Features
Floating channel designed for bootstrap operation
Fully operational to +600V
Tolerant to negative transient voltage
dV/dt immune
Gate drive supply range from 10 to 20V
Undervoltage lockout for all channels
Over-current shutdown turns off all six drivers
Independent half-bridge drivers
Matched propagation delay for all channels
2.5V logic compatible
Outputs out of phase with inputs
Cross-conduction prevention logic
Also available LEAD-FREE
3-PHASE BRIDGE DRIVER
VOFFSET 600V max.
IO+/- 200 mA / 420 mA
VOUT 10 - 20V
ton/off (typ.) 675 & 425 ns
Deadtime (typ.) 2.5 µs (IR2130)
0.8 µs (IR2132)
Data Sheet No. PD60019 Rev.P
IR2130/IR2132(J)(S) & (PbF)
Description
The IR2130/IR2132(J)(S) is a high voltage, high speed
power MOSFET and IGBT driver with three indepen-
dent high and low side referenced output channels. Pro-
prietary HVIC technology enables ruggedized
monolithic construction. Logic inputs are compatible with
CMOS or LSTTL outputs, down to 2.5V logic. A
ground-referenced operational amplifier provides
analog feedback of bridge current via an external cur-
rent sense resistor. A current trip function which termi-
nates all six outputs is also derived from this resistor.
An open drain FAULT signal indicates if an over-cur-
rent or undervoltage shutdown has occurred. The output drivers feature a high pulse current buffer stage designed
for minimum driver cross-conduction. Propagation delays are matched to simplify use at high frequencies. The
floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration
which operate up to 600 volts.
www.irf.com 1
(Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer
to our Application Notes and DesignTips for proper circuit board layout.
Typical Connection
Product Summary
Packages
28-Lead PDIP
28-Lead SOIC
44-Lead PLCC w/o 12 Leads
IR2130/IR2132(J)(S) & (PbF)
2www.irf.com
Symbol Definition Min. Max. Units
VB1,2,3 High Side Floating Supply Voltage -0.3 625
VS1,2,3 High Side Floating Offset Voltage VB1,2,3 - 25 VB1,2,3 + 0.3
VHO1,2,3 High Side Floating Output Voltage VS1,2,3 - 0.3 VB1,2,3 + 0.3
VCC Low Side and Logic Fixed Supply Voltage -0.3 25
VSS Logic Ground VCC - 25 VCC + 0.3
VLO1,2,3 Low Side Output Voltage -0.3 VCC + 0.3
VIN Logic Input Voltage (HIN1,2,3, LIN1,2,3 & ITRIP) VSS - 0.3 (VSS + 15) or
(VCC + 0.3)
whichever is
lower
VFLT FAULT Output Voltage VSS - 0.3 VCC + 0.3
VCAO Operational Amplifier Output Voltage VSS - 0.3 VCC + 0.3
VCA- Operational Amplifier Inverting Input Voltage VSS - 0.3 VCC + 0.3
dVS/dt Allowable Offset Supply Voltage Transient 5 0 V/ns
PDPackage Power Dissipation @ TA +25°C (28 Lead DIP) 1.5
(28 Lead SOIC) 1.6 W
(44 Lead PLCC) 2.0
RthJA Thermal Resistance, Junction to Ambient (28 Lead DIP) 8 3
(28 Lead SOIC) 7 8 °C/W
(44 Lead PLCC) 63
TJJunction Temperature 15 0
TSStorage Temperature -55 150
TLLead Temperature (Soldering, 10 seconds) 3 00
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-
eters are absolute voltages referenced to VS0. The Thermal Resistance and Power Dissipation ratings are measured
under board mounted and still air conditions. Additional information is shown in Figures 50 through 53.
Note 1: Logic operational for VS of (VS0 - 5V) to (VS0 + 600V). Logic state held for VS of (VS0 - 5V) to (VS0 - VBS).
(Please refer to the Design Tip DT97-3 for more details).
Note 2: All input pins, CA- and CAO pins are internally clamped with a 5.2V zener diode.
V
Symbol Definition Min. Max. Units
VB1,2,3 High Side Floating Supply Voltage VS1,2,3 + 10 VS1,2,3 + 20
VS1,2,3 High Side Floating Offset Voltage Note 1 600
VHO1,2,3 High Side Floating Output Voltage VS1,2,3 VB1,2,3
VCC Low Side and Logic Fixed Supply Voltage 10 20
VSS Logic Ground -5 5
VLO1,2,3 Low Side Output Voltage 0 VCC
VIN Logic Input Voltage (HIN1,2,3, LIN1,2,3 & ITRIP) VSS VSS + 5
VFLT FAULT Output Voltage VSS VCC
VCAO Operational Amplifier Output Voltage VSS VSS + 5
VCA- Operational Amplifier Inverting Input Voltage VSS VSS + 5
TAAmbient Temperature -40 125 °C
V
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the
recommended conditions. All voltage parameters are absolute voltages referenced to VS0. The VS offset rating is tested
with all supplies biased at 15V differential. T ypical ratings at other bias conditions are shown in Figure 54.
