MGA-31716
0.1 W High Linearity Driver Amplifier
Data Sheet
Description
Avago Technologies MGA-31716 is a high linearity driver
MMIC Amplifier housed in a standard QFN 3X3 16 lead
plastic package. It features high gain, low operating
current, low noise figure with good input and output
return loss. Power consumption can be further reduced
by reducing the quiescent bias current using two external
bias resistors. The device can be easily matched at different
frequencies to obtain optimal linearity performance at
those frequencies.
MGA-31716 is especially ideal for 50 : wireless infrastruc-
ture application operating from DC to 2 GHz frequency
range. With the high linearity, excellent gain flatness and
low noise figure the MGA-31716 may be utilized as a driver
amplifier in the transmit chain and as a second stage LNA
in the receiver chain.
This device uses Avago Technologies proprietary 0.25 Pm
GaAs Enhancement mode PHEMT process.
Pin connections and Package Marking
Notes:
Package marking provides orientation and identification
“31716” = Device Part Number
“YYWW = Work Week and Year of manufacturing
“XXXX” = Last 4 digit of Lot Number
Features
x Very high linearity at low DC bias power [1]
x High Gain with good gain flatness
x ROHS compliant
x Good Noise Figure
x Halogen free
x Advanced enhancement-mode PHEMT Technology
x QFN 3X3 16-Lead standard package
x Lead-free MSL1
Specifications
At 900 MHz, Vd = 5 V, Id = 58 mA (typ) @ 25° C
x OIP3 = 41.0 dBm
x Noise Figure = 1.9 dB
x Gain = 20.2 dB
x P1dB = 21.2 dBm
x IRL = 16.7dB, ORL = 15.9 dB
Note:
1. The MGA-31716 has a superior LFOM of 16.5 dB. Linearity-Figure-of-
Merit (LFOM) is the ratio of OIP3 to total DC bias power.
Attention: Observe precautions for
handling electrostatic sensitive devices.
ESD Machine Model = 60 V
ESD Human Body Model = 300 V
Refer to Avago Application Note A004R:
Electrostatic Discharge, Damage and Control.
Figure 1. Simplified Application Circuit
31716
YYWW
XXXX
NC 12
RFout 10
NC 9
RFout 11
1 NC
3 RFin
4 NC
NC - not connected
2 NC
Vbias 16
NC 14
Vd 13
Vctrl 15
5 NC
7 NC
8 NC
6 NC
Gnd
TOP VIEW
BOTTOM VIEW
2
Table 1. MGA-31716 Absolute Maximum Rating [1] TA = 25° C
Symbol Parameter Units Absolute Maximum
Vd, max Drain Voltage V 5.5
Vbias, max Bias Voltage V 5.5
Vctrl, max Control Voltage V 5.5
PdPower Dissipation [2] mW 605
Pin CW RF Input Power dBm 24
TjJunction Temperature °C 150
Tstg Storage Temperature °C -65 to 150
Tamb Ambient Temperature °C -40 to 85
Thermal Resistance
Thermal Resistance [3]
(Vd = 5.0 V, Tc = 85° C) Tjc = 67.0°C/W
Notes:
1. Operation of this device in excess of any of
these limits may cause permanent damage
2. Source lead temperature is 25° C. Derate 14.9
mW/°C for TL > 130.0° C.
3. Thermal resistance measured using 150° C
Infra-Red Microscopy Technique.
Table 2. MGA-31716 Electrical Specification [1]
TC = 25° C, Vd = 5.0 V, unless otherwise noted
Symbol Parameter and Test Condition Frequency Units Min. Typ. Max.
Ids Quiescent Current 450 MHz
900 MHz
1500 MHz
mA 37 63
58
54
83
NF Noise Figure 450 MHz
900 MHz
1500 MHz
dB 1.8
1.9
1.8
2.7
Gain Gain 450 MHz
900 MHz
1500 MHz
dB 18.5 21.0
20.2
19.6
21.5
OIP3 [2, 4] Output Third Order Intercept Point 450 MHz
900 MHz
1500 MHz
dBm 37 40.5
41.0
41.0
LFOM [3] Linearity Figure of Merit 450 MHz
900 MHz
1500 MHz
dBm 15.5
16.5
16.8
P1dB Output Power at 1dB Gain Compression 450 MHz
900 MHz
1500 MHz
dBm 19.5 22.1
21.2
21.1
PAE Power Added Efficiency at P1dB 450 MHz
900 MHz
1500 MHz
% 45.3
43.9
42.5
IRL Input Return Loss 450 MHz
900 MHz
1500 MHz
dB 15.3
16.7
18.7
ORL Output Return Loss 450 MHz
900 MHz
1500 MHz
dB 13.8
15.9
12.0
ISOL Isolation 450 MHz
900 MHz
1500 MHz
dB 25.2
25.7
26.7
Notes:
1. Measurements obtained from test circuit and demoboard detailed in Figures 46 and 47 and Table 3.
2. OIP3 test condition: F1 – F2 = 1 MHz, with input power of -12 dBm per tone measured at worst case side band.
3. LFOM is defined as LFOM = OIP3 (in dBm) – PDC (in dBm). It is a measure of the linearity of an amplifier per unit of DC power consumed.
4. Demoboard tuned to best OIP3 with minimum over-temperature drift.
3
MGA-31716 Consistency Distribution Chart [1, 2]
Figure 2. Id @ 900 MHz; LSL = 37 mA, Nominal = 58 mA, USL = 83 mA
Figure 4. Gain @ 900 MHz; LSL = 18.5 dB, Nominal = 20.2 dB, USL = 21.5 dBFigure 5. OIP3 @ 900 MHz; Nominal = 41 dBm, LSL = 37 dBm
Figure 3. NF @ 900 MHz; Nominal = 1.9 dB, USL = 2.7 dB
Figure 6. P1dB @ 900 MHz; Nominal = 21.2 dBm, LSL = 19.5 dBm
Notes:
1. Data sample size is 4000 samples taken from 4 different wafers and 2 different lots. Future wafers allocated to this product may have nominal
values anywhere between the upper and lower limits.
2. Measurements are made on production test board which represents a trade-off between optimal Gain, NF, OIP3 and P1dB. Circuit losses have been
de-embedded from actual measurements.
4050607080 1.6 1.8 2 2.2 2.42.6
36 38 404244 464850525456192021
LSLUSLUSL
LSL
USLLSL
20 2122 23 24
LSL
4
MGA-31716 Typical Performance Data for 450 MHz
TC = 25° C, Vd = 5.0 V, Id = 63 mA (Based on BOM for 450 MHz optimal linearity tuning in Table 3)
Figure 7. OIP3 vs Pin and Temperature Figure 8. OIP3 vs Frequency and Temperature
Figure 9. Gain vs Frequency and Temperature Figure 10. IRL vs Frequency and Temperature
Figure 11. ORL vs Frequency and Temperature Figure 12. Isolation vs Frequency and Temperature
25° C
-4 C
85° C
25° C
-4 C
85° C
25° C
-4 C
85° C
25° C
-4 C
85° C
25° C
-4 C
85° C
28
30
32
34
36
38
40
42
-20 -19-18-17-16-15-14 -13-12-11 -10-9-8-7
Pin (dBm)
OIP3 (dBm)
24
26
28
30
32
34
36
38
40
42
44
150 250 350 450 550 650 750
Frequency (MHz)
OIP3 (dBm)
15
16
17
18
19
20
21
22
150 250 350 450 550 650 750
Frequency (MHz)
Gain (dB)
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
150 250 350 450 550 650 750
Frequency (MHz)
Input Return Loss (dB)
-35
-30
-25
-20
-15
-10
-5
150 250 350 450 550 650 750
Frequency (MHz)
Output Return Loss (dB)
-31
-30
-29
-28
-27
-26
-25
-24
150 250 350 450 550 650 750
Frequency (MHz)
Isolation (dB)
0
25° C
-4 C
85° C
5
MGA-31716 Typical Performance Data for 450 MHz
TC = 25° C, Vd = 5.0 V, Id = 63 mA (Based on BOM in Table 3, tuned for optimal linearity with over temperature)
Figure 13. P1dB vs Frequency and Temperature Figure 14. Noise Figure vs Frequency and Temperature
Figure 15. Current vs Voltage and Temperature Figure 16. OIP3 and Quiescent Current with different R1 [1]
Figure 17. OIP3 and Quiescent Current with different R2 [1]
Note:
1. Vbias and Vctrl can be externally controlled by change external biasing resistors R1 = Rbias and R2 = Rctrl (as shown in Fig. 46).
