Marvell. Moving Forward Faster
Doc. No. MV-S102808-00, Rev. G
April 14, 2008
Document Classification: Proprietary
Cover
MVPG30x/MVPG31
Field Programmable DSP Switcher™
1 MHz, 3.0A Peak Current-Limit Step-Down
Regulator with AnyVoltage™ Technology
Datasheet
Document Conventions
Note: Provides related information or information of special importance.
Caution: Indicates potential damage to h ardware or software, or loss of data.
Warning: Indicates a risk of personal injury.
Document Status
Doc Status: 2.00 Technical Publication: 0.xx
For more information, visit our website at: www.marvell.com
Disclaimer
No part of th i s docu m en t ma y be reproduced or transm itted i n an y for m or by a ny means, electronic or mechani c a l, in cluding photocopying and recor d in g, for any purpose,
without the express written permissi on of Marvell. Marvell retains the right to make cha ng es to this document at any ti me , w itho ut not ice. Marve ll makes no warran ty of an y
kind, expre ssed or impl ied, wi th regar d to any informa tion con tai ned in thi s docum ent, inclu ding, but not li mited to , the i mplied wa rrantie s of merc hant ability or fitness for any
particular purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items contained within this document.
Marvell products are not designed for use in life-support equipment or applications that would cause a life-threatening situation if any such products failed. Do not use
Marvell products in these types of equipment or applications.
With respect to the products described herein, the user or recipient, in the absence of appropriate U.S. government authorization, agrees:
1) Not to re-export or release any such information consisting of technology, software or source code controlled for national security reasons by the U.S. Export Control
Regulations (" EA R"), to a national of EAR Country Groups D:1 or E:2;
2) Not to export the direct product of such technology or such software, to EAR Country Groups D:1 or E:2, if such technology or software and direct products thereof are
controlled for national security reasons by the EAR; and,
3) In the case of technology controlled for national security reasons under the EAR where the direct product of the technology is a complete plant or component of a plant,
not to export to EAR Country Groups D:1 or E:2 the direct product of the plant or major component thereof, if such direct product is controlled for national security reasons
by the EAR, or is subject to controls under the U.S. Munitions List ("USML").
At all times her eund er, the reci pient o f any such info rmati on ag rees t hat the y sha ll be deem ed to h ave m anuall y sign ed this document in con nection with their receip t of an y
such information.
Copyright © 2008. Marvell International Ltd. All rights reserved. Marvell, the Marvell logo, Moving Forward Faster, Alaska, Fastwriter, Datacom Systems on Silicon, Libertas,
Link Street, NetGX, PHYAdvantage, Prestera, Raising The Technology Bar, The Technology Within, Virtual Cable Tester, and Yukon are registered trademarks of Marvell.
Ants, AnyVoltage, Discovery, DSP Switcher, Feroceon, GalNet, GalTis, Horizon, Marvell Makes It All Possible, RADLAN, UniMAC, a nd VCT are trad emarks of Marvell. All
other trademarks are the property of their respective owners.
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 2 Document Classification: Proprietary April 14, 2008, 2.00
MVPG30x/MVPG31
1 MHz, 3.0A Peak Current-Limit Step-Down Regulator
with AnyVoltage™ Technology
Datasheet
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 3
PRODUCT OVERVIEW
The Marvell® MVPG30x/MVPG31 is an intelligent digital
synchronous step-down (Buck) switching regulator
housed in a 4 mm x 3 mm DFN-12 package. The
MVPG15x has an additional on-chip Low-Drop-Out
(LDO) regulator controller. Internally self-compensated,
the step-down regulato r requires no external
compensation and work with low-ESR output capacitors
to simplify the design, minimize the board space, and
reduce the amount of external components. The
switching frequency for the step-down regulator is
1 MHz, allowing the use of low profile surface mount
inductors and low value capacitors. The step-down
regulator includes programmable output voltage to
provide the user the ability to easily set the output
voltage with external resistors, logic control, or serial
data interface. The output voltage range is 0.72V to
3.63V.
The LDO regulator controller with an external P-Channel
MOSFET forms a low dropout regulator capable of
driving 800 mA output current. The outpu t voltage of the
LDO regulator is fixed.
The MVPG30x/MVPG31 operate from an input voltage
range of 3.0V to 5.5V, making the device well-suited for
portable applications.
Other key features of the MVPG30x/MVPG31 include an
internal current limit for the step-down regulator , an
Under Voltage Lockout (UVLO), and thermal shutdown.
Features
Tiny 4 mm x 3 mm DFN-12 package
1 MHz switching frequency
Small and low profile inductors
Stable with ceramic output capacitors
No external compensation required
Minimum amount of external components
Over 95% efficiency
High peak switch current limit: 3.0A
Input voltage range: 3.0V to 5.5V
Serial/Logic programmability
AnyVoltage™ Technology provides 64 output
voltage selections to provide flexibility
Programmable output voltage range: 0.72V to 3.63V
P-Channel LDO regulator controller with
programmable current limit (MVPG30x)
Lead-free packages
Built-in under voltage lockout
Over voltage protection
Thermal shutdown protection
Output voltage margining capability
Application
Portable computing
Point of load power supplies
DSP power supplies
Disk drive power supplies
Figure 1: Typical High Efficiency 5.0V to 0.8V/2.0A Step-Down Regulator with 3.3V LDO Regulator
Caution
This is a very high frequency device and proper PCB layout is required. Refer to Section 6, Applications
Information, on page 49 for further information.
3.3V / up t o 0.8 A
V
IN
+3.0V to + 5.5V
V
OUT2
0.8V/2.0A
V
OUT1
R3
11K
C2
10uF/6.3V
FDC642P
U1
MVPG30B
4
10
8
3
EP
5
2
1
6
7
11
12
SGND
SHDN
SVIN
LDR
PGND
SFB
ILIM
LFB
SW
PVIN
VSET
PSET
R1
47 mohm
R2
10
C1
0.1uF
C3
10uF/6.3V
C4
22uF/6.3V
L1
2.0uH
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 4 Document Classification: Proprietary April 14, 2008, 2.00
THIS PAGE INTENTIONALLY LEFT BLANK
Table of Contents
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 5
Table of Contents
Product Overview.......................................................................................................................................3
Table of Contents .......................................................................................................................................5
List of Figures.............................................................................................................................................7
List of Tables ............................................................................................................................................11
1 Signal Description.......................................................................................................................13
1.1 Pin Configuration.............................................................................................................................................13
1.2 Pin Type Definitions .......................................................................................................................................15
1.3 Pin Description................................................................................................................................................15
2 Electrical Specifications .............................................................................................................17
2.1 Absolute Maximum Ratings ... ... ......................................................................................................................17
2.2 Recommended Operating Conditions.............................................................................................................18
2.3 Electrical Characteristics ................................................................................................................................19
2.4 Switching Step-down Regulator........ ... ...................... ....................... ...................... ... .....................................20
2.5 LDO Regulator Controller................................................................................................................................21
3 Functional Description................................................................................................................23
3.1 Regulation and Startup .... ... ....................... ...................... ...................... ....................... ..................................24
3.1.1 Digital Soft Start................................................................................................................................24
3.2 Output Voltage—AnyVoltage™ Technology...................................................................................................26
3.3 Programmable Current Limit for the LDO Regulator Cont roller ......................................................................28
3.3.1 Maximum LDO Output Current.........................................................................................................29
3.4 Under Voltage Lockout.............. ... .. .......................................... .......................................................................29
3.5 Over Voltage Protection..................................................................................................................................29
3.6 Thermal Shutdown..........................................................................................................................................30
3.7 Adaptive Transient Response................................................................ .........................................................31
4 Functional Characteristics .........................................................................................................33
4.1 Startup Waveforms .........................................................................................................................................33
4.2 Switching Waveforms..................... ....................... .......................................... ................................................36
4.3 Load Transient Waveforms.............................................................................................................................37
4.3.1 Step-Down Regulator .......................................................................................................................37
4.3.2 LDO Regulator..................................................................................................................................38
5 Typical Characteristics ...............................................................................................................39
5.1 Efficiency Graphs............................................................................................................................................39
5.2 Load Regulation..............................................................................................................................................40
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 6 Document Classification: Proprietary April 14, 2008, 2.00
5.3 Dropout Voltage......................................... .. ... .................... ... .........................................................................40
5.4 RDS (ON) Resistance.....................................................................................................................................41
5.5 IC Case and Inductor Temperature.................................................................................................................42
5.6 Input Voltage Graph........................................................................................................................................43
5.6.1 Step-Down Regulator .......................................................................................................................43
5.6.2 LDO Regulator..................................................................................................................................45
5.7 Temperature Graphs.......................................................................................................................................46
5.7.1 Step-Down Regulator .......................................................................................................................46
5.7.2 LDO Regulator..................................................................................................................................48
6 Applications Information ........ ... .... ... ... ................ ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ......................49
6.1 PC Board Layout Considerations and Guidelines ..........................................................................................49
6.1.1 PC Board Layout Examples for MVPG30x/MVPG31 .......................................................................51
6.2 Bill of Materials.......................... ......................................................................................................................54
7 Mechanical Drawing....................................................................................................................57
7.1 Mechanical Drawing........................................................................................................................................57
7.2 Dimensions .....................................................................................................................................................58
7.3 Typical Pad Layout Dimensions......................................................................................................................59
7.3.1 Recommended Solder Pad Layout...................................................................................................59
8 Part Order Numbering/Package Marking ..................................................................................61
8.1 Part Order Numbering.....................................................................................................................................61
8.2 Package Marking ..... .......................................................................................................................................62
A Revision History ..........................................................................................................................65
List of Figures
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 7
List of Figures
Product Overview.......................................................................................................................................3
Figure 1: Typical High Efficiency 5.0V to 0.8V/2.0A Step-Down Regulator with 3.3V LDO Regulator..............3
1 Signal Description ........................................................................................................................... 13
Figure 2: 12-Pin DFN Pin Diagram—MVPG30x Top View .............................................................................. 13
Figure 3: 12-Pin DFN Pin Diagram—MVPG31 Top View................................................................................14
2 Electrical Specifications ................................................................................................................. 17
3 Functional Description.................................................................................................................... 23
Figure 4: MVPG30x/MVPG31 Block Diagram ..................... ... ...................... ... ...................... ..........................23
Figure 5: Output Voltage Window....................................................................................................................24
