2005-2013 Microchip Technology Inc. DS20001826C-page 1
MCP1700
Features:
1.6 µA Typical Quiesc ent Current
Input Operating Voltage Range: 2.3V to 6.0V
Output Voltage Range: 1.2V to 5.0V
250 mA Output Current for Output
Voltages 2.5V
200 mA Output Current for Output
Voltages < 2.5V
Low Dropout (LDO) Voltage
- 178 mV typical @ 250 mA for VOUT =2.8V
0.4% Typical Output Voltage Tolerance
Standard Output Voltage Options:
- 1.2V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 5.0V
Stable with 1.0 µF Ceramic Out put Capacitor
Short Circuit Pr otection
Overtemperature Protection
Applications:
Ba ttery-Pow e red D evi ce s
Battery -Powered Alarm Circuit s
Smoke Detectors
•CO
2 Detectors
Pagers and Cellular Phones
Smart Batte ry Packs
Low Quiescent Current Voltage Reference
•PDAs
•Digital Cameras
Microcontroller Power
Related Literature:
AN765, “Using Microchip’s Micropower LDOs”
(DS00765), Microchip Technology Inc., 2002
AN766, “Pin-Compatible CMOS Upgrades to
BiPolar LDOs” (DS00766),
Microchip Technology Inc., 2002
AN792, “A Method to Determine How Much
Power a SOT23 Can Di ss ipate in an Application”
(DS00792), Microchip Technology Inc., 2001
General Description:
The MCP1700 is a family of CMOS low dropout (LDO)
voltage regulators that can deliver up to 250 mA of
current while consuming only 1.6 µA of quiescent
current (ty pi ca l). T he i npu t op era t in g ran ge is sp eci fie d
from 2.3V to 6 .0V, making it an idea l choice for two and
three pr imary cell batt ery-powered a pplications, as well
as single cell Li-Ion-powered applications.
The MCP1700 is capable of delivering 250 mA with
only 178 mV of input to output voltage differential
(VOUT = 2.8V). The output voltage tolerance of the
MCP1700 is typically ±0.4% at +25°C and ±3%
maximum over the operating junction temperature
range of -40°C to +125°C.
Output voltages ava ilab le fo r t he MCP1 700 r ang e from
1.2V to 5.0V. The LDO output is stable when using only
1 µF output capacitance. Ceramic, tantalum or
aluminum electrolytic capacitors can all be used for
input and output. Overcurrent limit and overtemperature
shutdown provid e a robust solution fo r any application.
Packa ge o pti ons inc lud e SOT-23, SOT-89, TO-92 a nd
2x2 DFN-6.
Package Types
1
3
2
VIN
GND VOUT
MCP1700
123
VIN
GND VOUT
MCP1700
3-Pin SOT-2 3 3-Pin SOT-89
321
GND VIN VOUT
MCP1700
3-Pin TO-92
VIN
VIN 1
2
3
EP
7
* Includes Exposed Thermal Pad (EP); see Table 3-1.
6
5
4
NC
GND NC
NC
VOUT
2x2 DFN-6*
Low Quiescent Current LDO
MCP1700
DS20001826C-page 2 2005-2013 Microchip Technology Inc.
Functional Block Diagrams
Typical Application Circuits
+
-
VIN VOUT
GND
+VIN
Error Amplifier
Voltage
Reference
Overcurrent
Overtemperature
MCP1700
GND
VOUT
VIN CIN
F Ceramic
COUT
F Ceramic
VOUT
VIN
(2.3V to 3.2V)
1.8V
IOUT
150 mA
MCP1700
2005-2013 Microchip Technology Inc. DS20001826C-page 3
MCP1700
1.0 ELECTRICAL
CHARACTERISTICS
Absolute Maximum Ratings †
VDD............................................................................................+6.5V
All inputs and outputs w.r.t. .........(VSS - 0.3V) to (VIN +0.3V)
Peak Output Current........... ..................... ....Internally Limited
Storage temperature ............. .... .. .. .. ....... .. .... .-65°C to +150°C
Maximum Junction Temperature...................................150°C
Operating Junction Tempe rature...................-40°C to +125°C
ESD protection on all pins (HBM;MM) 4kV; 400V
† Notice: Stresses above those listed under “Maximum
Ratings” may cause permanent damage to the device. This is
a stress rating only and functional operation of the device at
those or any other conditions above those indicated in the
operational listings of this specification is not implied.
Exposure to m aximum rating conditions for extended pe riods
may affect device reliability.
DC CHARACTERISTICS
Electrical Characteristics: Unless otherwise specified, all limits are established for VIN =V
R+1V, I
LOAD = 100 µA,
COUT = 1 µF (X7R), CIN = 1 µF (X7R), TA= +25°C.
Boldface type applies for junction temperatures, TJ (Note 6) of -40°C to +125°C.
Parameters Sym. Min. Typ. Max. Units Conditions
Input / Output Characteristics
Input Operating
Voltage VIN 2.3 6.0 VNote 1
Input Quiescent
Current Iq—1.64µA IL=0mA, V
IN =V
R+1V
Maximum Output
Current IOUT_mA 250
200
mA For VR2.5V
For VR2.5V
Output Short
Circuit Current IOUT_SC —408mAV
IN =V
R+1V, V
OUT =GND
Current (peak current) measured 10 ms
after short is applied.