25° C
-4 C
85° C
25° C
-4 C
85° C
OIP3 at R2 = 560 :
Current at R2 = 560 :
OIP3 at R1 = 1.2 k:
Current at R1 = 1.2 k:
16
17
18
19
20
21
22
23
150 250 350 450 550 650 750
Frequency (MHz)
P1dB (dBm)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
150 250 350 450 550 650 750
Frequency (MHz)
Noise Figure (dB)
0
10
20
30
40
50
60
70
80
90
100
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Vd (Volt)
Id (mA)
38.5
39.0
39.5
40.0
40.5
41.0
R1 (Ohm)
OIP3 (dBm)
57
58
59
60
61
62
63
64
65
Id (mA)
1000 1100 1200 1300 1400 1500
38.0
38.5
39.0
39.5
40.0
40.5
41.0
41.5
470 500 530 560 590 620 650 680
R2 (Ohm)
OIP3 (dBm)
58
59
60
61
62
63
64
65
66
67
Id (mA)
25° C
-4 C
85° C
6
MGA-31716 Typical Performance Data for 450 MHz
TC = 25° C, Vd = 5.0 V, Id = 63 mA (Based on BOM in Table 3, tuned for optimal linearity with over temperature)
Figure 18. P1dB and Quiescent Current with different R1 [1] Figure 19. P1dB and Quiescent Current with different R2 [1]
Note:
1. Vbias and Vctrl can be externally controlled by change external biasing resistors R1 = Rbias and R2 = Rctrl (as shown in Fig. 46).
P1dB at R2 = 560 :
Current at R2 = 560 :
P1dB at R1 = 1.2 k:
Current at R1 = 1.2 k:
21.9
22.0
22.1
22.2
1000 1100 1200 1300 1400 1500
R1 (Ohm)
P1dB (dBm)
68
69
70
71
72
Id (mA)
21.7
21.8
21.9
22.0
22.1
22.2
22.3
470 500 530 560 590 620 650 680
R2 (Ohm)
P1dB (dBm)
68
69
70
71
72
Id (mA)
7
MGA-31716 Typical Performance Data for 900 MHz
TC = 25° C, Vd = 5.0 V, Id = 58 mA (Based on BOM in Table 3, tuned for optimal linearity with over temperature)
Figure 20. OIP3 vs Pin and Temperature Figure 21. OIP3 vs Frequency and Temperature
Figure 22. Gain vs Frequency and Temperature Figure 23. IRL vs Frequency and Temperature
Figure 24. ORL vs Frequency and Temperature Figure 25. Isolation vs Frequency and Temperature
-22
-20
-18
-16
-14
-12
-10
-8
-6
-4
600 700 800 900 1000 1100 1200
Frequency (MHz)
Input Return Loss (dB)
-30
-29
-28
-27
-26
-25
-24
600 700 800 900 1000 1100 1200
Frequency (MHz)
Isolation (dB)
600 700 800 900 1000 1100 1200
Frequency (MHz)
Output Return Loss (dB)
30
32
34
36
38
40
42
-20 -19-18-17-16-15-14 -13-12-11 -10-9-8-7
Pin (dBm)
OIP3 (dBm)
33
34
35
36
37
38
39
40
41
42
43
44
45
600 700 800 900 1000 1100 1200
Frequency (MHz)
OIP3 (dBm)
16
17
18
19
20
21
600 700 800 900 1000 1100 1200
Frequency (MHz)
Gain (dB)
0
-25
-20
-15
-10
-5
25° C
-4 C
85° C
25° C
-4 C
85° C
25° C
-4 C
85° C
25° C
-4 C
85° C
25° C
-4 C
85° C
25° C
-4 C
85° C
8
MGA-31716 Typical Performance Data for 900 MHz
TC = 25° C, Vd = 5.0 V, Id = 58 mA (Based on BOM in Table 3, tuned for optimal linearity with over temperature)
Figure 26. P1dB vs Frequency and Temperature Figure 27. Noise Figure vs Frequency and Temperature
Figure 28. Current vs Voltage and Temperature Figure 29. OIP3 and Quiescent current with different R1 [1]
Figure 30. OIP3 and Quiescent current with different R2 [1]
Note:
1. Vbias and Vctrl can be externally controlled by change external biasing resistors R1 = Rbias and R2 = Rctrl (as shown in Fig. 46).
