PRELIMINARY
FullFlex™ Synchronous
DDR Dual-Port SRAM
Cypress Semiconductor Corporation 198 Champion Court San Jose,CA 95134-1709 408-943-2600
Document #: 38-06072 Rev. *E Revised October 11, 2005
Features
True dual-ported memory allows simultaneous access
to the shared array from each port
Synchronous pipelined operation with selectable
Double Data Rate (DDR) or Single Data Rate (SDR)
operation on each port
DDR SRAM interface (data transferred at 400 Mbps)
@ 200 MHz
SDR interface at 250 MHz
Up to 36-Gb/s bandwidth (250 MHz * 72 bit * 2 ports)
Selectable pipeline or flow-through mode
Selectable 1.5V or 1.8V core power supply
Commercial and Industrial temperature ranges
IEEE 1149.1 JTAG boundary scan
Available in 484-ball PBGA Packages and 256-ball
FBGA Packages
FullFlex72 family
36 Mbit: 512K x 72 (CYDD36S72V18)
18 Mbit: 256K x 72 (CYDD18S72V18)
9 Mbit: 128K x 72 (CYDD09S72V18)
4 Mbit: 64K x 72 (CYDD04S72V18)
FullFlex36 family
36 Mbit: 512K x 72 (CYDD36S36V18)
18 Mbit: 256K x 72 (CYDD18S36V18)
9 Mbit: 128K x 72 (CYDD09S36V18)
4 Mbit: 64K x 72 (CYDD04S36V18)
FullFlex18 family
36 Mbit: 1M x 36 (CYDD36S18V18)
18 Mbit: 512K x 36 (CYDD18S18V18)
9 Mbit: 256K x 36 (CYDD09S18V18)
4 Mbit: 128K x 36 (CYDD04S18V18)
Built-in deterministic access control to manage
address collisions
Deterministic flag output upon collision detection
Collision detection on back-to-back clock cycles
First Busy Address readback
Advanced features for improved high-speed data
transfer and flexibility
Variable impedance Matching (VIM)
Echo clocks
Selectable LVTTL (3.3V), Extended HSTL
(1.4V–1.9V), 1.8V LVCMOS, or 2.5V LVCMOS I/O on
each port
Burst counters for sequential memory access
Mailbox with interrupt flags for message passing
Dual Chip Enables for easy depth expansion
Functional Description
The FullFlex Dual-Port SRAM families consist of 4-Mbit,
9-Mbit, 18-Mbit, and 36-Mbit synchronous, true dual-port static
RAMs that are high-speed, low-power 1.8V/1.5V CMOS. Two
ports are provided, allowing the array to be accessed simulta-
neously. Simultaneous access to a location triggers determin-
istic access control. For FullFlex72, these ports can operate
independently in DDR mode with 36-bit bus widths or in SDR
mode with 72-bit bus widths. For FullFlex36 and FullFlex18,
the ports operate in DDR mode only. Each port can be
independently configured for two pipeline stages for SDR
mode or 2.5 stages in DDR mode. Each port can also be
configured to operate in pipeline or flow-through mode in SDR
mode.
Advanced features include built-in deterministic access
control to manage address collisions during simultaneous
access to the same memory location, variable impedance
Matching (VIM) to improve data transmission by matching the
output driver impedance to the line impedance, and echo
clocks to improve data transfer.
To reduce the static power consumption, chip enables can be
used to power down the internal circuitry. The number of
cycles of latency before a change in CE0 or CE1 will enable
or disable the databus matches the number of cycles of read
latency selected for the device. In order for a valid write or read
to occur, both chip enable inputs on a port must be active.
Each port contains an optional burst counter on the input
address register. After externally loading the counter with the
initial address, the counter will increment the address inter-
nally.
Additional features of this device include a mask register and
a mirror register to control counter increments and
wrap-around, counter-interrupt (CNTINT) flags to notify that
the counter will reach the maximum value on the next clock
cycle, readback of the burst-counter internal address, mask
register address, and BUSY address on the address lines,
retransmit functionality, mailbox interrupt flags for message
passing, JTAG for boundary scan, and asynchronous Master
Reset (MRST). The logic block diagram in Figure 1 displays
these features.