Figure 6: Inductor Current Steps at Startup.....................................................................................................25
Figure 7: Soft Startup (0.8V, 1.2V, 1.8V, 2.5V, 3.3V) ......................................................................................25
Figure 8: Soft Startup.......................................................................................................................................25
Figure 9: Startup Sequence ............................................................................................................................27
Figure 10: VSET = 2.5V and PSET = -5%....................... .................... ... ....................................... ... ....................27
Figure 11: Maximum Output Current for the FDS642P P-Channel MOSFET....................................................29
Figure 12: UVLO and OVP Waveforms.............................................................................................................30
Figure 13: Adaptiv e Transient Respons e ............. ... ...................... ....................... .. ....................... ....................31
4 Functional Characteristics.............................................................................................................. 33
Figure 14: Startup Using the Shutdown Pin ......................................................................................................33
Figure 15: Turn Off Using the Shutdown Pin..... ... ... ..........................................................................................33
Figure 16: Enable Threshold at VIN = 3.5V.............. ................... ... .................... ... ................... ... .......................33
Figure 17: Enable Threshold at VIN = 5.0V.............. ................... ... .................... ... ................... ... .......................33
Figure 18: Input Voltage Soft Start.....................................................................................................................34
Figure 19: Input Voltage Hot Plug......................................................................................................................34
Figure 20: Step-Down Output Rise Time...........................................................................................................34
Figure 21: Soft Start Current Limit Steps...........................................................................................................34
Figure 22: UVLO and OVP Thresholds..............................................................................................................35
Figure 23: Switching Waveforms— PWM Mode ...............................................................................................36
Figure 24: Switching Waveforms— DCM Mode.......... .. ... ..................................................................................36
Figure 25: PWM Output Ripple Voltage.............................................................................................................36
Figure 26: Switching Waveforms— DCM Mode-Zoom......................................................................................36
Figure 27: Load Transient Response ................................................................................................................37
Figure 28: Double-Pulsed Load Response........................................................................................................37
Figure 29: Load Transient Response ................................................................................................................37
Figure 30: Double-Pulsed Load Response........................................................................................................37
Figure 31: Load Transient Response ................................................................................................................38
Figure 32: Double-Pulsed Load Response........................................................................................................38
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 8 Document Classification: Proprietary April 14, 2008, 2.00
Figure 33: Load Transient Response ................................................................................................................38
5 Typical Characteristics ................................................................................................................... 39
Figure 34: Efficiency Graphs..............................................................................................................................39
Figure 35: Load Regulation ................................................................................................................................40
Figure 36: Dropout Voltage................................................................................................................................40
Figure 37: RDS (ON) Resistance.......................................................................................................................41
Figure 38: IC Case and Inductor Temperature ..................................................................................................42
Figure 39: Supply Current vs. Input Voltage.................... ... ...................... ... ....................... .. ............ .................43
Figure 40: Output Voltage vs. Input Voltage......................................................................................................43
Figure 41: Efficiency vs. Input Voltage...............................................................................................................43
Figure 42: Load Regulation vs. Input Voltage....................................................................................................44
Figure 43: Frequency vs. Input Voltage.............................................................................................................44
Figure 44: Average Output Current Limit vs. Input Voltage...............................................................................44
Figure 45: Output Voltage vs. Input Voltage......................................................................................................45
Figure 46: LDO Load Regulation vs. Input Voltage ...........................................................................................45
Figure 47: Average Output Current Limit vs. Input Voltage...............................................................................45
Figure 48: Supply Current vs. Temperature............. ... .. ....................... ... ...................... ... ..................................46
Figure 49: UVLO vs. Temperature..................... ... ...................... ....................... ...................... ..........................46
Figure 50: Output Voltage vs. Temperature.......................................................................................................46
Figure 51: Efficiency vs. Temperature ...............................................................................................................46
Figure 52: Load Regulation vs. Temperature ....................................................................................................47
Figure 53: Line Regulation vs. Temperature......................................................................................................47
Figure 54: Average Output Current Limit vs. Temperature................................................................................47
Figure 55: Frequency vs. Temperature..............................................................................................................47
Figure 56: Output Voltage vs. Temperature.......................................................................................................48
Figure 57: Load Regulation vs. Temperature ....................................................................................................48
Figure 58: Line Regulation vs. Temperature......................................................................................................48
Figure 59: Average Output Current Limit vs. Temperature................................................................................48
6 Applications Information ... .... ... ... ... .... ... ... ... ... .... ... ... ................ .... ... ... ... ... .... ... ... ... .... ... ... ... ............ 49
Figure 60: MVPG30x PCB Layout Schematic ...................................................................................................50
Figure 61: MVPG31 PCB Layout Schematic.....................................................................................................50
Figure 62: Top Silk-Screen (Not to scale)—MVPG30x......................................................................................51
Figure 63: Top Silk-Screen (Not to scale)—MVPG31........................................................................................51
Figure 64: Top Traces, Vias, and Copper (Not to scale)—MVPG30x................................................................52
Figure 65: Top Traces, Vias, and Copper (Not to scale)—MVPG31 .................................................................52
Figure 66: Bottom Silk Screen, Bottom Trace, Vias, and Bottom Copper (Not to scale)—MVPG30x...............53
Figure 67: Bottom Silk Screen, Bottom Trace, Vias, and Bottom Copper (Not to scale)—MVPG31.................53
7 Mechanical Drawing ........................................................................................................................ 57
Figure 68: Mechanical Drawing .........................................................................................................................57
Figure 69: Recommended Solder Pad Layout...................................................................................................59
8 Part Order Numbering/Package Marking....................................................................................... 61
List of Figures
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 9
Figure 70: Sample Part Order Number..............................................................................................................61
Figure 71: MVPG30x Package Marking.............................................................................................................62
Figure 72: MVPG31 Package Marking ..............................................................................................................63
A Revision History ...............................................................................................................................65
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 10 Document Classification: Proprietary April 14, 2008, 2.00
THIS PAGE INTENTIONALLY LEFT BLANK
List of Tables
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 11
List of Tables
1 Signal Description ............................................................................................................................13
Table 1: Pin Type Definitions..........................................................................................................................15
Table 2: Pin Description..................................................................................................................................15
2 Electrical Specifications ..................................................................................................................17
Table 3: Absolute Maximum Ratings..............................................................................................................17
Table 4: Recommended Operating Condit ions...............................................................................................18
Table 5: Electrical Characteristics ..................................................................................................................19
Table 6: Switching Step-down Regulator........................................................................................................20
Table 7: LDO Regulator Controller .................................................................................................................21
3 Functional Description.....................................................................................................................23
Table 8: AnyVoltage™ Programming Table for 1% Resistors.......................................................................26
Table 9: Output Voltage Option Steps............................................................................................................27
Table 10: P-Channel MOSFET Selection.........................................................................................................28
4 Functional Characteristics...............................................................................................................33
5 Typical Characteristics ....................................................................................................................39
6 Applications Information ... .... ... ... ... .... ... ... ... ... .... ... ... ................ .... ... ... ... ... .... ... ... ... .... ... ... ... .............49
Table 11: MVPG30x BOM................................................................................................................................54
Table 12: MVPG31 BOM..................................................................................................................................55
7 Mechanical Drawing .........................................................................................................................57
Table 13: Dimensions.......................................................................................................................................58
8 Part Order Numbering/Package Marking........................................................................................61
Table 14: Part Order Options............................................................................................................................61
A Revision History ...............................................................................................................................65
Table 15: Revision History................................................................................................................................65
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 12 Document Classification: Proprietary April 14, 2008, 2.00
THIS PAGE INTENTIONALLY LEFT BLANK
Signal Description
Pin Configuration
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 13
1Signal Description
1.1 Pin Configuration
Figure 2: 12-Pin DFN Pin Diagram—MVPG30x Top View
112
2
LFB
11
3
ILIM
10
49
6PVIN
SVIN
8
VSET
SHDNLDR
NC
5
7
SGND
SFB
SW
PSET
MVPG30x
PGND
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 14 Document Classification: Proprietary April 14, 2008, 2.00
Figure 3: 12-Pin DFN Pin Diagram—MVPG31 Top View
112
2
NC
11
3
NC
10
49
6PVIN
SVIN
8
VSET
SHDNNC
NC
5
7
SGND
SFB
SW
PSET
MVPG31
PGND
Signal Description
Pin Type Definitions
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 15
1.2 Pin Type Definitions
1.3 Pin Description
Table 2 provides pin descriptions for the MVPG30x/MVPG31.
Table 1: Pin Type Definitions
Pin Type Definitions
I Input only
O Output only
S Supply
NC Not Connected
GND Ground
Table 2: Pin Description
MVPG30x
Pin # MVPG31
Pin # Pin Name Pin Type Pin Function
1 -- LFB I LDO Regulator Controller Feedback
Senses the output vol tage of the LDO regulator. Connect to
the drain of the P-channel MOSFET. When the LDO
controller is not used, float the LDR pin. Connect the LFB to
SGND, and connec t ILIM to SVI N .
2 -- ILIM I Current-Limit Sense Pin for the LDO Regulator
A built-in offset of 50 mV (typical) between VIN and ILIM in
conjunction with the sense resistor is used to set the
current-limit threshold for the LDO regulator controller.
Connecting th is pi n to V IN disables the internal current limit
circuitry. When the LDO controller is not used, float the LDR
pin. Connect the LFB to SGND, and connect ILIM to SVIN.
