+,
RXG
&/.
W5W6
CHIRXDATA
CHIRXGFS
W7W8
CHITXGFS
&+,
TXG
&/.
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
5656 Agere Systems Inc.
Note: For this timing diagram, it is assumed that the frame sync signal has been programmed to be active-high, and to be sampled by the rising edge of
the bit clock.
Figure 5-13. Typical Receive CHI Timing (Non-CMS Mode—FRM_CMS = 0)
Note: For this timing diagram, it is assumed that the frame sync signal has been programmed to be active-high, and to be sampled by the rising edge of
the bit clock.
Figure 5-14. Transmit CHI Timing (Non-CMS Mode—FRM_CMS = 0)
CHIRXGFS
CHIRXGCLK
w/ 0 offset
data sampled
w/ ½ bit offset
data sampled
w/ bit offset = 1
data sampled
w/ bit offset = 7
data sampled
data sampled
w/ TS offset = 1,
bit offset = 0
TS0 B1
TS0 B0
TS0 B0 TS0 B1 TS0 B2 TS0 B3 TS0 B4 TS0 B5
TS0 B 0
TS0 B1 TS0 B2 TS0 B3 TS0 B4TS0 B0
TS0 B0 TS0 B1 TS0 B2 TS0 B3 TS0 B4 TS0 B5
CHIRXGFS
CHIRXGCLK
w/ 0 offset
w/ ½ bit offset
w/ bit offset = 1
w/ TS offset = 255,
bit offset = 7½
TS0 B0
w/ TS offset = 1,
bit offset = 0
TS0 B2 TS0 B3 TS0 B4
TS255 B0
TS0 B3 TS0 B4
TS255 B1 TS255 B2 TS255 B3
TS0 B0 TS0 B1
TS255 B4 TS255 B5
TS0 B0
TS0 B3 TS0 B4 TS0 B5
TS0 B5
TS0 B1 TS0 B2
TS0 B1 TS0 B2
TS0 B0 TS0 B1 TS0 B2 TS0 B3 TS0 B4
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 57
Notes:
n = 127 at 16 MHz and n = 63 at 8 MHz.
For this timing diagram, it is assumed that the frame sync signal has been programmed to be active-high, and to be sampled by the rising edge of the bit
clock.
CMS mode (FRM_CMS = 1).
Figure 5-15. Typical Receive CHI Timing (CMS Mode—FRM_CMS = 1)
Notes:
For this timing diagram, it is assumed that the frame sync signal has been programmed to be active-high, and to be sampled by the rising edge of the bit
clock.
CMS mode (FRM_CMS = 1).
Figure 5-16. Transmit CHI Timing (CMS Mode—FRM_CMS = 1)
