Data Sheet
October 1, 2009
Austin MicrolynxTM 12V SMT Non-isolated Power Modules:
10Vdc – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 5A Output Current
* UL is a registered trademark of Underwriters Laboratories, Inc.
CSA is a registered trademark of Canadian Standards Association.
VDE is a trademark of Verband Deutscher Elektrotechniker e.V.
** ISO is a registered trademark of the International Organization of Standards
Document No: DS03-100 ver. 1.52
PDF name: microlynx_smt_12v_ds.pdf
Applications
Distributed power architectures
Intermediate bus voltage applications
Telecommunications equipment
Servers and storage applications
Networking equipment
Enterprise Networks
Latest generation IC’s (DSP, FPGA, ASIC) and
Microprocessor powered applications
Features
Compliant to RoHS EU Directive 2002/95/EC (-Z
versions)
Compliant to ROHS EU Directive 2002/95/EC with
lead solder exemption (non-Z versions)
Delivers up to 5A output current
High efficiency – 89% at 3.3V full load (VIN = 12.0V)
Small size and low profile:
20.3 mm x 11.4 mm x 7.24 mm
(0.8 in x 0.45 in x 0.285 in)
Low output ripple and noise
High Reliability:
Calculated MTBF = 5.6M hours at 25oC Full-load
Output voltage programmable from 0.75 Vdc to
5.5Vdc via external resistor
Line Regulation: 0.3% (typical)
Load Regulation: 0.4% (typical)
Temperature Regulation: 0.4 % (typical)
Remote On/Off
Output overcurrent protection (non-latching)
Wide operating temperature range (-40°C to 85°C)
UL* 60950-1Recognized, CSA C22.2 No. 60950-1-
03 Certified, and VDE 0805:2001-12 (EN60950-1)
Licensed
ISO** 9001 and ISO 14001 certified manufacturing
facilities
Description
Austin MicroLynxTM 12Vdc SMT (surface mount technology) power modules are non-isolated dc-dc converters that
can deliver up to 5A of output current with full load efficiency of 89% at 3.3V output. These modules provide
precisely regulated output voltage programmable via external resistor from 0.75Vdc to 5.5Vdc over a wide range of
input voltage (VIN = 10 - 14V). Their open-frame construction and small footprint enable designers to develop cost-
and space-efficient solutions. Standard features include remote On/Off, programmable output voltage and
overcurrent protection.
RoHS Compliant
Data Sheet
October 1, 2009
Austin MicroLynxTM 12V SMT Non-isolated Power Modules:
10 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 5A output current
LINEAGE POWER 2
Absolute Maximum Ratings
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are
absolute stress ratings only, functional operation of the device is not implied at these or any other conditions in
excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for
extended periods can adversely affect the device reliability.
Parameter Device Symbol Min Max Unit
Input Voltage All VIN -0.3 15 Vdc
Continuous
Operating Ambient Temperature All TA -40 85 °C
(see Thermal Considerations section)
Storage Temperature All Tstg -55 125 °C
Electrical Specifications
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature
conditions.
Parameter Device Symbol Min Typ Max Unit
Operating Input Voltage All VIN 10 12 14 Vdc
Maximum Input Current All IIN,max 3.5 Adc
(VIN= VIN, min to VIN, max, IO=IO, max )
Input No Load Current VO,set = 0.75 Vdc IIN,No load 17 mA
(VIN = VIN, nom, Io = 0, module enabled) VO,set = 5.0Vdc IIN,No load 100 mA
Input Stand-by Current All IIN,stand-by 1.2 mA
(VIN = VIN, nom, module disabled)
Inrush Transient All I2t 0.4 A2s
Input Reflected Ripple Current, peak-to-peak
(5Hz to 20MHz, 1μH source impedance; VIN, min to
VIN, max, IO= IOmax ; See Test configuration section)
All 30 mAp-p
Input Ripple Rejection (120Hz) All 30 dB
CAUTION: This power module is not internally fused. An input line fuse must always be used.
This power module can be used in a wide variety of applications, ranging from simple standalone operation to being
part of a complex power architecture. To preserve maximum flexibility, internal fusing is not included, however, to
achieve maximum safety and system protection, always use an input line fuse. The safety agencies require a fast-
acting fuse with a maximum rating of 6 A (see Safety Considerations section). Based on the information provided in
this data sheet on inrush energy and maximum dc input current, the same type of fuse with a lower rating can be
used. Refer to the fuse manufacturer’s data sheet for further information.