3 -- LDR O LDO Regulator Controller Driver
Connect to the gate of an external P-channel MOSFET. The
external P-Channel MOSFET needs to have a threshold of
-2.5V or lower and input capacitance (Ciss) of less than
1000 pF. When the LDO controller is not used, float the LDR
pin. Connect the LFB to SGND, and connect ILIM to SVIN.
4 4 SGND O Signal Ground
This pin must connect to the power ground.
5 5 SFB I Switching Regulator Feedback
Senses the output voltage of the switching regulator.
6 6 SW O Switch Node
Internal power MOSFET drain. This pin must connect to an
external inductor.
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 16 Document Classification: Proprietary April 14, 2008, 2.00
7 7 PVIN I Power Input Voltage
Internal power MOSFET source. Connect the decoupling
10 µF capacito rs between PVIN and PGND an d position it a s
close as possible to the IC.
8 8 SVIN I Signal Input Voltage
Input voltage is 3.0V to 5.5V for internal circuitry.
Connect a 0.1 µF decoupling capacitor between SVIN and
SGND and position it as close as possible to the IC.
9 1, 2, 3, 9 NC O No Connect
This pin is left floating. Do not connect this pin.
10 10 SHDN I Shutdown
Logic low (0.8V) enables the step-down switching regulator
and the LDO regulator co ntroller. Logic high (2.0V) disable s
the step-down switching regulator and the LDO regulator
controller. The high signal durati on has to be at least 20 µs t o
disable both regulators.
11 12 VSET I Voltage Set
1. Connect an external resistor to ground to set the output
voltage of the step-down switching regulat or. See
Table 5, Electrical Characteristics, on p age 19 for resistor
values and output voltage options.
2. The total capacitance across this pin and SGND should
not be greater t han 25 pF. Shorting this pin to signal
ground, floating this pin, or using 619 kΩ< RVSET or
RVSET<7.68 kΩ disables the s tep-down switching
regulator and se ts the SFB pin to high impedance. Use
resistor value wit h tolerance better than 2%.
12 12 PSET I Percent Set
1. Connect an external resistor to ground to set the output
voltage of the step-down switching regulat or. See
Table 5, Electrical Characteristics, on p age 19 for resistor
values and output voltage options.
2. The total capacitance across this pin and SGND should
not be greater t han 25 pF. Shorting this pin to signal
ground, floating this pin, or using 619 kΩ< RPSET or
RPSET<7.68 kΩ does not affect the set voltage. Use
resistor value with tolerance better than 2%. Although
this pin can be left floating when it is not used, it is
recommended to connect this pin to ground.
Exposed
Pad Exposed
Pad PGND GND Power Ground
The power ground must connect to the negative terminal of
the input and output capacitors.
Table 2: Pin Description (Continued)
MVPG30x
Pin # MVPG31
Pin # Pin Name Pin Type Pin Function
Electri ca l Specific at io ns
Absolute Maximum Ratings
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 17
2Electrical Specifications
2.1 Absolute Maximum Ratings
Table 3: Absolute Maximum Ra tings1
NOTE: Stresses above those listed in Absolute Maximum Ratings may cause permanent device failure. Functionality at or
above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device
reliability.
Parameter Min Typ Max Units
PVIN to PGND -0.3 -- 6.0 V
PVIN to SVIN -0.3 -- +0.3 V
PGND to SGND -0.3 -- +0.3 V
VSW to PGND2-0.3 -- (PVIN +0.3) V
VSFB to SGND -0.3 -- (SVIN +0.3) V
VVSET, VPSET to SGND -0.3 -- (SVIN +0.3) V
VILIM, VLDR, VLFB to SGND -0.3 -- (SVIN +0.3) V
VSHDN to SGND -0.3 -- (SVIN +0.3) V
Operating Ambient Temperature Range3-40 -- 85 °C
Maximum Junction Temperature -- -- 150 °C
Storage Temperature Range -65 -- 150 °C
Lead Temperatu re (soldering, 10s) -- 300 -- °C
ESD Rating4-- 2.0 -- kV
1. Exceeding the absolute maximum rating may damage the device.
2. Capable of -1.0V for less than 50 ns.
3. S pecifications over the -40°C to 85°C operating temperature ranges are assured by design, characterization and
correlation with statistical process controls.
4. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5 kΩ, in series with
100 pF.
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 18 Document Classification: Proprietary April 14, 2008, 2.00
2.2 Recommended Operating Conditions
Table 4: Recommended Operating Conditions1
Symbol Parameter Min Typ Max Units
SVIN Signal Input Voltage 3.0 -- 5.5 V
PVIN Power Input Voltage 3.0 -- 5.5 V
θJA Package Thermal Resistance2-- 48.1 -- °C/W
θJC -- 4.4 -- °C/W
TJMAX Maximum Operating Junction Temperature -- -- 125 °C
1. This device is not guaranteed to function outside the specified operating range.
2. Tested on 4-layer (JESD51-7) and vias (JESD51-5) boards.
Electri ca l Specific at io ns
Electrical Characteristics
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 19
2.3 Electrical Characteristics
Table 5: Electrical Characteristics
NOTE: The following applies unless otherwise noted: SVIN = PVIN = 5.0V, VSHDN = SGND = PGND, L(BUCK) = 2.0 µH,
COUT(BUCK) = 22 µF (Ceramic), PFET = FDC642P, COUT(LDO) = 10 µF (Ceramic ), TA = 25°C. Bold values indi cate
-40°C < TA < 85°C.
Symbol Parameter Conditions Min Type Max Units
SVIN Input Voltage Range SVIN = PVIN 3.0 -- 5.5 V
Total Quiescent Current No load, VOUT = TBD -- 1.3 -- mA
ISVIN Shutdown Supply Current VSHDN = SVIN = 5.5V -- 1.0 10 μA
VUVLO Under Voltage Lockout High threshold, SVIN
increasing, ILOAD =
10mA
-- 2.65 2.85 V
Low threshold, SVIN
decreasing, ILOAD =
10mA
2.35 2.50 -- V
VOVP Over Volta ge Protection High threshold, SVIN
increasing, ILOAD =
10mA
-- 5.7 TBD V
Low threshold, SVIN
decreasing, ILOAD =
10mA
TBD 5.6 -- V
VSHDN Shutdown Input Voltage Logic Enable regulators -- -- 0.8 V
Disable regulators 2.0 -- --
ISHDN Shutdown Input Current VSHDN = SGND =
PGND or 5.5V -- -- ±1.0 µA
TOTS Over-temperature Thermal
Shutdown TJ increasing (Disable
regulators) -- 150 -- °C
TJ decreasing (Enab le
regulators) -- 120 -- °C
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 20 Document Classification: Proprietary April 14, 2008, 2.00
2.4 Switching Step-down Regulator
Table 6: Switching Step-down Regulator
NOTE: The following applies unl ess otherwi se noted: SVIN = PVIN = 5.0V, VPSET = VSHDN = SGND = PGND, RVSET = 11 kΩ,
L = 2.0 µH, COUT = 22 µF (Ceramic), TA = 25 °C. Bold values indicate -40°C < TA < 85°C.
Symbol Parameter Conditions Min Typ Max Units
Output Voltage RVSET = 11K, PWM mode -- 0.8 -- V
RVSET = 18.7K, PWM mode -- 1.0 --
RVSET = 31.6K, PWM mode -- 1.2 --
RVSET = 53.6K, PWM mode -- 1.5 --
RVSET = 97.6K, PWM mode -- 1.8 --
RVSET = 165K, PWM mode -- 2.5 --
RVSET = 280K, PWM mode -- 3.0 --
RVSET = 475K, PWM mode -- 3.3 --
Percentage Set RPSET = 11K -- -10 -- %
RPSET = 18.7K -- -7.5 --
RPSET = 31.6K -- -5.0 --
RPSET = 53.6K -- -2.5 --
RPSET = 97.6K -- 2.5 --
RPSET = 165K -- 5.0 --
RPSET = 280K -- 7.5 --
RPSET = 475K -- 10 --
VLNREG Output Voltage Line
Regulation SVIN = PVIN = 3.0V to 5.0V
VOUT = 1.5V
ILOAD = 500 mA
-- 0.1 -- %
VLDREG Output Voltage Load
Regulation SVIN = PVIN = 5.0V
VOUT = 1.5V
ILOAD = 500 mA to 2.0A
-- 0.2 -- %
fSW Switching Frequency PWM mode -- 1.0 - - MHz
RPFET RDS(ON) = of
P-Channel FET SVIN = 3.0V, ISW = 100 mA -- 150 -- mΩ
SVIN = 5.0V, ISW = 100 mA -- 120 --
RNFET RDS(ON) = of
N-Channel FET SVIN = 3.0V, ISW = 100 mA -- 90 -- mΩ
SVIN = 5.0V, ISW = 100 mA -- 70 --
ILIM Minimum Peak Switch
Current Limit -- TBD -- A
Electri ca l Specific at io ns
LDO Regulator Controller
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 21
2.5 LDO Regulator Controller
ILSW Switch Leakage
Current SVIN = PVIN = VSHDN = 5.5V
VSW = PGND or 5.5V -- ±1 ±50 μA
Table 7: LDO Regulator Controller
NOTE: The following appl ies unless o the rwi se n oted: SV IN = PVIN = 5.0V, VSHDN = SGND = PGND, PF ET = FDC64 2P, COUT
= 10 µF, TA = 25 °C. Bold values indicate -40°C < TA < 85°C.
Symbol Parameter Conditions Min Type Max Units
Output Voltage Accuracy Room Temp,
ILOAD = 10 mA -- ±1 -- %
Over Temp,
ILOAD = 10 mA -- ±2 --
VLNREG Line Regulation SVIN = PVIN = 3.5V
to 5.0V, VOUT = 3.3V,
ILOAD = 10 mA
-- 0.08 -- %
VLDREG Load Regulation SVIN = PVIN = 5.0V,
VOUT = 3.3V, ILOAD =
10 mA to 800 mA
-- 0.05 -- %
VILTH Current-Limit Threshold SVIN-VILIM -- 50 -- mV
Table 6: Switching Step-down Regulator (Continued)
NOTE: The following applies unl ess otherwi se noted: SVIN = PVIN = 5.0V, VPSET = VSHDN = SGND = PGND, RVSET = 11 kΩ,
L = 2.0 µH, COUT = 22 µF (Ceramic), TA = 25 °C. Bold values indicate -40°C < TA < 85°C.