CHIRXGFS
CHIRXGCLK
w/ 0 offset
data sampled
w/ ¼ bit offset
data sampled
w/ ½ bit offset
data sampled
w/ ¾ bit offset
data sampled
w/ bit offset = 1
data sampled
w/ 2¾ bit offset
data sampled
w/ bit offset = 7
data sampled
data sampled
data sampled
data sampled
TS0 B2 TS0 B3 TS0 B4
w/ TS offset = 127,
bit offset = 7¾
TSn B7 TS0 B0 TS0 B1
TSn B2 TSn B3 TSn B4
w/ TS offset = 13,
bit offset = 3¼
TSn – 13 B4 TSn – 13 B5 TSn – 13 B6 TSn – 13 B7 TSn – 12 B0 TSn – 12 B1
w/ TS offset = 1,
bit offset = 0
TSn – 1 B7 TSn B0 TSn B1
TSn B4 TSn B5
TSn B4 TSn B5
TSn B0 TSn B1 TSn B2 TSn B3
TSn B6 TSn B7
TS0 B2 TS0 B3
TS0 B2 TS0 B3
TS0 B0 TS0 B1
TSn B6 TSn B7 TS0 B0 TS0 B1
TSn B6 TSn B7 TS0 B0 TS0 B1
TS0 B3 TS0 B4
TSn B7 TS0 B0 TS0 B1 TS0 B2 TS0 B3
TSn B7 TS0 B0 TS0 B1 TS0 B2
TSn B7 TS0 B0 TS0 B1 TS0 B2 TS0 B3 TS0 B4
CHIRXGFS
CHIRXGCLK
w/ 0 offset
w/ ¼ bit offset
w/ ½ bit offset
w/ bit offset = 1
TSn B6 TSn B7 TS0 B0 TS0 B1 TS0 B2 TS0 B3
TS0 B2 TS0 B3
TSn B6 TSn B7 TS0 B0 TS0 B1 TS0 B2
TSn B6 TSn B7 TS0 B0 TS0 B1
TSn B5 TSn B6 TSn B7 TS0 B0
w/ TS offset = 1,
bit offset = 0
TSn B7 TS0 B0 TS0 B1
w/ TS offset = 127,
bit offset = 7¾
TSn – 1 B6 TSn – 1 B7 TSn B0 TSn B1
TS0 B2 TS0 B3
TS0 B1 TS0 B2
TSn B2 TSn B3
TS0 B3
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
5858 Agere Systems Inc.
5.8 Parallel System Bus (PSB) Timing
Figure 5-17. PSB Clock and Data Timing
Table 5-16. PSB Input Specifications
Name Reference Edge
Rising/Falling
Max Rise
Time (ns)
Max Fall
Time (ns)
Min Setup
(ns)
Min Hold
(ns)
CHIRXDATA[16:1] (PSB mode) CHIRXGCLK R/F 10 10 10 0
CHIRXGFS (PSB mode) CHIRXGCLK R/F 10 10 10 0
CHITXGFS (PSB mode) CHITXGCLK R/F 10 10 10 0
Table 5-17. PSB Output Specifications
Name Reference Edge
Rising/Falling
Propagation Delay
Min (ns) Max (ns)
CHITXDATA[16:1] (PSB mode) CHITXGCLK R/F 4 22
&+,7;*&/.
tPD
t
SU
t
H
CHIRXGCLK
CHIRXDATA
CHITXDATA
&+,5;*)6
10 ns 0 ns
&+,7;*)6
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 59
6 Reference Clocks
Table 6-1. High-Speed Interface Input Clocks Specifications
Clock Name Period
(ns)
Frequency Accuracy
(ppm)
Jitter Rise
(ns)
Fall
(ns)
Min/
Max
Duty Cycle
RHSCP/N 6.43 155.52 MHz 20 0.4 0.4 Nominal 50% ± 5%
THSCP/N 6.43 155.52 MHz 20 0.01 UIp-p or 64 psp-p or
0.001 UIrms (12 kHz—5 MHz)
0.4 0.4 Nominal 50% ± 5%
THSCP/N 1.6 622.08 MHz 20 0.04 UIp-p or 64 psp-p
(12 kHz—5 MHz)
—— 50% ± 5%
Table 6-2. Protection Link Input Clock Specifications
Clock Name Period
(ns)
Frequency Accuracy
(ppm)
Jitter Rise
(ns)
Fall
(ns)
Min/Max Duty Cycle
RPSCP/N 6.43 155.52 MHz 20 0.4 0.4 Nominal 50% ± 5%
Table 6-3. DS3/E3/STS-1 Input Clocks Specifications
Clock Name Period
(ns)
Frequency Accuracy
(ppm)
Jitter Rise
(ns)
Fall
(ns)
Min/
Max
Duty Cycle
DS3DATAOUTCLK[6:1] (DS3) 22.353 44.736 MHz 20 0.05 UIp-p or
1.12 nsp-p
(10 kHz—400 kHz)
5 5 Max 50% ± 10%
DS3DATAINCLK[6:1] (DS3) 22.353 44.736 MHz 20 3.5 2.5 Max 50% ± 5%
DS3DATAOUTCLK[6:1] (E3) 29.090 34.368 MHz 20 0.03 UIp-p or
0.87 nsp-p
(100 kHz—800 kHz)
5 5 Max 50% ± 10%
DS3DATAINCLK [6:1] (E3) 29.090 34.368 MHz 20 3.5 2.5 Max 50% ± 5%
DS3DATAOUTCLK[6:1] (STS-1) 19.290 51.840 MHz 20 0.01 UIp-p or
0.19 nsp-p or
0.001 UIrms
(12 kHz—400 kHz)
5 5 Max 50% ± 10%
DS3DATAINCLK[6:1] (STS-1) 19.290 51.840 MHz 20 3.5 2.5 Max 50% ± 5%
Table 6-4. DS1/E1 DJA Input Clocks Specifications
Clock Name Period
(ns)
Frequency Accuracy
(ppm)
Jitter Rise
(ns)
Fall
(ns)
Min/Max Duty Cycle
E1XCLK 15.25 65.536 MHz 50 0.1 UIp-p or 1.5 nsp-p
(20 kHz—100 kHz)
3.5 3.5 Max 50% ± 10%
DS1XCLK 20.20 49.408 MHz 32 0.1 UIp-p or 2.0 nsp-p
(10 kHz—40 kHz)
3.5 3.5 Max 50% ± 10%
E1XCLK 30.52 32.768 MHz 50 0.1 UIp-p or 3.0 nsp-p
(20 kHz—100 kHz)
3.5 3.5 Max 50% ± 10%
DS1XCLK 40.40 24.704 MHz 32 0.1 UIp-p or 4.0 nsp-p
(10 kHz—40 kHz)