The FullFlex72 DDR family of devices is offered in a 484-ball
plastic BGA package. The FullFlex36 and FullFlex18 DDR
only families of devices are offered in a 256-ball fine pitch BGA
package.
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 2 of 48
Notes:
1. The CYDD36S18V18 device has 20 address bits. The CYDD36S36V18, CYDD36S72V18, and the CYDD18S18V18 devices have 19 address bits. The
CYDD18S72V18, CYDD18S36V18, and the CYDD09S18V18 devices have 18 address bits. The CYDD09S72V18, CYDD04S18V18, and the CYDD09S36V18
devices have 17 address bits. The CYDD04S36V18 and the CYDD04S72V18 devices have 16 address bits.
2. The FullFlex72 family of devices has 72 data lines. The FullFlex36 family of devices has 36 data lines. The FullFlex18 family of devices has 18 data lines.
3. The FullFlex72 family of devices has eight byte enables. The FullFlex36 family of devices has four byte enables. The FullFlex18 family of devices has two byte
enables.
FTSELL
PORTSTD[1:0]L
DQ[71:0]L
BE [7:0]
L
CE0L
CE1L
OEL
R/W
L
CQ0L
FTSELR
PORTSTD[1:0]R
DQ [71:0]R
BE [7:0]
R
CE0R
CE1R
OER
R/W
R
CQ0R
A [19:0]L
CNT/MSK
L
ADSL
CNTENL
CNTRSTL
RETL
CNTINT
L
CL
A [19:0]R
CNT/MSK
R
ADSR
CNTENR
CNTRSTR
RETR
CNTINT
R
CR
WRPR
CONFIG Block CONFIG Block
IO
Control
IO
Control
Address &
Counter Logic Address &
Counter Logic
INTL
TRST
TMS
TDI
TDO
TCK
JTAG
MRST
READY
R
LowSPDR
READYL
LowSPDLRESET
LOGIC
INTR
BUSYLBUSYR
CQ1L
CQ1L
CQ1R
CQ1R
Mailboxes
Collision Detection
Logic
CQ0LCQ0R
Dual Ported Array
Figure 1. Block Diagram[1,2,3]
VC_SEL
WRPL
CR
CL
ZQ0R
ZQ1R
ZQ0L
ZQ1L
CQENLCQENR
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 3 of 48
FullFlex72 SDR/DDR 484-ball BGA Pinout (Top View)
12345678910111213141516171819
20 21 22
ANC DQ34L DQ32L DQ30L DQ27L DQ60L DQ57L DQ54L DQ24L DQ21L DQ18L DQ18R DQ21R DQ24R DQ54R DQ57R[DQ60R DQ27R DQ30R DQ32R DQ34R NC
BDQ63L DQ35L DQ33L DQ31L DQ28L DQ61L[DQ58L DQ55L DQ25L DQ22L DQ19L DQ19R DQ22R DQ25R DQ55R DQ58R DQ61R DQ28R DQ31R DQ33R DQ35R DQ63R
CDQ65L DQ64L VSS VSS DQ29L DQ62L DQ59L DQ56L DQ26L DQ23L DQ20L DQ20R DQ23R DQ26R DQ56R DQ59R DQ62R DQ29R VSS VSS DQ64R DQ65R
DDQ67L DQ66L VSS VSS VSS CQ1L CQ1L DDRON
L
LOWSP
DL
PORTS
TD0L
ZQ0L[4][ BUSYL CNTINT
L
PORTS
TD1L
NC CQ1R CQ1R VSS VSS VSS DQ66R DQ67R
EDQ69L DQ68L VDDIOL VSS VSS VDDIOL VDDIOL VDDIOL VDDIOL VDDIOL VTTL VTTL VTTL VDDIO