Symbol Parameter Conditions Min Typ Max Units
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 22 Document Classification: Proprietary April 14, 2008, 2.00
THIS PAGE INTENTIONALLY LEFT BLANK
Functional Description
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 23
3Functional Description
Figure 4: MVPG30x/MVPG31 Block Diagram
BAND-GAP VOLTAGE
REFERENCE
OSCILLATOR LDO
CONTROLLER
RESISTOR SENSING
CIRCUITRY
DSP PWM
CONTROL DRIVER
INTERNAL
CIRCUITRY
POWER
SUPPLY
ANALOG-
DIGITAL
CONVERTER
RESISTOR
NETWORK
SW
SFB
PSETVSET
UNDER-
VOLTAGE
LOCK-OUT
THERMAL
SHUT-DOWN
FAULT
ILIM LDR
LFB
RSENSE
PVIN
V
IN
+3.0V - 5.5V V
OUT1
V
OUT2
FAULT
UVLO_LDO
SHDN
Q1
L1
C3
C4
R3R2
ON
OFF
ENABLE_LDO
ENABLE_LDO
C1
SGND
SVIN
CURRENT LIMIT
PGND
C2
R1
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 24 Document Classification: Proprietary April 14, 2008, 2.00
3.1 Regulation and Startup
The step-down switching regulator uses Puls e Width Modulation (PWM) and Pulse Frequency
Modulation (PFM) modes to regulate the output voltage using digital control. The mode of operation
depends on the level of output current and the output voltage.
In steady states, the step-down switching regulator monitors the current flowing through the inductor
to determine if the regulator is handling heavy or light load applications. For heavy load applications,
the step-down regulator operates in the PWM mode (B and C) to minimize the ripple current for
optimum efficiency and to minimize the ripple output voltage. The step-down regulator operates in
the PFM and Discontinuous Conduction Mode (DCM) (A and D) to limit the switching actions for
optimum efficiency in light load applications. In this mode, the average output voltage is slightly
higher than the average output voltage for heavy transient load applications.
3.1.1 Digital Soft Start
During startup, the MVPG30x/MVPG31 provides a soft start function. Soft start reduces surge
currents from the input voltage and provides well-controlled output voltage rise characteri stics. The
rate of the output voltage startup is limited by the value of the output capacitor and the internal
current limit circuitry. This combin ation forces th e output voltage to ramp up slowly, providing a soft
start characteristic.
During soft start, the MVPG30x/MVPG31 feeds a constant current to the output capacitor in several
steps. Figure 6 shows the inductor current waveform during startup. The current limit is ramped up in
seven steps beginning at approximately 40% of the current limit rating and ending at 100% at 25 µs
per step. The buck regulator behaves like a current source during this time as the output ramps up
slowly.
Figure 7 shows that the rise time for a MVPG30x/MVPG31 increases from 20 µs at for a 0.8V output
to 70 µs for a 3.3V output with a 20 mA load. From Figure 8, the rise time can be estimated by
assuming an average charging current of 0.75A. Rise time with a 3.3V output is calculated using the
following equation.
Figure 5: Output Voltage Window
Typical V
OUT
PFM Mode
PWM Mode
PFM Mode
A
B
C
D
RiseTime Cout Vout
I
------------------------------
=
22μF3.3V
0.75A
-------------------------------96.8μs==
Functional Description
Regulation and Startup
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 25
VBUCK
IIND
Figure 6: Inductor Current Steps at
Startup
1V/DIV
500 mA/DIV
VBUCK
Figure 7: Soft Startup (0.8V, 1.2V,
1.8V, 2.5V, 3.3V)
500 mV/DIV
50 μs/DIV 10 μs/DIV
COUT = 22 μFI
LOAD = 20 mA
VOUT
IOUT
Figure 8: Soft Startup
1V/DIV
1A/DIV
50 μs/DIV
VOUT = 3.3V ILOAD = 1.65Ω
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 26 Document Classification: Proprietary April 14, 2008, 2.00
3.2 Output Voltage—AnyVoltage™ Technology
The output voltage of the step-down switching regulator is programmed by using Table 8 to select
resistor values for VSET and PSET pin. The VSET pin sets the output voltage and the PSET pin
trims the set voltage to a percentage value. For example, to program 2.25V output, a 165 kΩ resistor
is selected for the VSET pin, and an 11 kΩ resistor is selected for the PSET pin. The 165 kΩ resistor
sets the output voltage to 2.5V and the 11 kΩ resistor trims the set voltage by -10%.
Using the VSET resistor’s value greater than 619 kΩ or less than 7.68 kΩ disables the step-down
switching regulator and sets the SW pin to high impedance. If the VSET resistor’s value is outside
the 2% tolerance, the output can be either hig her or lower than the set voltage.
Using resistor values greater than 61 9 kΩ or less than 7.68 kΩ for the PSET pin does not affect the
set voltage. When the PSET pin is not used, it must be connected to ground. Like the VSET resistor,
the percent value can be either higher or lower if the PSET resistor’s value is outside the 2%
tolerance.
The VSET and PSET resistors are read once during startup before the output voltage is turned on.
The output voltage cannot be changed on-the-fly. To configure the output to a different voltage,
power has to recycle or the MVPG30x/MVPG31 has to turn OFF and back ON using the shutdown
pin.
Figure 9 shows the startup waveforms of the MVPG30x/MVPG31. Once the input voltage (VIN) is
above the Under V oltage Lockout (UVLO) Upper Threshold (UTH), the VSET and PSET pin become
active. Current is first sourced out of PSET pin and then the VSET pin, in exponentially increasing
steps. After each step there is a blanking time before the VSET voltage is compared to an internal
1.2V reference. If the VSET voltage is below internal reference voltage, the current source proceeds
to the next step. Once the VSET voltage is above the internal reference voltage the sequence stops
and the output voltage (VOUT) is allowed to turn on. Figure 10 shows the VSET waveform for VSET
= 2.5V and PSET = –5% output. The MVPG30x/MVPG31 keeps track of how many steps are
Table 8: AnyVoltage™ Programming Table for 1% Resistors
PSET
-10.0% –7.5% –5.0% –2.5% 0% 2.5% 5.0% 7.5% 10.0%
11k 18.7k 31.6k 53.6k GND 97.6k 165k 280k 475k
VSET
GND Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z
11k 0.720 0.740 0.760 0.780 0.800 0.820 0.840 0.860 0.880
18.7k 0.900 0.925 0.950 0.975 1.000 1.025 1.050 1.075 1.100
31.6k 1.080 1.110 1.140 1.170 1.200 1.230 1.260 1.290 1.320
53.6k 1.350 1.388 1.425 1.463 1.500 1.538 1.575 1.613 1.650
97.6k 1.620 1.665 1.710 1.755 1.800 1.845 1.890 1.935 1.980
165k 2.250 2.313 2.375 2.438 2.500 2.563 2.625 2.688 2.750
280k 2.700 2.775 2.850 2.925 3.000 3.075 3.150 3.225 3.300
475k 2.970 3.053 3.135 3.218 3.300 3.383 3.465 3.548 3.630
Open Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z
Functional Description
Output Voltage—AnyVoltage™ Technology
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 27
required to determine the appropriate output voltage. Table 9 provides the number of steps
necessary for each output voltage option. Using a VSET resistor of 165 kΩ requires the current
source to step four times, and a PSET resistor of 31.6 kΩ requires seven steps.
The MVPG30x/MVPG31 provides an innovative technique to set the output voltage. During startup it
reads the value of external resistors, which are located outside the regulator’s feedback loop to
program the output voltage. By placing the output voltage programming resistor outside the
regulator’s feedback loop, its tolerance does not affect the accuracy of the output voltage. Normally,
adjustable regulators use 1% resistors to set the output voltage. However, these resistors are
located inside the feedback loop, introducing as much as 2% of initial accuracy error to the output
voltage, resulting in an overall initial accuracy of 3%. Whereas, the MVPG30x/MVPG31 initial
accuracy is 2% for any of the eight output voltages.
The VSET and PSET pins are sensitive to excessive leakage currents and stray capacitance. The
output voltage can potentially be programmed to the lower output voltage if ther e is contamination,
which introduces excessive leakage current on the VSET and PSET pin, especially for the 3.3V
output or +10%. The parasitic resistance on these nodes must be greater than 3 MΩ and the stray
capacitance must be less than 25 pF; otherwise, a 3.3V output can potentially end up at 3V.
VIN
VOUT
VSET
PSET
Figure 9: Startup Sequence
2V/DIV
1V/DIV
1V/DIV
1V/DIV
VSET
PSET
Figure 10: VSET = 2.5V and PSET = -5%
500mV/DIV
500mV/DIV
2.0 ms/DIV 200 μs/DIV
Table 9: Output Voltage Option Steps
Step VOUT
(V) RVSET
(kΩ)Step PSET
(%) RPSET
(kΩ)
100 100
2 3.3 475 2 +10 475
3 3.0 280 3 +7.5 280
4 2.5 165 4 +5.0 165
5 1.8 97.6 5 +2.5 97.6
6 1.5 53.6 6 -2.5 53.6
7 1.2 31.6 7 -5.0 31.6
8 1.0 18.7 8 -7.5 18.7
90.811 9-1011
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 28 Document Classification: Proprietary April 14, 2008, 2.00
3.3 Programmable Current Limit for the LDO Regulator
Controller
A sense resistor is placed between SVIN and ILIM pin to program the current limit of the LDO
regulator controller. The following equati on is used to determine the value of the sense resistor.