Data Sheet
October 1, 2009
Austin MicroLynxTM 12V SMT Non-isolated Power Modules:
10 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 5A output current
LINEAGE POWER 3
Electrical Specifications (continued)
Parameter Device Symbol Min Typ Max Unit
Output Voltage Set-point All VO, set -2.0 VO, set +2.0 % VO, set
(VIN=IN, min, IO=IO, max, TA=25°C)
Output Voltage All VO, set -2.5% +3.5% % VO, set
(Over all operating input voltage, resistive load,
and temperature conditions until end of life)
Adjustment Range All VO 0.7525 5.5 Vdc
Selected by an external resistor
Output Regulation
Line (VIN=VIN, min to VIN, max) All
0.3 % VO, set
Load (IO=IO, min to IO, max) All
0.4 % VO, set
Temperature (Tref=TA, min to TA, max) All
0.4 % VO, set
Output Ripple and Noise on nominal output
(VIN=VIN, nom and IO=IO, min to IO, max
Cout = 1μF ceramic//10μFtantalum capacitors)
RMS (5Hz to 20MHz bandwidth) All 15 30 mVrms
Peak-to-Peak (5Hz to 20MHz bandwidth) All 30 75 mVpk-pk
External Capacitance
ESR 1 m All CO, max 1000 μF
ESR 10 m All CO, max 3000 μF
Output Current All Io 0 5 Adc
Output Current Limit Inception (Hiccup Mode ) All IO, lim 200 % Io
(VO= 90% of VO, set)
Output Short-Circuit Current All IO, s/c 2 Adc
(VO250mV) ( Hiccup Mode )
Efficiency VO, set = 1.2Vdc η 81.5 %
VIN= VIN, nom, TA=25°C VO,set = 1.5Vdc η 84.0 %
IO=IO, max , VO= VO,set V
O,set = 1.8Vdc η 85.0 %
V
O,set = 2.5Vdc η 87.0 %
V
O,set = 3.3Vdc η 89.0 %
V
O,set = 5.0Vdc η 92.0 %
Switching Frequency All fsw 300 kHz
Dynamic Load Response
(dIo/dt=2.5A/μs; VIN = VIN, nom; TA=25°C) All Vpk 200 mV
Load Change from Io= 50% to 100% of
Io,max; 1μF ceramic// 10 μF tantalum
Peak Deviation
Settling Time (Vo<10% peak deviation) All ts 25 μs
(dIo/dt=2.5A/μs; VIN = VIN, nom; TA=25°C) All Vpk 200 mV
Load Change from Io= 100% to 50%of Io,max:
1μF ceramic// 10 μF tantalum
Peak Deviation
Settling Time (Vo<10% peak deviation) All ts 25 μs
Data Sheet
October 1, 2009
Austin MicroLynxTM 12V SMT Non-isolated Power Modules:
10 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 5A output current
LINEAGE POWER 4
Electrical Specifications (continued)
Parameter Device Symbol Min Typ Max Unit
Dynamic Load Response
(dIo/dt=2.5A/μs; V VIN = VIN, nom; TA=25°C) All Vpk 50 mV
Load Change from Io= 50% to 100% of Io,max;
Co = 2x150 μF polymer capacitors
Peak Deviation
Settling Time (Vo<10% peak deviation) All ts 50 μs
(dIo/dt=2.5A/μs; VIN = VIN, nom; TA=25°C) All Vpk 50 mV
Load Change from Io= 100% to 50%of Io,max:
Co = 2x150 μF polymer capacitors
Peak Deviation
Settling Time (Vo<10% peak deviation) All ts 50 μs
General Specifications
Parameter Min Typ Max Unit
Calculated MTBF (IO=IO, max, TA=25°C) 5,677,000 Hours
Weight 2.8 (0.1) g (oz.)
Data Sheet
October 1, 2009
Austin MicroLynxTM 12V SMT Non-isolated Power Modules:
10 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 5A output current
LINEAGE POWER 5
Feature Specifications
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature
conditions. See Feature Descriptions for additional information.
Parameter Device Symbol Min Typ Max Unit
Remote On/Off Signal interface
(VIN=VIN, min to VIN, max; Open collector pnp or equivalent
Compatible, Von/off signal referenced to GND
See feature description section)
Logic Low (On/Off Voltage pin open - Module ON)
Von/Off All VIL 0.4 V
Ion/Off All IIL 10 μA
Logic High (Von/Off > 2.5V – Module Off)
Von/Off All VIH V
IN, max V
Ion/off All IIH 1 mA
Turn-On Delay and Rise Times
(IO=IO, max , VIN = VIN, nom, TA = 25 oC, )
Case 1: On/Off input is set to Logic Low (Module
ON) and then input power is applied (delay from
instant at which VIN =VIN, min until Vo=10% of Vo,set)
All Tdelay 3 msec
Case 2: Input power is applied for at least one second
and then the On/Off input is set to logic Low (delay from
instant at which Von/Off=0.3V until Vo=10% of Vo, set)
All Tdelay 3 msec
Output voltage Rise time (time for Vo to rise from 10%
of Vo,set to 90% of Vo, set)
All Trise 4 6 msec
Output voltage overshoot – Startup 1 % VO, set
IO= IO, max; VIN = 10 to 14Vdc, TA = 25 oC
Overtemperature Protection All Tref 140 °C
(See Thermal Consideration section)
Input Undervoltage Lockout
Turn-on Threshold All 8.2 V
Turn-off Threshold All 8.0 V
Data Sheet
October 1, 2009
Austin MicroLynxTM 12V SMT Non-isolated Power Modules:
10 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 5A output current
LINEAGE POWER 6
Characteristic Curves
The following figures provide typical characteristics for the Austin MicroLynxTM 12V SMT modules at 25ºC.