3.5 3.5 Max 50% ± 10%
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
6060 Agere Systems Inc.
Table 6-5. DS3/E3 DJA Input Clocks Specifications
Clock Name Period
(ns)
Frequency Accuracy
(ppm)
Jitter Rise
(ns)
Fall
(ns)
Min/Max Duty Cycle
DS3XCLK 22.35 44.736 MHz 20 0.01 UIp-p or 0.22 nsp-p
(10 kHz—400 kHz)
3.5 3.5 Max 50% ± 5%
E3XCLK 29.09 34.368 MHz 20 0.01 UIp-p or 0.29 nsp-p
(100 kHz—800 kHz)
3.5 3.5 Max 50% ± 5%
Table 6-6. LOPOH Input Clock Specifications
Clock Name Period
(ns)
Frequency Accuracy
(ppm)
Jitter Rise
(ns)
Fall
(ns)
Min/Max Duty Cycle
LOPOHCLKIN 51.44 19.44 MHz 8 8 Max 50% ± 5%
Table 6-7. Microprocessor Interface Input Clocks Specifications
Clock Name Period
(ns)
Frequency Accuracy
(ppm)
Jitter Rise
(ns)
Fall
(ns)
Min/Max Duty Cycle
MPCLK (min)*62.50 16 MHz 4 4 Min 50% ± 10%
MPCLK (max) 15.15 66 MHz 4 4 Max 50% ± 10%
* If DTN is used, then the maximum frequency for MPCLK is determined by the processors setup specification for DTN. MPU maximum bus oper-
ating frequency = 1/(MPU DTN setup time + tDTNVPD). For example, an 8 ns setup time would limit MPCLK to 50 MHz for reliable DTN detection.
Table 6-8. Framer PLL Input Clocks Specifications
Clock Name Period
(ns)
Frequency Accuracy
(ppm)
Jitter Rise
(ns)
Fall
(ns)
Min/Max Duty Cycle
CLKIN_PLL 19.20 51.84 MHz 20 GR-499 and G.823 50% ± 10%
CHIRXGTCLK (DS1 mode) 647.66 1.544 MHz 32 GR-499 10 10 Max 50% ± 10%
CHIRXGTCLK (E1 mode) 488.28 2.048 MHz 50 G.823 10 10 Max 50% ± 10%
Table 6-9. CHI Input Clocks Specifications
Clock Name Period
(ns)
Frequency Accuracy
(ppm)
Jitter Rise
(ns)
Fall
(ns)
Min/Max Duty Cycle
CHIRXGCLK (CHI mode) 122.070 8.192 MHz 50 10 10 Max 50% ± 10%
CHIRXGCLK (CHI mode) 61.035 16.384 MHz 50 10 10 Max 50% ± 10%
CHITXGCLK (CHI mode) 122.070 8.192 MHz 50 10 10 Max 50% ± 10%
CHITXGCLK (CHI mode) 61.035 16.384 MHz 50 10 10 Max 50% ± 10%
Table 6-10. PSB Input Clocks Specifications
Clock Name Period
(ns)
Frequency Accuracy
(ppm)
Jitter Rise
(ns)
Fall
(ns)
Min/Max Duty Cycle
CHIRXGCLK (PSB mode) 51.44 19.44 MHz 20 10 10 Max 50% ± 10%
CHITXGCLK (PSB mode) 51.44 19.44 MHz 20 10 10 Max 50% ± 10%
Table 6-11. High-Speed Interface Output Clocks Specifications
Clock Name Period
(ns)
Frequency Accuracy
(ppm)
Jitter Rise
(ns)
Fall
(ns)
Min/Max Duty Cycle
THSCOP/N 6.43 155.52 MHz 20 0.1 UIp-p 50% ± 5%
THSCOP/N 1.6 622 MHz 20 0.1 UIp-p 50% ± 5%
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 61
Table 6-12. Protection Link Output Clocks Specifications
Clock Name Period
(ns)
Frequency Accuracy
(ppm)
Jitter Rise
(ns)
Fall
(ns)
Min/Max Duty Cycle
TPSCP/N 6.43 155.52 MHz 20 50% ± 5%
TPSCP/N 1.60 622.08 MHz 20 50% ± 5%
Table 6-13. Line Timing Interface Output Clocks Specifications
Clock Name Period
(ns)
Frequency Accuracy
(ppm)
Jitter Rise
(ns)
Fall
(ns)
Min/Max Duty Cycle
RLSCLK 51.44 19.44 MHz 20 1.5 1.5 Nominal 50% ± 5%
TLSCLK 51.44 19.44 MHz 20 1.5 1.5 Nominal 50% ± 5%
Table 6-14. TOAC Output Clocks Specifications
Clock Name Period
(ns)
Frequency Accuracy
(ppm)
Jitter Rise
(ns)
Fall
(ns)
Min/Max Duty Cycle
RTOACCLK (STS1LT; mode1) 5.2 (µs) 192 kHz 1.5 1.5 Nominal 50% ± 10%
RTOACCLK (STS1LT; mode2) 1.73 (µs) 576 kHz 1.5 1.5 Nominal 50% ± 10%
RTOACCLK (STS1LT; mode3) 578 1.728 MHz 1.5 1.5 Nominal 50% ± 10%
RTOACCLK
(TMUX; STS-12 D1-3 mode)
5.2 (µs) 192 kHz 1.5 1.5 Nominal 37% ± 10%*
* Positive duty cycle.