When the LDO regulator controller is in current limit, the internal current-limit circuitry turns off the
LDO regulator controller and holds the LDO regulator controller in the off state for 3 ms (typical hold
time). After the hold-time is expired, the LDO regulator controller is enabled. The current-limit
circuitry continues to disable and enable the regulator until the current limit is removed.
The LDO regulator P-channel MOSFET can be selected from the following list based on the required
current and ambient temperature.
Table 10: P-Channel MOSFET Selection
Package Vishay Fairchild
Super SOT-6 FDC642P
FDC634P
Super SOT-3 / micro 3 FDN340P
FDN302P
SO-8 Si4433DY FDS9431A
SC75-6 FLMP FDJ127P
TO-263AB (D2-Pack) FDP4020P
TSOP-6 Si3443DV
SC70-6 FDG330P
SOT-23 Si2333DS
1206-8 Chip FET Si5473DC
SC-89 (6-lead) Si1039X
SC75A/SC-89 (3-lead) Si1012R/X
ILIM 50mV Typical()
RSENSE mΩ()
----------------------------------------
=
Functional Description
Under Voltage Lockout
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 29
3.3.1 Maximum LDO Output Current
The FDS642P is design to provide up to 800 mA of continuous output curren t. Howeve r, the tiny
Super SOT-6 package can dissipate up to 0.7W. If the input and output voltage are close, then the
full 800 mA is achieved (see Figure 11). As the input voltage increases, the IC dissipates more
power , limiting the maximum output current. The output current has to decrease in order to keep the
power dissipation under its 0.7W limit.
3.4 Under Voltage Lockout
At startup, the MVPG30x/MVPG31 incorporates Under Voltage Lockout (UVLO) circuitry to enable
the step-down switching regu lator and the LDO controller when the input voltage is above 2.60V
(typical). After the MVPG30x/MVPG31 is enabled and the input voltage is lowered, the highest value
of the minimum input voltage for both regulators to remain enabled is 2.50V (typical).
3.5 Over Voltage Protection
The MVPG30x/MVPG31 incorporates an Over Voltage Protection (OVP) circuitry to disable the
step-down switching regulator and LDO controller when the input vo ltage is above 5.7V (typical).
The step-down switching regu lator and LDO controller are enabled when th e input voltage is below
5.6V (typical).
Figure 11: Maximum Output Current for the FDS642P P-Channel MOSFET
Maximum LDO Output Current vs. Input Voltage
0.0
0.2
0.4
0.6
0.8
1.0
3 3.5 4 4.5 5
Input Voltage (V)
Load Current (A
)
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 30 Document Classification: Proprietary April 14, 2008, 2.00
3.6 Thermal Shutdown
When the junction temperature of the MVPG30x/MVPG31 exceeds 150°C (typical), the thermal
shutdown circuitry disables the step-down regulator. The step-down switching regulator is enabled
when the junction temperature is decreased to 120°C (typical).
Figure 12: UVLO and OVP Waveforms
V
OVP_HTH
V
UVLO-HTH
V
UVLO-LTH
LDO O ut put
Disable
V
OVP-LTH
Undefined
Undefined
LDO Output
Enable
BUCK Ou tpu t
Disable
BUCK Ou tpu t
Enable
VIN
Functional Description
Adaptive Transient Response
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 31
3.7 Adaptive Transient Response
The MVPG30x/MVPG31 device’s Smart Technology allows the step-down switching regulator to
quickly respond to the multiple step loads and maintain stability over a wide range of applications.
Figure 13shows an example of a second step-load applied while the output voltage of the step-down
switching regulator increased due to the inductive kick from the first step-load.
Condition: VIN = 5.0V, RSVIN = 10Ω, CSVIN = 0.1 µ F, CPVIN = 10 µF, L = 2.0 µH, COUT(BUCK) = 22 µF,
ILOAD = 200 mA to 2.0A.
The overshoot (VSOAR) during a full-load to light-load transient due to stored inductor energy
(Figure 13) can be calculated as:
Although the VSOAR cannot be eliminate d, its amplitude can be controlled based on the COUT
capacitor value. The appropriate COUT value can easily be calculated for the acceptable VSOAR level
for each specific application.
VBUCK
ILOAD
Figure 13: Adaptive Transient
Response
100mV/DIV
2A/DIV
20 µs/DIV
VSOAR ILOAD MAX()
2LΔ
2COUT VOUT
---------------------------------------------
=
COUT ILOAD MAX()
2LΔ
2VSOAR VOUT
---------------------------------------------
=
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 32 Document Classification: Proprietary April 14, 2008, 2.00
THIS PAGE INTENTIONALLY LEFT BLANK
Functional Characteristics
S tar tup Waveform s
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 33
4Functional Characteristics
The following applies unless otherwise noted: TA = 25°C, RSVIN = 10Ω, CSVIN = 0.1 µ F, CPVIN =
10 µF, L = 2.0 µH, COUT (BUC K ) = 10 µF, PFET = FDC642P, COUT (LDO) = 10 µF.
4.1 Startup Waveforms
NOTE: There is a delay (3.5 ms typ.) before the output voltage turns on.
VLDO
VBUCK
VSHDN
Figure 14: Startup Using the
Shutdown Pin
2V/DIV
500 mV/DIV
2V/DIV
VLDO
VBUCK
VSHDN
Figure 15: Turn Off Using the
Shutdown Pin
2V/DIV
500 mV/DIV
2V/DIV
1.0 ms/DIV 1.0 ms/DIV
VIN = 5.0V ILOAD = No Load VIN = 5.0V ILOAD = No Load
VLDO= 3.3V tDLY~ 3.5 ms VLDO= 3.3V
VBUCK= 1.2V VBUCK= 1.2V
VLDO
VBUCK
VSHDN
Figure 16: Enable Threshold at VIN =
3.5V
2V/DIV
1V/DIV
1V/DIV
VLDO
VBUCK
VSHDN
Figure 17: Enable Threshold at VIN
= 5.0V
2V/DIV
1V/DIV
1V/DIV
100 ms/DIV 100 ms/DIV
VIN = 5.0V ILOAD = 10 mA VIN = 5.0V ILOAD = 10 mA
VLDO= 3.3V VTH = 0.96V (Note) VLDO= 3.3V VTH = 1.12V (Note)
VBUCK= 1.2V VBUCK= 1.2V
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 34 Document Classification: Proprietary April 14, 2008, 2.00
VIN
VLDO
VBUCK
Figure 18: Input Voltage Soft Start
5V/DIV
2V/DIV
1V/DIV
VIN
VLDO
VBUCK
Figure 19: Input Voltage Hot Plug
5V/DIV
2V/DIV
1V/DIV
2.0 ms/DIV 1.0 ms/DIV
VIN = 5.0V VBUCK= 1.2V VIN = 5.0V VBUCK= 1.2V
VLDO= 3.3V ILOAD = No Load VLDO= 3.3V ILOAD = No Load
VOUT
IIND
Figure 20: Step-Down Output Rise
Time
500 mV/DIV
1A/DIV
IIND
Figure 21: Soft Start Current Limit
Steps
1A/DIV
5.0 µs/DIV 50 µs/DIV
VIN = 5.0V ILOAD = 500 mA VIN = 5.0V
VBUCK= 1.2V VBUCK= 3.3V
Functional Characteristics
S tar tup Waveform s
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 35
VIN
VLDO
VBUCK
Figure 22: UVLO and OVP
Thresholds
2V/DIV
2V/DIV
2V/DIV
100 ms/DIV
VIN = 0 to 6.0V VUVLO(HTH) = 2.60V
VLDO = 3.3V VUVLO(LTH) = 2.50V
VBUCK = 1.5V VOVP(HTH) = 5.8V
ILOAD(BUCK) = 50ΩVOVP(LTH) = 5.7V
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 36 Document Classification: Proprietary April 14, 2008, 2.00
4.2 Switching Waveforms
NOTE: For repeatabili ty of measuring outpu t ripple (VBUCK (P-P )) for th e BUCK regul ator, the standard test
procedure limits the scope bandwidth to 20 MHz and uses a coax cable with very short leads
terminated into 50Ω. The coax leads must be routed away from the switching node as much as
possible.