°C
IR2130/IR2132(J)(S) & (PbF)
www.irf.com 3
Symbol Definition Figure Min. Typ. Max. Units Test Conditions
VIH Logic “0” Input Voltage (OUT = LO) 21 2. 2
VIL Logic “1” Input Voltage (OUT = HI) 22 0.8
VIT,TH+ ITRIP Input Positive Going Threshold 23 400 490 580
VOH High Level Output Voltage, VBIAS - VO24 100 VIN = 0V, IO = 0A
VOL Low Level Output Voltage, VO25 100 VIN = 5V, IO = 0A
ILK Offset Supply Leakage Current 26 50 VB = VS = 600V
IQBS Quiescent VBS Supply Current 27 15 30 VIN = 0V or 5V
IQCC Quiescent VCC Supply Current 28 3 .0 4.0 mA VIN = 0V or 5V
IIN+ Logic “1” Input Bias Current (OUT = HI) 29 450 650 VIN = 0V
IIN- Logic “0” Input Bias Current (OUT = LO) 30 225 400 VIN = 5V
IITRIP+ “High” ITRIP Bias Current 31 75 150 ITRIP = 5V
IITRIP- “Low” ITRIP Bias Current 32 100 nA ITRIP = 0V
VBSUV+ VBS Supply Undervoltage Positive Going 33 7. 5 8.35 9.2
Threshold
VBSUV- VBS Supply Undervoltage Negative Going 34 7. 1 7.95 8.8
Threshold
VCCUV+ VCC Supply Undervoltage Positive Going 35 8.3 9.0 9.7
Threshold
VCCUV- VCC Supply Undervoltage Negative Going 36 8.0 8.7 9.4
Threshold
Ron,FLT FAULT Low On-Resistance 37 55 75
Symbol Definition Figure Min. Typ. Max. Units Test Conditions
ton Turn-On Propagation Delay 11 500 675 850
toff Turn-Off Propagation Delay 12 300 425 550 VIN = 0 & 5V
trTurn-On Rise Time 13 80 125 VS1,2,3 = 0 to 600V
tfTurn-Off Fall Time 14 35 55
titrip ITRIP to Output Shutdown Prop. Delay 15 400 660 920 VIN, VITRIP = 0 & 5V
tbl ITRIP Blanking Time 400 VITRIP = 1V
tflt ITRIP to FAULT Indication Delay 16 335 5 90 845 VIN, VITRIP = 0 & 5V
tflt,in Input Filter Time (All Six Inputs) 310 VIN = 0 & 5V
tfltclr LIN1,2,3 to FAULT Clear Time 17 6. 0 9.0 12.0 VIN, VITRIP = 0 & 5V
DT Deadtime (IR2130) 18 1.3 2.5 3.7
(IR2132) 18 0.4 0.8 1.2
SR+ Operational Amplifier Slew Rate (+) 19 4. 4 6.2
SR- Operational Amplifier Slew Rate (-) 20 2. 4 3.2
Dynamic Electrical Characteristics
VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS, CL = 1000 pF and TA = 25°C unless otherwise specified. The dynamic
electrical characteristics are defined in Figures 3 through 5.
Static Electrical Characteristics
VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters
are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3. The VO and IO parameters
are referenced to VS0,1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.
