LTC5569
1
5569fa
Typical applicaTion
FeaTures DescripTion
300MHz to 4GHz
3.3V Dual Active
Downconverting Mixer
The LTC
®
5569 dual active downconverting mixer is opti-
mized for diversity and MIMO receiver applications that
require low power and small size. Each mixer includes an
independent LO buffer amplifier, active mixer core, and
bias circuit with enable pin. The symmetry of the IC as-
sures that a phase and amplitude coherent LO is applied
to each mixer.
The RF inputs are 50Ω matched from 1.4GHz to 3.3GHz,
and easily matched for higher or lower RF frequencies with
simple external matching. The LO input is 50Ω matched
from 1GHz to 3.5GHz, even when one or both mixers are
disabled. The LO input is easily matched for higher or
lower frequencies, as low as 350MHz, with simple external
matching. The low capacitance differential IF outputs are
usable up to 1.6GHz.
applicaTions
n High IIP3: 26.8dBm at 1950MHz
n 2dB Conversion Gain
n Low Noise Figure: 11.7dB at 1950MHz
n 17dB NF Under 5dBm Blocking
n 44dB Channel Isolation
n Low Power: 3.3V/600mW Total
n Very Small Solution Size
n Enable Pins for Each Mixer
n Wide IF Frequency Range
n LO Input 50Ω Matched in All Modes
n –40°C to 105°C Operation
n 16-Lead (4mm × 4mm) QFN package
n Wireless Infrastructure Diversity Receivers
n MIMO Infrastructure Receivers
n Remote Radio Units
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear
Technology Corporation. All other trademarks are the property of their respective owners.
RFA
RFB
ENA
ENB
10nF
1nF
10nF
1nF
2.7pF
RF
MAIN
1nF
3.3V
10nF
3.9pF LO
LO
BPF
DUAL
IF VGA
DUAL
ADC
3.3V
10nF
ENA
ENB
VCCA
VCCB
IFA+
LTC5569
IFA
IFB+IFB
1nF 190MHz
190MHz
270nH 270nH
270nH 270nH
2.7pF
RF
DIVERSITY
BIAS
RF
BIAS
LO
LO
RF
BPF
5569 TA01a
Diversity Receiver with 190MHz Bandpass IF Matching
Mixer Conversion Gain, IIP3 and NF
vs IF Output Frequency
IF OUTPUT FREQUENCY (MHz)
140
0.5
GC (dB)
IIP3 (dBm), SSB NF (dB)
1.0
2.0
2.5
3.0
200 210 220 230
5.0
5560 TA01b
1.5
150 160 170 180 190 240
3.5
4.0
4.5
12
10
14
18
20
22
28
16
24
26
IIP3
GC
NF
±30MHz
RF = 1950 ±50MHz
LO = 1760MHz
PLO = 0dBm
ZRF = 50Ω
ZIF = 50Ω
TC = 25°C
TEST CIRCUIT IN FIGURE 1
LTC5569
2
5569fa
pin conFiguraTionabsoluTe MaxiMuM raTings
Supply Voltage
VCCA, VCCB, IFA+, IFA, IFB+, IFB ........................4.0V
Enable Input Voltage (ENA, ENB) .....0.3V to VCC + 0.3V
Mixer Bias Voltage (BIASA, BIASB) ..0.3V to VCC + 0.3V
LO Input Power (350MHz to 4.3GHz) ...................10dBm
LO Input DC Voltage ............................................... ±0.1V
RFA, RFB Input Power (300MHz to 4GHz) ...........15dBm
RFA, RFB Input DC Voltage .................................... ±0.1V
Operating Temperature Range (TC) ........ 40°C to 105°C
Junction Temperature (TJ) .................................... 150°C
Storage Temperature Range .................. 65°C to 150°C
(Note 1)
16 15 14 13
5678
TOP VIEW
17
GND
UF PACKAGE
16-LEAD (4mm × 4mm) PLASTIC QFN
9
10
11
12
4
3
2
1RFA
GND
GND
RFB
ENA
LO
GND
ENB
BIASA
IFA+
IFA
VCCA
BIASB
IFB+
IFB
VCCB
TJMAX = 150°C, θJC = 8°C/W
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB
orDer inForMaTion
LEAD FREE FINISH TAPE AND REEL PART MARKING PACKAGE DESCRIPTION TEMPERATURE RANGE
LTC5569IUF#PBF LTC5569IUF#TRPBF 5569 16-Lead (4mm × 4mm) Plastic QFN –40°C to 105°C
Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/
ac elecTrical characTerisTics
VCC = 3.3V, ENA, ENB = High. Test circuit shown in Figure 1.
(Notes 2, 3, 4)
PARAMETER CONDITIONS MIN TYP MAX UNITS
RF Input Frequency Range 300 to 4000 MHz
LO Input Frequency Range 350 to 4500 MHz
IF Output Frequency Range External Matching Required 5 to 1600 MHz
RF Input Return Loss ZO = 50Ω, 1400MHz to 3300MHz >12 dB
LO Input Return Loss ZO = 50Ω, 1000MHz to 3500MHz >12 dB
IF Output Impedance Differential at 190MHz 530Ω ||1.3pF R||C
LO Input Power –6 0 6 dBm
LTC5569
3
5569fa
ac elecTrical characTerisTics
VCC = 3.3V, ENA, ENB = High. TC = 25°C, PLO = 0dBm, IF = 190MHz,
PRF = –6dBm (–6dBm/tone for 2-tone tests), unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)
PARAMETER CONDITIONS MIN TYP MAX UNITS
Power Conversion Gain RF = 450MHz, High Side LO
RF = 850MHz, High Side LO
RF = 1950MHz, Low Side LO
RF = 2550MHz, Low Side LO
RF = 3500MHz, Low Side LO
0.5
1.5
2.0
2.0
1.8
1.4
dB
dB
dB
dB
dB
Conversion Gain Flatness RF = 1950 ±30MHz, LO = 1760MHz, IF = 190 ±30MHz ±0.05 dB
Conversion Gain vs Temperature TC = –40°C to 105ºC, RF = 1950MHz, Low Side LO –0.014 dB/°C
2-Tone Input 3rd Order Intercept (∆f = 2MHz) RF = 450MHz, High Side LO
RF = 850MHz, High Side LO
RF = 1950MHz, Low Side LO
RF = 2550MHz, Low Side LO
RF = 3500MHz, Low Side LO
24.0
26.0
27.1
26.8
26.0
25.2
dBm
dBm
dBm
dBm
dBm
2-Tone Input 2nd Order Intercept
(∆f = 190MHz, fSPUR = fRF1 – fRF2)
fRF1 = 945MHz, fRF2 = 755MHz, fLO = 1040MHz
fRF1 = 2045MHz, fRF2 = 1855MHz, fLO = 1760MHz
62.3
63.1
dBm
dBm
SSB Noise Figure RF = 450MHz, High Side LO
RF = 850MHz, High Side LO
RF = 1950MHz, Low Side LO
RF = 2550MHz, Low Side LO
RF = 3500MHz, Low Side LO
11.9
11.7
11.7
12.1
14.3
dB
dB
dB
dB
dB
SSB Noise Figure Under Blocking RF = 850MHz, High Side LO, 750MHz Blocker at 5dBm
RF = 1950MHz, Low Side LO, 2050MHz Blocker at 5dBm
17.5
17.0
dB
dB
LO to RF Leakage LO = 350MHz to 1000MHz
LO = 1000MHz to 2900MHz
LO = 2900MHz to 4500MHz
<–58
<–50
<–42
dBm
dBm
dBm
LO to IF Leakage LO = 350MHz to 1000MHz
LO = 1000MHz to 2900MHz
LO = 2900MHz to 4500MHz
<–38
<–35
<–33
dBm
dBm
dBm
RF to LO Isolation RF = 300MHz to 2500MHz
RF = 2500MHz to 4000MHz
>57
>50
dB
dB
RF to IF Isolation RF = 300MHz to 1400MHz
RF = 1400MHz to 3000MHz
RF = 3000MHz to 4000MHz
>28
>30
>31
dB
dB
dB
1/2IF Output Spurious Product
(fRF Offset to Produce Spur at fIF = 190MHz)
850MHz: fRF = 945MHz at –10dBm, fLO = 1040MHz
1950MHz: fRF = 1855MHz at –10dBm, fLO = 1760MHz
–75
–71
dBc
dBc
1/3IF Output Spurious Product
(fRF Offset to Produce Spur at fIF = 190MHz)
850MHz: fRF = 976.67MHz at –10dBm, fLO = 1040MHz
1950MHz: fRF = 1823.33MHz at –10dBm, fLO = 1760MHz
–88
–84
dBc
dBc
Input 1dB Compression RF = 450MHz, High Side LO
RF = 850MHz, High Side LO
RF = 1950MHz, Low Side LO
RF = 2550MHz, Low Side LO
RF = 3500MHz, Low Side LO
11.1
10.4
10.2
10.4
10.2
dBm
dBm
dBm
dBm
dBm
Channel-to-Channel Isolation RF = 300MHz to 1000MHz
RF = 1000MHz to 2700MHz
RF = 2700MHz to 3000MHz
RF = 3000MHz to 3300MHz
RF = 3300MHz to 3800MHz
>44
>44
>42
>36
>34
dB
dB
dB
dB
dB
LTC5569
4
5569fa
Note 1: Stresses beyond those listed under Absolute Maximum Ratings
may cause permanent damage to the device. Exposure to any Absolute
Maximum Rating condition for extended periods may affect device
reliability and lifetime.