Output Voltage
Regulation VOUT VR-3.0%
VR-2.0% VR±0.4% VR+3.0%
VR+2.0% VNote 2
VOUT T emperature
Coefficient TCVOUT —50ppm/°CNote 3
Line Regulation VOUT/
(VOUTXVIN)-1.0 ±0.75 +1.0 %/V (VR+1)V VIN 6V
Load Regulation VOUT/VOUT -1.5 ±1.0 +1.5 %I
L= 0.1 mA to 250 mA for VR2.5V
IL= 0.1 mA to 200 mA for VR2.5V
Note 4
Dropout Voltage
VR2.5V VIN -V
OUT —178350 mV IL= 250 mA , (Note 1, Note 5)
Dropout Voltage
VR2.5V VIN -V
OUT —150350 mV IL= 200 mA , (Note 1, Note 5)
Output Rise Time TR 500 µs 10% VR to 90% VR VIN = 0V to 6V,
RL=50 resistive
Note 1: The minimum VIN must meet two conditions: VIN 2.3V and VIN  VR+3.0%VDROPOUT.
2: VR is the nominal regulator output voltage. For example: VR= 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, 5.0V. The
input voltage VIN =V
R+ 1.0V; IOUT = 100 µA.
3: TCVOUT =(V
OUT-HIGH -V
OUT-LOW) *106 / (VR*Tem peratu re), VOUT-HIGH = highest voltage measured over the
temperature range. VOUT-LOW = lowest voltage measured over the temperature range.
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output
voltage due to heating effects are determined using thermal regulation specification TCVOUT.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured
value with a VR+ 1V differential applied.
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction
temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the maximum allowable power
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained
junction temperatures above 150°C can impact the device reliability.
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the
ambient temperature is not significant.
MCP1700
DS20001826C-page 4 2005-2013 Microchip Technology Inc.
Output Noise eN—3µV/(Hz)
1/2 IL= 100 mA , f = 1 kHz, COUT =1µF
Power Supply
Ripple Rejection
Ratio
PSRR 44 dB f = 100 Hz, COUT =1 µF, I
L=50mA,
VINAC = 100 mV pk-pk, CIN =0µF,
VR=1.2V
Thermal
Shutdown
Protection
TSD 140 °C VIN =V
R+1V, I
L= 100 µA
TEMPE RATURE SPECIFICATIONS
Electrical Characteristics: Unless otherwise specified, all limits are established for VIN =V
R+1V, I
LOAD = 100 µA,
COUT = 1 µF (X7R), CIN = 1 µF (X7R), TA= +25°C.
Boldface type applies for junction temperatures, TJ (Note 1) of -40°C to +125°C.
Parameters Sym. Min. Typ. Max. Units Conditions
Temperature Ranges
Specified Temperature Range TA-40 +125 °C
Operating Temperat ure Range TJ-40 +125 °C
Storage Temperature Range TA-65 +150 °C
Thermal Package Resistance
Thermal Resistance, 2x2 DFN JA —91—°C/W
EIA/JEDEC® JES D51-7
FR-4 0.063 4-Layer Board
JC —19—°C/W
Thermal Resistance, SOT-23 JA 336 °C/W EIA/JEDEC JESD51-7
FR-4 0.063 4-Layer Board
JC —110—°C/W
Thermal Resistance, SOT-89 JA 180 °C/W EIA/JEDEC JESD51-7
FR-4 0.063 4-Layer Board
JC —52—°C/W
Thermal Resistance, TO-92 JA 160 °C/W
JC 66.3 °C/W
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction
temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the maximum allowable power
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained
junction temperatures above 150°C can impact the device reliability.
DC CHARACTERISTICS (CONTINUE D)
Electrical Characteristics: Unless otherwise specified, all limits are established for VIN =V
R+1V, I
LOAD = 100 µA,
COUT = 1 µF (X7R), CIN = 1 µF (X7R), TA= +25°C.
Boldface type applies for junction temperatures, TJ (Note 6) of -40°C to +125°C.
Parameters Sym. Min. Typ. Max. Units Conditions
Note 1: The minimum VIN must meet two conditions: VIN 2.3V and VIN  VR+3.0%VDROPOUT.
2: VR is the nominal regulator output voltage. For example: VR= 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, 5.0V. The
input voltage VIN =V
R+ 1.0V; IOUT = 100 µA.
3: TCVOUT =(V
OUT-HIGH -V
OUT-LOW) *106 / (VR*Tem peratu re), VOUT-HIGH = highest voltage measured over the
temperature range. VOUT-LOW = lowest voltage measured over the temperature range.
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output
voltage due to heating effects are determined using thermal regulation specification TCVOUT.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured
value with a VR+ 1V differential applied.
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction
temperature and the thermal resistance from junction to air (i.e., T A, TJ, JA). Exceeding the maximum allowable power
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained
junction temperatures above 150°C can impact the device reliability.
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the
ambient temperature is not significant.
2005-2013 Microchip Technology Inc. DS20001826C-page 5
MCP1700
2.0 TYPICAL PERFORMANCE CURVES
Note: Unless otherwise indicated: VR=1.8V, C
OUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL=10A,
TA=+25°C, V
IN =V
R+1V.
Note: Junction Temperature (TJ) is approximated by soaking the device under test to an ambient temperature equal to the desired junction
temperature. The test ti me is small enough such that the rise in Junction temperature over the Ambient temperatur e is not significant.
FIGURE 2-1: Input Quiescent Current vs.
Input Voltage.
FIGURE 2-2: Ground Current vs. Load
Current.
FIGURE 2-3: Quiescent Current vs.
Junction Temperature.
FIGURE 2-4: Output Voltage vs. Input
Voltage (VR=1.2V).
FIGURE 2-5: Output Voltage vs. Input
Voltage (VR=1.8V).