V
V/µs
µs
ns
V
mV
µA
µA
VIN = 0 & 5V
NOTE: For high side PWM, HIN pulse width must be ≥ 1.5µ sec
IR2130/IR2132(J)(S) & (PbF)
4www.irf.com
Symbol Definition Figure Min. Typ. Max. Units Test Conditions
IO+ Output High Short Circuit Pulsed Current 38 200 250 V O = 0V, VIN = 0V
PW10 µs
IO- Output Low Short Circuit Pulsed Current 39 420 500 VO = 15V, VIN = 5V
PW10 µs
VOS Operational Amplifer Input Offset Voltage 40 30 mV VS0 = VCA- = 0.2V
ICA- CA- Input Bais Current 41 4.0 nA VCA- = 2.5V
CMRR Op. Amp. Common Mode Rejection Ratio 42 60 80 VS0=VCA-=0.1V & 5V
PSRR Op. Amp. Power Supply Rejection Ratio 43 55 75 VS0 = VCA- = 0.2V
VCC = 10V & 20V
VOH,AMP Op. Amp. High Level Output Voltage 44 5.0 5.2 5.4 V VCA- = 0V, VS0 = 1V
VOL,AMP Op. Amp. Low Level Output Voltage 45 20 mV VCA- = 1V, VS0 = 0V
ISRC,AMP Op. Amp. Output Source Current 46 2.3 4.0 VCA- = 0V, VS0 = 1V
VCAO = 4V
ISRC,AMP Op. Amp. Output Sink Current 47 1.0 2.1 VCA- = 1V, VS0 = 0V
VCAO = 2V
IO+,AMP Operational Amplifier Output High Short 48 4 .5 6.5 VCA- = 0V, VS0 = 5V
Circuit Current VCAO = 0V
IO-,AMP Operational Amplifier Output Low Short 49 3.2 5.2 VCA- = 5V, VS0 = 0V
Circuit Current VCAO = 5V
Static Electrical Characteristics -- Continued
VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters
are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3. The VO and IO parameters
are referenced to VS0,1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.
mA
mA
Lead Assignments
28 Lead PDIP 44 Lead PLCC w/o 12 Leads 28 Lead SOIC (Wide Body)
IR2130 / IR2132 IR2130J / IR2132J IR2130S / IR2132S
Part Number
dB
IR2130/IR2132(J)(S) & (PbF)
www.irf.com 5
Functional Block Diagram
Symbol Description
HIN1,2,3 Logic inputs for high side gate driver outputs (HO1,2,3), out of phase
LIN1,2,3 Logic inputs for low side gate driver output (LO1,2,3), out of phase
FAULT Indicates over-current or undervoltage lockout (low side) has occurred, negative logic
VCC Low side and logic fixed supply
ITRIP Input for over-current shutdown
CAO Output of current amplifier
CA- Negative input of current amplifier
VSS Logic ground
VB1,2,3 High side floating supplies
HO1,2,3 High side gate drive outputs
VS1,2,3 High side floating supply returns
LO1,2,3 Low side gate drive outputs
VS0 Low side return and positive input of current amplifier
Lead Definitions
IR2130/IR2132(J)(S) & (PbF)
6www.irf.com
Figure 3. Deadtime Waveform Definitions Figure 4. Input/Output Switching Time Waveform
Definitions
Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit
LO1,2,3
HO1,2,3
ITRIP
DT DT
tr
ton toff tf
50% 50%
90% 90%
10% 10%
50% 50%
50% 50%
FAULT
LIN1,2,3
HIN1,2,3
HIN1,2,3
LIN1,2,3
HO1,2,3
LO1,2,3
HIN1,2,3
LIN1,2,3
LO1,2,3
HO1,2,3
<50 V/ns
IR2130/IR2132(J)(S) & (PbF)
www.irf.com 7
Figure 5. Overcurrent Shutdown Switching Time
Waveform Definitions
Figure 6. Diagnostic Feedback Operational Amplifier Circuit
50%
50%
50% 50%
50%
tflt
titrip
tfltclr
FAULT
LIN1,2,3
ITRIP
LO1,2,3
CAO
VS0
CA- VSS
VCC
VSS
+
-
U
tin,fil tin,fil
on on on off
offoff
high low
HIN/LIN
HO/LO
Figure 5.5 Input Filter Function
IR2130/IR2132(J)(S) & (PbF)
8www.irf.com
Figure 7. Operational Amplifier Slew Rate
Measurement Figure 8. Operational Amplifier Input Offset Voltage
Measurement
VCAO
21 - 0.2V
VOS =
90%
10%
0V
3V T1 T2
V
V
T1
SR+ = V
T2
SR- =
CAO
VS0
CA-
VSS
VCC
15V
50 pF
+
-
0V
3V
CAO
+
VS0 VCC
VSS
0.2V 1k
20k
CA-
15V
+
-
Measure VCAO1 at VS0 = 0.1V
VCAO2 at VS0 = 5V
CMRR = -20*LOG
Figure 9. Operational Amplifier Common Mode
Rejection Ratio Measurements
(VCAO1-0.1V) - (VCAO2-5V)
4.9V (dB)
CAO
VS0
CA-
VSS
VCC
15V
-
+
Measure VCAO1 at VCC = 10V
VCAO2 at VCC = 20V
PSRR = -20*LOG VCAO1 - VCAO2
Figure 10. Operational Amplifier Power Supply
Rejection Ratio Measurements
(10V) (21)
CAO
+
VS0
VCC
VSS
1k
20k
CA- +
-
0.2V
IR2130/IR2132(J)(S) & (PbF)
www.irf.com 9
Figure 11B. Turn-On Time vs. Supply VoltageFigure 11A. Turn-On Time vs. Temperature
0.00
0.30
0.60
0.90
1.20
1.50
-50 -25 0 25 50 75 100 125
Temperature (°C)
Turn-On Delay Time (µs)
Typ.