Note 2: The LTC5569 is guaranteed functional over the –40°C to 105°C
case temperature range (θJC = 8°C/W).
Note 3: SSB Noise Figure measured with a small-signal noise source,
bandpass filter and 2dB matching pad on RF input, and bandpass filter on
the LO input.
Note 4: Channel A to channel B isolation is measured as the relative IF
output power of channel B to channel A, with the RF input signal applied to
channel A. The RF input of channel B is 50Ω terminated, and both mixers
are enabled.
Typical Dc perForMance characTerisTics
Supply Current vs Supply Voltage
(One Mixer Enabled)
Supply Current vs Supply Voltage
(Both Mixers Enabled)
Test circuit shown in Figure 1.
Dc elecTrical characTerisTics
VCC = 3.3V, TC = 25°C. Test circuit shown in Figure 1. (Note 2)
PARAMETER CONDITIONS MIN TYP MAX UNITS
Supply Voltage (VCC) 3.0 3.3 3.6 V
Supply Current One Mixer Enabled
Both Mixers Enabled
ENA or ENB = High
ENA and ENB = High
90
180
106
212
mA
mA
Shutdown Current—Both Mixers Disabled ENA and ENB = Low 200 µA
Enable Logic Inputs (ENA, ENB)
ENA, ENB Input High Voltage (On) 2.5 V
ENA, ENB Input Low Voltage (Off) 0.3 V
ENA, ENB Input Current –0.3V to VCC + 0.3V 100 µA
Turn-On Time 0.6 µs
Turn-Off Time 0.5 µs
Mixer DC Bias Adjust (BIASA, BIASB)
Open-Circuit DC Voltage 2.2 V
Short-Circuit DC Current Pin Shorted to Ground 1.8 mA
VCC SUPPLY VOLTAGE (V)
3.0
98
105°C
85°C
55°C
25°C
–10°C
–40°C
96
94
92
90
88
86
84 3.3 3.5
5569 G01
3.1 3.2 3.4 3.6
SUPPLY CURRENT (mA)
VCC SUPPLY VOLTAGE (V)
3.0
165
SUPPLY CURRENT (mA)
170
175
180
185
195
105°C
85°C
55°C
25°C
–40°C
3.1 3.2 3.3 3.4
5569 G02
3.5
3.6
190
–10°C
LTC5569
5
5569fa
Conversion Gain, IIP3 and NF
vs RF Frequency (High Side LO)
RF Isolation vs RF Frequency LO Leakage vs LO Frequency
Channel Isolation
vs RF Frequency
Conversion Gain, IIP3 and NF
vs RF Frequency (Low Side LO)
1950MHz Conversion Gain, IIP3
and NF vs LO Power (Low Side LO)
1950MHz Conversion Gain, IIP3
and NF vs LO Power (High Side LO)
2550MHz Conversion Gain, IIP3
and NF vs LO Power (Low Side LO)
2550MHz Conversion Gain, IIP3
and NF vs LO Power (High Side LO)
Typical perForMance characTerisTics
1400MHz to 3000MHz application. Test circuit shown in
Figure 1. VCC = 3.3V, TC = 25°C, PLO = 0dBm, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, f = 2MHz), IF = 190MHz unless otherwise noted.
RF FREQUENCY (GHz)
1.4
10
IIP3 (dBm), SSB NF (dB)
G
C
(dB)
12
16
18
20
30
24
1.8 2.2 2.4
5569 G03
14
26
28
22
0
2
5
1
4
3
1.6 2.0 2.6 2.8 3.0
IIP3
GC
NF
LO INPUT POWER (dBm)
–6
0
G
C
(dB), IIP3 (dBm), SSB NF (dB)
4
8
12
28
NF
20
–2 24
24
16
2
6
10
26
18
22
14
–4 0 6
5569 G04
85°C
25°C
–40°C
IIP3
GC
LO INPUT POWER (dBm)
–6
0
G
C
(dB), IIP3 (dBm), SSB NF (dB)
4
8
12
28
20
–2 24
24
16
2
6
10
26
18
22
14
–4 0 6
5569 G05
85°C
25°C
–40°C
IIP3
GC
NF
RF FREQUENCY (GHz)
1.4
10
IIP3 (dBm), SSB NF (dB)
G
C
(dB)
12
16
18
20
30
24
1.8 2.2 2.4
5569 G06
14
26
28
22
0
2
5
1
4
3
1.6 2.0 2.6 2.8 3.0
IIP3
GC
NF
LO INPUT POWER (dBm)
–6
0
G
C
(dB), IIP3 (dBm), SSB NF (dB)
4
8
12
28
NF
20
–2 24
24
16
2
6
10
26
18
22
14
–4 0 6
5569 G07
85°C
25°C
–40°C
IIP3
GC
LO INPUT POWER (dBm)
–6
0
G
C
(dB), IIP3 (dBm), SSB NF (dB)
4
8
12
28
20
–2 24
24
16
2
6
10
26
18
22
14
–4 0 6
5569 G08
85°C
25°C
–40°C
IIP3
GC
NF
RF FREQUENCY (GHz)
1.4
ISOLATION (dB)
45
55
3.0
5569 G09
35
25 1.8 2.2 2.6
1.6 2.0 2.4 2.8
65
40
50
30
60
RF-LO
RF-IF
LO FREQUENCY (GHz)
1.2
LO LEAKAGE (dBm)
–40
–30
–20
2.8
5569 G10
–50
–60
–70 1.6 2.0
LO-IF
LO-RF
2.4 3.2
RF FREQUENCY (GHz)
1.4
44
46
2.0 2.4 3.0
5569 G11
42
40
38
1.6 1.8 2.2 2.6 2.8
105°C
25°C
–40°C
LTC5569
6
5569fa
SSB Noise Figure
vs RF Blocker Level
1950MHz Conversion Gain
Histogram
Conversion Gain, IIP3, NF and RF
Input P1dB vs Temperature
1950MHz IIP3 Histogram
Conversion Gain, IIP3 and NF
vs Supply Voltage
1950MHz SSB NF Histogram
2-Tone IF Output Power, IM3 and
IM5 vs RF Input Power
Single Tone IF Output Power, 2 × 2
and 3 × 3 Spurs vs RF Input Power
2 × 2 and 3 × 3 Spur Suppression
vs LO Power
Typical perForMance characTerisTics
1400MHz to 3000MHz application. Test circuit shown in
Figure 1. VCC = 3.3V, TC = 25°C, PLO = 0dBm, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, f = 2MHz), IF = 190MHz unless otherwise noted.
