AZ10EP16VS
AZ100EP16VS
ECL/PECL Differential Receiver with Variable Output Swing
1630 S. STAPLEY DR., SUITE 125 MESA, ARIZONA 85204 USA (480) 962-5881 FAX (480) 890-2541
www.azmicrotek.com
ARIZONA MICROTEK, INC.
FEATURES
Silicon-Germanium for High Speed Operation
150ps Typical Propagation Delay
AZ100EP16VS Functionally Equivalent to ON
Semiconductor MC100EP16VS at 3.3V
Available in a 3x3mm MLP Package
DESCRIPTION
The AZ10/100EP16VS is a Silicon–Germanium (SiGe) differential receiver with variable output swing. The
EP16VS has functionality and output transition times similar to the EP16, with an input that controls the amplitude
of the Q/Q¯ outputs.
The operational range of the EP16VS control input, VCTRL, is from VREF (full swing) to VCC (min. swing).
Maximum swing is achieved by leaving the VCTRL pin open or tied to VEE. Simple control of the output swing can be
obtained by a variable resistor between the VREF and VCC pins, with the wiper driving VCTRL. Typical application
circuits and results are described in this Data Sheet.
The EP16VS provides a VREF output for a DC bias for AC coupling to the device. The VREF pin should be used
only as a bias for the EP16VS as its current sink/source capability is limited. Whenever used, the VREF pin should
be bypassed to ground via a 0.01µF capacitor.
Under open input conditions for D/D¯, the Q/Q¯ outputs are not guaranteed.
NOTE: Specifications in ECL/PECL tables are valid when thermal equilibrium is established.
PACKAGE AVAILABILITY
PACKAGE PART NO. MARKING
MLP 8 AZ10EP16VSL AZM16E
MLP 8 T&R AZ10EP16VSLR1 AZM16E
MLP 8 T&R AZ10EP16VSLR2 AZM16E
MLP 8 AZ100EP16VSL AZM16F
MLP 8 T&R AZ100EP16VSLR1 AZM16F
MLP 8 T&R AZ100EP16VSLR2 AZM16F
SOIC 8 AZ10EP16VSD AZM10EP16VS
SOIC 8 T&R AZ10EP16VSDR1 AZM10EP16VS
SOIC 8 T&R AZ10EP16VSDR2 AZM10EP16VS
SOIC 8 AZ100EP16VSD AZM100EP16VS
SOIC 8 T&R AZ100EP16VSDR1 AZM100EP16VS
SOIC 8 T&R AZ100EP16VSDR2 AZM100EP16VS
TSSOP 8 AZ10EP16VST AZTP16VS
TSSOP 8 T&R AZ10EP16VSTR1 AZTP16VS
TSSOP 8 T&R AZ10EP16VSTR2 AZTP16VS
TSSOP 8 AZ100EP16VST AZHP16VS
TSSOP 8 T&R AZ100EP16VSTR1 AZHP16VS
TSSOP 8 T&R AZ100EP16VSTR2 AZHP16VS
AZ10EP16VS
AZ100EP16VS
November 2001 * REV - 3 www.azmicrotek.com
2
Absolute Maximum Ratings are those values beyond which device life may be impaired.