RTOACCLK
(TMUX; STS-12 D4-12 mode)
1.73 (µs) 576 kHz 1.5 1.5 Nominal 53% ± 10%*
RTOACCLK
(TMUX; STS-12 full access)
48.22 20.736 MHz 1.5 1.5 Nominal 33% ± 10%*
RTOACCLK
(TMUX; STS-3 D1-3 mode)
5.2 (µs) 192 kHz 1.5 1.5 Nominal 58% ± 10%*
RTOACCLK
(TMUX; STS-3 D4-12 mode)
1.73 (µs) 576 kHz 1.5 1.5 Nominal 52% ± 10%*
RTOACCLK
(TMUX; STS-3 full access)
192.9 5.184 MHz 1.5 1.5 Nominal 33% ± 10%*
TTOACCLK (STS1LT; mode1) 5.2 (µs) 192 kHz 1.5 1.5 Nominal 50% ± 10%
TTOACCLK (STS1LT; mode2) 1.73 (µs) 576 kHz 1.5 1.5 Nominal 50% ± 10%
TTOACCLK (STS1LT; mode3) 578 1.728 MHz 1.5 1.5 Nominal 50% ± 10%
TTOACCLK
(TMUX; STS-12 D1-3 mode)
5.2 (µs) 192 kHz 1.5 1.5 Nominal 37% ± 10%*
TTOACCLK
(TMUX; STS-12 D4-12 mode)
1.73 (µs) 576 kHz 1.5 1.5 Nominal 53% ± 10%*
TTOACCLK
(TMUX; STS-12 full access)
48.22 20.736 MHz 1.5 1.5 Nominal 33% ± 10%*
TTOACCLK
(TMUX-STS-3 D1-3 mode)
5.2 (µs) 192 kHz 1.5 1.5 Nominal 58% ± 10%*
TTOACCLK
(TMUX-STS-3 D4-12 mode)
1.73 (µs) 576 kHz 1.5 1.5 Nominal 52% ± 10%*
TTOACCLK
(TMUX-STS-3 full access)
192.9 5.184 MHz 1.5 1.5 Nominal 33% ± 10%*
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
6262 Agere Systems Inc.
Table 6-15. POAC Output Clocks Specifications
Clock Name Period Frequency Accuracy
(ppm)
Jitter Rise
(ns)
Fall
(ns)
Min/Max Duty Cycle
RPOACCLK (TMUX) 1.73 µs 576 kHz 1.5 1.5 Nominal 50% ± 10%
RPOACCLK (STS1LT) 1.73 µs 576 kHz 1.5 1.5 Nominal 50% ± 10%
RPOACCLK (SPEMPR) 1.73 µs 576 kHz 1.5 1.5 Nominal 50% ± 10%
TPOACCLK (TMUX) 1.73 µs 576 kHz 1.5 1.5 Nominal 50% ± 10%
TPOACCLK (STS1LT) 1.73 µs 576 kHz 1.5 1.5 Nominal 50% ± 10%
TPOACCLK (SPEMPR) 1.73 µs 576 kHz 1.5 1.5 Nominal 50% ± 10%
Table 6-16. DS3/E3/STS-1 Output Clocks Specifications
Clock Name Period (ns) Frequency Accuracy
(ppm)
Jitter Rise
(ns)
Fall
(ns)
Min/Max Duty Cycle
DS3RXCLKOUT [6:1] (DS3) 22.353 44.736 MHz 20 GR-253 1.5 1.5 Nominal 50% ± 5%
DS3RXCLKOUT [6:1] (E3) 29.090 34.368 MHz 20 G.783 1.5 1.5 Nominal 50% ± 5%
DS3RXCLKOUT [6:1] (STS-1) 19.290 51.840 MHz 20 GR-253 1.5 1.5 Nominal 50% ± 5%
Table 6-17. LOPOH Output Clock Specifications
Clock Name Period (ns) Frequency Accuracy (ppm) Jitter Rise (ns) Fall (ns) Min/Max Duty Cycle
LOPOHCLKOUT 51.44 19.44 MHz 20 1.5 1.5 Nominal 50% ± 5%
Table 6-18. NSMI Output Clocks Specifications
Clock Name Period (ns) Frequency Accuracy
(ppm)
Jitter Rise
(ns)
Fall
(ns)
Min/
Max
Duty Cycle
RXDATAEN (FRM-NSMI mode) 19.29 51.84 MHz 20 1.5 1.5 Nominal 50% ± 5%
NSMITXCLK 19.29 51.84 MHz 20 1.5 1.5 Nominal 50% ± 5%
Table 6-19. Framer PLL Output Clocks Specifications
Clock Name Period (ns) Frequency Accuracy (ppm) Jitter Rise
(ns)
Fall
(ns)
Min/Max Duty Cycle
CG_PLLCLKOUT 647.66 1.544 MHz 32 GR-499 50% ± 5%
CG_PLLCLKOUT 488.28 2.048 MHz 50 G.823 50% ± 5%
Table 6-20. NSMI Input/Output Clocks Specifications
Clock Name Period (ns) Frequency Accuracy
(ppm)
Jitter Rise
(ns)
Fall
(ns)
Min/Max Duty Cycle
NSMIRXCLK (FRM) 19.29 51.840 MHz 20 3.5 3.5 Max 50% ± 5%