18.0
18.5
19.0
19.5
20.0
20.5
21.0
21.5
22.0
600 700 800 900 1000 1100 1200
Frequency (MHz)
P1dB (dBm)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
600 700 800 900 1000 1100 1200
Frequency (MHz)
Noise Figure (dB)
38.0
38.5
39.0
39.5
40.0
40.5
41.0
41.5
1200 1300 1400 1500 1600 1700 1800
R1 (Ohm)
OIP3 (dBm)
51
53
55
57
59
61
63
65
Id (mA)
0
10
20
30
40
50
60
70
80
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Vd (Volt)
Id (mA)
38.0
38.5
39.0
39.5
40.0
40.5
41.0
41.5
42.0
42.5
470 500 530 560 590 620 650 680
R2 (Ohm)
OIP3 (dBm)
53
54
55
56
57
58
59
60
61
62
Id (mA)
25° C
-4 C
85° C
25° C
-4 C
85° C
25° C
-4 C
85° C
OIP3 at R2 = 560 :
Current at R2 = 560 :
OIP3 at R1 = 1.5 k:
Current at R1 = 1.5 k:
9
MGA-31716 Typical Performance Data for 900 MHz
TC = 25° C, Vd = 5.0 V, Id = 58 mA (Based on BOM in Table 3, tuned for optimal linearity with over temperature)
Figure 31. P1dB and Quiescent current with different R1 [1] Figure 32. P1dB and Quiescent current with different R2 [1]
Note:
1. Vbias and Vctrl can be externally controlled by change external biasing resistors R1 = Rbias and R2 = Rctrl (as shown in Fig. 46).
21.0
21.1
21.2
21.3
1200 1300 1400 1500 1600 1700 1800
R1 (Ohm)
P1dB (dBm)
63
64
65
66
67
68
Id (mA)
20.9
21.0
21.1
21.2
21.3
410440470 500 530 560 590 620 650 680
R2 (Ohm)
P1dB (dBm)
63
64
65
66
67
Id (mA)
P1dB at R2 = 560 :
Current at R2 = 560 :
P1dB at R1 = 1.5 k:
Current at R1 = 1.5 k:
10
MGA-31716 Typical Performance Data for 1500 MHz
TC = 25° C, Vd = 5.0 V, Id = 54 mA (Based on BOM in Table 3, tuned for optimal linearity with over temperature)
Figure 33. OIP3 vs Pin and Temperature Figure 34. OIP3 vs Frequency and Temperature
Figure 35. Gain vs Frequency and Temperature Figure 36. IRL vs Frequency and Temperature
Figure 37. ORL vs Frequency and Temperature Figure 38. Isolation vs Frequency and Temperature
-28.5
-28.0
-27.5
-27.0
-26.5
-26.0
-25.5
1200 1300 1400 1500 1600 1700 1800
Frequency (MHz)
Isolation (dB)
-20
-15
-10
-5
0
1200 1300 1400 1500 1600 1700 1800
Frequency (MHz)
Output Return Loss (dB)
-23
-21
-19
-17
-15
-13
-11
-9
1200 1300 1400 1500 1600 1700 1800
Frequency (MHz)
Input Return Loss (dB)
17.0
17.5
18.0
18.5
19.0
19.5
20.0
20.5
21.0
1200 1300 1400 1500 1600 1700 1800
Frequency (MHz)
Gain (dB)
30
32
34
36
38
40
42
44
46
-20 -19-18-17-16-15-14 -13-12-11 -10-9-8-7
Pin (dBm)
OIP3 (dBm)
32
33
34
35
36
37
38
39
40
41
42
43
44
45
1200 1300 1400 1500 1600 1700 1800
Frequency (MHz)
OIP3 (dBm)
25° C
-4 C
85° C
25° C
-4 C
85° C
25° C
-4 C
85° C
25° C
-4 C
85° C
25° C
-4 C
85° C
25° C
-4 C
85° C
11
MGA-31716 Typical Performance Data for 1500 MHz
TC = 25° C, Vd = 5.0 V, Id = 54 mA (Based on BOM in Table 3, tuned for optimal linearity with over temperature)
Figure 39. P1dB vs Frequency and Temperature Figure 40. Noise Figure vs Frequency and Temperature
Figure 41. Current vs Voltage and Temperature Figure 42. OIP3 and Quiescent current with different R1 [1]
Figure 43. OIP3 and Quiescent current with different R2 [1]
Note:
1. Vbias and Vctrl can be externally controlled by change external biasing resistors R1 = Rbias and R2 = Rctrl (as shown in Fig. 46).