RF INPUT POWER (dBm/TONE)
–12
–90
OUTPUT POWER/TONE (dBm)
–70
–50
IM3
IM5
–30
–9 –6 –3 0
5569 G12
3
–10
10
–80
–60
–40
–20
0
6
IFOUT
RF1 = 1949MHz
RF2 = 1951MHz
LO = 1760MHz
RF INPUT POWER (dBm)
–15
85
OUTPUT POWER (dBm)
75
55
–45
–35
15
–15
–9 –3 0 12
5569 G13
65
–5
5
–25
–12 –6 369
IFOUT
(RF = 1950MHz)
2RF-2LO
(RF = 1855MHz)
3RF-3LO
(RF = 1823.33MHz)
LO = 1760MHz
LO INPUT POWER (dBm)
–6
–90
RELATIVE SPUR LEVEL (dBc)
–85
–80
–75
–70
–60
–4 –2 0 2
5569 G14
4 6
–65 2RF-2LO
(RF = 1855MHz)
3RF-3LO
(RF = 1823.33MHz)
RF = 1950MHz
PRF = –10dBm
LO = 1760MHz
RF BLOCKER POWER (dBm)
–25
SSB NF (dB)
14
20
21
22
–15 –5 0
5569 G15
12
18
16
13
19
11
17
15
–20 –10 510
RF = 1950MHz
BLOCKER = 2050MHz
LO = 1760MHz
PLO = –3dBm
PLO = 3dBm
PLO = 0dBm
CASE TEMPERATURE (°C)
–45
0
G
C
AND SSB NF (dB), IIP3 AND P1dB (dBm)
4
8
12
28
20
–15 15
24
16
2
6
10
26
18
22
14
45 75 105
5569 G16
IIP3
NF
P1dB
GC
RF = 1950MHz
LOW SIDE LO
VCC SUPPLY VOLTAGE (V)
3.0
0
G
C
(dB), IIP3 (dBm), SSB NF (dB)
6
12
18
3.1 3.2 3.3 3.4
5569 G17
3.5
24
30
IIP3
NF
GC
3
9
15
21
27
3.6
85°C
25°C
–40°C
RF = 1950MHz
LOW SIDE LO
CONVERSION GAIN (dB)
1.0
DISTRIBUTION (%)
30
40
50
1.5
5569 G18
20
10
25
35
45
15
5
02.0 2.5 3.0
85°C
25°C
–40°C
RF = 1950MHz, LOW SIDE LO
IIP3 (dBm)
24.5
DISTRIBUTION (%)
30
40
25.5
5569 G19
20
10
25
35
15
5
026.5 27.5 28.5
RF = 1950MHz, LOW SIDE LO
85°C
25°C
–40°C
SSB NOISE FIGURE (dB)
9.9
DISTRIBUTION (%)
30
40
10.4 10.9 11.4 11.9 12.4 12.9
5569 G20
20
10
25
35
15
5
013.4
RF = 1950MHz
LOW SIDE LO 85°C
25°C
–40°C
LTC5569
7
5569fa
Conversion Gain, IIP3 and NF
vs RF Frequency
850MHz Conversion Gain,
IIP3 and NF vs LO Power
850MHz Conversion Gain,
IIP3 and NF vs Supply Voltage
2-Tone IF Output Power, IM3 and
IM5 vs RF Input Power
Single Tone IF Output Power 2 × 2
and 3 × 3 Spurs vs RF Input Power
2 × 2 and 3 × 3 Spur Suppression
vs LO Power
Channel Isolation, RF Isolation and
LO Leakage vs Frequency
Conversion Gain, IIP3, NF and RF
Input P1dB vs Temperature
SSB Noise Figure
vs RF Blocker Level
Typical perForMance characTerisTics
700MHz to 1000MHz application. Test circuit shown in
Figure 1. VCC = 3.3V, TC = 25°C, PLO = 0dBm, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, f = 2MHz), IF = 190MHz unless otherwise noted.
RF FREQUENCY (MHz)
700
0
G
C
(dB), IIP3 (dBm), SSB NF (dB)
4
8
12
28
20
750 800 950
24
16
2
6
10
26
18
22
14
850 900 1000
5569 G21
IIP3
NF
GC
HIGH SIDE LO
LO INPUT POWER (dBm)
–6
0
G
C
(dB), IIP3 (dBm), SSB NF (dB)
4
8
12
28
20
–2 24
24
16
2
6
10
26
18
22
14
–4 0 6
5569 G22
85°C
25°C
–40°C
IIP3
GC
NF
HIGH SIDE LO
VCC SUPPLY VOLTAGE (V)
3.0
1
G
C
(dB), IIP3 (dBm), SSB NF (dB)
4
10
13
16
3.4
28
5569 G23
7
3.2
3.1 3.5
3.3 3.6
19
22
25
85°C
25°C
–40°C
HIGH SIDE LO
IIP3
GC
NF
RF/LO FREQUENCY (MHz)
700
10
ISOLATION (dB)
LO LEAKAGE (dBm)
20
30
40
50
60
70
–60
–50
–40
–30
–20
–10
0
800 900 1000 1100
5569 G24
1200
RF-LO
ISO
LO-IF
LO-RF
RF-IF
ISO
CHANNEL
ISO
LO INPUT POWER (dBm)
–45
0
GC, NF (dB), IIP3, P1dB (dBm)
4
8
12
28
20
15 75
24
16
2
6
10
26
18
22
14
–15 45 105
5569 G25
IIP3
GC
NF
P1dB
RF = 850MHz
HIGH SIDE LO
LO INPUT POWER (dBm)
–45
0
GC, NF (dB), IIP3, P1dB (dBm)
4
8
12
28
20
15 75
24
16
2
6
10
26
18
22
14
–15 45 105
5569 G25
IIP3
GC
NF
P1dB
RF = 850MHz
HIGH SIDE LO
RF BLOCKER POWER (dBm)
–25
SSB NF (dB)
14
20
21
22
–15 –5 0
5569 G26
12
18
16
13
19
11
17
15
–20 –10 510
RF = 850MHz
BLOCKER = 750MHz
LO = 1040MHz
PLO = –3dBm
PLO = 3dBm
PLO = 0dBm
RF INPUT POWER (dBm/TONE)
–12
–80
OUTPUT POWER/TONE (dBm)
–60
–40
–20
–9 –6 –3 0
5569 G27
3
0
20
–70
–50
–30
–10
10
6
IFOUT
IM3 IM5
RF1 = 849MHz
RF2 = 851MHz
LO = 1040MHz
RF INPUT POWER (dBm)
–15
85
OUTPUT POWER (dBm)
75
55
–45
–35
15
–15
–9 –3 0 12
5569 G28
65
–5
5
–25
–12 –6 369
IFOUT
(RF = 850MHz)
2LO-2RF
(RF = 945MHz)
3LO-3RF
(RF = 976.67MHz)
LO = 1040MHz
LO INPUT POWER (dBm)
–6
–90
RELATIVE SPUR LEVEL (dBc)
–85
–80
–75
–70
–60
–4 –2 0 2
5569 G29
4 6
–65
2LO-2RF
(RF = 945MHz)
3LO-3RF
(RF = 976.67MHz)
RF = 850MHz
PRF = –10dBm
LO = 1040MHz
LTC5569
8
5569fa
3GHz to 4GHz application. Test circuit shown in Figure 1.