70
72
74
76
78
80
82
84
86
0 12345
VIN= 14V
VIN = 12V
VIN = 10V
70
73
76
79
82
85
88
91
0 12345
VIN= 14V
VIN = 12V
VIN = 10V
EFFICIENCY, η (%)
OUTPUT CURRENT, IO (A)
EFFICIENCY, η (%)
OUTPUT CURRENT, IO (A)
Figure 1. Converter Efficiency versus Output Current
(Vout = 1.2Vdc).
Figure 4. Converter Efficiency versus Output Current
(Vout = 2.5Vdc).
70
72
74
76
78
80
82
84
86
88
012345
VIN= 14V
VIN = 12V
VIN = 10V
70
73
76
79
82
85
88
91
0 12345
VIN= 14V
VIN = 12V
VIN = 10V
EFFICIENCY, η (%)
OUTPUT CURRENT, IO (A)
EFFICIENCY, η (%)
OUTPUT CURRENT, IO (A)
Figure 2. Converter Efficiency versus Output Current
(Vout = 1.5Vdc).
Figure 5. Converter Efficiency versus Output Current
(Vout = 3.3Vdc).
70
72
74
76
78
80
82
84
86
88
0 12345
VIN= 14V
VIN = 12V
VIN = 10V
75
78
81
84
87
90
93
96
012345
VIN= 14V
VIN = 12V
VIN = 10V
EFFICIENCY, η (%)
OUTPUT CURRENT, IO (A)
EFFICIENCY, η (%)
OUTPUT CURRENT, IO (A)
Figure 3. Converter Efficiency versus Output Current
(Vout = 1.8Vdc).
Figure 6. Converter Efficiency versus Output Current
(Vout = 5.0Vdc).
Data Sheet
October 1, 2009
Austin MicroLynxTM 12V SMT Non-isolated Power Modules:
10 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 5A output current
LINEAGE POWER 7
Characteristic Curves (continued)
The following figures provide typical characteristics for the MicroLynxTM 12V SMT modules at 25ºC.
0
0.5
1
1. 5
2
2.5
3
3.5
4
6 8 10 12 14
Io = 0A
Io = 5A
Io = 2.5A
INPUT CURRENT, IIN (A)
INPUT VOLTAGE, VIN
(
V
)
OUTPUT CURRENT, OUTPUT VOLTAGE
IO (A) (2A/div) VO (V) (100mV/div)
TIME
,
t
(
5
μ
s/div
)
Figure 7. Input voltage vs. Input Current
(Vout = 5.0Vdc).
Figure 10. Transient Response to Dynamic Load
Change from 50% to 100% of full load (Vo = 3.3Vdc).
OUTPUT VOLTAGE
VO (V) (10mV/div)
TIME, t (2μs/div)
OUTPUT CURRENT, OUTPUT VOLTAGE
IO (A) (2A/div) VO (V) (100mV/div)
TIME, t (5 μs/div)
Figure 8. Typical Output Ripple and Noise
(Vin = 12V dc, Vo = 0.75 Vdc, Io=5A).
Figure 11. Transient Response to Dynamic Load
Change from 100% to 50% of full load (Vo = 3.3 Vdc).
OUTPUT VOLTAGE
VO (V) (10mV/div)
TIME, t (2μs/div)
OUTPUT CURRENT, OUTPUT VOLTAGE
IO (A) (2A/div) VO (V) (50mV/div)
TIME, t (10μs/div)
Figure 9. Typical Output Ripple and Noise
(Vin = 12.0V dc, Vo = 5.0 Vdc, Io=5A).
Figure 12. Transient Response to Dynamic Load
Change from 50% to 100% of full load (Vo = 5.0 Vdc,
Cext = 2x150 μF Polymer Capacitors).
Data Sheet
October 1, 2009
Austin MicroLynxTM 12V SMT Non-isolated Power Modules:
10 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 5A output current
LINEAGE POWER 8
Characteristic Curves (continued)
The following figures provide typical characteristics for the Austin MicroLynxTM 12V SMT modules at 25ºC.
OUTPUT CURRENT OUTPUTVOLTAGE
IO (A) (2A/div) VO (V) (50mV/div)
TIME, t (10μs/div)
OUTPUT VOLTAGE, INPUT VOLTAGE
Vo (V) (2V/div) VIN (V) (5V/div)
TIME, t (1 ms/div)
Figure 13. Transient Response to Dynamic Load
Change from 100% of 50% full load (Vo = 5.0 Vdc, Cext
= 2x150
μ
F Pol
y
mer Ca
p
acitors
)
.