19.0
19.5
20.0
20.5
21.0
21.5
22.0
1200 1300 1400 1500 1600 1700 1800
Frequency (MHz)
P1dB (dBm)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
1200 1300 1400 1500 1600 1700 1800
Frequency (MHz)
Noise Figure (dB)
0
10
20
30
40
50
60
70
80
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Vd (Volt)
Id (mA)
39.0
39.5
40.0
40.5
41.0
41.5
42.0
42.5
43.0
1300 1400 1500 1600 1700 1800 1900 2000
R1 (Ohm)
OIP3 (dBm)
46
47
48
49
50
51
52
53
54
55
56
Id (mA)
39.0
40.0
41.0
42.0
43.0
44.0
45.0
510 560 610 660 710 760 810
R2 (Ohm)
OIP3 (dBm)
49
50
51
52
53
54
55
Id (mA)
25° C
-4 C
85° C
25° C
-4 C
85° C
25° C
-4 C
85° C
OIP3 at R2 = 620 :
Current at R2 = 620 :
OIP3 at R1 = 1.6 k:
Current at R1 = 1.6 k:
12
MGA-31716 Typical Performance Data for 1500 MHz
TC = 25° C, Vd = 5.0 V, Id = 54 mA (Based on BOM in Table 3, tuned for optimal linearity with over temperature)
Figure 44. P1dB and Quiescent current with different R1 [1] Figure 45. P1dB and Quiescent current with different R2 [1]
Note:
1. Vbias and Vctrl can be externally controlled by change external biasing resistors R1 = Rbias and R2 = Rctrl (as shown in Fig. 46).
20.9
21.0
21.1
21.2
21.3
1300 1400 1500 1600 1700 1800 1900 2000
R1 (Ohm)
P1dB (dBm)
56
57
58
59
60
61
Id (mA)
20.9
21.0
21.1
21.2
21.3
510 560 610 660 710 760 810
R2 (Ohm)
P1dB (dBm)
57
58
59
60
61
Id (mA)
P1dB at R2 = 620 :
Current at R2 = 620 :
P1dB at R1 = 1.6 k:
Current at R1 = 1.6 k:
13
Application Circuit Description and Layout
Figure 46. Application Circuit Diagram Figure 47. Demoboard
Table 3. Bill of Materials – Tuned for optimal linearity performance at different frequencies
Circuit
Symbol Size
Description
Optimum linearity
at 450 MHz
Optimum linearity
at 900 MHz
Optimum linearity
at 1500 MHz
ManufacturerValue Value Value
C2 0402 5 pF 5 pF 1 pF Murata
C3 0603 2.2 PF 2.2 PF 2.2 PFMurata
C11 0402 100 pF 100 pF 100 pF Murata
C13 0402 12 pF 3.3 pF 1.8 pF Murata
L1 0402 33 nH 8.2 nH 2.4 nH Murata
L2 [2] 0402 NR 2.4 pF 1 pF Murata
R1 [1] 0402 1.2 k:1.5 k:1.6 k:KOA
R2 [1] 0402 560 :560 :620 :KOA
Notes:
NR – Not required in actual PCB design
1. R1 and R2 can be varied to bias Vbias and Vctrl which will provide flexibility to have the product operates at desirable Id, LFOM, and OIP3 drift
across temperature also P1dB.
2. Capacitor is used at L2.
Figure 48. Circuit to measure de-embedded S-parameters and Noise Parameter in Table 4 and 5.
Note:
1. Measurements are conducted on 0.010 inch think ROGER 4350.
The input reference plane is at the end of the RFin pin and the
output reference plane is at the end of the RFout pin as shown in
Figure 48.