Symbol Characteristic Rating Unit
VCC PECL Power Supply (VEE = 0V) 0 to +4.5 Vdc
VI PECL Input Voltage (VEE = 0V) 0 to +4.5 Vdc
VEE ECL Power Supply (VCC = 0V) -4.5 to 0 Vdc
VI ECL Input Voltage (VCC = 0V) -4.5 to 0 Vdc
IOUT Output Current --- Continuous
--- Surge
50
100 mA
TA Operating Temperature Range -40 to +85 °C
TSTG Storage Temperature Range -65 to +150 °C
10K ECL DC Characteristics (VEE = -3.0V to -3.6V, VCC = GND)
-40°C 0°C 25°C 85°C
Symbol Characteristic Min Typ Max Min Typ Max Min Typ Max Min Typ Max Unit
VOH Output HIGH Voltage1 -1085 -835 -1020 -895 -770 -960 -710 mV
VOL Output LOW Voltage1
VCTRL = VREF -2115 -1865 -2050 -1925 -1800 -1990 -1740 mV
VOL Output LOW Voltage1
VCTRL = VCC -1330 -1080 -1265 -1140 -1015 -1205 -915 mV
VREF Reference Voltage -1700 -1600 -1500 -1670 -1570 -1470 -1650 -1550 -1450 -1600 -1500 -1400 mV
IIH
Input HIGH Current
D,D¯
VCTRL
80
400
80
400
80
400
80
400 µA
IIL Input LOW Current 0.5 0.5 0.5 0.5 µA
IEE Power Supply Current 21 27 36 22 28 37 22 29 38 24 30 40 mA
1. Each output is terminated through a 50 resistor to VCC – 2V.
LOGIC DIAGRAM AND PINOUT ASSIGNMENT
PIN DESCRIPTION
PIN FUNCTION
D, D¯ Data Inputs
VCTRL Output Swing Control
Q, Q¯ Data Outputs
VREF Reference Voltage Output
VCC Positive Supply
VEE Negative Supply
8
4
5
6
3
2
1
7
VCC
D
VEE
Q
Q
VREF
D
VCTRL
8 SOIC & 8 TSSOP
MLP 8
(
TOP VIEW
)
8
5
6
7
4
3
2
1VCC
D
VEE
Q
Q
VREF
D
VCTRL
AZ10EP16VS
AZ100EP16VS
November 2001 * REV - 3 www.azmicrotek.com
3
10K LVPECL DC Characteristics (VEE = GND, VCC = +3.3V)
-40°C 0°C 25°C 85°C
Symbol Characteristic Min T
yp
Max Min T
yp
Max Min T
yp
Max Min T
yp
Max Unit
VOH Output HIGH Voltage1,2 2215 2465 2280 2405 2530 2340 2590 mV
VOL Output LOW Voltage2
VCTRL = VREF 1185 1435 1250 1375 1500 1310 1560 mV
VOL Output LOW Voltage2
VCTRL = VCC 1970 2220 2035 2160 2285 2095 2385 mV
VREF Reference Voltage 1600 1700 1800 1630 1730 1830 1650 1750 1850 1700 1800 1900 mV
IIH
Input HIGH Current
D,D¯
VCTRL
80
400
80
400
80
400
80
400 µA
IIL Input LOW Current 0.5 0.5 0.5 0.5 µA
IEE Power Supply Current 21 27 36 22 28 37 22 29 38 24 30 40 mA
1. For supply voltages other that 3.3V, use the ECL table values and ADD supply voltage value.
2. Each output is terminated through a 50 resistor to VCC – 2V.
100K ECL DC Characteristics (VEE = -3.0V to -3.6V, VCC = GND)