VSW
IIND
VBUCK
VIN
Figure 23: Switching Waveforms—
PWM Mode
5V/DIV
500 mA/DIV
5 mV/DIV
100 mV/DIV
VSW
VBUCK
IIND
Figure 24: Switching Waveforms—
DCM Mode
5V/DIV
20 mV/DIV
500 mA/DIV
500 ns/DIV 5.0 µs/DIV
VIN = 5.0V VIN(P-P) = 200.2 mV VIN = 5.0V IIND(PK) = 670.4 mA
VBUCK= 1.2V IIND(P-P) = 601.5 mA VBUCK= 1.2V Freq = 185 kHz
IOUT = 2.0A IIND(PK) = 2.3A IOUT = 50 mA
VOUT(P-P) = 6.3 mV (Note) Freq = 1 MHz VOUT(P-P) = 31.4 mV (Note)
VBUCK
Figure 25: PWM Output Ripple
Voltage
20 mV/DIV
VSW
VBUCK
IIND
Figure 26: Switching Waveforms—
DCM Mode-Zoom
5V/DIV
20 mV/DIV
500 mA/DIV
100 ms/DIV 500 ns/DIV
VIN = 5.0V IOUT = 2.0A VIN = 5.0V IOUT = 50 mA
VBUCK= 1.2V VOUT(P-P) = 15.7 mV (Note) VBUCK= 1.2V Ringing Freq = 10 MHz
Functional Characteristics
Load Transient Waveforms
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 37
4.3 Load Transient Waveforms
4.3.1 Step-Down Regulator
VBUCK
ILOAD
Figure 27: Load T ransient Response
100 mV/DIV
2A/DIV
VBUCK
ILOAD
Figure 28: Double-Pulsed Load
Response
100 mV/DIV
2A/DIV
20 µs/DIV 20 µs/DIV
VIN = 5.0V ILOAD = 200 mA to 2.0A VIN = 5.0V ILOAD = 200 mA to 2.0A
VBUCK= 1.2V tRISE = 6.0A/µs VBUCK= 1.2V tRISE = 6.0A/µs
COUT = 22 µF tFALL = 129A/µs COUT = 22 µF tFALL = 129A/µs
VBUCK
ILOAD
Figure 29: Load T ransient Response
100 mV/DIV
2A/DIV
VBUCK
ILOAD
Figure 30: Double-Pulsed Load
Response
100 mV/DIV
2A/DIV
20 µs/DIV 20 µs/DIV
VIN = 5.0V IOUT = 200 mA to 2.0A VIN = 5.0V IOUT = 200 mA to 2.0A
VBUCK= 1.2V tRISE = 6.0A/µs VBUCK= 1.2V tRISE = 6.0A/µs
COUT = 2x22 µF tFALL = 129A/µs COUT = 2x22 µF tFALL = 129A/µs
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 38 Document Classification: Proprietary April 14, 2008, 2.00
4.3.2 LDO Regulator
VBUCK
ILOAD
Figure 31: Load T ransient Response
100 mV/DIV
2A/DIV
VBUCK
ILOAD
Figure 32: Double-Pulsed Load
Response
100 mV/DIV
2A/DIV
20 µs/DIV 20 µs/DIV
VIN = 5.0V ILOAD = 200 mA to 2.0A VIN = 5.0V ILOAD = 200 mA to 2.0A
VBUCK= 1.2V tRISE = 6.0A/µs VBUCK= 1.2V tRISE = 6.0A/µs
COUT = 4x22 µF tFALL = 129A/µs COUT = 4x22 µF tFALL = 129A/µs
VLDO
ILOAD
Figure 33: Load T ransient Response
50 mV/DIV
1A/DIV
20 µs/DIV
VIN = 5.0V COUT = 10 µF
VLDO= 3.3V ILOAD = 0.2A to 0.8 mA
Typica l Ch ara cteris t ics
Efficiency Graphs
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 39
5Typical Characteristics
5.1 Efficiency Graphs
Figure 34: Efficiency Graphs
Efficiency vs. Output Current
Vin = 5.0V
50
60
70
80
90
100
0 0.5 1 1.5 2
Output Current (A)
Efficiency (%)
3.3V
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
Efficiency vs. Output Current
Vin = 3.3V
50
60
70
80
90
100
00.511.52
Output Current (A)
Efficiency (%)
3.3V
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
Efficiency vs. Output Current
Vin = 5.0V
50
60
70
80
90
100
0.01 0.1 1 10
Output Current (A)
Efficiency (%)
3.3V
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
Efficie n c y vs. Output C u rrent
Vin = 3. 3V
50
60
70
80
90
100
0.01 0.1 1 10
Output Current (A)
Efficiency (%)
3.3V
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 40 Document Classification: Proprietary April 14, 2008, 2.00
5.2 Load Regulation
5.3 Dropout Voltage
Figure 35: Load Regulation
Step-Down Regulator
Output Voltage vs. Output Current
Vout = 1.5V
1.40
1.45
1.50
1.55
1.60
00.511.52
Output Current (A)
Output Voltage (V)
3.3V
5.0V
Figure 36: Dropout Voltage
Step-Down Regulator
Dropout vs. Load Current
Vin = 3.2V, Vout = 3.3V
0.0
0.1
0.2
0.3
00.20.40.60.81
Output Current (A)
Dropout (V)
TA=85C
TA=25C
TA=-40C
LDO Regulator
Dropout vs. Load Current
Vin = 3.3V, Vout = 3.3V
0.00
0.05
0.10
0.15
0.20
0 0.2 0.4 0.6 0.8
Output Current (A)
Dropout (V)
TA=85C
TA=25C
TA=-40C
Typica l Ch ara cteris t ics
RDS (ON) Resistance
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 41
5.4 RDS (ON) Resistance
Figure 37: RDS (ON) Resistance
Top FET
Rds_On vs. Temperature
0.00
0.05
0.10
0.15
0.20
-40-200 20406080
Temperature (°C)
Rds_On (Ω)
3V
4V
5V
Bottom FET
Rds_On vs. Temperature
0.04
0.06
0.08
0.10
0.12
-40 -20 0 20 40 60 80
Temperature (°C)
Rds_On (Ω)
3V
4V
5V
Top FET
Rds_On vs. Input Voltage
0.00
0.05
0.10
0.15
0.20
3.0 3.5 4.0 4.5 5.0
Input Voltage (V)
Rds_On (Ω)
T
A
= 25°C
Bottom FET
Rds_On vs. Input Voltage
0.04
0.06
0.08
0.10
0.12
3.0 3.5 4.0 4.5 5.0
Input Voltage(V)
Rds_On (Ω)
T
A
= 25°C
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 42 Document Classification: Proprietary April 14, 2008, 2.00
5.5 IC Case and Inductor Temperature
The following data was taken using a 0.625 square inch and L = 2.0 µH. Actual results depend upon
the size of the PCB proximity to other heat emitting components.
Figure 38: IC Case and Inductor Temperature
Input Current vs. Output Current
V
IN
= 5V, T
A
= 25°C
0.0
0.5
1.0
1.5
2.0
0.0 0.5 1.0 1.5 2.0
Output Current (A)
Input Current (A )
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
Input Current vs. O utput Current
V
IN
= 3.3V, T
A
= 25°C
0.0
0.5
1.0
1.5
2.0
0.0 0.5 1.0 1.5 2.0
Output Curr ent (A)
Input Current (A)
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
IC Case Temperatur e vs. Output Current
V
IN
= 5V, T
A
= 25°C
25
40
55
70
85
0 0.5 1 1.5 2
Output Current (A)
IC Temperature (°C)
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
IC Case Temperature vs. Output Current
V
IN
= 3.3V, T
A
= 25°C
25
40
55
70
85
0.0 0.5 1.0 1.5 2.0
Output Current (A)
IC Temperature (°C)
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
Inductor T emperat ure vs. Output Cu rrent
VIN = 5V, TA = 2 5 °C
20
30
40
50
60
0.0 0.5 1.0 1.5 2.0
Output Current (A)
L Temperature (°C)
3.3V
3.0V
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
Inductor Temperature vs. Output Current
V
IN
= 3.3V, T
A
= 25°C
20
30
40
50
60
0.0 0.5 1.0 1.5 2.0
Output Current (A)
L Temperature (°C)
2.5V
1.8V
1.5V
1.2V
1.0V
0.8V
Typica l Ch ara cteris t ics
Input Voltage Graph
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 43
5.6 Input Voltage Graph
5.6.1 Step-Down Regulator
Figure 39: Supply Current vs. Input Voltage
Load = No Load
Supply Current vs. Input Voltage
0.0
1.0
2.0
3.0
4.0
3.0 3.5 4.0 4.5 5.0 5.5
Input Voltage (V)
Supply Current (mA)
Figure 40: Output Voltage vs. Input Voltage Figure 41: Efficiency vs. Input Voltage
IOUT(BUCK) = 500 mA VIN = 5.0V IOUT(BUCK) = 1.0A
VOUT(BUCK) = 1.5V
Output Voltage vs. Input Voltage
1.40
1.45
1.50
1.55
1.60
3.0 3.5 4.0 4.5 5.0 5.5
Input Voltage (V)
Output Voltage (V)
Efficiency vs. Input Voltage
80%
85%
90%
95%
100%
3.0 3.5 4.0 4.5 5.0 5.5
Input Voltage (V)
Efficiency (%)
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 44 Document Classification: Proprietary April 14, 2008, 2.00
Figure 42: Load Regulation vs. Input Voltage Figure 43: Frequency vs. Input Voltage
VIN = 5.0V IOUT(BUCK) = 500 mA to 2.0A IOUT(BUCK) = 1.0A
VOUT(BUCK) = 1.5V
Load Regulation vs. Input Voltage
-0.10%
0.10%
0.30%
0.50%
0.70%
3.0 3.5 4.0 4.5 5.0 5.5
Input Voltage (V)
Load Regulation (%)
Frequency vs. Input Voltage
0
500
1000
1500
2000
3.0 3.5 4.0 4.5 5.0 5.5
Input Voltage (V)
Frequency (kHz)
Figure 44: Average Output Current Limit vs. Input Voltage
Average Output Current Limit vs. Input Voltage
0.0
1.0
2.0
3.0
4.0
3.0 3.5 4.0 4.5 5.0 5.5
Input Voltage (V)
Current Limit (A)
Typica l Ch ara cteris t ics
Input Voltage Graph
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 45
5.6.2 LDO Regulator
Figure 45: Output Voltage vs. Input Voltage Figure 46: LDO Load Regulation vs. Input
Voltage
IOUT(LDO) = 10 mA VOUT(LDO) = 3.3V IOUT(LDO) = 10 mA to 800 mA
Output Voltage vs. Input Voltage
2.80
3.00
3.20
3.40
3.60
3.5 4.0 4.5 5.0 5.5
Input Voltage (V)
Output Voltage (V)
LDO Load Regulation vs. Input Volt age
0.00%
0.10%
0.20%
0.30%
0.40%
4.04.55.05.5
Input Voltage (V)
Load Regulation (%)
Figure 47: Average Output Current Limit vs. Input Voltage
Average Output Current Limit vs. Input Voltage
0.0
0.5
1.0
1.5
2.0
3.5 4.0 4.5 5.0 5.5
Input Voltage (V)
Current Limit (A)
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 46 Document Classification: Proprietary April 14, 2008, 2.00
5.7 Temperature Graphs
5.7.1 Step-Down Regulator
Figure 48: Supply Current vs. Temperature Figure 49: UVLO vs. Temperature
IOUT(BUCK) = No Load IOUT(LDO) = No Load IOUT(BUCK) = 10 mA
Supply Current vs. Temperature
0.0
1.0
2.0
3.0
4.0
-40-200 20406080
Temperature (°C)
Supply Current (mA)
UVLO vs. Temperature
2.6
2.7
2.8
2.9
3.0
-40-200 20406080
Temperature (°C)
UVLO (V)
Figure 50: Output Voltage vs. Temperature Figure 51: Efficiency vs. Temperature
VIN = 5.0V IOUT(BUCK) = 500 mA VIN = 5.0V IOUT(BUCK) = 1.0A
VOUT(BUCK) = 1.5V
Output Voltage vs. Temperature
1.40
1.45
1.50
1.55
1.60
-40 -20 0 20 40 60 80
Tem perature (°C)
Output Voltage (V)
Efficiency vs. Temperature
80%
85%
90%
95%
100%
-40 -20 0 20 40 60 80
Temperature (°C)
Efficiency (%)
Typica l Ch ara cteris t ics
Temperature Graphs
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 47
Figure 52: Load Regulation vs. Temperature Figure 53: Line Regulation vs. Temperature
VIN = 5.0V IOUT(BUCK) = 500 mA to 2.0A VIN = 3.0V to 5.0V IOUT(BUCK) = 500 mA
VOUT(BUCK) = 1.5V VOUT(BUCK) = 1.5V
Load Regulation vs. Temperature
See T est Conditions
0.00%
0.10%
0.20%
0.30%
0.40%
0.50%
0.60%
-40-200 20406080
Temperature (°C )
Line Regulation vs. Temperature
See Test Conditio ns
-0.20%
-0.10%
0.00%
0.10%
0.20%
-40-200 20406080
T emperature (°C)
Figure 54: Average Output Current Limit vs.