VDD
RK_v3.0
OUT
C3
C1
C2
R2
L1
C14
C13
Oct 2010
QFN3x3
R1
C11
IN
L2
C12
AVAGO
Technologies
GND
C15
50 :
Bias
T
Biasing Network
RF out
RF in
Vbias Vctrl
50 :
50 :
Vd
Bias
TBias
T
14
Table 4. MGA-31716 Typical Scattering Parameters
TC = 25° C, Vd = 5.0 V, Id = 58 mA, Zo = 50 : (Data is de-embedded to the RFin & RFout pins on package. Measurements
were made with Bias-Tees at Vd, Vctrl and Vbias in Figure 48)
Freq
GHz
S11 S11 S11 S21 S21 S21 S12 S12 S12 S22 S22 S22
K FactorMag. dBAng. Mag. dBAng. Mag. dBAng. Mag. dBAng.
0.10 0.160 -15.9 177.0 12.600 22.0 158.0 0.057 -25.0 -12.8 0.156 -16.1 177.0 1.046
0.20 0.152 -16.4 163.0 12.300 21.8 143.0 0.057 -24.9 -29.7 0.153 -16.3 149.0 1.056
0.30 0.150 -16.5 152.0 12.100 21.7 127.0 0.056 -25.1 -43.3 0.145 -16.8 125.0 1.068
0.40 0.149 -16.5 142.0 12.000 21.6 111.0 0.056 -25.1 -58.6 0.139 -17.2 105.0 1.072
0.50 0.155 -16.2 133.0 11.900 21.5 94.0 0.055 -25.2 -73.0 0.132 -17.6 83.8 1.080
0.60 0.157 -16.1 120.0 11.700 21.4 77.5 0.054 -25.3 -87.4 0.123 -18.2 62.3 1.091
0.70 0.162 -15.8 110.0 11.600 21.3 60.9 0.053 -25.4 -102.0 0.117 -18.6 40.3 1.103
0.80 0.167 -15.5 96.3 11.500 21.2 44.4 0.053 -25.6 -116.0 0.110 -19.2 17.6 1.114
0.90 0.169 -15.4 83.1 11.300 21.1 27.7 0.052 -25.6 -131.0 0.106 -19.5 -6.7 1.124
1.00 0.173 -15.2 68.8 11.200 21.0 11.0 0.052 -25.7 -145.0 0.102 -19.8 -30.1 1.138
1.10 0.177 -15.0 53.4 11.000 20.9 -5.6 0.051 -25.8 -159.0 0.101 -19.9 -52.4 1.150
1.20 0.177 -15.0 37.1 10.900 20.7 -22.2 0.050 -26.0 -174.0 0.100 -20.0 -76.0 1.170
1.30 0.179 -14.9 19.6 10.700 20.6 -39.0 0.049 -26.2 171.0 0.101 -19.9 -97.3 1.186
1.40 0.181 -14.9 0.5 10.600 20.5 -55.7 0.048 -26.3 156.0 0.103 -19.8 -117.0 1.205
1.50 0.181 -14.9 -19.2 10.400 20.4 -72.5 0.047 -26.5 142.0 0.105 -19.6 -136.0 1.227
1.60 0.182 -14.8 -40.2 10.200 20.2 -89.4 0.046 -26.7 127.0 0.107 -19.4 -154.0 1.255
1.70 0.186 -14.6 -63.3 10.100 20.1 -106.0 0.045 -26.9 112.0 0.109 -19.2 -169.0 1.280
1.80 0.190 -14.4 -87.6 9.920 19.9 -124.0 0.045 -27.0 97.0 0.113 -18.9 174.0 1.306
1.90 0.199 -14.0 -113.0 9.720 19.8 -141.0 0.044 -27.2 82.1 0.113 -18.9 160.0 1.338
2.00 0.215 -13.3 -138.0 9.510 19.6 -158.0 0.042 -27.5 66.8 0.117 -18.6 147.0 1.378
2.10 0.235 -12.6 -163.0 9.290 19.4 -176.0 0.041 -27.7 51.4 0.120 -18.4 135.0 1.416
2.20 0.260 -11.7 172.0 9.030 19.1 166.0 0.040 -28.0 35.4 0.124 -18.2 122.0 1.462
2.30 0.293 -10.7 147.0 8.740 18.8 149.0 0.038 -28.4 19.9 0.128 -17.8 112.0 1.518