Conversion Gain, IIP3, NF and
Channel Isolation vs RF Frequency
Conversion Gain, IIP3 and NF
vs RF Frequency
RF Isolation and LO leakage
vs RF and LO Frequency
450MHz Conversion Gain,
IIP3 and NF vs LO Power
3500MHz Conversion Gain,
IIP3 and NF vs LO Power
Conversion Gain, IIP3 and RF
Input P1dB vs Temperature
3500MHz Conversion Gain,
IIP3 and NF vs Supply Voltage
Channel Isolation
vs RF Frequency
RF Isolation and LO Leakage
vs RF and LO Frequency
Typical perForMance characTerisTics
400MHz to 500MHz application. Test circuit shown in
Figure 1. VCC = 3.3V, TC = 25°C, PLO = 0dBm, PRF = –6dBm (–6dBm/tone for 2-tone IIP3 tests, f = 2MHz), IF = 190MHz unless otherwise noted.
RF FREQUENCY (MHz)
400
1
GC (dB), IIP3 (dBm), SSB NF (dB)
CHANNEL ISOLATION (dB)
3
7
9
11
21
23
25
27
15
425 450
5569 G30
5
17
19
13
0
5
15
20
25
50
55
60
65
35
10
40
45
30
475 500
IIP3
NF
GC
CH. ISO
LO INPUT POWER (dBm)
–6
0
G
C
(dB), IIP3 (dBm), SSB NF (dB)
3
9
12
15
2
27
5569 G31
6
–2
–4 4
0 6
18
21
24
85°C
25°C
–40°C
IIP3
GC
NF
HIGH SIDE LO
RF/LO FREQUENCY (MHz)
400
RF ISOLATION (dB)
LO LEAKAGE (dBm)
45
50
55
550 650
5569 G32
40
35
30 450 500 600
60
65
70
–50
–40
–30
–60
–70
–80
–20
–10
0
700
RF-LO
LO-IF
LO-RF
RF-IF
RF FREQUENCY (GHz)
3.0
0
G
C
(dB), IIP3 (dBm), SSB NF (dB)
2
6
8
10
20
22
24
26
14
3.2 3.4
5569 G33
4
16
18
12
3.6 4.03.8
IIP3
NF
GC
LOW SIDE LO
LO INPUT POWER (dBm)
–6
0
G
C
(dB), IIP3 (dBm), SSB NF (dB)
3
9
12
15
2
27
5569 G34
6
–2
–4 4
0 6
18
21
24
85°C
25°C
–40°C
IIP3
GC
NF
RF = 3.5GHz
LOW SIDE LO
VCC SUPPLY VOLTAGE
3.0
0
GC (dB), IIP3 (dBm), SSB NF (dB)
3
9
12
15
3.4
27
5569 G35
6
3.2
3.1 3.5
3.3 3.6
18
21
24
85°C
25°C
–40°C
IIP3
GC
NF
RF = 3.5GHz
LOW SIDE LO
RF/LO FREQUENCY (GHz)
2.6
0
RF ISOLATION (dB)
LO LEAKAGE (dBm)
10
20
30
40
60
RF-LO
RF-IF
LO-IF
LO-RF
2.9 3.2 3.5 3.8
5569 G36
4.1 4.4
50
–60
–50
–40
–30
–20
0
–10
CASE TEMPERATURE (°C)
–45
0
G
C
(dB), IIP3, P1dB (dBm)
4
8
12
28
20
15 75
24
16
2
6
10
26
18
22
14
–15 45 105
5569 G37
IIP3
GC
NF
P1dB
RF = 3500MHz
LOW SIDE LO
RF FREQUENCY (GHz)
3.0
ISOLATION (dB)
36
38
40
3.8
5569 G38
34
32
30 3.2 3.4 3.6
4.0
105°C
25°C
–40°C
LTC5569
9
5569fa
pin FuncTions
RFA/RFB (Pin 1/Pin 4): Single-Ended RF Inputs for the
A and B Mixers, Respectively. These pins are internally
connected to the primary winding of the integrated RF
transformers, which have low DC resistance to ground.
Series DC-blocking capacitors must be used if the RF
sources have DC voltage present. The RF inputs are 50Ω
impedance matched from 1.4GHz to 3.3GHz, as long as
the mixer is enabled. Operation down to 300MHz or up
to 4GHz is possible with external matching.
GND (Pins 2, 3, 10, Exposed Pad Pin 17): Ground. These
pins must be soldered to the RF ground plane on the circuit
board. The exposed pad metal of the package provides
both electrical contact to ground and good thermal contact
to the printed circuit board.
LO (Pin 11): Single-Ended Local Oscillator Input. This
pin is internally connected to the primary winding of an
integrated transformer, which has low DC resistance to
ground. A series DC-blocking capacitor must be used
to avoid damage to the internal transformer. This input
is 50Ω impedance matched from 1GHz to 3.5GHz, even
when one or both mixers are disabled. Operation down
to 350MHz or up to 4500MHz is possible with external
matching.
ENA/ENB (Pin 12/Pin 9): Enable Pins for the A and B Mixers,
Respectively. When the input voltage is greater than 2.5V,
the mixer is enabled. When the input voltage is less than
0.3V, the mixer is disabled. Typical input current is less
than 30µA. These pins have internal pull-down resistors.
VCCA/VCCB (Pin 13/Pin 8): Power Supply Pins for the A and
B Mixers, Respectively. These pins must be connected to
a regulated 3.3V supply, with bypass capacitors located
close to the pins. Typical DC current consumption is
34mA, each.
IFA+/IFA (Pin 15/Pin 14), IFB+/IFB (Pin 6/Pin 7): Open-
Collector Differential IF Outputs for the A and B Mixers,
Respectively. These pins must be connected to the VCC
supply through impedance-matching inductors or a
transformer center tap. Typical DC current consumption
is 28mA into each pin.