Temperature Figure 55: Frequency vs. Temperature
VIN = 5.0V VIN = 5.0V IOUT(BUCK) = 1.0A
VOUT(BUCK) = 1.5V
Average Output Current Limit vs. Temperature
1.0
2.0
3.0
4.0
5.0
-40-200 20406080
Temperature (°C)
Cu rre nt Limit (A)
Frequency vs. Temperature
0
500
1000
1500
2000
-40-200 20406080
Temperature (°C)
Frequency (kHz)
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 48 Document Classification: Proprietary April 14, 2008, 2.00
5.7.2 LDO Regulator
Figure 56: Output Voltage vs. Temperature Figure 57: Load Regulation vs. Temperature
VIN = 5.0V IOUT(LDO) = 10 mA VIN = 5.0V IOUT(LDO) = 10 mA to 800 mA
VOUT(LDO) = 3.3V
Output Voltage vs. Temperature
3.20
3.25
3.30
3.35
3.40
-40-200 20406080
Temperature (°C)
Output Voltage (V)
Load Regulation vs. Temperature
0.00%
0.05%
0.10%
0.15%
0.20%
-40 -20 0 20 40 60 80
Temperature (°C)
Load Regulation (%)
Figure 58: Line Regulation vs. Temperature Figure 59: Average Output Current Limit vs.
Temperature
VIN = 3.5V to 5.0V IOUT(LDO) = 10 mA VIN = 5.0V
VOUT(LDO) = 3.3V
Line Regulation vs. Temperature
See Test C onditions
-0.20%
-0.10%
0.00%
0.10%
0.20%
-40 -20 0 20 40 60 80
T emperature (°C)
Average Ouput Current Limit vs. Temperature
0.0
0.5
1.0
1.5
2.0
-40 -20 0 20 40 60 80
Temperature (°C)
Current Limit (A)
Applications Information
PC Board Layout Considerations and Guid el ines
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 49
6Applications Information
6.1 PC Board Layout Considerations and Guidelines
1. This is a 2-layer board with one gr ound plane and one routing layer.
2. Copy the routing layer in Figure 64 or Figure 65 as much as possible and place it on the top
layer. The ground plane in Figure 66 or Figure 67 can be placed on any other layer. Use the
recommend BOM in Table 11 or Table 12. Contact the factory where substitutions are made.
3. Review the recommended solder pad layout and notes in Section 7.3, Typical Pad Layout
Dimensions, on page 59.
4. Do not replace the Ceramic input capacitor with any other type of capacitor. Any type of
capacitor can be placed in parallel with the input capacitor as long as the Ceramic input
capacitor in placed next to the IC. If Tantalum input capacitor is used, it must be rated for
switching regulator applications and t he operating voltage be derated by 50%.
5. Use either X7R or X5R type ceramic capacitors. If Y5V or Z5U type capacitor are used, then
you must double the recommended capacitance value.
6. Any type of capacitor can be placed in parallel with the output capacitor.
7. Low-ESR capacitors like the POSCAP from Sanyo can replace the Ceramic output capacitors
as long as the capacitor value is the same or greater. Note that the Ceramic capacitors provide
the lowest noise and smallest foot print solution.
8. Use planes for the ground, input and outputs power to maintain good voltage filtering and to
keep power losses low.
9. If there is not enough space for a power plane for the inp ut supply, then the input supply trace
must be at least 3/8 inch wide.
10. If there is not enough space for a power plane for the output supplies, then place the output as
close to the load as possible with a trace of at least 3/8 inch wide.
11. Do not lay out the inductor first. The input capacitor placement is the most critical for proper
operation. The AC current circulating throu gh the input capacitor and loop 1 (LP1) are square
wave with rise and fall times of 8 ns and slew rates as high as 300 A/µs (see Figure 60). At
these fast slew rates, stray PCB inductance can generate a voltage spike as high as 3.0V per
inch of PCB trace, VIND = L * di/dt. Therefore, the Ceramic input capacitor must be plac e as
close as possible to the PVIN and PGND pins with as short an d wide trace as possible. Also,
the PVIN and PGND traces must be placed on the top layer. This will isolate the fast AC
currents from interfering with the analog ground pl ane.
12. The MVPG30x/MVPG31 has two internal grounds, analog (SGND) and power (PGND). The
analog ground ties to all the noise sensitive signals (PSET, VSET, and SVIN) while the power
ground ties to the higher curre nt power paths. Noise on an analog ground can cause problems
with the IC’s internal control and bias signals. For this reason, separate analog and power
ground traces are recommended. The signal ground is connected to the power ground at one
point, which is the (-) terminal of the output capacitor.
Warning
To avoid noise and abnormal operating behavior, follow these layout recommendations.
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 50 Document Classification: Proprietary April 14, 2008, 2.00
13. Keep loop 2 (LP2) as small as possible and connect the (-) terminal of the output capacitor as
close to the (-) terminal of the input capacitor. A back-to-back placing of bypass capacitors, as
shown in Figure 60 or Figure 61, is recommended for best results.
14. Keep the switching node (SW) away from the SFB pin and all sensitive signal nodes, minimizing
capacitive coupling effects. If the SFB trace must cross the SW node, cross it at a right angle.
15. T ry not to route analog or digital lines in close proximity to the power supply especially the VSW
node. If this can’t be avoi ded, shield these lines with a power pla ne placed between the VSW
node and the signal lines.
16. The type of solder paste recommended for QFN packages is “No clean”, due to the difficulty of
cleaning flux residues from beneath the QFN package.
Figure 60: MVPG30x PCB Layout Schematic
LP1
BUCK_OUT
R3
10ohm
VIN
C1
10uF/6.3V
C4
0.1uF
R4
R2
C3
10uF/6.3V
C2
22uF/6.3V
LDO_OUT
R1
47mohm
SGND
4SHDN 10
SVIN 8
LDR
3
NC 9
PGND
EP
SFB
5
ILIM
2LFB
1
SW
6PVIN 7
VSET 11
PSET 12
U1
MVPG30
VIN
4
5
6
3
2
1
U2
FDC642P
L1
2.0uH
MVPG30
Figure 61: MVPG31 PCB Layout Schematic
MVPG31
LP1
C3
0.1uF
R1
10 ohm
VIN
BUCK__OUT
C1
10uF/6.3V
SGND
4SHDN 10
SVIN 8
NC
3
PGND
EP
SFB
5
NC
2NC
1
SW
6PVIN 7
VSET 11
PSET 12
NC 9
U1 MVPG31
L1
2.0uH
C2
22uF/6.3V
R3
R2
Applications Information
PC Board Layout Considerations and Guid el ines
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 51
6.1.1 PC Board Layout Examples for MVPG30x/MVPG31
For the MVPG30x:
Actual board size = 565 mil x 945 mil; Area = 0.534 Sq. Inches.
Total copper layers = 2 (Top and Bottom)
All the components are on the top layer
For the MVPG31:
Actual board size = 420 mil x 725 mil; Area = 0.305 Sq. Inches.
Total copper layers = 2 (Top and Bottom)
All the components are on the top layer
Figure 62: Top Silk-Screen (Not to scale)—MVPG30x
Figure 63: Top Silk-Screen (Not to scale)—MVPG31
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 52 Document Classification: Proprietary April 14, 2008, 2.00
Figure 64: Top Traces, Vias, and Copper (Not to scale)—MVPG30x
Connect the
LDO regulator
output vol tage
at this point.
Connect the
ground plane of
the board to
this point.
Connec t the
Buck regu lator
output vol tage
at this point.
Connec t the
ground plan e of
the board to
thi s p oin t.
Connect the
input voltage
plane to this
point.
Figure 65: Top Traces, Vias, and Copper (Not to scale)—MVPG31
Connect BUCK_OUT
trace at this point. Connect the ground
plane of the board
to th i s p o int.
Connect VIN
trace at this
point.
Do not connec t
this s ignal
ground to the
board ground
on the top layer.
Do not connect this signal
ground to the board
ground on the top lay er.
Applications Information
PC Board Layout Considerations and Guid el ines
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 53
Figure 66: Bottom Silk Screen, Bottom Trace, Vias, and Bottom Copper (Not to scale)—MVPG30x
Connect to the
ground plane of
the board .
Connect to the ground
plane of the board.
Connect to the
ground plane of
the board.
Connect to the ground
plane of the board.