FIGURE 2-6: Output Voltage vs. Input
Voltage (VR=2.8V).
Note: The gra phs and tab les prov ided fo llow ing this note are a sta tistic al sum mary b ased on a limit ed numb er of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
1.8
2.0
2.2
2.4
2.6
2.8
3.0
s
cent Current (µA)
TJ= - 40°C
TJ= +25°C
TJ= +125°C
VR= 1.2V
IOUT = 0 µA
1.0
1.2
1.4
1.6
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Quie
s
Input Voltage (V)
20
25
30
35
40
45
50
u
nd Current (µA)
VR= 2.8V
TJ= - 40°C
TJ= +25°C
TJ= +125°C
0
5
10
15
0 25 50 75 100 125 150 175 200 225 250
Gro
u
Load Current (mA)
1.75
2.00
2.25
2.50
c
ent Current (µA)
VR= 5.0V
VR= 1.2V
VIN = VR+ 1V
IOUT = 0 µA
1.25
1.50
-40-25-10 5 203550658095110125
Quies
c
Junction Temperature (°C)
VR= 2.8V
1.196
1.198
1.200
1.202
1.204
1.206
1.208
u
tput Voltage (V)
TJ= +25°C
TJ= +125°C
VR= 1.2V
IOUT = 0.1 mA
1.190
1.192
1.194
1.196
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
O
u
Input Voltage (V)
TJ= - 40°C
1 780
1.785
1.790
1.795
1.800
p
ut Voltage (V)
TJ= - 40°C TJ= +125°C
VR= 1.8V
IOUT = 0.1 mA
1.770
1.775
1
.
780
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Out
p
Input Voltage (V)
TJ= +25°C
2.786
2.788
2.790
2.792
2.794
2.796
2.798
2.800
u
tput Voltage (V)
TJ= - 40°C
TJ= +25°C
VR= 2.8V
IOUT = 0.1 mA
2.778
2.780
2.782
2.784
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0
O
u
Input Voltage (V)
TJ= +125°C
MCP1700
DS20001826C-page 6 2005-2013 Microchip Technology Inc.
Note: Unless otherwise indicated: VR=1.8V, C
OUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL=10A,
TA=+25°C, V
IN =V
R+1V.
FIGURE 2-7: Output Voltage vs. Input
Voltage (VR=5.0V).
FIGURE 2-8: Output Voltage vs. Load
Current (VR=1.2V).
FIGURE 2-9: Output Voltage vs. Load
Current (VR=1.8V).
FIGURE 2-10: Output Voltage vs. Load
Current (VR=2.8V).
FIGURE 2-11: Output Voltage vs. Load
Current (VR=5.0V).
FIGURE 2-12: Dropout Voltage vs. Load
Current (VR=2.8V).
4.970
4.975
4.980
4.985
4.990
4.995
5.000
tput Voltage (V)
TJ= - 40°C
TJ= +25°C
VR= 5.0V
IOUT = 0.1 mA
4.955
4.960
4.965
4.970
5.0 5.2 5.4 5.6 5.8 6.0
Ou
Input Voltage (V)
TJ= +125°C
1.17
1.18
1.19
1.20
1.21
tput Voltage (V)
TJ= - 40°C
TJ= +25°C
T
=
+125
°
C
VR= 1.2V
VIN = VR+ 1V
1.15
1.16
1.17
0 25 50 75 100 125 150 175 200
Ou
Load Current (mA)
T
+125
C
1.784
1.786
1.788
1.790
1.792
u
tput Voltage (V)
TJ= - 40°C
TJ= +25°C
TJ= +125°C
1.778
1.780
1.782
0 25 50 75 100 125 150 175 200
O
u
Load Current (mA)
VR= 1.8V
VIN = VR+ 1V
2 784
2.786
2.788
2.790
2.792
2.794
2.796
2.798
u
tput Voltage (V)
TJ= - 40°C
TJ= +25°C
VR= 2.8V
VIN = VR+ 1V
2.778
2.780
2.782
2
.
784
0 50 100 150 200 250
O
u
Load Current (mA)
TJ= +125°C
4 970
4.975
4.980
4.985
4.990
4.995
5.000
tput Voltage (V)
TJ= - 40°C
TJ= +25°C
VR= 5.0V
VIN = VR+ 1V
4.955
4.960
4.965
4
.
970
0 50 100 150 200 250
Ou
Load Current (mA)
TJ= +125°C
0.10
0.15
0.20
0.25
p
out Votage (V)
T
=
40
°
C
TJ= +25°C
TJ= +125°C
VR= 2.8V
0.00
0.05
0 25 50 75 100 125 150 175 200 225 250
Dro
p
Load Current (mA)
T
J
=
-
40
°
C
2005-2013 Microchip Technology Inc. DS20001826C-page 7
MCP1700
Note: Unless otherwise indicated: VR=1.8V, C
OUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL=10A,
TA=+25°C, V
IN =V
R+1V.
FIGURE 2-13: Dropout Voltage vs. Load
Current (VR=5.0V).
FIGURE 2-14: Power Supply Ripple
Rejection vs. Frequency (VR=1.2V).
FIGURE 2-15: Power Supply Ripple
Rejection vs. Frequency (VR=2.8V).
FIGURE 2-16: Noise vs. Frequency.
FIGURE 2-17: Dynamic Load Step
(VR=1.2V).
FIGURE 2-18: Dynamic Load Step
(VR=1.8V).