Figure 16. Typical Start-Up with application of Vin with
(Vin = 12Vdc, Vo = 3.3Vdc, Io = 5A).
OUTPUT VOLTAGE On/Off VOLTAGE
VOV) (2V/div) VOn/off (V) (5V/div)
TIME, t (1 ms/div)
OUTPUT VOLTAGE On/Off VOLTAGE
VOV) (1V/div) VOn/off (V) (2V/div)
TIME, t (1 ms/div)
Figure 14. Typical Start-Up Using Remote On/Off
(Vin = 12Vdc, Vo = 3.3Vdc, Io = 5.0A).
Figure 17 Typical Start-Up using Remote On/off with
Prebias (Vin = 12Vdc, Vo = 1.8Vdc, Io = 1A, Vbias =1.0
Vdc).
OUTPUT VOLTAGE On/Off VOLTAGE
VOV) (1V/div) VOn/off (V) (2V/div)
TIME, t (2 ms/div)
OUTPUT CURRENT,
IO (A) (5A/div)
TIME, t (20ms/div)
Figure 15. Typical Start-Up Using Remote On/Off with
Low-ESR external capacitors (7x150uF Polymer)
(
Vin = 12Vdc
,
Vo = 3.3Vdc
Io = 5.0A
Co = 1050
μ
F
)
.
Figure 18. Output short circuit Current (Vin = 12Vdc,
Vo = 0.75Vdc).
Data Sheet
October 1, 2009
Austin MicroLynxTM 12V SMT Non-isolated Power Modules:
10 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 5A output current
LINEAGE POWER 9
Characteristic Curves (continued)
The following figures provide thermal derating curves for the Austin MicroLynxTM 12V SMT modules.
0
1
2
3
4
5
6
20 30 40 50 60 70 80 90
NC
0.5m/s (100 LFM )
0
1
2
3
4
5
6
20 30 40 50 60 70 80 90
NC
1.0m/s (200 LFM)
0.5m/s (100 LFM )
1.5m/s (300 LFM )
2.0m/s (400 LFM )
OUTPUT CURRENT, Io (A)
AMBIENT TEMPERATURE, TA OC
OUTPUT CURRENT, Io (A)
AMBIENT TEMPERATURE, TA OC
Figure 19. Derating Output Current versus Local
Ambient Temperature and Airflow (Vin = 12Vdc,
Vo=0.75Vdc).
Figure 22. Derating Output Current versus Local
Ambient Temperature and Airflow (Vin = 12Vdc,
Vo=5.0 Vdc).
0
1
2
3
4
5
6
20 30 40 50 60 70 80 90
NC
1.0m/s (200 LFM)
0.5m/s (100 LFM )
OUTPUT CURRENT, Io (A)
AMBIENT TEMPERATURE, TA OC
Figure 20. Derating Output Current versus Local
Ambient Temperature and Airflow (Vin = 12Vdc,
Vo=1.8 Vdc).
0
1
2
3
4
5
6
20 30 40 50 60 70 80 90
NC
1.0m/s (200 LFM)
0.5m/s (100 LFM )
OUTPUT CURRENT, Io (A)
AMBIENT TEMPERATURE, T
A
O
C
Figure 21. Derating Output Current versus Local
Ambient Temperature and Airflow (Vin = 12Vdc,
Vo=3.3 Vdc).
Data Sheet
October 1, 2009
Austin MicroLynxTM 12V SMT Non-isolated Power Modules:
10 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 5A output current
LINEAGE POWER 10
Test Configurations
TO OSCILLOSCOPE CURRENT PROBE
LTEST
1μH
BATTERY
CS 1000μF
Electrolytic
E.S.R.<0.1Ω
@ 20°C 100kHz
2x100μF
Tantalum
VIN(+)
COM
NOTE: Measure input reflected ripple current with a simulated
source inductance (LTEST) of 1μH. Capacitor CS offsets
possible battery impedance. Measure current as shown
above.
CIN
Figure 23. Input Reflected Ripple Current Test Setup.
NOTE: All voltage measurements to be taken at the module
terminals, as shown above. If sockets are used then
Kelvin connections are required at the module terminals
to avoid measurement errors due to socket contact
resistance.
V
O
(+)
COM
1uF .
RESISTIVE
LOAD
SCOPE
COPPER STRIP
GROUND PLANE
10uF
Figure 24. Output Ripple and Noise Test Setup.
VO
COM
VIN(+)
COM
RLOAD
Rcontac t Rdistribution
Rcontac t Rdistribution
Rcontact
Rcontact
Rdistribution
Rdistribution
VIN VO
NOTE: All voltage measurements to be taken at the module
terminals, as shown above. If sockets are used then
Kelvin connections are required at the module terminals
to avoid measurement errors due to socket contact
resistance.
Figure 25. Output Voltage and Efficiency Test Setup.
η =
VO. IO
VIN. IIN
x 100 %
Efficiency
Design Considerations
Input Filtering
The Austin MicroLynxTM 12V SMT module should be
connected to a low-impedance source. A highly inductive
source can affect the stability of the module. An input
capacitance must be placed directly adjacent to the input
pin of the module, to minimize input ripple voltage and
ensure module stability.