-40°C 0°C 25°C 85°C
Symbol Characteristic Min Typ Max Min Typ Max Min Typ Max Min Typ Max Unit
VOH Output HIGH Voltage1 -1095 -890 -1035 -890 -1035 -965 -890 -1035 -890 mV
VOL Output LOW Voltage1
VCTRL = VREF -1925 -1835 -1965 -1775 -1965 -1870 -1775 -1965 -1775 mV
VOL Output LOW Voltage1
VCTRL = VCC -1180 -1045 -1160 -970 -1160 -1065 -970 -1160 -970 mV
VREF Reference Voltage -1650 -1450 -1650 -1450 -1650 -1550 -1450 -1650 -1450 mV
IIH
Input HIGH Current
D,D¯
VCTRL
80
400
80
400
80
400
80
400 µA
IIL Input LOW Current 0.5 0.5 0.5 0.5 µA
IEE Power Supply Current 20 26 35 21 27 36 22 28 38 25 31 41 mA
1. Each output is terminated through a 50 resistor to VCC – 2V.
100K LVPECL DC Characteristics (VEE = GND, VCC = +3.3V)
-40°C 0°C 25°C 85°C
Symbol Characteristic Min T
yp
Max Min T
yp
Max Min T
yp
Max Min T
yp
Max Unit
VOH Output HIGH Voltage1,2 3905 4110 3965 4110 3965 4035 4110 3965 4110 mV
VOL Output LOW Voltage2
VCTRL = VREF 3075 3165 3035 3225 3035 3130 3225 3035 3225 mV
VOL Output LOW Voltage2
VCTRL = VCC 3820 3955 3840 4030 3840 3935 4030 3840 4030 mV
VREF Reference Voltage 1650 1850 1650 1850 1650 1750 1850 1650 1850 mV
IIH
Input HIGH Current
D,D¯
VCTRL
80
400
80
400
80
400
80
400 µA
IIL Input LOW Current 0.5 0.5 0.5 0.5 µA
IEE Power Supply Current 20 26 35 21 27 36 22 28 38 25 31 41 mA
1. For supply voltages other that 3.3V, use the ECL table values and ADD supply voltage value.
2. Each output is terminated through a 50 resistor to VCC – 2V.
AZ10EP16VS
AZ100EP16VS
November 2001 * REV - 3 www.azmicrotek.com
4
AC Characteristics (VEE = -3.0 to -3.6V, VCC = GND, VCTRL=VREF or VEE = GND, VCC = +3.0V to 3.6V, VCTRL = VREF)
-40°C 0°C 25°C 85°C
Symbol Characteristic Min Typ Max Min Typ Max Min Typ Max Min Typ Max Unit
fmax
Maximum Toggle
Frequency5 >4 >4 >4 >4 GHz
tPLH / tPHL Input to Output
Delay
(Diff)
(SE)
100
150
155
240
100
150
155
240
100
150
155
240
120
170
175
280
ps
tSKEW Duty Cycle Skew1 (Diff) 4 20 4 15 4 15 4 15 ps
Vpp Minimum Input Swing2 150 150 150 150 mV
VCMR Common Mode Range3 VEE +
2.0 V
CC
VEE +
2.0 V
CC
VEE +
2.0 V
CC
VEE +
2.0 V
CC V
Av Small Signal Gain4 28 dB
tr / tf Output Rise/Fall Times Q
(20% - 80%) 120 70 120 180 120 180 120 200 ps
1. Duty cycle skew is the difference between a tPLH and tPHL propagation delay through a device.
2. VPP is the minimum peak-to-peak differential input swing for which AC parameters are guaranteed.
3. The VCMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within
the specified range and the peak-to-peak voltage lies between VPP(min) and 1V.
4. Differential input, differential output. 240 to VEE on Q/Q¯ outputs and VCTRL = Open Circuit.
5. See graph below.
Large Signal Performance*
0
100
200
300
400
500
600
700
800
900
1000
0 1000 2000 3000 4000 5000 6000
FREQUENCY (MHz)
VOUTpp (mV)
VCTRL=VCC
VCTRL=VCC-2.0V
VCTRL=VCC-1.5V
VCTRL=VCC-1.0V
VCTRL=VCC-0.5V
*Measured using a 750mV differential input source at 50% duty cycle.