0.06
0.08
0.10
0.12
0.14
0.16
o
ut Voltage (V)
TJ= +25°C
TJ= +125°C
VR= 5.0V
0.00
0.02
0.04
0 25 50 75 100 125 150 175 200 225 250
Drop
o
Load Current (mA)
TJ= - 40°C
0.01 0.10 10.0 100 1000
1.00
Frequency (KHz)
PSRR (dB/decade)
0
-10
-20
-30
-40
-50
+10
+20
-60
-70
0.01 0.01 10.00 100 1000
Frequency (KHz)
PSRR (dB/Decade)
+20
+10
0
-10
-20
-30
-40
-50
-60
1
010
1.00
10.00
N
oise (µV/Hz)
VIN = 2.5V
VR= 1.2V
IOUT = 50 mA
VIN = 2.8V
VR= 1.8V
IOUT = 50 mA
VIN = 3.8V
VR= 2.8V
IOUT = 50 mA
0.01
0
.
10
0.01 0.1 1 10 100 1000
N
Frequency (kHz)
VIN =2.2V
VR=1.2V
I=100mA
Load
Step
CIN =1µF Ceramic
COUT = 1µF Ceramic
VIN =2.8V
VR=1.8V
I=100mA
Load
Step
CIN =1µF Ceramic
COUT = 1µF Ceramic
MCP1700
DS20001826C-page 8 2005-2013 Microchip Technology Inc.
Note: Unless otherwise indicated: VR=1.8V, C
OUT = 1 µF Ceramic (X7R), CIN = µF Ceramic (X7R), IL=10A,
TA=+25°C, V
IN =V
R+1V.
FIGURE 2-19: Dynamic Load Step
(VR=2.8V).
FIGURE 2-20: Dynamic Load Step
(VR=1.8V).
FIGURE 2-21: Dynamic Load Step
(VR=2.8V).
FIGURE 2-22: Dynamic Load Step
(VR=5.0V).
FIGURE 2-23: Dynamic Line Step
(VR=2.8V).
FIGURE 2-24: Start-up fro m VIN
(VR=1.2V).
VIN =3.8V
VR=2.8V
I=100mA
Load
Step
CIN = 1µF Ceramic
COUT = 1µF Ceramic
VIN =2.8V
VR=1.8V
IOUT= 200 mA
Load Step
CIN = 1 µF Ceramic
COUT =2F (1 ESR)
VIN =3.8V
VR=2.8V
IOUT=200mA
Load Step
COUT =2F (1 ESR)
CIN =1µF Ceramic
VIN =6V
VR=5V
IOUT= 200 mA
Load Step
COUT =2F (1 ESR)
CIN = 1 µF Ceramic
VIN =3.8V to
4.8V
VR=2.8V
IOUT
100 mA
COUT =1µF Ceramic
VIN =0V to
2.2V
VR=1.2V
COUT = 1 µF Ce ramic
RLOAD =25
2005-2013 Microchip Technology Inc. DS20001826C-page 9
MCP1700
Note: Unless otherwise indicated: VR=1.8V, C
OUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL=10A,
TA=+25°C, V
IN =V
R+1V.
FIGURE 2-25: Start-up from VIN
(VR=1.8V).
FIGURE 2-26: Start-up from VIN
(VR=2.8V).
FIGURE 2-27: Load Regulation vs.
Junction Temperature (VR=1.8V).
FIGURE 2-28: Load Regulation vs.
Junction Temperature (VR=2.8V).
FIGURE 2-29: Load Regulation vs.
Junction Temperature (VR=5.0V).
FIGURE 2-30: Line Regulation vs.
Temperature (VR= 1.2V, 1.8V, 2.8V).
VIN =0V to
2.8V
VR=1.8V
COUT = 1 µF Ceramic
RLOAD =25
VIN =0V to
3.8V
VR=2.8V
COUT = 1 µF Ceramic
RLOAD =25
02
-0.1
0.0
0.1
0.2
0.3
a
d Regulation (%)
VR= 1.8V
IOUT = 0 to 200 mA
VIN = 5.0V
VIN = 3.5V
-0.4
-0.3
-
0
.
2
-40 -25 -10 5 20 35 50 65 80 95 110 125
Lo
a
Junction Temperature (°C)
VIN = 2.2V
-0.4
-0.3
-0.2
-0.1
0.0
a
d Regulation (%)
VR= 2.8V
IOUT = 0 to 250 mA
VIN = 5.0V
VIN = 4.3V
V
IN
= 3.3
V
-0.7
-0.6
-0.5
-40 -25 -10 5 20 35 50 65 80 95 110 125
Lo
a
Junction Temperature (°C)
IN
010
-0.05
0.00
0.05
0.10
d
Regulation (%)
VR= 5.0V
IOUT = 0 to 250 mA
V
IN
=
5
.
5V
VIN = 6.0V
-0.20
-0.15
-
0
.
10
-40 -25 -10 5 20 35 50 65 80 95 110 125
Loa
d
Junction Temperature (°C)
IN
55
-0.15
-0.10
-0.05
0.00
0.05
0.10
Regulation (%/V)
VR= 1.8V
VR= 2.8V
-0.30
-0.25
-0.20
-40 -25 -10 5 20 35 50 65 80 95 110 125
Line
Junction Temperature (°C)
VR= 1.2V
MCP1700
DS20001826C-page 10 2005-2013 Microchip Technology Inc.
3.0 PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 3-1.
3.1 Ground Terminal (GND)
Regulator ground. Tie GND to the negative side of the
output and the negative side of the input capacitor.
Only the LDO bias current (1.6 µA typical) flows out of
this pin; there is no high current. The LDO output
regulation is referenced to this pin. Minimize voltage
drops between this pin and the negative side of the
load.