Min.
Max.
0.00
0.30
0.60
0.90
1.20
1.50
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Turn-On Delay Time (µs)
Max.
Typ.
Min.
Figure 12A. Turn-Off Time vs. Temperature
0.00
0.20
0.40
0.60
0.80
1.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
Turn-Off Delay Time (µs)
Typ.
Min.
Max.
Figure 12B. Turn-Off Time vs. Supply Voltage
0.00
0.20
0.40
0.60
0.80
1.00
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Turn-Off Delay Time (µs)
Max.
Typ.
Min.
0.00
0.30
0.60
0.90
1.20
1.50
0123456
Typ.
Max
Figure 11C. Turn-On Time vs. Voltage
Turn-On Time (µs)
Input Voltage (V)
Figure 12C. Turn-Off Time vs. Input Voltage
Turn-Off Time (µs)
Input Voltage (V)
0.00
0.30
0.60
0.90
1.20
1.50
0123456
Max
Typ
Min.
IR2130/IR2132(J)(S) & (PbF)
10 www.irf.com
Figure 14A. Turn-Off Fall Time vs. Temperature Figure 14B. Turn-Off Fall Time vs. Voltage
0
25
50
75
100
125
-50 -25 0 25 50 75 100 125
Temperature (°C)
Turn-Off Fall Time (ns)
Typ.
Max.
0
25
50
75
100
125
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Turn-Off Fall Time (ns)
Max.
Typ.
Figure 15B. ITRIP to Output Shutdown Time vs. VoltageFigure 15A. ITRIP to Output Shutdown Time vs.
Temperature
0.00
0.30
0.60
0.90
1.20
1.50
-50 -25 0 25 50 75 100 125
Temperature (°C)
ITRIP to Output Shutdown Delay Time (µs)
Typ.
Min.
Max.
0.00
0.30
0.60
0.90
1.20
1.50
10 12 14 16 18 20
VBIAS Supply Voltage (V)
ITRIP to Output Shutdown Delay Time (µs)
Max.
Typ.
Min.
Figure 13A. Turn-On Rise Time vs. Temperature Figure 13B. Turn-On Rise Time vs. Voltage
0
50
100
150
200
250
-50 -25 0 25 50 75 100 125
Temperature (°C)
Turn-On Rise Time (ns)
Typ.
Max.
0
50
100
150
200
250
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Turn-On Rise Time (ns)
Max.
Typ.
IR2130/IR2132(J)(S) & (PbF)
www.irf.com 11
Figure 16A. ITRIP to FAULT Indication Time vs.
Temperature Figure 16B. ITRIP to FAULT Indication Time vs. Voltage
0.00
0.30
0.60
0.90
1.20
1.50
10 12 14 16 18 20
VCC Supply Voltage (V)
ITRIP to FAULT Indication Delay Time (µs)
Max.
Typ.
Min.
0.00
0.30
0.60
0.90
1.20
1.50
-50 -25 0 25 50 75 100 125
Temperature (°C)
ITRIP to FAULT Indication Delay Time (µs)
Typ.
Min.
Max.
Figure 17A. LIN1,2,3 to FAULT Clear Time vs.
Temperature Figure 17B. LIN1,2,3 to FAULT Clear Time vs. Voltage
0.0
5.0
10.0
15.0
20.0
25.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
LIN1,2,3 to FAULT Clear Time (µs)
Typ.
Min.
Max.
0.0
5.0
10.0
15.0
20.0
25.0
10 12 14 16 18 20
VCC Supply Voltage (V)
LIN1,2,3 to FAULT Clear Time (µs)
Max.
Typ.
Min.
Figure 18A. Deadtime vs. Temperature (IR2130) Figure 18B. Deadtime vs. Voltage (IR2130)
0.00
1.50
3.00
4.50
6.00
7.50
-50 -25 0 25 50 75 100 125
Temperature (°C)
Deadtime (µs)
Typ.
Min.
Max.
0.00
1.50
3.00
4.50
6.00
7.50
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Deadtime (µs)
Max.