2.40 0.329 -9.7 123.0 8.430 18.5 131.0 0.036 -28.8 3.6 0.137 -17.3 99.7 1.581
2.50 0.369 -8.7 99.9 8.090 18.2 113.0 0.035 -29.2 -12.9 0.143 -16.9 88.0 1.645
3.00 0.602 -4.4 -5.8 5.990 15.5 22.4 0.026 -31.9 -92.1 0.212 -13.5 24.4 2.073
3.50 0.779 -2.2 -96.4 3.830 11.7 -63.3 0.017 -35.4 -168.0 0.302 -10.4 -45.9 2.787
4.00 0.863 -1.3 -174.0 2.290 7.2 -141.0 0.011 -38.8 124.0 0.381 -8.4 -114.0 4.181
5.00 0.887 -1.1 52.5 0.838 -1.5 80.8 0.007 -42.6 -3.9 0.476 -6.4 121.0 13.380
6.00 0.887 -1.0 -69.8 0.353 -9.1 -45.3 0.007 -42.8 -129.0 0.500 -6.0 3.2 31.411
7.00 0.900 -0.9 173.0 0.159 -16.0 -168.0 0.008 -42.0 111.0 0.526 -5.6 -115.0 54.716
8.00 0.902 -0.9 61.0 0.075 -22.5 72.4 0.008 -41.5 -2.2 0.566 -5.0 131.0 99.527
9.00 0.888 -1.0 -47.5 0.038 -28.3 -49.7 0.009 -40.5 -117.0 0.585 -4.7 22.3 192.476
10.00 0.873 -1.2 -155.0 0.021 -33.5 -175.0 0.010 -40.0 128.0 0.584 -4.7 -88.3 375.167
11.00 0.870 -1.2 95.6 0.014 -37.3 54.6 0.010 -39.8 15.9 0.590 -4.6 159.0 572.555
12.00 0.878 -1.1 -13.8 0.009 -40.5 -75.5 0.009 -40.8 -99.3 0.619 -4.2 44.2 821.109
13.00 0.881 -1.1 -117.0 0.004 -48.3 143.0 0.005 -45.7 130.0 0.684 -3.3 -71.2 2981.617
14.00 0.877 -1.1 146.0 0.011 -39.5 103.0 0.009 -41.1 92.2 0.744 -2.6 180.0 557.304
15.00 0.860 -1.3 45.8 0.006 -44.6 -26.7 0.005 -45.5 -34.7 0.795 -2.0 68.4 1534.771
16.00 0.840 -1.5 -67.3 0.007 -42.8 -46.8 0.007 -43.0 -58.6 0.711 -3.0 -71.0 1428.991
17.00 0.849 -1.4 -178.0 0.013 -38.0 173.0 0.012 -38.3 161.0 0.560 -5.0 165.0 624.270
18.00 0.863 -1.3 86.1 0.013 -37.9 59.9 0.012 -38.2 46.2 0.528 -5.6 75.7 583.097
19.00 0.862 -1.3 -7.0 0.014 -37.0 -48.0 0.014 -37.3 -60.8 0.516 -5.8 -12.9 486.734
20.00 0.839 -1.5 -105.0 0.013 -37.8 -177.0 0.016 -36.0 165.0 0.463 -6.7 -117.0 574.400
15
MGA-31716 Stability
TC = 25° C, Vd = 5.0 V, Id = 58 mA, Zo = 50 : (Data is de-embedded to the RFin & RFout pins. Measurements were made
with Bias-T at Vd, Vctrl and Vbias in Figure 48)
Figure 49. K-Factor vs Frequency
0
1
2
3
4
5
6
7
8
9
10
02468101214 161820
Frequency (GHz)
K Factor
K Factor
Table 5. MGA-31716 Typical Noise Parameters
TC = 25° C, Vd = 5.0 V, Id = 58 mA, Zo = 50 : (Data is de-embedded to the RFin & RFout pins on package. Measurements
were made with Bias-Tees at Vd, Vctrl and Vbias in Figure 48)
Freq
(GHz)
Fmin
(dB)
*opt
Mag
*opt
Ang Rn/Z0
Ga
(dB)
0.5 1.46 0.159 -146.4 0.1272 21.43
0.8 1.55 0.120 -132.4 0.1384 21.22
0.9 1.60 0.105 -129.3 0.1440 21.13
1.0 1.63 0.097 -124.0 0.1546 21.10
1.5 1.74 0.043 -47.2 0.1972 20.43
2.0 1.92 0.168 36.3 0.2498 19.74