In a typical application, 2x47 µF low-ESR tantalum
capacitors (AVX part #: TPSE476M025R0100, 47µF 25V
100 m ESR tantalum capacitor) will be sufficient to
provide adequate ripple voltage at the input of the
module. To minimize ripple voltage at the input, low
ESR ceramic capacitors are recommended at the input of
the module. Figure 26 shows input ripple voltage (mVp-
p) for various outputs with 2x47 µF tantalum capacitors
and with 2x 22 µF ceramic capacitor (TDK part #:
C4532X5R1C226M) at full load.
Input Ripple Voltage (mVp-p)
0
50
10 0
15 0
200
250
300
350
0123456
Ceramic
Tant al um
Output Voltage (Vdc)
Figure 26. Input ripple voltage for various output
with 2x47 µF tantalum capacitors and with 2x22 µF
ceramic capacitors at the input (80% of Io,max).
Data Sheet
October 1, 2009
Austin MicroLynxTM 12V SMT Non-isolated Power Modules:
10 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 5A output current
LINEAGE POWER 11
Design Considerations (continued)
Output Filtering
The Austin MicroLynxTM 12V module is designed for low
output ripple voltage and will meet the maximum output
ripple specification with 1 µF ceramic and 10 µF polymer
capacitors at the output of the module. However,
additional output filtering may be required by the system
designer for a number of reasons. First, there may be a
need to further reduce the output ripple and noise of the
module. Second, the dynamic response characteristics
may need to be customized to a particular load step
change.
To reduce the output ripple and improve the dynamic
response to a step load change, additional capacitance at
the output can be used. Low ESR polymer and ceramic
capacitors are recommended to improve the dynamic
response of the module. For stable operation of the
module, limit the capacitance to less than the maximum
output capacitance as specified in the electrical
specification table.
Safety Considerations
For safety agency approval the power module must be
installed in compliance with the spacing and separation
requirements of the end-use safety agency standards,
i.e., UL 60950-1, CSA C22.2 No. 60950-1-03, and VDE
0850:2001-12 (EN60950-1) Licensed.
For the converter output to be considered meeting the
requirements of safety extra-low voltage (SELV), the
input must meet SELV requirements. The power module
has extra-low voltage (ELV) outputs when all inputs are
ELV.
The input to these units is to be provided with a fast-
acting fuse with a maximum rating of 6A in the positive
input lead.
Data Sheet
October 1, 2009
Austin MicroLynxTM 12V SMT Non-isolated Power Modules:
10 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 5A output current
LINEAGE POWER 12
Feature Description
Remote On/Off
The Austin MicroLynxTM SMT 12V power modules feature
an On/Off pin for remote On/Off operation of the module.
If not using the remote On/Off pin, leave the pin open
(module will be On). The On/Off pin signal (Von/Off) is
referenced to ground. To switch module on and off using
remote On/Off, connect an open collector pnp transistor
between the On/Off pin and the VIN pin (See Figure 27).
When the transistor Q1 is in the OFF state, the power
module is ON (Logic Low on the On/Off pin of the
module) and the maximum Von/off of the module is 0.4 V.
The maximum allowable leakage current of the transistor
when Von/off = 0.4V and VIN = VIN,max is 10μA. During a
logic-high when the transistor is in the active state, the
power module is OFF. During this state VOn/Off =10 -
14V and the maximum IOn/Off = 1mA.
VIN(+)
GND
Enable
20k
20k
On/Off
Pin
Css
IOn/Off
Lynx-series Module
Figure 27. Remote On/Off Implementation
Remote On/Off can also be implemented using open-
collector logic devices with an external pull-up resistor.
Figure 28a shows the circuit configuration using this
approach. Pull-up resistor, Rpull-up, for the configuration
should be 68k (+/-5%) for proper operation of the module
over the entire temperature range.
Q1
R1
R2
Q2 CSS
GND
PWM Enable
ON/OFF
VIN+
ON/OFF
_
+
V
I
MODULE
pull-up
R
ON/OFF
Figure 27a. Remote On/Off Implementation using
logic-level devices and an external pull-up resistor
Overcurrent Protection
To provide protection in a fault (output overload)
condition, the unit is equipped with internal
current-limiting circuitry and can endure current limiting
continuously. At the point of current-limit inception, the
unit enters hiccup mode. The unit operates normally once
the output current is brought back into its specified range.
The typical average output current during hiccup is 2A.
Input Undervoltage Lockout
At input voltages below the input undervoltage lockout
limit, module operation is disabled. The module will begin
to operate at an input voltage above the undervoltage
lockout turn-on threshold.
Overtemperature Protection
To provide over temperature protection in a fault
condition, the unit relies upon the thermal protection
feature of the controller IC. The unit will shutdown if the
thermal reference point Tref2, (see Figure 31) exceeds
140oC (typical), but the thermal shutdown is not intended
as a guarantee that the unit will survive temperatures
beyond its rating. The module will automatically restarts
after it cools down.