Typ.
Min.
IR2130/IR2132(J)(S) & (PbF)
12 www.irf.com
Figure 18C. Deadtime vs. Temperature (IR2132) Figure 18D. Deadtime vs. Voltage (IR2132)
0.00
0.50
1.00
1.50
2.00
2.50
-50 -25 0 25 50 75 100 125
Temperature (°C)
Deadtime (µs)
Typ.
Min.
Max.
0.00
0.50
1.00
1.50
2.00
2.50
10 12 14 16 18 20
VBIAS Supply V oltage (V)
Deadtime (µs)
Max.
Typ.
Min.
Figure 19A. Amplifier Slew Rate (+) vs. Temperature Figure 19B. Amplifier Slew Rate (+) vs. Voltage
0.0
2.0
4.0
6.0
8.0
10.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
Amplifier Slew Rate + (V/µs)
Typ.
Min.
0.0
2.0
4.0
6.0
8.0
10.0
10 12 14 16 18 20
VCC Supply Voltage (V)
Amplifier Slew Rate + (V/µs)
Min.
Typ.
Figure 20A. Amplifier Slew Rate (-) vs. Temperature Figure 20B. Amplifier Slew Rate (-) vs. Voltage
0.00
1.00
2.00
3.00
4.00
5.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
Amplifier Slew Rate - (V/µs)
Typ.
Min.
0.00
1.00
2.00
3.00
4.00
5.00
10 12 14 16 18 20
VCC Supply Voltage (V)
Amplifier Slew Rate - (V/µs)
Min.
Typ.
IR2130/IR2132(J)(S) & (PbF)
www.irf.com 13
Figure 22A. Logic “1” Input Threshold vs. Temperature Figure 22B. Logic “1” Input Threshold vs. Voltage
0.00
1.00
2.00
3.00
4.00
5.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
Logic "1" Input Threshold (V)
Max.
0.00
1.00
2.00
3.00
4.00
5.00
10 12 14 16 18 20
VCC Supply Voltage (V)
Logic "1" Input Threshold (V)
Max.
Figure 23A. ITRIP Input Positive Going Threshold
vs. Temperature Figure 23B. ITRIP Input Positive Going Threshold
vs. Voltage
0
150
300
450
600
750
-50 -25 0 25 50 75 100 125
Temperature (°C)
ITRIP Input Positive Going Threshold (mV)
Typ.
Min.
Max.
0
150
300
450
600
750
10 12 14 16 18 20
VCC Supply Voltage (V)
ITRIP Input Positive Going Threshold (mV)
Max.
Typ.
Min.
Figure 21A. Logic “0” Input Threshold vs. Temperature Figure 20B. Logic “0” Input Threshold vs. Voltage
0.00
1.00
2.00
3.00
4.00
5.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
Logic "0" Input Threshold (V)
Min.
0.00
1.00
2.00
3.00
4.00
5.00
10 12 14 16 18 20
VCC Supply Voltage (V)
Logic "0" Input Threshold (V)
Min.
IR2130/IR2132(J)(S) & (PbF)
14 www.irf.com
Figure 26A. Offset Supply Leakage Current
vs. Temperature Figure 26B. Offset Supply Leakage Current vs. Voltage
0
100
200
300
400
500
0 100 200 300 400 500 600
VB Boost Voltage (V)
Offset Supply Leakage Current (µA)
Max.
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Temperature (°C)
Offset Supply Leakage Current (µA)
Max.
Figure 25A. Low Level Output vs. Temperature Figure 25B. Low Level Output vs. Voltage
0.00
0.20
0.40
0.60
0.80
1.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
Low Level Output Voltage (V)
Max.
0.00
0.20
0.40
0.60
0.80
1.00
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Low Level Output Voltage (V)
Max.
Figure 24A. High Level Output vs. Temperature Figure 24B. High Level Output vs. Voltage
0.00
0.20
0.40
0.60
0.80
1.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
High Level Output Voltage (V)
Max.
0.00
0.20
0.40
0.60
0.80
1.00
10 12 14 16 18 20
VBIAS Supply Voltage (V)
High Level Output Voltage (V)
Max.
IR2130/IR2132(J)(S) & (PbF)
www.irf.com 15
Figure 29A. Logic “1” Input Current vs. Temperature Figure 29A. Logic “1” Input Current vs. Voltage
0.00
0.25
0.50
0.75
1.00
1.25
-50 -25 0 25 50 75 100 125
Temperature (°C)
Logic "1" Input Bias Current (mA)
Typ.
Max.