3.2 Regulate d Output Voltage (VOUT)
Connect VOUT t o the po sitive s ide of th e load an d the
positive terminal of the output capacitor. The positive
side of the output capacitor should be physically
located as close to the LDO VOUT pin as is practical.
The current flowing out of this pin is equal to the DC
load current.
3.3 Unregulated Input Voltage Pin
(VIN)
Connect VIN to the input unregulated source voltage.
As with all low dropout linear regulators, low source
impedance is necessary for the stable operation of the
LDO. The amount of capacitance required to ensure
low source impedance will depend on the proximity of
the input source capacitors or battery type. For most
applications, 1 µF of capacitance will ensure stable
operatio n of the LDO circui t. For appli cation s that have
load currents below 100 mA, the input capacitance
requirement can be lowered. The type of capacitor
used can be ceramic, tantalum or aluminum
electrol ytic. Th e low ESR charact eristics of the cera mic
will yield better noise and PSRR performance at high
frequency.
3.4 No Connect (NC)
No internal connection. The pins marked NC are true
“No Connec t” pins .
3.5 Exposed Thermal Pad (EP)
There is an internal electrical connection between the
Exposed Thermal Pad (EP) and the GND pin; they
must be connected to the same p otential on th e Printed
Circuit Board (PCB).
TABLE 3-1: PIN FUNCTION TABLE
Pin No.
SOT-23 Pin No.
SOT-89 Pin No.
TO-92 Pin No.
2x2 DFN-6 Name Function
1 1 1 3 GND Ground Terminal
233 6V
OUT Regulated Voltage Output
322 1V
IN Unregulated Supply Voltage
2, 4, 5 NC No Connect
7 EP Exposed The rma l Pad
2005-2013 Microchip Technology Inc. DS20001826C-page 11
MCP1700
4.0 DETAILED DES CRIPTION
4.1 Output Regulation
A portion of the LDO output voltage is fed back to the
internal error amplifier a nd compar ed with the preci sion
internal bandgap reference. The error amplifier output
will adjust the amount of current that flows through the
P-Channel pass transistor, thus regulating the output
voltage to the desired value. Any changes in input
voltage or output current will cause the error amplifier
to respond and adjust the output voltage to the target
voltage (refer to Figure 4-1).
4.2 Overcurrent
The MCP17 00 interna l circui try mo nitors the am ount of
current flowing through the P-Channel pass transistor.
In the event of a short circuit or excessive output
current, the MCP1700 will turn off the P-Channel
device for a short period, after which the LDO will
attempt to res tart . If the excessiv e current remains, the
cycle will repeat itself.
4.3 Overtemperature
The internal power dissipation within the LDO is a
function of input-to-output voltage differential and load
current. If the power dissipation within the LDO is
excessive, the internal junction temperature will rise
above the ty pic al shutdown thres hold of 140°C. At that
point, the LDO will shut down and begin to cool to the
typical turn-on junction temperature of 130°C. If the
power dissipation is low enough, the device will
continue to cool and operate normally. If the power
dissipation remains high, the thermal shutdown
protection circuitry will again turn off the LDO,
protecting it from catastrophic failure.
FIGURE 4-1: Block Dia gr am.
+
-
VIN VOUT
GND
+VIN
Error Amplifier
Voltage
Reference
Overcurrent
Overtemperature
MCP1700
MCP1700
DS20001826C-page 12 2005-2013 Microchip Technology Inc.
5.0 FUNCTIONAL DESCRIPTION
The MCP1700 CMOS low dropout linear regulator is
intended for applications that need the lowest current
consumption while maintaining output voltage
regulation. The operating continuous load of the
MCP1700 ranges from 0 mA to 250 mA (VR2.5V).
The input operating voltage ranges from 2.3V to 6.0V,
making it capable of operating from two, three or four
alkaline cells or a single Li-Ion cell battery input.
5.1 Input
The input of the MCP1700 is connected to the source
of the P-Channel PMOS pass transistor. As with all
LDO circuits, a relatively low source impedance (10)
is need ed to pr event the i nput imp edance fro m causing
the LDO to become unstable. The size and type of the
requ ired c apacitor depen d heavi ly on th e input s ource
type (battery, power supply) and the output current
range of the application. For most applications (up to
100 mA), a 1 µF ceramic capacitor will be sufficient to
ensure circuit stability. Larger values can be used to
improve circuit AC performance.
5.2 Output
The maximum rated continuous output current for the
MCP1700 is 250 mA (VR2.5V). For applications
where VR< 2.5V, the maximum output current is
200 mA.
A minimum output cap acit ance of 1.0 µF is required for
small signal stability in applications that have up to
250 mA output current capability. The capacitor type
can be c eramic , ta nta lum or a lumin um el ectroly tic. Th e
ESR range on the output capacitor can range from 0
to 2.0.
5.3 Output Rise time
When powering up the internal reference output, the
typical output rise time of 500 µs is controlled to
prevent ov ershoot of the output voltage.
2005-2013 Microchip Technology Inc. DS20001826C-page 13
MCP1700
6.0 APPLICATION CIRCUITS AND
ISSUES
6.1 Typical Application
The MCP1700 is most commonly used as a voltage
regulator. Its low quiescent current and low dropout
voltage make it ideal for many battery-powered
applications.
FIGURE 6-1: Typical App lica tio n Circui t.