Data Sheet
October 1, 2009
Austin MicroLynxTM 12V SMT Non-isolated Power Modules:
10 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 5A output current
LINEAGE POWER 13
Feature Descriptions (continued)
Output Voltage Programming
The output voltage of the Austin MicroLynxTM 12V can be
programmed to any voltage from 0.75Vdc to 5.5Vdc by
connecting a resistor (shown as Rtrim in Figure 28)
between Trim and GND pins of the module. Without an
external resistor between Trim and GND pins, the output
of the module will be 0.7525Vdc. To calculate the value
of the trim resistor, Rtrim for a desired output voltage, use
the following equation:
Ω
=1000
7525.0
10500
Vo
Rtrim
Rtrim is the external resistor in
Vo is the desired output voltage
For example, to program the output voltage of the Austin
MicroLynxTM 12V module to 1.8V, Rtrim is calculated as
follows:
=1000
7525.08.1
10500
Rtrim
Ω= kRtrim 024.9
V
O
(+)
TRIM
GND
R
trim
LOAD
V
IN
(+)
ON/OFF
Figure 28. Circuit configuration to program output
voltage using an external resistor
Austin MicroLynxTM 12Vdc can also be programmed by
applying a voltage between TRIM and GND pins (Figure
29). The following equation can be used to determine the
value of Vtrim needed to obtain a desired output voltage
Vo:
{}()
7525.00667.07.0 ×= VoVtrim
For example, to program the output voltage of a
MicroLynxTM module to 3.3 Vdc, Vtrim is calculated as
follows:
{}
)7525.03.30667.07.0( ×=Vtrim
VVtrim 530.0=
VO(+)
TRIM
GND
V
trim
LOAD
VIN(+)
ON/OFF
+
-
Figure 29. Circuit Configuration for programming
Output voltage using external voltage source
Table 1 provides Rtrim values for most common
output voltages. Table 2 provides values of
external voltage source, Vtrim for various output
voltage.
Table 1
VO, set (V) Rtrim (K)
0.7525 Open
1.2 22.46
1.5 13.05
1.8 9.024
2.5 5.009
3.3 3.122
5.0 1.472
Table 2
VO, set (V) Vtrim (V)
0.7525 Open
1.2 0.670
1.5 0.650
1.8 0.630
2.5 0.583
3.3 0.530
5.0 0.4166
Using 1% tolerance trim resistor, set point tolerance of
±2% is achieved as specified in the electrical
specification. The POL Programming Tool, available at
www.lineagepower.com under the Design Tools section,
helps determine the required external trim resistor
needed for a specific output voltage.
Data Sheet
October 1, 2009
Austin MicroLynxTM 12V SMT Non-isolated Power Modules:
10 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 5A output current
LINEAGE POWER 14
Feature Descriptions (continued)
The amount of power delivered by the module is
defined as the voltage at the output terminals multiplied
by the output current. When using the trim feature, the
output voltage of the module can be increased, which
at the same output current would increase the power
output of the module. Care should be taken to ensure
that the maximum output power of the module remains
at or below the maximum rated power (Pmax = Vo,set x
Io,max).
Voltage Margining
Output voltage margining can be implemented in the
Austin MicroLynxTM modules by connecting a resistor,
Rmargin-up, from Trim pin to ground pin for margining-up
the output voltage and by connecting a resistor, Rmargin-
down, from Trim pin to Output pin. Figure 30 shows the
circuit configuration for output voltage margining. The
POL Programming Tool, available at
www.lineagepower.com under the Design Tools
section, also calculates the values of Rmargin-up and
Rmargin-down for a specific output voltage and % margin.
Please consult your local Lineage Power technical
representative for additional details
Vo
Austin Lynx or
Lynx II Series
GND
Trim
Q1
Rtrim
Rmargin-up
Q2
Rmargin-down
Figure 30. Circuit Configuration for margining
Output voltage.
Data Sheet
October 1, 2009
Austin MicroLynxTM 12V SMT Non-isolated Power Modules:
10 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 5A output current
LINEAGE POWER 15
Thermal Considerations
Power modules operate in a variety of thermal
environments; however, sufficient cooling should be
provided to help ensure reliable operation.
Considerations include ambient temperature, airflow,
module power dissipation, and the need for increased
reliability. A reduction in the operating temperature of the
module will result in an increase in reliability. The thermal
data presented here is based on physical measurements
taken in a wind tunnel. The test set-up is shown in Figure
32. Note that the airflow is parallel to the long axis of the
module as shown in figure 31. The derating data applies
to airflow in either direction of the module’s long axis.
Air Flow
Tref2
Top View
Bottom View
Tref1 (inductor winding)
Figure 31. Tref Temperature measurement location.
The thermal reference points, Tref 1 and Tref2 used in the
specifications of thermal derating curves are shown in
Figure 31. For reliable operation these temperatures
should not exceed 125oC.