0.00
0.25
0.50
0.75
1.00
1.25
10 12 14 16 18 20
VCC Supply Voltage (V)
Logic "1" Input Bias Current (mA)
Max.
Typ.
Figure 28A. VCC Supply Current vs. Temperature Figure 28B. VCC Supply Current vs. Voltage
0.0
2.0
4.0
6.0
8.0
10.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
VCC Supply Current (mA)
Typ.
Max.
0.0
2.0
4.0
6.0
8.0
10.0
10 12 14 16 18 20
VCC Supply Voltage (V)
VCC Supply Current (mA)
Max.
Typ.
Figure 27A. VBS Supply Current vs. Temperature Figure 27B. VBS Supply Current vs. Voltage
0
20
40
60
80
100
-50 -25 0 25 50 75 100 125
Temperature (°C)
VBS Supply Current (µA)
Typ.
Max.
0
20
40
60
80
100
10 12 14 16 18 20
VBS Floating Supply Voltage (V)
VBS Supply Current (µA)
Max.
Typ.
IR2130/IR2132(J)(S) & (PbF)
16 www.irf.com
Figure 30A. Logic “0” Input Current vs. Temperature Figure 30B. Logic “0” Input Current vs. Voltage
Figure 32A. “Low” ITRIP Current vs. Temperature Figure 32B. “Low” ITRIP Current vs. Voltage
0.00
0.25
0.50
0.75
1.00
1.25
-50 -25 0 25 50 75 100 125
Temperature (°C)
Logic "0" Input Bias Current (mA)
Typ.
Max.
0.00
0.25
0.50
0.75
1.00
1.25
10 12 14 16 18 20
VCC Supply Voltage (V)
Logic "0" Input Bias Current (mA)
Max.
Typ.
0
50
100
150
200
250
-50 -25 0 25 50 75 100 125
Temperature (°C)
"Low" ITRIP Bias Current (nA)
Max.
0
100
200
300
400
500
10 12 14 16 18 20
VCC Supply Voltage (V)
"Low" ITRIP Bias Current (µA)
Max.
Figure 31A. “High” ITRIP Current vs. Temperature Figure 31B. “High” ITRIP Current vs. Voltage
0
100
200
300
400
500
10 12 14 16 18 20
VCC Supply Voltage (V)
"High" ITRIP Bias Current (µA)
Max.
Typ.
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Temperature (°C)
"High" ITRIP Bias Current (µA)
Typ.
Max.
IR2130/IR2132(J)(S) & (PbF)
www.irf.com 17
Figure 33. VBS Undervoltage (+) vs. Temperature Figure 34. VBS Undervoltage (-) vs. Temperature
Figure 37A. FAULT Low On Resistance vs.
Temperature Figure 37B. FAULT Low On Resistance vs. Voltage
6.0
7.0
8.0
9.0
10.0
11.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
VBS Undervoltage Lockout + (V)
Typ.
Min.
Max.
6.0
7.0
8.0
9.0
10.0
11.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
VBS Undervoltage Lockout - (V)
Typ.
Min.
Max.
0
50
100
150
200
250
-50 -25 0 25 50 75 100 125
Temperature (°C)
FAULT- Low On Resistance (ohms)
Typ.
Max.
0
50
100
150
200
250
10 12 14 16 18 20
VCC Supply Voltage (V)
FAULT- Low On Resistance (ohms)
Max.
Typ.
Figure 35. VCC Undervoltage (+) vs. Temperature Figure 36. VCC Undervoltage (-) vs. Temperature
6.0
7.0
8.0
9.0
10.0
11.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
VCC Undervoltage Lockout + (V)
Typ.
Min.
Max.
6.0
7.0
8.0
9.0
10.0
11.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
VCC Undervoltage Lockout - (V)
Typ.
Min.
Max.
IR2130/IR2132(J)(S) & (PbF)
18 www.irf.com
Figure 40A. Amplifier Input Offset vs. Temperature Figure 40B. Amplifier Input Offset vs. Voltage
0
10
20
30
40
50
10 12 14 16 18 20
VCC Supply Voltage (V)
Amplifier Input Offset Voltage (mV)
Max.
0
10
20
30
40
50
-50 -25 0 25 50 75 100 125
Temperature (°C)
Amplifier Input Offset Voltage (mV)
Max.
Figure 39A. Output Sink Current vs. Temperature Figure 39B. Output Sink Current vs. Voltage
0
150
300
450
600
750
-50 -25 0 25 50 75 100 125
Temperature (°C)
Output Sink Current (mA)
Min.
Typ.
0
125
250
375
500
625
750
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Output Sink Current (mA)
Min.