BIASA/BIASB (Pin 16/Pin 5): These pins allow adjustment
of the mixer DC supply currents for mixers A and B, respec-
tively. Typical, open-circuit DC voltage is 2.2V. These pins
should be left open circuited for optimum performance.
block DiagraM
RFA
GND
GND
RFB
ENA
ENB
5569 BD
VCCA
BIASA
BIASB VCCB
IFA
IFA+
IFB+IFB
BIAS
RF
BIAS
LO
LO
RF
1
13
12
LO 11
9
8
16 1415
5 76
2
3GND 10
4
LTC5569
10
5569fa
TesT circuiT
LOIN
50Ω
1516
1
2
3
14 13
65
4
12
11
10
9
7 8
C6
IFAOUT
190MHz
50Ω
RFAIN
50Ω
L1
L5 BIASA
RF
0.015"
0.062"
0.015"
GND
BIAS
GND
RFA
GND
C1
DC1719A
EVALUATION BOARD
LAYER STACK-UP
(NELCO N4000-13)
C3
GND
RFB
BIASB IFB+IFB
ENB
GND
LO
ENA ENA
C11
VCC
3.3V
ENB
VCCB
IFA+
17
GND
IFAVCCA
T1
8:1
LTC5569
T2
8:1
L3
L2 L4
C9
IFBOUT
190MHz
50Ω
C8
C5
RFBIN
50Ω
L6
C2
C4
C10
5569 F01
C7
APPLICATION RF MATCH LO MATCH
RF (MHz) LO C1, C2 C3, C4 L5, L6 C5 C6
300 to 400 HS 120pF 18pF 3.3nH 1nF 10pF
400 to 500 HS 120pF 12pF 2nH 27pF 6.8pF
700 to 1000 HS 68pF 4.7pF 6.8pF 2.2pF
1400 to 3000 LS, HS 2.7pF 3.9pF
3000 to 4000 LS 3.9pF 0.7pF 3.9pF 0.3pF
LS = Low side, HS = High side
REF DES VALUE SIZE VENDOR REF DES VALUE SIZE VENDOR
C1, C2 See Table 0402 AVX C11 2.2µF 0603 AVX
C3, C4 See Table 0402 AVX T1, T2 8:1 Mini-Circuits TC8-1-10LN+
C5 See Table 0402 AVX L1- L4 180nH 0603 Coilcraft 0603HP
C6 See Table 0402 AVX L5, L6 See Table 0402 Coilcraft 0402HP
C7-C10 10nF 0402 AVX
Figure 1. Standard Downmixer Test Circuit Schematic (190MHz Bandpass IF Matching)
LTC5569
11
5569fa
applicaTions inForMaTion
Introduction
The LTC5569 incorporates two identical, symmetric double-
balanced active mixers with a common LO input, separate
RF inputs and separate IF outputs. See the Pin Functions
and Block Diagram sections for a description of each pin.
A test circuit schematic showing all external components
required for the data sheet specified performance is shown
in Figure 1. A few additional components may be used
to modify the DC supply current or frequency response,
which will be discussed in the following sections.
The LO and RF inputs are single ended. The IF outputs
are differential. Low side or high side LO injection may be
used. The test circuit, shown in Figure 1, utilizes bandpass
IF output matching and 8:1 IF transformers to realize 50Ω
single-ended IF outputs. The evaluation board layout is
shown in Figure 2.
RF Inputs
A simplified schematic of the A-channel mixers RF input
is shown in Figure 3. The B-channel is identical, and not
shown for clarity. As shown, one terminal of the integrated
RF transformers primary winding is connected to Pin 1,
while the other terminal is DC-grounded internally. For this
reason, a series DC-blocking capacitor (C1) is needed if the
RF source has DC voltage present. The DC resistance of
the primary winding is approximately 4Ω. The secondary
winding of the RF transformer is internally connected to
the RF buffer amplifier.
The RF inputs are 50Ω matched from 1400MHz to 3300MHz
with a single 2.7pF series capacitor on each input. Matching
to RF frequencies above or below this frequency range is
easily accomplished by adding shunt capacitor C3, shown
in Figure 3. For RF frequencies below 500MHz, series
Figure 2. Evaluation Board Layout
LTC5569
12
5569fa
applicaTions inForMaTion
inductor L5 is also needed. The evaluation board does
not include pads for the series inductors, so the 50Ω RF
input traces need to be cut to install these in series. The
RF input matching element values for each application are
tabulated in Figure 1. Measured RF input return losses
are shown in Figure 4. The RF input impedance and input
reflection coefficient, versus frequency are listed in Table 1.
Table 1. RF Input Impedance and S11 (At Pin 1, No External
Matching, Mixer Enabled)
FREQUENCY
(MHz)
INPUT
IMPEDANCE
S11
MAG ANGLE
350 9.0 + j11.9 0.71 152.5
450 11.0 + j13.8 0.66 147.7
575 13.1 + j15.7 0.62 143.0
700 15.2 + j17.3 0.58 138.6
900 18.1 + j20.0 0.53 131.6
1100 21.3 + j22.4 0.49 124.6
1400 27.0 + j25.3 0.42 114.1
1700 33.4 + j26.8 0.36 103.9
1950 39.1 + j25.6 0.30 97.1
2200 43.4 + j21.5 0.23 94.2
2450 44.3 + j15.9 0.18 100.2
2700 40.8 + j9.9 0.15 126.5
3000 33.1 + j6.4 0.22 154.7
3300 24.3 + j6.8 0.36 159.9
3600 17.6 + j9.6 0.49 155.4
3900 12.9 + j12.7 0.61 149.6
LO Input
A simplified schematic of the LO input, with external
components is shown in Figure 5. Similar to the RF in-
puts, the integrated LO transformers primary winding is
DC-grounded internally, and therefore requires an external
DC-blocking capacitor. Capacitor C5 provides the necessary
DC-blocking, and optimizes the LO input match over the
1GHz to 3.5GHz frequency range. The nominal LO input
level is 0dBm although the limiting amplifiers will deliver
excellent performance over a ±5dB input power range. LO
input power greater than +6dBm may cause conduction
of the internal ESD diodes.
To optimize the LO input match for frequencies below
1GHz, the value of C5 is increased and shunt capacitor C6
is added. A summary of values for C5 and C6, versus LO
frequency range is listed in Table 2. Measured LO input
LO
BUFFER
LO
BUFFER
LO
C6
5569 F05
LTC5569
11
C5 LOIN
Figure 5. LO Input Schematic
RF
BUFFER
RFA
C3
5569 F03
L5
LTC5569
1
C1
RFAIN
Figure 3. RF Input Schematic
Figure 4. RF Input Return Loss
FREQUENCY (GHz)
0.2
RETURN LOSS (dB)
–15
–10
–5
3.2
5569 F04
–20
–25
1.2 2.2
0.7 3.7
1.7 2.7 4.2
–30
–35
0
400MHz TO 500MHz APP.
700MHz TO 1000MHz APP.
1400MHz TO 3000MHz APP.
3GHz TO 4GHz APP.
TC = 25°C
LTC5569
13
5569fa
applicaTions inForMaTion
return losses are shown in Figure 6. Finally, LO input im-
pedance and input reflection coefficient, versus frequency
is shown in Table 3.