R
VDDIO
R
VDDIO
R
VDDIO
R
NC VSS VDDIO
R
DQ68R DQ69R
FDQ71L DQ70L[CE1L CE0L VDDIOL VDDIOL VDDIOL VDDIOL VDDIOL VCORE VCORE VCORE VCORE VDDIO
R
VDDIO
R
VDDIO
R
VDDIO
R
VDDIO
R
CE0R CE1R DQ70R[DQ71R
GA0L A1L RETL BE2L VDDIOL VDDIOL VREFL VSS VSS VSS VSS VSS VSS VSS VSS VREFR VDDIO
R
VDDIO
R
BE2R RETR A1R A0R
HA2L A3L WRPL BE6L VDDIOL VDDIOL VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDIO
R
VDDIO
R
BE6R WRPR A3R A2R
JA4L A5L READY
L
BE3L VDDIOL VDDIOL VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDIO
R
VDDIO
R
BE3R READY
R
A5R A4R
KA6L A7L ZQ1L[4] BE7L VTTL VCORE VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCORE VDDIO
R
BE7R ZQ1R[4] A7R A6R
LA8L A9L CL OEL VTTL VCORE VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCORE VTTL OER CR A9R A8R
MA10L A11L CL BE5L VTTL VCORE VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCORE VTTL BE5R CR A11R A10R
NA12L A13L ADSL BE1L VDDIOL VCORE VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCORE VTTL BE1R ADSR A13R A12R
PA14L A15L CNTMS
KL
BE4L VDDIOL VDDIOL VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDIO
R
VDDIO
R
BE4R CNTMS
KR
A15R A14R
RA16L[7] A17L[6] CNTEN
L
BE0L VDDIOL VDDIOL VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDIO
R
VDDIO
R
BE0R CNTEN
R
A17R[6] A16R[7]
TA18L[5] NC CNTRS
TL
INTL VDDIOL VDDIOL VREFL VSS VSS VSS VSS VSS VSS VSS VSS VREFR VDDIO
R
VDDIO
R
INTR CNTRS
TR
NC A18R[5]
UDQ53L DQ52L[R/WL CQENL VDDIOL VDDIOL VDDIOL VDDIOL VDDIOL VCORE VCORE VCORE VCORE VDDIO
R
VDDIO
R
VDDIO
R
VDDIO
R
VDDIO
R
CQENR R/WRDQ52RDQ53R
VDQ51L DQ50L FTSELL VDDIOL NC VDDIOL VDDIOL VDDIOL VDDIOL VTTL VTTL VTTL VDDIO
R
VDDIO
R
VDDIO
R
VDDIO
R
VDDIO
R
TRST VDDIO
R
FTSEL
R
DQ50R DQ51R
WDQ49L DQ48L VSS MRST VSS CQ0L CQ0L VC_SE
L
PORTS
TD1R
CNTINT
R
BUSYR ZQ0R[4] PORTS
TD0R
LOWSP
DR
DDRON
R
CQ0R CQ0R VSS TDI TDO DQ48R DQ49R
YDQ47L DQ46L VSS VSS DQ11L DQ44L DQ41L DQ38L DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R DQ38R DQ41R DQ44R DQ11R TMS TCK DQ46R DQ47R
AA DQ45L DQ17L DQ15L DQ13L DQ10L DQ43L DQ40L DQ37L DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R DQ37R DQ40R DQ43R DQ10R DQ13R DQ15R DQ17R DQ45R
AB NC DQ16L DQ14L DQ12L DQ9L DQ42L DQ39L DQ36L DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R DQ36R DQ39R DQ42R DQ9R DQ12R DQ14R DQ16R NC
Note:
4. Leaving this pin NC disables VIM
5. Leave this ball unconnected for CYDD18S72V18, CYDD09S72V18 and CYDD04S72V18.
6. Leave this ball unconnected for CYDD09S72V18 and CYDD04S72V18
7. Leave this ball unconnected for CYDD04S72V18
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 4 of 48
FullFlex36 DDR 484-ball BGA Pinout (Top View)[8]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
ANC DQ34
L
DQ32
L
DQ30
L
DQ27
L
NC NC NC DQ24
L
DQ21
L
DQ18
L
DQ18
R
DQ21
R
DQ24
R
NC NC NC DQ27
R
DQ30
R
DQ32
R
DQ34
R
NC
BNC DQ35
L
DQ33
LNC
DQ31
L
DQ28
L
NC NC NC DQ25
L
DQ22
L
DQ19
L
DQ19
R
DQ22
R
DQ25
R
NC NC NC DQ28
R
DQ31
R
DQ33
R
DQ35
R
NC
CNC NC VSS VSS DQ29
L
NC NC NC DQ26
L
DQ23
L
DQ20
L
DQ20
R
DQ23
R
DQ26
R
NC NC NC DQ29
R
VSS VSS NC NC
D
NC NC VSS VSS VSS CQ1L CQ1L DDR
ONL
LOW
SPDL
PORT
STD0
L
ZQ0L[
4] BUSY
L
CNTI
NTL
PORT
STD1
L
NC CQ1R CQ1R VSS VSS VSS NC NC
ENC NC VDDI
OL
VSS VSS VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VTTL VTTL VTTL VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
NC VSS VDDI
OR
NC NC
FNC NC CE1L CE0L VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VCO
RE
VCO
RE
VCO
RE
VCO
RE
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
CE0R CE1R NC NC
GA0L A1L RETL BE2L VDDI
OL
VDDI
OL
VREF
L
VSS VSS VSS VSS VSS VSS VSS VSS VREF
R
VDDI
OR
VDDI
OR
BE2R RETR A1R A0R
HA2L A3L WRP
L
NC VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
NC WRP
R
A3R A2R
JA4L A5L READ
YL
BE3L VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
BE3R READ
YR
A5R A4R
KA6L A7L ZQ1L[
4] NC VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VDDI
OR
NC ZQ1R
[4] A7R A6R
LA8L A9L CL OEL VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL OER CR A9R A8R
MA10L A11L CL NC VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL NC CR A11R A10R
NA12L A13L ADSL BE1L VDDI
OL
VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL BE1R ADSR A13R A12R
P
A14L A15L CNT
MSKL
NC VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
NC CNT
MSK
R
A15R A14R
RA16L A17L CNTE
NL
BE0L VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
BE0R CNTE
NR
A17R A16R
TA18L NC CNTR
STL
INTL VDDI
OL
VDDI
OL
VREF
L
VSS VSS VSS VSS VSS VSS VSS VSS VREF
R
VDDI
OR
VDDI
OR
INTR CNTR
STR
NC A18R
UNC NC R/WL CQE
NL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VCO
RE
VCO
RE
VCO
RE
VCO
RE
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
CQE
NR
R/WR NC NC
VNC NC FTSE
LL
VDDI
OL
NC VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VTTL VTTL VTTL VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
TRST VDDI
OR
FTSE
LR
NC NC
W
NC NC VSS MRST VSS CQ0L CQ0L VC_S
EL
PORT
STD1
R
CNTI
NTR
BUSY
R
ZQ0R
[4] PORT
STD0
R
LOW
SPDR
DDR
ONR CQ0R CQ0R VSS TDI TDO NC NC
YNC NC VSS VSS DQ11
L
NC NC NC DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R NC NC NC DQ11
R
TMS TCK NC NC
AA NC DQ17
L
DQ15
L
DQ13
L
DQ10
L
NC NC NC DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R NC NC NC DQ10
R
DQ13
R
DQ15
R
DQ17
R
NC
AB NC DQ16
L
DQ14
L
DQ12
L
DQ9L NC NC NC DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R NC NC NC DQ9R DQ12
R
DQ14
R
DQ16
R
NC
Note:
8. Use this pinout only for device CYDD36S36V18 of the FullFlex36 famiy.
PRELIMINARY
FullFlex™ Synchronous
DDR Dual-Port SRAM
Cypress Semiconductor Corporation 198 Champion Court San Jose,CA 95134-1709 408-943-2600
Document #: 38-06072 Rev. *E Revised October 11, 2005
FullFlex18 DDR 484-ball BGA Pinout (Top View)
12345678910111213141516171819
20 21 22
ANC NC NC NC NC NC NC NC DQ15
L
DQ12
L
DQ9L DQ9R DQ12
R
DQ15
R
NC NC NC NC NC NC NC NC
BNC NC NC NC NC NC NC NC DQ16
L
DQ13
L
DQ10
L
DQ10
R
DQ13
R
DQ16
R
NC NC NC NC NC NC NC NC
CNC NC VSS VSS NC NC NC NC DQ17
L
DQ14
L
DQ11
L
DQ11
R
DQ14
R
DQ17
R
NC NC NC NC VSS VSS NC NC
D
NC NC VSS VSS VSS CQ1L CQ1L DDR
ONL
LOW
SPDL
PORT
STD0
L
ZQ0L[
4] BUSY
L
CNTI
NTL
PORT
STD1
L
NC CQ1R CQ1R VSS VSS VSS NC NC
ENC NC VDDI
OL
VSS VSS VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VTTL VTTL VTTL VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
NC VSS VDDI
OR
NC NC
FNC NC CE1L CE0L VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VCO
RE
VCO
RE
VCO
RE
VCO
RE
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
CE0R CE1R NC NC
GA0L A1L RETL BE1L VDDI
OL
VDDI
OL
VREF
L
VSS VSS VSS VSS VSS VSS VSS VSS VREF
R
VDDI
OR
VDDI
OR
BE1R RETR A1R A0R
HA2L A3L WRP
L
NC VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
NC WRP
R
A3R A2R
JA4L A5L READ
YL
NC VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
NC READ
YR
A5R A4R
KA6L A7L ZQ1L[
4] NC VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VDDI
OR
NC ZQ1R
[4] A7R A6R
LA8L A9L CL OEL VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL OER CR A9R A8R
MA10L A11L CL NC VTTL VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL NC CR A11R A10R
NA12L A13L ADSL NC VDDI
OL
VCO
RE
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VCO
RE
VTTL NC ADSR A13R A12R
P
A14L A15L CNT
MSKL
NC VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
NC CNT
MSK
R
A15R A14R
RA16L A17L CNTE
NL
BE0L VDDI
OL
VDDI
OL
VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDDI
OR
VDDI
OR
BE0R CNTE
NR
A17R A16R
TA18L A19L CNTR
STL
INTL VDDI
OL
VDDI
OL
VREF
L
VSS VSS VSS VSS VSS VSS VSS VSS VREF
R
VDDI
OR
VDDI
OR
INTR CNTR
STR
A19R A18R
UA20L NC R/WL CQE
NL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VCO
RE
VCO
RE
VCO
RE
VCO
RE
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
CQE
NR
R/WR NC A20R
VNC NC FTSE
LL
VDDI
OL
NC VDDI
OL
VDDI
OL
VDDI
OL
VDDI
OL
VTTL VTTL VTTL VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
VDDI
OR
TRST VDDI
OR
FTSE
LR
NC NC
W
NC NC VSS MRST VSS CQ0L CQ0L VC_S
EL
PORT
STD1
R
CNTI
NTR
BUSY
R
ZQ0R
[4] PORT
STD0
R
LOW
SPDR
DDR
ONR CQ0R CQ0R VSS TDI TDO NC NC
YNC NC VSS VSS NC NC NC NC DQ8L DQ5L DQ2L DQ2R DQ5R DQ8R NC NC NC NC TMS TCK NC NC
AA NC NC NC NC NC NC NC NC DQ7L DQ4L DQ1L DQ1R DQ4R DQ7R NC NC NC NC NC NC NC NC
AB NC NC NC NC NC NC NC NC DQ6L DQ3L DQ0L DQ0R DQ3R DQ6R NC NC NC NC NC NC NC NC
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 6 of 48
FullFlex36 DDR 256 Ball BGA (Top View)
12345678910111213141516