6.1.1 APPLICATION INPUT CONDITIONS
6.2 Power Calculations
6.2.1 POWER DISSIPAT IO N
The internal power dissipation of the MCP1700 is a
function of input voltage, output voltage and output
current. The power dissipation resulting from the
quiescent current draw is so low it is insignificant
(1.6 µA x VIN). The following equation can be used to
calculate the internal power dissipation of the LDO.
EQUATION 6-1:
The maximum continuous operating junction
temperature specified for the MCP1700 is +125°C. To
estimate the internal junction temperature of the
MCP1700, the total internal power dissipation is
multiplied by the thermal resistance from junction to
ambient (RJA). The ther mal resistance from jun ction to
ambient for the SOT-23 pin package is estimated at
230°C/W.
EQUATION 6-2:
The maximum power dissipation capability for a
package can be calculated given the junction-to-
ambient thermal resistance and the maximum ambient
temperat ure for the app licat ion. The foll owing equa tion
can be us ed to d ete rmi ne the maximum int ernal power
dissipation of the package.
EQUATION 6-3:
EQUATION 6-4:
Package Type = SOT-23
Input Voltage Range = 2.3V to 3.2V
VIN ma ximum = 3.2V
VOUT typical = 1.8V
IOUT = 150 mA maximum
GND
VOUT
VIN CIN
F Ceramic
COUT
F Ceramic
VOUT
VIN
(2.3V to 3.2V)
1.8V
IOUT
150 mA
MCP1700
PLDO VIN MAX
VOUT MIN
IOUT MAX
=
PLDO = Internal power dissipation of the
LDO Pass device
VIN(MAX) = Maximum input vol t ag e
VOUT(MIN) = Minimum output voltage of the
LDO
TJMAX
PTOTAL RJA
TAMAX
+=
TJ(MAX) = Maxim um continuous junction
temperature
PTOTAL = Total power dissipation of the device
RJA = Thermal resistance from junction to
ambient
TA(MAX) = Maximum ambient temperature
PDMAX
TJMAX
TAMAX

RJA
---------------------------------------------------=
PD(MAX) = Maximum power dissipation of the
device
TJ(MAX) = Maximum continuous junction
temperature
TA(MAX) = Maximum ambient temperature
RJA = Thermal resistance from junction to
ambient
TJRISE
PDMAX
RJA
=
TJ(RISE) = Rise in the device’s junction
temperature over the ambient
temperature
PTOTAL = Maximum power di ssipation o f the
device
RJA = Thermal resistance from junction to
ambient
MCP1700
DS20001826C-page 14 2005-2013 Microchip Technology Inc.
EQUATION 6-5:
6.3 Voltage Regulator
Internal power dissipation, junction temperature rise,
junction temperature and maximum power dissipation
are calculated in the following example. The power
dissipation resulting from ground current is small
enough to be neglected.
6.3.1 POWER DISSIPAT ION EXA MP LE
Device Junction Temperature Rise
The internal junction temperature rise is a function of
internal power dissipation and the thermal resistance
from junction to ambient for the application. The thermal
resistance from junction to ambient (RJA) is derived
from an EIA/JEDEC® standard for measuring thermal
resistance for small surfac e mount packages. The EIA/
JEDEC specification is JESD51-7, “High Effective
Thermal Conductivity Test Board for Leaded Surface
Mount Packages”. The standard describes the test
method and board specifications for measuring the
thermal resistance from junction to ambient. The actual
thermal r esistance for a particular ap plication can vary
depending on many factors, such as copper area and
thickness. Refer to AN792, “A Method to Determine
How Much Power a SOT-23 Can Dissipate in an
Application (DS00792), for more information regarding
this subject.
Junction Temperature Estimate
To estimate the internal junction temperature, the
calculated temperature rise is added to the ambient or
offset temperature. For this example, the worst-case
junction temperature is estimated below.
Maximum Package Power Dissipation at +40°C
Ambient Temperature
Package
Package Type = SOT-23
Input Voltage
VIN = 2.3V to 3.2V
LDO Output Voltages and Currents
VOUT = 1.8V
IOUT =150mA
Maximum Ambient Temperature
TA(MAX) = +40°C
Internal Power Dissipation
Internal Power dissipation is the product of the LDO
output current times the voltage across the LDO
(VIN to VOUT).
PLDO(MAX) =(V
IN(MAX) -V
OUT(MIN))xI
OUT(MAX)
PLDO = (3.2V- (0.97 x 1.8V)) x 150 mA
PLDO = 218.1 milli-Watts
TJTJRISE
TA
+=
TJ= Junction Temperature
TJ(RISE) = Rise in the device’s junction
temperature over the ambient
temperature
TA= Ambient temperature
TJ(RISE) =P
TOTAL xRJA
TJ(RISE) = 218.1 milli-Watts x 230.0°C/Watt
TJ(RISE) =50.2°C
TJ =T
J(RISE) +T
A(MAX)
TJ =90.2°C
2x2 DFN-6 (91°C/Watt = RJA)
PD(MAX) = (125°C - 40°C) / 91°C/W
PD(MAX) = 934 milli-Watts
SOT-23 (230.0°C/Watt = RJA)
PD(MAX) = (125°C - 40°C) / 230°C/W
PD(MAX) = 369.6 milli-Watts
SOT-89 (52°C/Watt = RJA)
PD(MAX) = (125°C - 40°C) / 52°C/W
PD(MAX) = 1.635 Watts
TO-92 (131.9°C/Watt = RJA)
PD(MAX) = (125°C - 40°C) / 131.9°C/W
PD(MAX) = 644 milli-Watts
2005-2013 Microchip Technology Inc. DS20001826C-page 15
MCP1700
6.4 Voltage Reference
The MCP1 700 can be used not only a s a regula tor, but
also as a low quiescent current voltage reference. In
many microcontroller applications, the initial accuracy
of t he referen ce can be calibra ted using producti on test
equipm ent or by us in g a ratio measu r ement. When the
initial accuracy is calibrated, the thermal stability and
line regulation tolerance are the only errors introduced
by the MCP1700 LDO. The low cost, low quiescent
current and small ceramic output capacitor are all
advantages when using the MCP1700 as a voltage
reference.