2.5 2.24 0.327 78.4 0.2862 18.89
3.0 2.52 0.544 109.3 0.3296 17.89
3.5 2.87 0.672 138.0 0.4130 18.56
4.0 3.38 0.781 159.6 0.5284 15.33
4.5 4.23 0.85 175.2 0.9124 13.18
5.0 5.12 0.881 -163.3 1.4458 11.13
5.5 6.54 0.919 -148.4 2.9438 7.73
6.0 7.84 0.916 -141.4 4.2160 5.92
16
PCB Layout and Stencil Design
Notes:
1. All dimensions are in milimeters
2. 4mil stencil thickness recommended
PCB LAND PATTERN (TOP VIEW) STENCIL OUTLINE
COMBINED PCB & STENCIL LAYOUTS
Chamfer 0.24
1.55
0.23
0.32
0.50
1.55
0.50
ø 0.26
0.56
Chamfer 0.06
1.24
1.24
0.49
0.35
0.21
Chamfer 0.192 0.50
0.32
1.55
1.24
1.24
1.55
0.23
0.21
0.36
0.50
3.20 2.92
0.50
3.20
17
Package Dimensions
Part Number Ordering Information
Part Number No. of Devices Container
MGA-31716-BLKG 100 Antistatic Bag
MGA-31716-TR1G 3000 13” Tape/Reel
Notes:
1. All dimensions are in milimeters.
2. Dimensions are inclusive of plating.
3. Dimensions are exclusive of mold flash and metal burr.
TOP VIEW SIDE VIEW BOTTOM VIEW
31716
YYWW
XXXX
3.00 ±0.10
3.00 ±0.10
Pin 1 dot
By marking0.20 Ref.
0.00 ±0.05
0.40 ±0.05
1.55 ±0.05
Exp.DAP
1.55 ±0.05
Exp.DAP
0.50 Bsc
0.23 ±0.05
1.50
Ref.
Pin #1 identication
Chamfer 0.30 x 4
0.85 ±0.05
18
Device Orientation
Tape Dimensions
USER FEED DIRECTION
TOP VIEW END VIEW
USER
FEED
DIRECTIONCOVER TAPE
CARRIER
TAPE
REEL
31716
YYWW
XXXX
31716
YYWW
XXXX
31716
YYWW
XXXX
Notes:
1. Measured from centerline of sprocket hole to centerline of pocket
2. Cumulative tolerance of 10 sprocket holes is ±0.20
3. Other material available
4. All dimensions in millimeter unless otherwise stated
C
L
0.3 ±0.05
3.3 ±0.1
1.55±0.1
1.6 ±0.1
R 0.3
Typical
1.55±0.05
2.0 ±0.1[1]4.0 ±0.1[2]
1.75±0.1
5.5 ±0.1[1]
12.0±0.3
3.3±0.1
8.0 ±0.1
For product information and a complete list of distributors, please go to our web site: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved.
AV02-3264EN - December 8, 2011
Reel Dimension – 13” Reel 12 mm Width
PS
6
2
1
12
11
10
987
20
3
54
6
6
PS
PS
6
CPN
12MM
MPN
Detail "X"
RECYCLE LOGO
SEE DETAIL "X"
R19.0±0.5
Ø12.3±0.5(3x)
Ø100.0±0.5
Ø329.0±1.0
11.9-15.4**
18.4 MAX.*
SLOT
5.0±0.5 (3x)
12.4+2.0*
-0.0
EMBOSSED LETTERING
16.0 mm HEIGHT x MIN. 0.4 mm THICK.
EMBOSSED LINE (2x)
89.0 mm LENGTH LINES 147.0 mm
AWAY FROM CENTER POINT
EMBOSSED LETTERING
7.5 mm HEIGHT
DATE CODE
ESD LOGO Ø16.0
EMBOSSED LETTERING
7.5 mm HEIGHT
HUB
Ø100.0±0.5
Ø329.0±1.0
20.2 (MIN.)
1.5 (MIN.)
Ø13.0 +0.5
-0.2
BACK VIEW
FRONT VIEW
20
12
10
87
11
9
1
3
4
65
2