NSMIRXCLK (STS1LT) 19.29 51.840 MHz 20 3.5 3.5 Max 50% ± 5%
NSMIRXCLK (M13) 22.35 44.736 MHz 20 1.5 1.5 Nominal 50% ± 5%
NSMIRXCLK (E13) 29.09 34.368 MHz 20 1.5 1.5 Nominal 50% ± 5%
NSMIRXCLK (SPEMPR) 19.29 51.840 MHz 20 3.5 3.5 Max 50% ± 5%
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 63
7 Microprocessor Interface Timing
7.1 Synchronous Write Mode
The synchronous microprocessor interface mode is selected when MPMODE = 1. In this mode, MPCLK used for the
Hypermapper is the same as the microprocessor clock. Interface timing for the synchronous mode write cycle is given in
Figure 7-1 and in Table 7-1, and for the read cycle in Figure 7-2 and in Table 7-2.
Notes:
MPCLK Input clock to Hypermapper MPU block.
ADDR [20:0] The address will be available throughout the entire cycle.
CSN (Input) Chip select is an active-low signal.
ADSN (Input) Address strobe is active-low. ADSN must be one MPCLK clock period wide.
RWN (Input) The read (H) write (L) signal is always high except during a write cycle.
DATA[15:0] Data will be available during cycle T1.
DTN (Output) Data transfer acknowledge is active-low for one clock and then driven high before entering a high-impedance state. (This is done with an
I/O pad using the input as feedback to qualify the 3-state term.) DTN will become 3-stated when CSN is high. Typically, DTN is active for
four or five MPCLK cycles after ADSN is low.
Figure 7-1. Microprocessor Interface Synchronous Write Cycle (MPMODE = 1)
* If DTN is used, then the maximum frequency for MPCLK is determined by the processor’s setup specification for DTN. MPU maximum bus operating
frequency = 1/(MPU DTN setup time + tDTNVPD). For example, a 8 ns setup time would limit MPCLK to 50 MHz for reliable DTN detection.
DTN fall is variable, depending on the block selected for access and in some cases the state of the SONET frame. This interval is typically in the 100 ns
to 200 ns range, but can be several hundred ns. In lab measurements, it has never exceeded 1000 ns.
Table 7-1. Microprocessor Interface Synchronous Write Cycle Specifications
Symbol Parameter Setup (Min) Hold (Min) Delay (Min) Delay (Max) Unit
MPCLK MPCLK 16 MHz Min—66* MHz Max Frequency. ns
tWS ADSN, RWN, DATA (write) Valid to MPCLK. 6.7 ns
tAPD MPCLK to ADDR, RWN, DATA, CSN (write) Invalid. 0 ns
tCSNVS CSN Valid to MPCLK. 6 ns
tADDRVS ADDR Valid to MPCLK. 3.5 ns
tAIPD MPCLK to ADSN Invalid. 0 ns
tDTNVPD MPCLK to DTN Valid. 2.5 12 ns
tDTNIPD MPCLK to DTN Invalid. 2.5 12 ns
TADSNVDTF ADSN Valid to DTN Falling. ns
MPCLK
ADDR[20:0]
CSN
ADSN
RWN
DATA[15:0]
DTN
(INPUT)
tWS
tWS
tDTNVPD
tADDRVS
tCSNVS
tWS
T0T1T2T3Tn – 2 Tn – 1 Tn
tAIPD
tAPD
tAPD
tAPD
tAPD
tDTNIPD
HIGH ZHIGH Z
tADSNVDTF
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
6464 Agere Systems Inc.
7.2 Synchronous Read Mode
Notes:
MPCLK Input clock to Hypermapper MPU block.
ADDR [20:0] The address will be available throughout the entire cycle, and must be stable before ADSN turns high.