The output power of the module should not exceed the
rated power of the module (Vo,set x Io,max).
Please refer to the Application Note “Thermal
Characterization Process For Open-Frame Board-
Mounted Power Modules” for a detailed discussion of
thermal aspects including maximum device temperatures.
Figure 32. Thermal Test Set-up.
Heat Transfer via Convection
Increased airflow over the module enhances the heat
transfer via convection. Thermal derating curves showing
the maximum output current that can be delivered by
various module versus local ambient temperature (TA) for
natural convection and up to 1m/s (200 ft./min) are shown
in the Characteristics Curves section.
Layout Considerations
Copper paths must not be routed beneath the power
module. For additional layout guide-lines, refer to
FLTR100V10 application note.
A
ir
flow
x
Power Module
W
ind Tunnel
PWBs
7.24_
(0.285)
76.2_
(3.0)
Probe Location
for measuring
airflow and
ambient
temperature
25.4_
(1.0)
Data Sheet
October 1, 2009
Austin MicroLynxTM 12V SMT Non-isolated Power Modules:
10 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 5A output current
LINEAGE POWER 16
Mechanical Outline
Dimensions are in millimeters and (inches).
Tolerances: x.x mm ± 0.5 mm (x.xx in. ± 0.02 in.) [unless otherwise indicated]
x.xx mm ± 0.25 mm (x.xxx in ± 0.010 in.)
Co-planarity (max): 0.102 [0.004]
PIN FUNCTION
1 On/Off
2 VIN
3 GND
4 Trim
5 VOUT
Data Sheet
October 1, 2009
Austin MicroLynxTM 12V SMT Non-isolated Power Modules:
10 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 5A output current
LINEAGE POWER 17
Recommended Pad Layout
Dimensions are in millimeters and (inches).
Tolerances: x.x mm ± 0.5 mm (x.xx in. ± 0.02 in.) [unless otherwise indicated]
x.xx mm ± 0.25 mm (x.xxx in ± 0.010 in.)
PIN FUNCTION
1 On/Off
2 VIN
3 GND
4 Trim
5 VOUT
Data Sheet
October 1, 2009
Austin MicroLynxTM 12V SMT Non-isolated Power Modules:
10 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 5A output current
LINEAGE POWER 18
Packaging Details
The Austin MicroLynxTM 12V SMT versions are supplied in tape & reel as standard. Modules are shipped in
quantities of 400 modules per reel.
All Dimensions are in millimeters and (in inches).
Reel Dimensions
Outside Dimensions: 330.2 mm (13.00)
Inside Dimensions: 177.8 mm (7.00”)
Width 44.0 mm (1.73”)
Data Sheet
October 1, 2009
Austin MicroLynxTM 12V SMT Non-isolated Power Modules:
10 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 5A output current
LINEAGE POWER 19
Surface Mount Information
Pick and Place
The Austin MicroLynxTM 12V SMT modules use an
open frame construction and are designed for a fully
automated assembly process. The modules are fitted
with a label designed to provide a large surface area
for pick and placing. The label meets all the
requirements for surface mount processing, as well as
safety standards and is able to withstand maximum
reflow temperature. The label also carries product
information such as product code, serial number and
location of manufacture.
Figure 33. Pick and Place Location.
Nozzle Recommendations
The module weight has been kept to a minimum by
using open frame construction. Even so, these
modules have a relatively large mass when compared
to conventional SMT components. Variables such as
nozzle size, tip style, vacuum pressure and pick &
placement speed should be considered to optimize
this process. The minimum recommended nozzle
diameter for reliable operation is 3mm. The maximum
nozzle outer diameter, which will safely fit within the
allowable component spacing, is 8 mm max.
Tin Lead Soldering
The Austin MicroLynxTM 12V SMT power modules are
lead free modules and can be soldered either in a
lead-free solder process or in a conventional Tin/Lead
(Sn/Pb) process. It is recommended that the
customer review data sheets in order to customize the
solder reflow profile for each application board
assembly. The following instructions must be
observed when soldering these units. Failure to
observe these instructions may result in the failure of
or cause damage to the modules, and can adversely
affect long-term reliability.
In a conventional Tin/Lead (Sn/Pb) solder process
peak reflow temperatures are limited to less than
235oC. Typically, the eutectic solder melts at 183oC,
wets the land, and subsequently wicks the device
connection. Sufficient time must be allowed to fuse
the plating on the connection to ensure a reliable
solder joint. There are several types of SMT reflow
technologies currently used in the industry. These
surface mount power modules can be reliably
soldered using natural forced convection, IR (radiant
infrared), or a combination of convection/IR. For
reliable soldering the solder reflow profile should be
established by accurately measuring the modules CP
connector temperatures.