Typ.
Figure 38A. Output Source Current vs. Temperature Figure 38B. Output Source Current vs. Voltage
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Temperature (°C)
Output Source Current (mA)
Min.
Typ.
0
100
200
300
400
500
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Output Source Current (mA)
Min.
Typ.
IR2130/IR2132(J)(S) & (PbF)
www.irf.com 19
Figure 43A. Amplifier PSRR vs. Temperature Figure 43B. Amplifier PSRR vs. Voltage
0
20
40
60
80
100
-50 -25 0 25 50 75 100 125
Temperature (°C)
Amplifier PSRR (dB)
Typ.
Min.
0
20
40
60
80
100
10 12 14 16 18 20
VCC Supply Voltage (V)
Amplifier PSRR (dB)
Min.
Typ.
Figure 42A. Amplifier CMRR vs. Temperature Figure 42B. Amplifier CMRR vs. Voltage
0
20
40
60
80
100
-50 -25 0 25 50 75 100 125
Temperature (°C)
Amplifier CMRR (dB)
Typ.
Min.
0
20
40
60
80
100
10 12 14 16 18 20
VCC Supply Voltage (V)
Amplifier CMRR (dB)
Min.
Typ.
Figure 41A. CA- Input Current vs. Temperature Figure 41B. CA- Input Current vs. Voltage
0.0
2.0
4.0
6.0
8.0
10.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
CA- Input Bias Current (nA)
Max.
0.0
2.0
4.0
6.0
8.0
10.0
10 12 14 16 18 20
VCC Supply Voltage (V)
CA- Input Bias Current (nA)
Max.
IR2130/IR2132(J)(S) & (PbF)
20 www.irf.com
Figure 46A. Amplifier Output Source Current vs.
Temperature Figure 46B. Amplifier Output Source Current vs.
Voltage
0.0
2.0
4.0
6.0
8.0
10.0
10 12 14 16 18 20
VCC Supply Voltage (V)
Amplifier Output Source Current (mA)
Typ.
Min.
0.0
2.0
4.0
6.0
8.0
10.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
Amplifier Output Source Current (mA)
Typ.
Min.
Figure 45A. Amplifier Low Level Output vs.
Temperature Figure 45B. Amplifier Low Level Output vs. Voltage
0
20
40
60
80
100
-50 -25 0 25 50 75 100 125
Temperature (°C)
Amplifier Low Level Output Voltage (mV)
Max.
0
20
40
60
80
100
10 12 14 16 18 20
VCC Supply Voltage (V)
Amplifier Low Level Output Voltage (mV)
Max.
Figure 44A. Amplifier High Level Output vs.
Temperature Figure 44B. Amplifier High Level Output vs. Voltage
4.50
4.80
5.10
5.40
5.70
6.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
Amplifier High Level Output Voltage (V)
Typ.
Min.
Max.
4.50
4.80
5.10
5.40
5.70
6.00
10 12 14 16 18 20
VCC Supply Voltage (V)
Amplifier High Level Output Voltage (V)
Max.
Typ.
Min.
IR2130/IR2132(J)(S) & (PbF)
www.irf.com 21
Figure 49A. Amplifier Output Low Short Circuit Current
vs. Temperature Figure 49B. Amplifier Output Low Short Circuit Current
vs. Voltage
0.0
3.0
6.0
9.0
12.0
15.0
10 12 14 16 18 20
VCC Supply Voltage (V)
Output Low Short Circuit Current (mA)
Max.
Typ.
0.0
3.0
6.0
9.0
12.0
15.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
Output Low Short Circuit Current (mA)
Typ.
Max.
Figure 48A. Amplifier Output High Short Circuit
Current vs. Temperature Figure 48B. Amplifier Output High Short Circuit
Current vs. Voltage
0.0
3.0
6.0
9.0
12.0
15.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
Output High Short Circuit Current (mA)
Typ.
Max.
0.0
3.0
6.0
9.0
12.0
15.0
10 12 14 16 18 20
VCC Supply Voltage (V)
Output High Short Circuit Current (mA)
Max.
Typ.
Figure 47A. Amplifier Output Sink Current vs.
Temperature Figure 47B. Amplifier Output Sink Current vs. Voltage
0.00
1.00
2.00
3.00
4.00
5.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
Amplifier Output Sink Current (mA)
Typ.
Min.
0.00
1.00
2.00
3.00
4.00
5.00
10 12 14 16 18 20
VCC Supply Voltage (V)
Amplifier Output Sink Current (mA)
Typ.
Min.