Table 2. LO Input Matching Values vs LO Frequency Range
FREQUENCY (MHz) C5 (pF) C6 (pF)
350 to 430 390 22
480 to 630 68 12
576 to 722 27 6.8
720 to 980 15 4.7
814 to 1155 6.8 2.2
1000 to 3500 3.9
2200 to 4000 3.9 0.3
The LO buffers have been designed such that the LO input
Figure 6. LO Input Return Loss
Figure 7. LO Input Return Loss for Three Operating States
FREQUENCY (GHz)
0.2
RETURN LOSS (dB)
–10
–5
0
1.7 2.7 4.2
5569 F06
–15
–20
–25
0.7 1.2 2.2 3.2 3.7
C5 = 27pF, C6 = 6.8pF
C5 = 6.8pF, C6 = 2.2pF
C5 = 3.9pF
C5 = 3.9pF, C6 = 0.3pF
TC = 25°C
FREQUENCY (GHz)
0.2
RETURN LOSS (dB)
0
–2
–4
–6
–8
–10
12
14
16
18
–20
4.2
5569 F07
1.2 2.2 3.2 3.70.7 1.7 2.7
TC = 25°C
C5 = 3.9pF
BOTH MIXERS DISABLED
ONE MIXER ENABLED
BOTH MIXERS ENABLED
Table 3. LO Input Impedance and S11 (At Pin 11, No External
Matching, Both Mixers Enabled)
FREQUENCY
(MHz)
INPUT
IMPEDANCE
S11
MAG ANGLE
350 5.5 + j15.1 0.82 146.1
400 6.0 + j17.3 0.81 141.3
450 6.9 + j19.5 0.79 136.7
500 8.0 + j21.8 0.77 131.9
600 10.3 + j26.5 0.73 122.6
800 17.6 + j35.7 0.63 104.5
1000 29.5 + j43.6 0.53 86.5
1500 70.8 + j28.3 0.28 40.5
2000 60.1 – j4.2 0.10 –20.2
2500 41.8 – j3.2 0.10 –156.6
3000 33.1 + j7.4 0.22 151.3
3500 29.8 + j19.2 0.34 122.9
4000 29.5 + j29.9 0.43 103.7
4500 32.0 + j37.6 0.46 90.9
impedance does not change significantly when one or both
mixers are disabled. This feature only requires that supply
voltage is applied to both mixers. The actual performance
of this feature is shown in Figure 7, where LO input return
loss versus frequency is shown for the following three
operating conditions: both mixers enabled, one mixer
enabled, and both mixers disabled. As shown, the LO
input return loss is better than 12dB over the 1000MHz to
3500MHz frequency range for all three operating states.
IF Outputs
The A-channel IF output schematic with external match-
ing components is shown in Figure 8. The B-channel is
identical, and not shown for clarity. As shown, the outputs
are differential open collector. Each IF output pin must
LTC5569
14
5569fa
applicaTions inForMaTion
be biased at the supply voltage (VCC), which is applied
through the external matching inductors (L1 and L3)
shown in Figure8. Alternatively, the IF outputs can be
biased through the center tap of the IF transformer. Each
IF output pin on the IC draws approximately 28mA of DC
supply current (56mA total per mixer).
The differential IF output impedance can be modeled as a
parallel R-C circuit. These R-C values are listed in Table 4,
versus IF frequency. This data is referenced to the pack-
age pins (with no external components) and includes
the effects of the IC and package parasitics. The values
of L1 and L3 are calculated to resonate with the internal
capacitance (CIF) at the desired IF center frequency, using
the following equation:
L1, L3 =1
2πfIF
( )
22CIF
For IF frequencies below 130MHz, the matching inductors
are not needed due to the low IF output capacitance. The
evaluation board has the transformer center tap connected
to the matching inductor center node, thus allowing the cir-
cuit to be used without matching inductors. The measured
IF output return loss for this case is shown in Figure 9.
Table 4 summarizes the optimum IF matching inductor val-
ues, versus IF center frequency, to be used in the standard
downmixer test circuit shown in Figure 1. The inductor
values listed are less than the ideal calculated values due
to the additional capacitance of the 8:1 transformer. For
differential IF output applications where the 8:1 transformer
is eliminated, the ideal calculated values should be used.
Measured IF output return losses are shown in Figure 9.
Table 4. IF Output Impedance and Bandpass Matching Element
Values vs IF Frequency.
IF FREQUENCY
(MHz)
DIFFERENTIAL IF
OUTPUT IMPEDANCE
(RIF || CIF)
BANDPASS MATCHING
L1, L3 (A)
L2, L4 (B)
50 540Ω||1.3pF Open
140 532Ω||1.3pF 330nH
190 530Ω ||1.3pF 180nH
240 525Ω ||1.3pF 110nH
300 519Ω ||1.3pF 72nH
380 511Ω ||1.3pF 43nH
456 502Ω ||1.3pF 30nH
580 490Ω ||1.33pF
810 477Ω ||1.35pF
1000 450Ω ||1.4pF
Figure 9. IF Output Return Loss—Bandpass Matching
with 8:1 Transformer
FREQUENCY (MHz)
30
RETURN LOSS (dB)
20
–10
0
25
15
–5
150 250 350 450
5569 F09
55010050 200 300 400 500
NO INDUCTORS
330nH
180nH
110nH
68nH
43nH
30nH
1415 LTC5569
5569 F08
L1 L3
T1
8:1
C7
VCC
IFA
OUT
50Ω
IFA+IFA
VCC
Figure 8. IF Output Schematic with Bandpass Matching
and 8:1 Transformer
LTC5569
15
5569fa
applicaTions inForMaTion
Figure 11. Conversion Gain and IF Output Return Loss vs
IF Frequency—Wideband Matching with 4:1 Transformer
Wideband IF Using Load Resistor and 4:1 Transformer
Wide IF bandwidth and high input 1dB compression can be
obtained by reducing the IF output resistance with a shunt
resistor (R3), as shown in Figure 10. This will reduce the
mixers conversion gain, but will not degrade the IIP3 or
noise figure. The evaluation board includes pads for R3
(and R4 for the B-channel). To accommodate the lower total
IF resistance, transformer T1 should be changed from an
8:1 impedance ratio to a 4:1 ratio. The value of the external
matching inductors L1 and L3 needs to be adjusted to ac-
count for the differences in the IF transformer parasitics.
Table 5 summarizes the measured conversion gain, IIP3,
noise figure, RF input P1dB and IF bandwidth for three
values of load resistor. Inductors L1 and L3 have been
increased from 180nH to 270nH to keep the IF match
centered at 190MHz (the 8:1 transformer has higher ca-
pacitance). Also shown, for comparison, is the measured
performance using an 8:1 IF transformer and no load resis-
tor. Measured conversion gain and IF output return loss
versus IF frequency are shown for each case in Figure 11.