CSN (Input) Chip select is an active-low signal.
ADSN (Input) Address strobe is active-low. ADSN must be one MPCLK clock period wide.
RWN (Input) The read (H) write (L) signal is always high during the read cycle.
DTN (Output) Data transfer acknowledge on the host bus interface is initiated on T6. This signal is active for one clock, and then driven high before
entering a high-impedance state. (This is done with an I/O pad using the input as feedback to qualify the 3-state term.) DTN will become
3-stated when CSN is high. Typically, DTN is active four or five MPCLK cycles after ADSN is low.
DATA [15:0] Read data is stable in Tn – 1.
Figure 7-2. Microprocessor Interface Synchronous Read Cycle (MPMODE = 1)
* If DTN is used, then the maximum frequency for MPCLK is determined by the processor’s setup specification for DTN. MPU maximum bus operating
frequency = 1/(MPU DTN setup time + tDNVPD). For example, an 8 ns setup time would limit MPCLK to 50 MHz for reliable DTN detection.
DTN fall is variable, depending on the block selected for access and in some cases the state of the SONET frame. This interval is typically in the 100 ns
to 200 ns range, but can be several hundred ns. In lab measurements, it has never exceeded 1000 ns.
Table 7-2. Microprocessor Interface Synchronous Read Cycle Specifications
Symbol Parameter Setup
(Min)
Hold
(Min)
Delay
(Min)
Delay
(Max)
Unit
MPCLK MPCLK 16 MHz Min—66* MHz Max Frequency.————ns
tAVS ADDR Valid to MPCLK. 3.5 ns
tAPD MPCLK to ADDR Invalid. 0 ns
tCSNSU CSN Active to MPCLK. 6 ns
tADSNSU ADSN Valid to MPCLK. 6 ns
tSNIPD MPCLK to ADSN Inactive. 0 ns
tDNVPD MPCLK to DTN Valid. 2.5 12 ns
tDNIPD MPCLK to DTN Invalid. 2.5 12 ns
tDAIPD MPCLK to DATA 3-state. 3.5 15 ns
tADSNVDTF ADSN Valid to DTN Falling. ns
MPCLK
ADDR[20:0]
CSN
ADSN
RWN
tADSNSU tSNIPD
tCSNSU
tAVS
T0T1T2Tn – 4 Tn – 3 Tn – 2 Tn – 1 Tn
DTN
DATA[15:0]
(OUTPUT)
tDAIPD
tDNVPD
tDNIPD
tADSNVDTF
HIGH ZHIGH Z
tAPD
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 65
7.3 Asynchronous Write Mode
The asynchronous microprocessor interface mode is selected when MPMODE = 0. Interface timing for the asynchronous
mode write cycle is given in Figure 7-3 and in Tab le 7-3 , and for the read cycle in Figure 7-4 and in Ta ble 7 - 4. Although this
is an asynchronous interface, an MPCLK is still required. This clock can be different (asynchronous) from the MPU clock.
Internal to the chip, RWN, ADSN, and DSN will be sampled by MPCLK.
Notes:
ADDR [20:0] Address is asynchronously passed from the host bus to the internal bus. The address will be available throughout the entire cycle. ADDR
must be held constant while ADSN and DSN are valid (low).
CSN (Input) Chip select is an active-low signal. CSN must be held low (active) until ADSN and DSN are deasserted.
ADSN (Input) Address strobe is active-low. ADSN must be stable the entire period. ADSN and CSN may be connected and driven from the same
source.
DSN (Input) Data strobe is active-low.
DATA [15:0] Write data is asynchronously passed from the host bus to the internal bus. Data will be available throughout the entire cycle. DATA must
be held constant while DSN is valid (low).
RWN (Input) The read/write signal should be high for a read cycle and low for a write cycle. It should always be held high, except during a write cycle.
RWN must be held low (write) until DSN is deasserted (high).
DTN (Output) Data transfer acknowledge (active-low). DTN is driven out of 3-state to inactive-high on the assertion of CSN. When the internal transac-
tion is complete, DTN goes active-low. DTN is then driven high again when either ADSN or DSN is deasserted. DTN will become 3-stated
when CSN is high. DTN fall is variable, depending on the block selected for access and in some cases the state of the SONET frame. This
interval is typically in the 100 ns to 200 ns range, but can be several hundred ns. In lab measurements, it has never exceeded 1000 ns.
Figure 7-3. Microprocessor Interface Asynchronous Write Cycle (MPMODE = 0)
ADDR[20:0]
CSN
ADSN
DSN
RWN
DATA[15:0]
DTN
(INPUT)
tAVADSF
tDVDSF
tCSFDTR
tDSFDTF
tADSRDTR tCSRDT3
tDSRDI
tDSRRWR
tDSNRAI
tADSRAI
tAICSR
tRWFDSF
tAVDSF
HIGH Z HIGH Z
tCSFDSF
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
6666 Agere Systems Inc.
7.4 Asynchronous Read Mode
Notes:
ADDR [20:0] Address is asynchronously passed from the host bus to the internal bus. The address will be available throughout the entire cycle.