Figure 67: Bottom Silk Screen, Bottom Trace, Vias, and Bottom Copper (Not to scale)—MVPG31
Connect to the
ground plane of
the board.
Connect to the ground
plane of the board.
Connect to the
ground plane of
the board.
Connect to the ground
plane of the board.
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 54 Document Classification: Proprietary April 14, 2008, 2.00
6.2 Bill of Materials
The following tables list the com ponents used with the MVPG30x/MVPG31.
Table 11: MVPG30x BOM
Item Qty Ref Manufacturer Part
No. Manufacturer Description
1 1 U1 MVPG30B Marvell
Semiconductor 1 MHz, 3.0A Peak Current-Limit Step-Down
Regulator with LDO regulator controller
2 1 U2 FDC642P Fairchild P-FET, 2.5V, SuperSOT-6 package
3 1 C1 CE JMK212 BJ106MG-T Taiyo-Yuden 10 µF, ± 20%, X5R, 6.3V, 0805 Case Size,
Ceramic
4 C2012X5R0J106MT TDK 10 µF, ± 20%, X5R, 6.3V, 0805 Case Size,
Ceramic
5 1 C2 CE JMK212 BJ226MG-T Taiyo-Yuden 22 µF, ± 20%, X5R, 6.3V, 0805 Case Size,
Ceramic
6 C2012X5R0J226MT TDK 22 µF, ± 20%, X5R, 6.3V, 0805 Case Size,
Ceramic
7 1 C3 CE JMK212 BJ106MG-T Taiyo-Yuden 10 µF, ± 20%, X5R, 6.3V, 0805 Case Size,
Ceramic
8 C2012X5R0J106MT TDK 10 µF, ± 20%, X5R, 6.3V, 0805 Case Size,
Ceramic
9 1 C4 RM LMK105 BJ104KV-F Taiyo-Yuden 0.1 µF, ± 10%, X5R, 10V, 0402 Case Size,
Ceramic
10 C1005X5R1A104K TDK 0.1 µF, ± 10%, X5R, 10V, 0402 Case Size,
Ceramic
11 1 L1 A918CY-2R0M=P3 Toko 2.0 µH, 2.47A (typ.), 24 mΩ (typ.), H = 2mm,
L = 6.2 mm, W = 6.3 mm
12 1 R1 RL1220T-R047-J Susumu Co. Ltd. 0.047Ω, 1/4W, 5%, 0805 Case Size
13 1 R2 See Section 3.2, Output Voltage—AnyVoltage
Technology, on page 26.
14 1 R3 ERJ-2RKF10R0X Panasonic-ECG 10Ω, 1/16W, 1%, 0402 Case Size
15 1 R4 See Section 3.2, Output Volt age—AnyVoltage
Technology, on page 26.
Applications Information
Bill of Materials
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 55
Table 12: MVPG31 BOM
Item Qty Ref Manufacturer Part
No. Manufacturer Description
1 1 U1 MVPG31 Marvell
Semiconductor 1 MHz, 3.0A Peak Current-Limit Step-Down
Regulator
2 1 C1 CE JMK212 BJ106MG-T Taiyo-Yuden 10 µF, ± 20%, X5R, 6.3V, 0805 Case Size,
Ceramic
3 C2012X5R0J106MT TDK 10 µF, ± 20%, X5R, 6.3V, 0805 Case Size,
Ceramic
4 1 C2 CE JMK212BJ226MG-T Taiyo-Yuden 22 µF ± 20%, X5R, 6.3V, 0805 Case Size,
Ceramic
5 C2012X5R0J226MT TDK 22 µF ± 20%, X5R, 6.3V, 0805 Case Size,
Ceramic
6 1 C4 RM LMK105 BJ104KV-F Taiyo-Yuden 0.1 µF, ± 10%, X5R, 10V, 0402 Case Size,
Ceramic
7 C1005X5R1A104K TDK 0.1 µF, ± 10%, X5R, 10V, 0402 Case Size,
Ceramic
8 1 L1 A918CY-2R0M=P3 Toko 2.0 µH, 2.47A (typ.), 24 mΩ (typ.), H = 2mm,
L = 6.2 mm, W = 6.3 mm
9 1 R1 ERJ-2RKF10R0X Panasonic-ECG 10Ω, 1/16W, 1%, 0402 Case Size
10 1 R2 See Section 3.2, Output Volt age—AnyVoltage
Technology, on page 26
11 1 R3 See Section 3.2, Output Voltage—AnyVoltage™
Technology, on page 26
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 56 Document Classification: Proprietary April 14, 2008, 2.00
THIS PAGE INTENTIONALLY LEFT BLANK
Mechanical Drawing
Mechanical Drawing
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 57
7Mechanical Drawing
7.1 Mechanical Drawing
Figure 68: Mechanical Drawing
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 58 Document Classification: Proprietary April 14, 2008, 2.00
7.2 Dimensions
Table 13: Dimensions
Symbol Dimensions in mm Dimensions in inch
MIN NOM MAX MIN NOM MAX
A 0.80 0.90 1.00 0.031 0.035 0.039
A1 0.00 0.02 0.05 0.000 0.001 0.002
A2 0.20 REF 0.008 REF
b1 0.18 0.23 0.28 0.007 0.009 0.011
b2 0.51 0.56 0.61 0.020 0.022 0.024
D 2.90 3.00 3.10 0.114 0.118 0.122
D1 1.60 1.70 1.80 0.063 0.067 0.071
E 3.90 4.00 4.10 0.153 0.157 0.161
E1 3.40 3.50 3.60 0.134 0.138 0.142
e 0.50 BSC 0.020 BSC
L 0.30 0.40 0.50 0.012 0.016 0.020
aaa----0.15----0.006
bbb----0.10----0.004
ccc----0.10----0.004
Mechanical Drawing
Typical Pad Layout Dimensions
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 59
7.3 Typical Pad Layout Dimensions
7.3.1 Recommended Solder Pad Layout
Figure 69: Recommended Solder Pad Layout
4.00
2.20
1.60
3.50
0.55
3.30
0.075
0.83
0.56
0.50 0.67
Package
Outline
4x3 DFN-12
Land Pattern (mm)
1.75
0.23
DFN Lead with
Non-Solder Mas k Defined Terminal
Pad SM
0.23 mm
0.50 mm
0.051 mm
0.27 mm
Pad Pad
0.168 mm
SM
Note
Top view
Drawing not to scale
Dimensions are in millimeters
Exposed pad shall be copper plated
Oversize solder mask by 0.102 mm (4 mils) over pad size (0.051 mm annular ring)
0.168 mm solder mask (sm) between pads
Tolerance ±0.05 mm
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 60 Document Classification: Proprietary April 14, 2008, 2.00
THIS PAGE INTENTIONALLY LEFT BLANK
Part Order Numbering/Package Mark ing
Part Order Numbering
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 61
8Part Order Numbering/Package Marking
8.1 Part Order Numbering
Figure 70 shows the part order numbering scheme for the MVPG30x/MVPG31. Refer to Marvell
Field Applications Engineers (FAEs) or representatives for further information when ordering parts.
Figure 70: Sample Part Order Number
MVPG3x
Package Code
NAE = 12-pin DFN
Custom Code
Custom Code
x–xx–xxx1C000–xxxx
Part Numbers Custom Code (optional)
Environment al Code
+ = RoHS 0/6
- = RoHS 5/6
1 = RoHS 6/6
LDO Output Voltage
Options
B = 3.3V
E = 2.5V Te mperature Code
C = Commercial
I = Industrial
MVPG30
MVPG31
Table 14: Part Order Options
Package Type Marking LDO Ambient
Temperature
Range
Part Order Number
4 mm x 3 mm 12-pin DFN B0 3.3V -40°C to 85°C MVPG30B-xx-NAE1C000
4 mm x 3 mm 12-pin DFN E0 2.5V -40°C to 85°C MVPG30E-xx-NAE1C000
4 mm x 3 mm 12-pin DFN 00 -- -40°C to 85°C MVPG31-xx-NAE1C000
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 62 Document Classification: Proprietary April 14, 2008, 2.00
8.2 Package Marking
This section show the sample package markings and pin 1 locati on.
Figure 71: MVPG30x Package Marking
G30
B0A3R
YWWAA
Marvell logo
Date code, traceability lot code
YWW = Date code (Y = year, WW = Work Week)
AA = Traceability lot code
Part number, LDO options, custom code, assembly
house code
G30 = Part number
B0 = LDO output voltage options (B or E)
A3 = Custom code
R = Assembly house code
Note: The above drawing is not drawn to scale. Location of markings is approximate.
Pin 1
Part Order Numbering/Package Mark ing
Package Marking
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 63
Figure 72: MVPG31 Package Marking
G31
00A3R
YWWAA
Marvell logo
Date code, traceability lot code
YWW = Date code (Y = year, WW = Work Week)
AA = Traceability lot code
Part number, LDO option, custom code, assembly
house code
G31 = Part number
00 = No LDO output voltage option
A3 = Custom code
R = Assembly house code
Note: The above drawing is not drawn to scale. Location of markings is approximate.
Pin 1
MVPG30x/MVPG31
Datasheet
Doc. No. MV-S102808-00 Rev. G Copyright © 2008 Marvell
Page 64 Document Classification: Proprietary April 14, 2008, 2.00
THIS PAGE INTENTIONALLY LEFT BLANK
Copyright © 2008 Marvell Doc. No. MV-S102808-00 Rev. G
April 14, 2008, 2.00 Document Classification: Proprietary Page 65
ARevision History
Tabl e 15 : Revision Hist o r y
Document Type Document Revision
Release Rev.G
Electrical Specifications
Updated VUVLO values in Table 5, Electrical Characteristics, on page 19
Marvell. Moving Forward Faster
Marvell Semiconductor, Inc.
5488 Marvell Lane
Santa Clara, CA 95054, USA
Tel: 1.408.222.2500
Fax: 1.408.752.9028
www.marvell.com
Back Cover