AZ10EP16VS
AZ100EP16VS
November 2001 * REV - 3 www.azmicrotek.com
5
Typical AZ100EP16VS Voltage Output Swing at +25C, VEE Nom
(see Figure 1 and Figure 2)
1.240 V (100K ECL)
0
25
50
75
100
0.0 0.4 0.8 1.2 1.6
VCTRL (V)
VSWING (% pk-pk differential)
%OUT
100K ECL
Figure 2: Alternative Implementation
8
5
6
7
4
3
2
1 VCC
D
VEE
Q
Q
VREF
D
VCTRL
V
CTRL
50
-2V
50
VSWING
(pk-pk)
Figure 1: Voltage Source Implementation
8
5
6
7
4
3
2
1 VCC
D
VEE
Q
Q
VREF
D
V
CTRL
+ 3.3V
1k
VSWING
(pk-pk)
240 240
AZ10EP16VS
AZ100EP16VS
November 2001 * REV - 3 www.azmicrotek.com
6
MILLIMETERS INCHES
DIM MIN MAX MIN MAX
A 1.75 0.069
A1 0.10 0.25 0.004 0.010
A2 1.25 1.45 0.049 0.057
A3 0.25 0.01
bp 0.36 0.49 0.014 0.019
c 0.19 0.25 0.0075 0.0100
D 4.8 5.0 0.19 0.20
E 3.8 4.0 0.15 0.16
e 1.27 0.050
HE 5.80 6.20 0.228 0.244
L 1.05 0.041
Lp 0.40 1.00 0.016 0.039
Q 0.60 0.70 0.024 0.028
v 0.25 0.01
w 0.25 0.01
y 0.10 0.004
Z 0.30 0.70 0.012 0.028
θ 0O 8
O 0
O 8
O
PACKAGE DIAGRAM
SOIC 8
N
OTES:
1. DIMENSIONS D AND E DO NOT
INCLUDE MOLD PROTRUSION.
2. MAXIMUM MOLD PROTRUSION
FOR D IS 0.15mm.
3. MAXIMUM MOLD PROTRUSION
FOR E IS 0.25mm.
AZ10EP16VS
AZ100EP16VS
November 2001 * REV - 3 www.azmicrotek.com
7
PACKAGE DIAGRAM
MLP 8
N
OTES
1. DIMENSIONING AND TOLERANCING
CONFORM TO ASME T14-1994.
2. THE TERMINAL #1 AND PAD
NUMBERING CONVENTION SHALL
CONFORM TO JESD 95-1 SPP-012.
3. DIMENSION b APPLIES TO METALLIZED
PAD AND IS MEASURED BETWEEN 0.25
AND 0.30mm FROM PAD TIP.
4. COPLANARITY APPLIES TO THE
EXPOSED PAD AS WELL AS THE
TERMINALS.
MILLIMETERS
DIM MIN MAX
A 0.80 1.00
A1 0.00 0.05
A3 0.25 REF
b 0.30 0.35
D 2.90 3.10
D2 1.65 1.95
E 2.90 3.10
E2 1.65 1.95
e 0.65 BSC
L 0.35 0.45
aaa 0.25
bbb 0.10
ccc 0.10
AZ10EP16VS
AZ100EP16VS
November 2001 * REV - 3 www.azmicrotek.com
8
PACKAGE DIAGRAM
TSSOP 8
MILLIMETERS
DIM MIN MAX
A 1.10
A1 0.05 0.15
A2 0.80 0.95
A3 0.25
bp 0.25 0.45
c 0.15 0.28
D 2.90 3.10
E 2.90 3.10
e 0.65
HE 4.70 5.10
L 0.94
Lp 0.40 0.70
v 0.10
w 0.10
y 0.10
Z 0.35 0.70
θ 0O 6
O
N
OTES:
1. DIMENSIONS D AND E DO NOT
INCLUDE MOLD PROTRUSION.
2. MAXIMUM MOLD PROTRUSION
FOR D IS 0.15mm.
3. MAXIMUM MOLD PROTRUSION
FOR E IS 0.25mm.
AZ10EP16VS
AZ100EP16VS
November 2001 * REV - 3 www.azmicrotek.com
9
Arizona Microtek, Inc. reserves the right to change circuitry and specifications at any time without prior notice. Arizona Microtek, Inc.
makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Arizona
Microtek, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all
liability, including without limitation special, consequential or incidental damages. Arizona Microtek, Inc. does not convey any license
rights nor the rights of others. Arizona Microtek, Inc. products are not designed, intended or authorized for use as components in systems
intended to support or sustain life, or for any other application in which the failure of the Arizona Microtek, Inc. product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Arizona Microtek, Inc. products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Arizona Microtek, Inc. and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly
or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges tha
t
Arizona Microtek, Inc. was negligent regarding the design or manufacture of the part.