CSN (Input) Chip select is an active-low signal.
ADSN (Input) Address strobe is active-low.
DSN (Input) Data strobe is active-low.
RWN (Input) The read (H) write (L) signal is always high during a read cycle.
DTN (Output) Data transfer acknowledge (active-low). DTN is driven out of 3-state to inactive-high on the assertion of CSN. When the internal transac-
tion is complete, DTN goes active-low. DTN is then driven high again when either ADSN or DSN is deasserted. DTN will become 3-stated
when CSN is high.
DATA [15:0] 16-bit data bus.
Figure 7-4. Microprocessor Interface Asynchronous Read Cycle (MPMODE = 0)
Table 7-3. Microprocessor Interface Asynchronous Write Cycle Specifications
Symbol Parameter Setup
(Min)
Hold
(Min)
Delay
(Min)
Delay
(Max)
Unit
tCSFDSF CSN Fall Setup and Hold to DSN Fall. 0 ns
tAICSR ADDR Invalid to CSN Rise. 0 ns
tAVADSF ADDR Valid Setup and Hold to ADSN Fall. 1.0 ns
tADSRAI ADSN Rise to ADDR Invalid. 1.42 ns
tAVDSF ADDR Valid Setup and Hold to DSN Fall. 0 ns
tDSNRAI DSN Rise to ADDR Invalid. 0 ns
tRWFDSF RWN Fall Setup and Hold to DSN Fall. 0 ns
tDSRRWR DSN Rise to RWN Rise. ————ns
tDVDSF DATA Valid Setup and Hold to DSN Fall. 0 ns
tDSRDI DSN Rise to DATA Invalid. 0 ns
tCSFDTR CSN Fall to DTN Rise. 5.2 16.0 ns
tDSFDTF DSN Fall to DTN Fall. ————ns
tADSRDTR ADSN or DSN Rise to DTN Rise. 2.9 13.3 ns
tCSRDT3 CSN Rise to DTN 3-State. 2.9 13 ns
ADDR[20:0]
CSN
ADSN
DSN
DTN
DATA[15:0]
t
ADSRD3
t
CSRDT3
t
ADSRDTR
t
CSFDSF
RWN
t
AVADSF
t
AVDSF
t
AICSR
t
ADSRAI
t
DSNRAI
t
DTVDV
t
DSFDTF
t
CSFDTR
HIGH Z
HIGH Z
HIGH Z
HIGH Z
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 67
7.5 Accessing the Same Register Sequentially Across Multiple Partitions.
Each partition (A, B, C, and D) must be accessed (read or write) independently (treated as individual subsections of the
overall device). The address bus may be held stable but each access (for each partition) must be accompanied by the
assertion of both an address strobe and chip select.
Table 7-4. Microprocessor Interface Asynchronous Read Cycle Specifications
Symbol Parameter Setup
(Min)
Hold
(Min)
Delay
(Min)
Delay
(Max)
Unit
tCSFDSF CSN Fall Setup and Hold to DSN Fall. 0 *
* CSN must be held low (active) until ADSN and DSN are deasserted.
——ns
tAICSR ADDR Invalid to CSN Rise. 0 ns
tAVADSF ADDR Valid Setup and Hold to ADSN Fall. 1.0
† ADDR must be held constant while ADSN and DSN are valid (low).
——ns
tADSRAI ADSN Rise to ADDR Invalid. 1.42 ns
tAVDSF ADDR Valid Setup and Hold to DSN Fall. 0 ——ns
tDSNRAI DSN Rise to ADDR Invalid. 0 ns
tCSFDTR CSN Fall to DTN Rise. 5.2 16.0 ns
tDSFDTF DSN Fall to DTN Fall.
‡ DTN fall is variable, depending on the block selected for access and in some cases, the state of the SONET frame. This interval is typically in the
100 ns to 200 ns range, but can be several hundred ns. In lab measurements, it has never exceeded 1000 ns.
ns
tADSRDTR ADSN or DSN Rise to DTN Rise. 2.9 13.3 ns
tCSRDT3 CSN Rise to DTN 3-State. 2.9 13.0 ns
tDTVDV DTN Valid to DATA Valid. 0 ns
tADSRD3 ADSN Rise to DATA 3-State. 2.9 14 + MPCLK§
§ DATA[15:0] is enabled by a retimed version of the ADSN.
ns
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
6868 Agere Systems Inc.
8 Other Timing
This interface may be used as either synchronous or asynchronous mode.
9 Hardware Design File References
(IBIS, Spice, BSDL, etc.) Available upon request.