Table 5. Measured Performance Using IF Load Resistor (R3)
and 4:1 Transformer (RF = 1950MHz, Low-Side LO,
IF = 190MHz, VCC = 3.3V, TC = 25°C)
IF
XFMR R3 (Ω) GC (dB)
IIP3
(dBm)
SSB NF
(dB)
INPUT
P1dB
(dBm)
0.5dB IF
BANDWIDTH
(MHz)
8:1 2.0 26.8 11.7 10.2 –55/+85
4:1
1210 0.9 26.8 11.7 12.8 –90/+110
604 0.0 26.8 11.7 13.0 –100/+120
374 -1.1 26.8 11.8 13.3 –115/+120
IF FREQUENCY (MHz)
50
–1
0
2
170 250
5569 F11
–2
–3
90 130 210 290 330
–4
–5
1
5
15
35
–5
–15
–25
–35
25
CONVERSION GAIN (dB)
IF RETURN LOSS (dB)
8:1
1210Ω
604Ω
374Ω
374Ω
604Ω
1210Ω
8:1
1415 LTC5569
5569 F10
L1 L3
T1
4:1
C7
10nF
R3
VCC
IFAOUT
50Ω
IFA+IFA
VCC
Figure 10. IF Output Schematic with Wideband Matching
and 4:1 Transformer
Discrete IF Balun Matching
For narrowband IF applications, it is possible to replace
the IF transformer with the discrete IF balun shown in
Figure 12 (only the A-channel is shown for clarity). The
values of L3, L7, C13 and C15 are calculated to realize a
180° phase shift at the desired IF frequency, and provide
a 50Ω single-ended output, using the equations listed
below. Inductor L1 is calculated to cancel the internal IF
capacitance (CIF from Table 4). L1 and L3 also supply DC
bias to the IF output pins. R5 and R7 are used to reduce
the differential output resistance (RS), which increases
LTC5569
16
5569fa
applicaTions inForMaTion
Figure 13. IF Output Return Losses with Discrete
IF Balun Matching
the IF bandwidth, but reduces the conversion gain. C17
is a DC-blocking capacitor.
RS=2R5 RIF
2R5+RIF
R5 =R7
( )
L1=1
2CIF ωIF
( )
2
L7 =RSRL
ωIF
L3 =L1L7
L1+L7
C13, C15 =1
ωIF RSRL
These equations give a good starting point, but it is
usually necessary to adjust the component values after
building and testing the circuit. The final solution can be
achieved with less iteration by considering the parasit-
ics of L1 and L3 in the above calculations. Specifically,
the effective parallel resistance of L1 and L3 (calculated
from the manufacturers Q data) will reduce the value of
RS
, which in turn influences the calculated values of L7,
C13 and C15. Also, the effective parallel capacitance of L1
15 14 13
IFAVCCA
L1 L3
LTC5569
5569 F12
C7
10nF
R5
C13
C17
1nF
C15
VCC
C9
10nF
IFAOUT
RL = 50Ω
L7
IFA+
R7
Figure 12. Discrete IF Balun Matching
and L3 (taken from the manufacturers SRF data) must be
considered, since it is in parallel with CIF
. Frequently, the
calculated value for L7 does not fall on a standard value
for the desired IF. In this case, a simple solution is to vary
the value of R5 (R7), which changes the value of RS
, until
L7 is a standard value.
Discrete IF balun element values for five common IF fre-
quencies are listed in Table 6. Measured IF output return
losses are shown in Figure 13. Measured conversion
gain, IIP3 and noise figure versus IF output frequency is
shown in Figure 14.
Compared to the transformer-based IF matching technique,
the most significant performance difference, as shown in
Figure 14, is the limited IF bandwidth. For low IF frequen-
cies, the passband bandwidth is small, whereas higher IF
frequencies offer wider bandwidth.
Table 6. Discrete IF Balun Element Values (RL = 50Ω)
(Values Shown for the A Channel and B Channel
IF (MHz)
R5, R7 (A)
R6, R8 (B)
(Ω)
L1 (A)
L2 (B)
(nH)
L3 (A)
L4 (B)
(nH)
L7 (A)
L8 (B)
(nH)
C13, C15 (A)
C14, C16 (B)
(pF)
170 475 330 91 120 7
190 750 270 82 120 6
240 332 180 56 82 5.6
300 604 110 43 72 3.9
380 475 68 30 56 3.3
IF FREQUENCY (MHz)
90
RETURN LOSS (dB)
–15
–10
–5
390
5569 F13
–20
–25
190 290
140 440
240 340 490
–30
–35
0
170MHz
240MHz 380MHz
LTC5569
17
5569fa
applicaTions inForMaTion
Figure 14. Conversion Gain, IIP3 and SSB NF vs IF Output
Frequency Using Discrete IF Balun Matching
15 14
IFAVCCA
VCCA
16
BIASA
54mA
BIAS
3mA
BIAS
R1
LTC5569
5569 F12
IFA+
13
Figure 15. BIASA Interface (BIASB is Identical)
Mixer Bias Current Reduction
The BIASA and BIASB pins (Pins 16 and 5) are available
for reducing the mixer core DC current consumption, of
the A- and B-channels, respectively, at the expense of
linearity and P1dB. For the highest performance, these
pins should be left open circuit. As shown in Figure 15,
an internal bias circuit produces a 3mA reference current
for each mixer core. If a resistor is connected to Pin 16,
as shown in Figure 15, a portion of the reference current
can be shunted to ground, resulting in reduced mixer
core current. For example, R1 = 1k will shunt away 1mA
from Pin 16 and reduce the mixer core current by 33%.
The nominal, open-circuit DC voltage at the BIASA and
BIASB pins is 2.2V. Table 7 lists DC supply current and
RF performance at 1950MHz for various values of R1.
Table 7. Mixer Performance with Reduced Current
(RF = 1950MHz, Low Side LO, IF = 190MHz)
R1 (Ω) ICC (mA) GC (dB)
IIP3
(dBm)
P1dB
(dBm) NF (dB)
Open 90.0 2.0 26.8 10.2 11.7
10k 85.2 1.9 25.6 10.2 11.4
1k 71.0 1.6 21.4 10.1 10.4
100 58.6 1.1 17.9 8.9 10.0
11
13
CLAMP
300k
500Ω
LTC5569 VCCA
ENA ENA
5569 F16
Figure 16. Enable Input Circuit
Enable Interfaces
Figure 16 shows a simplified schematic of the A-chan-
nel enable interface. The B-channel is identical, and not
shown for clarity. To enable the A-channel mixer, the ENA
voltage must be higher than 2.5V. If the enable function is
not required, the pin should be connected directly to VCC.
The voltage at the ENA pin should never exceed the power
supply voltage (VCC) by more than 0.3V. If this should oc-
cur, the supply current could be sourced through the ESD
diode, potentially damaging the IC.
The ENA and ENB pins have internal 300k pull-down resis-
tors. Therefore, an unused mixer will be disabled with its
corresponding enable pin left floating.
IF FREQUENCY (MHz)
80
G
C
(dB), SSB NF (dB), IIP3 (dBm)
14
22
18
26
320
5569 F14
10
6
2
–2
16
24
20
28
12
8
4
0
140 200 260 380 440
170MHz
240MHz
380MHz
IIP3
GC
NF
RF = 1950MHz
LOW SIDE LO
PLO = 0dBm
ZRF = 50Ω
ZIF = 50Ω
TC = 25°C
LTC5569
18
5569fa
Supply Voltage Ramping
Fast ramping of the supply voltage can cause a current
glitch in the internal ESD clamp circuits connected to the
VCCA and VCCB pins. Depending on the supply inductance,
this could result in a supply voltage transient that exceeds
the 4.0V maximum rating. A supply voltage ramp time
greater than 1ms is recommended.