IR2130/IR2132(J)(S) & (PbF)
22 www.irf.com
Figure 53. IR2130/IR2132 TJ vs. Frequency (IRF840)
RGATE = 15
, VCC = 15V Figure 54. IR2130/IR2132 TJ vs. Frequency (IRF450)
RGATE = 10
, VCC = 15V
20
40
60
80
100
1E+2 1E+3 1E+4 1E+5
Frequency (Hz)
Junction Temperature (°C)
320V
160V
0V
480V
20
40
60
80
100
120
140
1E+2 1E+3 1E+4 1E+5
Frequency (Hz)
Junction Temperature (°C)
320V
160V
0V
480V
Figure 51. IR2130/IR2132 TJ vs. Frequency (IRF820)
RGATE = 33
, VCC = 15V Figure 52. IR2130/IR2132 TJ vs. Frequency (IRF830)
RGATE = 20
, VCC = 15V
20
25
30
35
40
45
50
1E+2 1E+3 1E+4 1E+5
Frequency (Hz)
Junction Temperature (°C)
320V
160V
0V
480V
20
25
30
35
40
45
50
1E+2 1E+3 1E+4 1E+5
Frequency (Hz)
Junction Temperature (°C)
320V
160V
0V
480V
Figure 50. Maximum VS Negative Offset vs. VBS Supply Voltage
-15.0
-12.0
-9.0
-6.0
-3.0
0.0
10 12 14 16 18 20
VBS Floating Supply Voltage (V)
VS Offset Supply Voltage (V)
Typ.
IR2130/IR2132(J)(S) & (PbF)
www.irf.com 23
Figure 58. IR2130J/IR2132J
TJ vs. Frequency (IRGPC50KD2)
RGATE = 10
, VCC = 15V
Figure 55. IR2130J/IR2132J
TJ vs. Frequency (IRGPC20KD2)
RGATE = 33
, VCC = 15V
Figure 56. IR2130J/IR2132J
TJ vs. Frequency (IRGPC30KD2)
RGATE = 20
, VCC = 15V
20
30
40
50
60
70
80
90
100
110
120
1E+2 1E+3 1E+4 1E+5
Junction Tem per ature (° C)
480V
160V
0V
320V
Frequency (Hz)
20
30
40
50
60
70
80
90
100
110
120
1E+2 1E+3 1E+4 1E+5
Junction Tem per atur e ( ° C)
480V
320V
0V
160
Frequency (Hz)
20
30
40
50
60
70
80
90
100
110
120
1E+2 1E+3 1E+4 1E+5
Junctio n T e m p e ra tu re C )
480V
160V
320V
0V
Frequency (Hz)
Figure 57. IR2130J/IR2132J
TJ vs. Frequency (IRGPC40KD2)
RGATE = 15
, VCC = 15V
20
30
40
50
60
70
80
90
100
110
120
1E+2 1E+3 1E+4 1E+5
Junction Temperature (°C)
480V
160V
320V
0V
Frequency (Hz)
IR2130/IR2132(J)(S) & (PbF)
24 www.irf.com
28-Lead PDIP (wide body) 01-6011
01-3024 02 (MS-011AB)
Case outlines
01-6013
01-304002 (MS-013AE)28-Lead SOIC (wide body)
IR2130/IR2132(J)(S) & (PbF)
www.irf.com 25
01-6009 00
01-3004 02(mod.) (MS-018AC)
44-Lead PLCC w/o 12 leads
NOTES
Case outline
IR2130/IR2132(J)(S) & (PbF)
26 www.irf.com
LEADFREE PART MARKING INFORMATION
ORDER INFORMATION
Basic Part (Non-Lead Free)
28-Lead PDIP IR2130 order IR2130
28-Lead SOIC IR2130S order IR2130S
28-Lead PDIP IR2132 order IR2132
28-Lead SOIC IR2132S order IR2132S
44-Lead PLCC IR2130J order IR2130J
44-Lead PLCC IR2132J order IR2132J
Leadfree Part
28-Lead PDIP IR2130 order IR2130PbF
28-Lead SOIC IR2130S order IR2130SPbF
28-Lead PDIP IR2132 order IR2132PbF
28-Lead SOIC IR2132S order IR2132SPbF
44-Lead PLCC IR2130J order IR2130JPbF
44-Lead PLCC IR2132J order IR2132JPbF
Lead Free Released
Non-Lead Free
Released
Part number
Date code
IRxxxxxx
YWW?
?XXXX
Pin 1
Identifier
IR logo
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
P
?MARKING CODE
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
This product has been qualified per industrial level
Data and specifications subject to change without notice. 4/2/2004