10 Ordering Information
Table 8-1. General-Purpose Inputs Specifications
Name Reference Edge
Rising/Falling
Rise Time
(ns)
Fall Time
(ns)
Setup
(ns)
Hold
(ns)
RSTN Async
PMRST Async
TDI and TMS TCLK R 5 5 19.5 6.4
Table 8-2. Miscellaneous Output Specifications
Name Reference Edge
Rising/Falling
Propagation Delay
Min (ns) Max (ns)
RHSFSYNCN Asynchronous
Table 8-3. General-Purpose Output Specifications
Name Reference Edge
Rising/Falling
Propagation Delay
Min (ns) Max (ns)
TDO TCLK F 12.5 45
Table 10-1. Ordering Information
Device Package Comcode
TMXF336251BL-2 1152-pin PBGA 700039030
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 69
11 1152-Pin PBGA Diagrams
Figure 11-1. 1152-Pin PBGA Physical Dimensions
0.61
1.17
1.27
0.75
TMXF33625 Hypermapper Hardware Design Guide, Revision 1
622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0 April 29, 2003
7070 Agere Systems Inc.
12 Change History
Changes that were made to this document since the February 21, 2003 issue are listed in the table below.
12.1 Navigating Through an Adobe Acrobat Document
If the reader displays this document in Adobe Acrobat Reader, clicking on any blue entry in the text will bring the reader to
that reference point. Clicking on the back arrow in Acrobat Reader, will bring the reader back to the starting point.
For example, clicking on page 1 (in Table 12-1), will bring the reader to page 1 of this document, which is the first change.
Clicking on the back arrow in Acrobat Reader will bring the reader back to this page.
Table 12-1. Document Changes
Page Page Page Page Page
page 1 page 24 page 36 page 37 page 38
page 40 page 41 page 63 page 64 page 67
page 68 ————
Hardware Design Guide, Revision 1 TMXF33625 Hypermapper
April 29, 2003 622/155 Mbits/s SONET/SDH x DS3/E3/DS0/E0
Agere Systems Inc. 71
13 Glossary
AIS Alarm indication signal
AMI Alternate mark inversion
APS Automatic protection switch
ASM Associated signaling mode
BER Bit error rate
BOM Bit-oriented message
BPV Bipolar violation
B8ZS Binary 8 zero code suppression
CCI Common channel signaling
CDR Clock and data recovery
CHI Concentrated highway interface
CMI Coded mark inversion
CRC Cyclic redundancy check
CRV Coding rule violation
DACS Digital access cross connects
DJA Digital jitter attenuation
ESF Extended superframe
EXZ Excessive zeros
FCS Frame check sequence
FDL Facility data link
FEAC Far-end alarm and control
FEBE Far-end block error
HDB3 High-density bipolar of order three
HDLC High-level data link control
LIU Line interface unit
LOC Loss of clock
LOF Loss of frame
LOS Loss of signal
LOPOH Low-order path overhead
MCDR Mate clock and data recovery
MRXC Multirate cross connect
NSMI Network serial multiplexed interface
OOF Out of frame
PBGA Pin ball grid array
POAC Path overhead access channel
PRBS Pseudorandom bit sequence
PRM Performance report message
QRSS Quasirandom signal source
RAI Remote alarm indicator
RDI Remote defect indication
RPOAC Receive path overhead access channel
REI Remote error indication
SDH Synchronous digital hierarchy
SEF Severely errored frame
SONET Synchronous optical network
TCM Tandem connection monitoring
TOAC Transport overhead access channels
UPSR Unidirectional path switch ring
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.
Agere, Agere Systems, and the Agere logo are trademarks of Agere Systems Inc.
Copyright © 2003 Agere Systems Inc.
All Rights Reserved
April 29, 2003
DS03-049MPIC-1 (Replaces DS03-049MPIC)
For additional information, contact your Agere Systems Account Manager or the following:
INTERNET: http://www.agere.com
E-MAIL: docmaster@agere.com
N. AMERICA: Agere Systems Inc., Lehigh Valley Central Campus, Room 10A-301C, 1110 American Parkway NE, Allentown, PA 18109-9138
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)
ASIA: Agere Systems Hong Kong Ltd., Suites 3201 & 3210-12, 32/F, Tower 2, The Gateway, Harbour City, Kowloon
Tel. (852) 3129-2000, FAX (852) 3129-2020
CHINA: (86) 21-5047-1212 (Shanghai), (86) 755-25881122 (Shenzhen)
JAPAN: (81) 3-5421-1600 (Tokyo), KOREA: (82) 2-767-1850 (Seoul), SINGAPORE: (65) 778-8833, TAIWAN: (886) 2-2725-5858 (Taipei)
EUROPE: Tel. (44) 1344 296 400
Adobe Acrobat and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.