FIGURE 6-2: Using the MCP1700 as a
voltage reference.
6.5 Pulsed Load Applications
For some applications, there are pulsed load current
events that may exceed the specified 250 mA
maximum specification of the MCP1700. The internal
current limit of the MCP1700 will prevent high peak
load demands from causing non-recoverable damage.
The 250 mA rating is a maximum average continuous
rating. As long as th e ave rage c urrent d oes not excee d
250 mA, pulsed higher load currents can be applied to
the MCP1700. The typical current limit for the
MCP1700 is 550 mA (TA+25°C).
PIC®
GND
VIN
CIN
F COUT
F
Bridge Sensor
VOUT VREF
AD0
AD1
Ratio Metric Reference
1 µA Bias Microcontroller
MCP1700
MCP1700
DS20001826C-page 16 2005-2013 Microchip Technology Inc.
7.0 PACKAGING INFORMATION
7.1 Package Marking Information
3-Pin SOT-23
CKNN
3-Pin SOT-89
CUYYWW
NNN
3-Pin TO-92
XXXXXX
XXXXXX
YWWNNN
Standard
Extended Temp
Symbol Voltage *
CK 1.2
CM 1.8
CP 2.5
CQ 2.8
CR 3.0
CS 3.3
CU 5.0
Example
1700
1202E
322256
* Cust om out put vo lt ages availab le upo n reque st.
Contact your local Microchip sales office for more
information.
XXXXXX TO^^
Legend: XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ‘01’)
NNN Alphanum eri c trac eab ili ty code
Pb-free JEDEC® designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator ( )
can be found on the outer packaging for this package.
Note: In the event the ful l Micr ochip part nu mb er canno t be marked on one line, it wil l
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
3
e
3
e
3
e
6-Lead DFN (2x2x0 .9 mm) Example
ABB
256
Part Number Code
MCP1700T-1202E/MAY ABB
MCP1700T-1802E/MAY ABC
MCP1700T-2502E/MAY ABD
MCP1700T-2802E/MAY ABF
MCP1700T-3002E/MAY ABE
MCP1700T-3302E/MAY AAZ
MCP1700T-5002E/MAY ABA
2005-2013 Microchip Technology Inc. DS20001826C-page 17
MCP1700
/HDG3ODVWLF6PDOO2XWOLQH7UDQVLVWRU77>627@
1RWHV
   !"!#$!!% #$  !% #$   #&!' !
  !#"('
)*+ )  #&#,$ --#$## 
1RWH .# #$#/!- 1  #2/%##!#
##+33---3/
4# 55""
 5# 6 67 8
6$9%2 6 :
5!2# ')*
7$# !5!2#  )*
7,;#  < 
!!2//   ' 
#!%%   < 
7,=!# "  < >
!!2/=!# " > : 
7,5# >  :'
.#5# 5 : ' >
.# ? < ?
5!/  < 
5!=!# 9 : < '
b
N
E
E1
2
1
e
e1
D
A
A1
A2
c
L
φ
  - *)
MCP1700
DS20001826C-page 18 2005-2013 Microchip Technology Inc.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2005-2013 Microchip Technology Inc. DS20001826C-page 19
MCP1700
/HDG3ODVWLF6PDOO2XWOLQH7UDQVLVWRU+HDGHU0%>627@
1RWHV
   !"!#$!!% #$  !% #$   #&! !
  !#"('
)*+ )  #&#,$ --#$## 
1RWH .# #$#/!- 1  #2/%##!#
##+33---3/
4# 55""
 5# 6 8
6$9%5! 6 :
2# ')*
7$# !5!2#  :)*
7,;#  >
7,=!# ; : '
!!2/=!##)  "  >
!!2/=!## " : 
7,5# : >
95#   :
.#5# 5  
5!/ :' 
5!=!# 9  '>
5! @:=!# 9 :> 
D
D1
E
H
N
b1
e1
b
21
e
b1
L
A
C
E1
  - *)
MCP1700
DS20001826C-page 20 2005-2013 Microchip Technology Inc.
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2005-2013 Microchip Technology Inc. DS20001826C-page 21
MCP1700
/HDG3ODVWLF7UDQVLVWRU2XWOLQH72>72@
1RWHV
   !"!#$!!% #$  !% #$   #&!'A !
  !#"('
)*+ )  #&#,$ --#$## 
1RWH .# #$#/!- 1  #2/%##!#
##+33---3/
4# 6*;"
 5# 6 8
6$9%2 6 :
2# ')*
)###2/.# ' >'
7,=!# " ' '
7,5#  
!!2/!$   '
##2 5 ' <
5!/  
5!=!# 9  
E
A
N
1
L
b
e
c
R
D
123
  - *)
MCP1700
DS20001826C-page 22 2005-2013 Microchip Technology Inc.
2005-2013 Microchip Technology Inc. DS20001826C-page 23
MCP1700
MCP1700
DS20001826C-page 24 2005-2013 Microchip Technology Inc.
NOTES:
2005-2013 Microchip Technology Inc. DS20001826C-page 25
MCP1700
APPENDIX A: REVISION HISTORY
Revision C (October 2013)
The following is the list of modifications:
1. Added new package to the family (2x2 DFN-6)
and related information throughout the
document.