applicaTions inForMaTion
Spurious Output Levels
Mixer spurious output levels versus harmonics of the
RF and LO are tabulated in Table 8. The spur levels were
measured on a standard evaluation board using the test
circuit shown in Figure 1. The spur frequencies can be
calculated using the following equation:
fSPUR = (M • fRF) – (N • fLO)
Table 8. IF Output Spur Levels (dBm)
(RF = 1950MHz, PRF = –2dBm, PIF = 0dBm at 190MHz, Low Side LO, PLO = 0dBm, VCC = 3.3V, TC = 25°C)
N
M
0123456789
0 –56 –24 –58 –36 –51 –44 –58 –49 –80
1 –32 0 –56 –57 –68 –41 –69 –52 –75 –58
2 –59 –56 –67 –65 –76 –85 –71 –85 –80 *
3 * –88 –89 –74 * * * * –89 *
4 * * –85 * * * * * –85 *
5**********
6 *********
7 * * *
*Less than –90dBc
LTC5569
19
5569fa
Typical applicaTion
Voltage Conversion Gain, IIP3 and NF vs IF Frequency
IF OUTPUT FREQUENCY (MHz)
140
6.5
VOLTAGE CONVERSION GAIN (dB)
SSB NF (dB), IIP3 (dBm)
7.0
8.0
8.5
9.0
200 210 220 230
11.0
5569 TA03b
7.5
150 160 170 180 190 240
9.5
10.0
10.5
10
12
16
18
20
28
IIP3
NF
GV
14
22
24
26
RF = 1950 ±50MHz
LO = 1760MHz
PLO = 0dBm
ZRF = 50Ω
ZIF = 200Ω
TC = 25°C
RFA
ENA
10nF
3.3pF 3.3pF
2.7pF
RF
MAIN
3.3V
IFAOUT
200Ω
10nF
3.9pF LO
LO
ENA
5569 TA03a
VCCA
IFA+
LTC5569
CHANNEL B NOT SHOWN
IFA
3300pF
390nH
82nH 82nH
681Ω
390nH
BIAS
RF
LO
3300pF
681Ω
200Ω Differential Lowpass IF Output Matching
(Element Values Shown for 190MHz IF)
LTC5569
20
5569fa
UF Package
16-Lead Plastic QFN (4mm × 4mm)
(Reference LTC DWG # 05-08-1692)
4.00 ± 0.10
(4 SIDES)
NOTE:
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION
ON THE TOP AND BOTTOM OF PACKAGE
PIN 1
TOP MARK
(NOTE 6)
0.55 ± 0.20
1615
1
2
BOTTOM VIEW—EXPOSED PAD
2.15 ± 0.10
(4-SIDES)
0.75 ± 0.05 R = 0.115
TYP
0.30 ± 0.05
0.65 BSC
0.200 REF
0.00 – 0.05
(UF16) QFN 10-04
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS
0.72 ±0.05
0.30 ±0.05
0.65 BSC
2.15 ± 0.05
(4 SIDES)
2.90 ± 0.05
4.35 ± 0.05
PACKAGE OUTLINE
PIN 1 NOTCH R = 0.20 TYP
OR 0.35 × 45° CHAMFER
package DescripTion
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.
LTC5569
21
5569fa
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.
revision hisTory
REV DATE DESCRIPTION PAGE NUMBER
A 10/11 Revised Turn-On Time and Turn-Off Time Typical values in DC Electronics Characteristics 4
LTC5569
22
5569fa
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 FAX: (408) 434-0507 www.linear.com
LINEAR TECHNOLOGY CORPORATION 2011
LT 1011 REV A • PRINTED IN USA
relaTeD parTs
Typical applicaTion
PART NUMBER DESCRIPTION COMMENTS
Infrastructure
LTC559x 600MHz to 4.5GHz Dual Downconverting Mixer
Family
8.5dB Gain, 26.5dBm IIP3, 9.9dB NF, 3.3V/380mA Supply
LT
®
5527 400MHz to 3.7GHz, 5V Downconverting Mixer 2.3dB Gain, 23.5dBm IIP3 and 12.5dB NF at 1900MHz, 5V/78mA Supply
LT5557 400MHz to 3.8GHz, 3.3V Downconverting Mixer 2.9dB Gain, 24.7dBm IIP3 and 11.7dB NF at 1950MHz, 3.3V/82mA Supply
LTC6400-X 300MHz Low Distortion IF Amp/ADC Driver Fixed Gain of 8dB, 14dB, 20dB and 26dB; >36dBm OIP3 at 300MHz, Differential I/O
LTC6416 2GHz 16-Bit ADC Buffer 40dBm OIP3 to 300MHz, Programmable Fast Recovery Output Clamping
LTC6412 31dB Linear Analog VGA 35dBm OIP3 at 240MHz, Continuous Gain Range –14dB to 17dB
LT5554 Ultralow Distort IF Digital VGA 48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain Steps
LT5575 700MHz to 2.7GHz I/Q Demodulator 28dBm IIP3, 13dBm P1dB, 0.03dB I/Q Amplitude Match, 0.4° Phase Match
LT5578 400MHz to 2.7GHz Upconverting Mixer 27dBm OIP3 at 900MHz, 24.2dBm at 1.95GHz, Integrated RF Transformer
LT5579 1.5GHz to 3.8GHz Upconverting Mixer 27.3dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF Ports
LTC5588-1 200MHz to 6GHz I/Q Modulator 31dBm OIP3 at 2.14GHz, –160.6dBm/Hz Noise Floor
RF Power Detectors
LT5538 40MHz to 3.8GHz Log Detector ±0.8dB Accuracy Over Temperature, –72dBm Sensitivity, 75dB Dynamic Range
LT5581 6GHz Low Power RMS Detector 40dB Dynamic Range, ±1dB Accuracy Over Temperature, 1.5mA Supply Current
LTC5582 40MHz to 10GHz RMS Detector ±0.5dB Accuracy Over Temperature, ±0.2dB Linearity Error, 57dB Dynamic
LTC5583 Dual 6GHz RMS Power Detector Up to 60dB Dynamic Range, ±0.5dB Accuracy Over Temperature, >50dB Isolation
ADCs
LTC2208 16-Bit, 130Msps ADC 78dBFS Noise Floor, >83dB SFDR at 250MHz
LTC2285 Dual 14-Bit, 125Msps Low Power ADC 72.4dB SNR, 88dB SFDR, 790mW Power Consumption
LTC2268-14 Dual 14-Bit, 125Msps Serial Output ADC 73.1dB SNR, 88dB SFDR, 299mW Power Consumption
200Ω Differential Highpass IF Output Matching
(Element Values Shown for 190MHz IF)
RFA
RFB
ENA
ENB
10nF
8.2pF
10nF
8.2pF
2.7pF
RF
MAIN
8.2pF
3.3V
IFAOUT
200Ω
10nF
3.9pF LO
LO
3.3V
10nF
ENA
ENB
VCCA
VCCB
IFA+
LTC5569
IFA
IFB+IFB
8.2pF
100nH
665Ω
100nH
100nH 100nH
2.7pF
RF
DIVERSITY
BIAS
RF
BIAS
LO
LO
RF
5569 TA02a
IFBOUT
200Ω
665Ω
665Ω 665Ω
IF OUTPUT FREQUENCY (MHz)
160
6.5
VOLTAGE CONVERSION GAIN (dB)
SSB NF (dB), IIP3 (dBm)
7.0
8.0
8.5
9.0
200
11.0
5569 TA02b
7.5
180
170 210
190 220
9.5
10.0
10.5
10
12
16
18
20
28
14
22
24
26
IIP3
GV
NF
RF = 1950 ±30MHz
LO = 1760MHz
PLO = 0dBm
ZRF = 50Ω
ZIF = 200Ω
TC = 25°C
Voltage Conversion Gain, IIP3 and NF vs IF Frequency