REFLOW TEMP (°C)
0
50
10 0
15 0
200
250
300
Preheat zo ne
max 4
o
Cs
-1
Soak zo ne
30-240s
Heat zone
max 4
o
Cs
-1
Peak Temp 235
o
C
Co o ling
zo ne
1- 4
o
Cs
-1
T
lim
above
205
o
C
REFLOW TIME (S)
Figure 34. Reflow Profile for Tin/Lead (Sn/Pb)
process.
MAX TEMP SOLDER (°C)
200
205
210
215
220
225
230
235
240
0 102030405060
Figure 35. Time Limit Curve Above 205oC for
Tin/Lead (Sn/Pb) process.
Data Sheet
October 1, 2009
Austin MicroLynxTM 12V SMT Non-isolated Power Modules:
10 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 5A output current
LINEAGE POWER 20
Surface Mount Information (continued)
Lead Free Soldering
The –Z version Austin MicroLynx 12V SMT modules
are lead-free (Pb-free) and RoHS compliant and are
both forward and backward compatible in a Pb-free
and a SnPb soldering process. Failure to observe the
instructions below may result in the failure of or cause
damage to the modules and can adversely affect
long-term reliability.
Pb-free Reflow Profile
Power Systems will comply with J-STD-020 Rev. C
(Moisture/Reflow Sensitivity Classification for
Nonhermetic Solid State Surface Mount Devices) for
both Pb-free solder profiles and MSL classification
procedures. This standard provides a recommended
forced-air-convection reflow profile based on the
volume and thickness of the package (table 4-2). The
suggested Pb-free solder paste is Sn/Ag/Cu (SAC).
The recommended linear reflow profile using
Sn/Ag/Cu solder is shown in Fig. 36.
MSL Rating
The Austin MicroLynx 12V SMT modules have a MSL
rating of 2..
Storage and Handling
The recommended storage environment and handling
procedures for moisture-sensitive surface mount
packages is detailed in J-STD-033 Rev. A (Handling,
Packing, Shipping and Use of Moisture/Reflow
Sensitive Surface Mount Devices). Moisture barrier
bags (MBB) with desiccant are required for MSL
ratings of 2 or greater. These sealed packages
should not be broken until time of use. Once the
original package is broken, the floor life of the product
at conditions of 30°C and 60% relative humidity
varies according to the MSL rating (see J-STD-033A).
The shelf life for dry packed SMT packages will be a
minimum of 12 months from the bag seal date, when
stored at the following conditions: < 40° C, < 90%
relative humidity.
Post Solder Cleaning and Drying
Considerations
Post solder cleaning is usually the final circuit-board
assembly process prior to electrical board testing. The
result of inadequate cleaning and drying can affect
both the reliability of a power module and the
testability of the finished circuit-board assembly. For
guidance on appropriate soldering, cleaning and
drying procedures, refer to Board Mounted Power
Modules: Soldering and Cleaning Application Note
(AN04-001).
Per J-STD-020 Rev. C
0
50
100
150
200
250
300
Reflow Time (Seconds)
Reflow Temp (°C)
Heating Zone
1°C/Second
Peak Temp 260°C
* Min. Time Above 235°C
15 Seconds
*Time Above 217°C
60 Seconds
Cooling
Zone
Figure 36. Recommended linear reflow profile
using Sn/Ag/Cu solder.
Data Sheet
October 1, 2009
Austin MicroLynxTM 12V SMT Non-isolated Power Modules:
10 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 5A output current
LINEAGE POWER 21
Document No: DS03-100 ver. 1.52
PDF name: microlynx_smt_12v_ds.pdf
Ordering Information
Please contact your Lineage Power representative for pricing, availability and optional features.
Table 3. Device Codes
Device Code
Input
Voltage
Range
Output
Voltage
Output
Current
Efficiency
3.3V@ 6A
On/Off
Logic
Connector
Type Comcodes
AXA005A0X-SR 10 – 14Vdc 0.75 – 5.5Vdc 5 A 89.0% Negative SMT 108981622
AXA005A0X-SRZ 10 – 14Vdc 0.75 – 5.5Vdc 5 A 89.0% Negative SMT 108995172
-Z refers to RoHS compliant versions
World Wide Headquarters
Lineage Power Corporation
601 Shiloh Road, Plano, TX 75074, USA
+1-800-526-7819
(Outside U.S.A.: +1-972-244-9428)
www.lineagepower.com
e-mail: techsupport1@lineagepower.com
Asia-Pacific Headquarters
Tel: +65 6593 7211
Europe, Middle-East and Africa Headquarters
Tel: +49 898 780 672 80
India Headquarters
Tel: +91 80 28411633
Lineage Powe r reserves the right to make change s to the prod uct(s) or information conta ined herein without notice. No liability is assumed as a result of their u se or
a
pplication. No rights under any patent accompany the sale of any such product(s) or information.
Lineage Power D C-DC products are prote cted under various patents. Informa tion on these patents is available at www.lineagepower.com/patents.
©
2009 Linea
g
e Power Cor
p
oration
,
(
Plano
,
Texas
)
All Inte rnational Ri
g
hts Reserved.