2. Updated thermal package resistance
information in Temperature Specificat ion s.
3. Updated Section 3.0, Pin Descriptions.
4. Added package markings and drawings for the
2x2 DFN-6 package.
5. Added information related to the 2.8V option
throughout the document.
6. Updated Product Identification System.
7. Minor typographical changes.
Revision B (February 2007)
Updated Packaging Information.
Corrected Product Identificatio n System.
Changed X5R to X7R in Notes to DC
Characteristics, Temperature Specifications, and
Section 2.0, Typical Performance Curves.
Revision A (November 2005)
Original Release of this Document.
MCP1700
DS20001826C-page 26 2005-2013 Microchip Technology Inc.
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
Device: MCP1700: Low Quiescent Current LDO
Tape and Reel: T: Tape and Reel only applies to SOT - 23 and SOT-89
devices
Standard Output
Voltage: * 120 = 1.2V
180 = 1.8V
250 = 2.5V
280 = 2.8V
300 = 3.0V
330 = 3.3V
500 = 5.0V
* Custom output voltages available upon request. Contact
your local Microchip sales office for more information
Tolerance: 2=2%
Temperature Range: E = -40°C to +125°C (Extended)
Package: MAY= Plastic Small Outline Transistor (DFN), 6-lead
MB = Plastic Small Outline Transistor (SOT-89), 3-lead
TO = Plastic Small Outline Transistor (TO-92), 3-lead
TT = Plastic Small Outline Transistor (SOT-23), 3-lead
Examples:
2x2 DFN-6 Package:
a) MCP1700T-1202E/MAY:1.2V VOUT
b) MCP1700T-1802E/MAY:1.8V VOUT
c) MCP1700T-2502E/MAY:2.5V VOUT
d) MCP1700T-2802E/MAY:2.8V VOUT
e) MCP1700T-3002E/MAY:3.0V VOUT
f) MCP1700T-3302E/MAY:3.3V VOUT
g) MCP1700T-5002E/MAY:5.0V VOUT
SOT-89 Package:
a) MCP1700T-1202E/MB:1.2V VOUT
b) MCP1700T-1802E/MB:1.8V VOUT
c) MCP1700T-2502E/MB:2.5V VOUT
d) MCP1700T-2802E/MB:2.8V VOUT
e) MCP1700T-3002E/MB:3.0V VOUT
f) MCP1700T-3302E/MB:3.3V VOUT
g) MCP1700T-5002E/MB:5.0V VOUT
TO-92 Package:
a) MCP1700-1202E/TO:1.2V VOUT
b) MCP1700-1802E/TO:1.8V VOUT
c) MCP1700-2502E/TO:2.5V VOUT
d) MCP1700-2802E/TO:2.8V VOUT
e) MCP1700-3002E/TO:3.0V VOUT
f) MCP1700-3302E/TO:3.3V VOUT
g) MCP1700-5002E/TO:5.0V VOUT
SOT-23 Package:
a) MCP1700T-1202E/TT:1.2V VOUT
b) MCP1700T-1802E/TT:1.8V VOUT
c) MCP1700T-2502E/TT:2.5V VOUT
d) MCP1700T-2802E/TT:2.8V VOUT
e) MCP1700T-3002E/TT:3.0V VOUT
f) MCP1700T-3302E/TT:3.3V VOUT
g) MCP1700T-5002E/TT:5.0V VOUT
PART NO. X- XXX
VoltageTape &
Reel
MCP1700
X
Tolerance
X
Temp.
Range
/XX
Package
Output
2005-2013 Microchip Technology Inc. DS20001826C-page 27
Information contained in this publication regarding device
applications a nd the lik e is pro vid ed only for your c on ve nience
and may be supers eded by u pdates. It is y our res po ns i bil it y to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, dsPIC,
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, PIC32 logo, rfPIC, SST, SS T Logo, SuperFlash
and UNI/O are registered trademarks of Microchip T echnology
Incorporated in the U.S.A. and other countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MTP, SEEVAL and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.
Silicon Stor age Technology is a registered trademark of
Microchip Technology Inc. in other countries.
Analog-for-the-Digital Age, Application Maestro, BodyCom,
chipKIT, chipKI T logo, CodeGuard, dsPICDEM ,
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONIT OR, FanSense, HI-TIDE, In-Circuit Serial
Programm ing, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA
and Z-Scale are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip T echnology Incorporated
in the U.S.A.
GestIC and ULPP are registered trademarks of Microchip
Tec hnology Germ any II Gm bH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their
respective companies.
© 2005-2013, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.
Printed on recycled paper.
ISBN: 978-1-62077-526-4
Note the following details of the code protection feature on Microchip devices:
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that it s family of products is one of the most secure families of its kind on t he market today, when used in the
intended manner and under normal conditions.
There are dishonest and possibly illegal met hods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.
Code protection is c onstantly evolving. We a t Microc hip are co m mitted to continuously improving the code prot ect ion featur es of our
products. Attempts to break Microchip’ s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperiph erals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
QUALITY MANAGEMENT S
YSTEM
CERTIFIED BY DNV
== ISO/TS 16949 ==
DS20001826C-page 28 2005-2013 Microchip Technology Inc.
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Techn ic al Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasc a , IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los A n ge les
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509
ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gatew ay
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-3019-1500
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7828
Fax: 886-7-330-9305
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Cop e nha gen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-14 4-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spai n - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08 -91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921- 5820
Worldwide Sales and Service
08/20/13