ADQ32L DQ30L DQ28L DQ26L DQ24L DQ22L DQ20L DQ18L DQ18R DQ20R DQ22R DQ24R DQ26R DQ28R DQ30R DQ32R
BDQ33L DQ31L DQ29L DQ27L DQ25L DQ23L DQ21L DQ19L DQ19R DQ21R DQ23R DQ25R DQ27R DQ29R DQ31R DQ33R
CDQ34L DQ35L RETL INTL CQ1L CQ1L VC_SEL TRST MRST ZQ0R[4] CQ1R CQ1R INTR RETR DQ35R DQ34R
DA0L A1L WRPL VREF VDDIOL LOWSP
DL
VSS VTTL VTTL VSS LOWSP
DR
VDDIO
R
VREF WRPR A1R A0R
EA2L A3L CE0L CE1L VDDIOL VDDIOL VDDIOL VCORE VCORE VDDIO
R
VDDIO
R
VDDIO
R
CE1R CE0R A3R A2R
FA4L A5L CNINTL BE3L VDDIOL VDDIOL VSS VSS VSS VSS VSS VDDIO
R
BE3R CNINTR A5R A4R
GA6L A7L BUSYL BE2L ZQ0L[4] VSS VSS VSS VSS VSS VSS VDDIO
R
BE2R BUSYR A7R A6R
HA8L A9L CL VTTL VCORE VSS VSS VSS VSS VSS VSS VCORE VTTL CR A9R A8R
JA10L A11L CL PORTS
TD1L
VCORE VSS VSS VSS VSS VSS VSS VCORE PORTS
TD1R
CR A11R A10R
KA12L A13L OEL BE1L VDDIOL VSS VSS VSS VSS VSS VSS VDDIO
R
BE1R OER A13R A12R
LA14L A15L ADSL BE0L VDDIOL VSS VSS VSS VSS VSS VDDIO
R
VDDIO
R
BE0R ADSR A15R A14R
MA16L[10] A17L[9] RWL CQENL VDDIOL VDDIOL VDDIOL VCORE VCORE VDDIO
R
VDDIO
R
VDDIO
R
CQENR RWR A17R[9] A16R[10]
NNC NC CNTMS
KL
VREF PORTS
TD0L
READY
L
ZQ1L[4] VTTL VTTL ZQ1R[4] READY
R
PORTS
TD0R
VREF CNTMS
KR
NC NC
PDQ16L DQ17L CNTEN
L
CNTRS
TL
CQ0L CQ0L TCK TMS TDO TDI CQ0R CQ0R CNTRS
TR
CNTEN
R
DQ17R DQ16R
RDQ15L DQ13L DQ11L DQ9L DQ7L DQ5L DQ3L DQ1L DQ1R DQ3R DQ5R DQ7R DQ9R DQ11R DQ13R DQ15R
TDQ14L DQ12L DQ10L DQ8L DQ6L DQ4L DQ2L DQ0L DQ0R DQ2R DQ4R DQ6R DQ8R DQ10R DQ12R DQ14R
Notes:
9. Leave this ball unconnected for CYDD09S36V18 and CYDD04S36V18.
10. Leave this ball unconnected for CYDD04S36V18.
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 7 of 48
FullFlex18 DDR 256 Ball BGA (Top View)
12345678910111213141516
ANC NC NC DQ17L DQ16L DQ13L DQ12L DQ9L DQ9R DQ12R DQ13R DQ16R DQ17R NC NC NC
BNC NC NC NC DQ15L DQ14L DQ11L DQ10L DQ10R DQ11R DQ14R DQ15R NC NC NC NC
CNC NC RETL INTL CQ1L CQ1L VC_SEL TRST MRST ZQ0R[4] CQ1R CQ1R INTR RETR NC NC
DA0L A1L WRPL VREF VDDIOL LOWSP
DL
VSS VTTL VTTL VSS LOWSP
DR
VDDIOR VREF WRPR A1R A0R
EA2L A3L CE0L CE1L VDDIOL VDDIOL VDDIOL VCORE VCORE VDDIOR VDDIOR VDDIOR CE1R CE0R A3R A2R
FA4L A5L CNINTL NC VDDIOL VDDIOL VSS VSS VSS VSS VSS VDDIOR NC CNINTR A5R A4R
GA6L A7L BUSYL NC ZQ0L[4] VSS VSS VSS VSS VSS VSS VDDIOR NC BUSYR A7R A6R
HA8L A9L CL VTTL VCORE VSS VSS VSS VSS VSS VSS VCORE VTTL CR A9R A8R
JA10L A11L CL PORTST
D1L
VCORE VSS VSS VSS VSS VSS VSS VCORE PORTST
D1R
CR A11R A10R
KA12L A13L OEL BE1L VDDIOL VSS VSS VSS VSS VSS VSS VDDIOR BE1R OER A13R A12R
LA14L A15L ADSL BE0L VDDIOL VSS VSS VSS VSS VSS VDDIOR VDDIOR BE0R ADSR A15R A14R
MA16L A17L[12] RWL CQENL VDDIOL VDDIOL VDDIOL VCORE VCORE VDDIOR VDDIOR VDDIOR CQENR RWR A17R[12] A16R
NA18L[11] NC CNTMS
KL
VREF PORTST
D0L
READYL ZQ1L[4] VTTL VTTL ZQ1R[4] READY
R
PORTST
D0R
VREF CNTMS
KR
NC A18R[11]
PNC NC CNTENL CNTRST
L
CQ0L CQ0L TCK TMS TDO TDI CQ0R CQ0R CNTRST
R
CNTEN
R
NC NC
RNC NC NC NC DQ6L DQ5L DQ2L DQ1L DQ1R DQ2R DQ5R DQ6R NC NC NC NC
TNC NC NC DQ8L DQ7L DQ4L DQ3L DQ0L DQ0R DQ3R DQ4R DQ7R DQ8R NC NC NC
Note:
11. Leave this ball unconnected for CYDD09S18V18 and CYDD04S18V18.
12. Leave this ball unconnected for CYDD04S18V18.
Table 1. Selection Guide
-250[13,15,17] -200[13,14,16,17
]-167[13,14] Unit
fMAX 250 200 167 MHz
SDR Max. Access Time (Clock to Data) 2.64 3.3 4.0 ns
DDR Max. Access Time (Clock to Data) 0.50 0.50 0.50 ns
Typical Operating Current ICC TBD TBD TBD mA
Typical Standby Current for ISB3 (Both Ports CMOS Level) TBD TBD TBD mA
Notes:
13. SDR mode with two pipeline stages.
14. DDR mode with 2.5 pipeline stages.
15. In SDR mode, these parameters apply for the 1.8V LVCMOS and HSTL.
16. In DDR mode, these parameters apply for the 1.8V LVCMOS and HSTL.
17. There is a speed bin drop for a 1.5V Core voltage.
18. These parameters apply for the 1.5V Core voltage only.
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 8 of 48
Pin Definitions
Left Port Right Port Description
A[20:0]LA[20:0]RAddress Inputs.[1]
DQ0L–DQ71L DQ0R–DQ71R Data Bus Input/Output.[2]
BE0L–BE7L BE0R–BE7R Byte Select Inputs.[3] Asserting these signals enables Read and Write operations to the
corresponding bytes of the memory array.
BUSYLBUSYRPort Busy Output. When there is an address match and both chip enables are active for
both ports, an external BUSY signal is asserted on the fifth clock cycle from when the collision
occurs.
C/CLC/CRClock Signal.[19] Maximum clock input rate is fMAX. Tie C to VSS when operating in SDR
mode.
CE0LCE0RActive LOW Chip Enable Input.
CE1LCE1RActive HIGH Chip Enable Input.
CQENLCQENREcho Clock Enable Input. Assert HIGH to enable echo clocking on respective port.
CQ0L, CQ0LCQ0R, CQ0REcho Clock Signal Output for DQ[35:0] for FullFlex72 devices. Echo Clock Signal Output
for DQ[17:0] for FullFlex36 devices. Echo Clock Signal Output for DQ[8:0] for FullFlex18
devices.
CQ1L, CQ1LCQ1R, CQ1REcho Clock Signal Output for DQ[71:36] for FullFlex72 devices. Echo Clock Signal
Output for DQ[35:18] for FullFlex36 devices. Echo Clock Signal Output for DQ[17:9] for
FullFlex18 devices.
DDRONLDDRONRDDR Enable Input. Assert HIGH to enable DDR clocking on respective port.
ZQ<1:0>LZQ<1:0>RVIM Output Impedance Matching Input. To use, connect a calibrating resistor between ZQ
and ground. The resistor must be five times larger than the intended line impedance driven
by the dual-port. Assert HIGH to disable Variable Impedance Matching.
OELOEROutput Enable Input. This asynchronous signal must be asserted LOW to enable the DQ
data pins during Read operations.
INTLINTRMailbox Interrupt Flag Output. The mailbox permits communications between ports. The
upper two memory locations can be used for message passing. INTL is asserted LOW when
the right port writes to the mailbox location of the left port, and vice versa. An interrupt to a
port is deasserted HIGH when it reads the contents of its mailbox.
LowSPDLLowSPDRPort Low Speed Select Input. Assert this pin LOW to disable the DLL. For operation at less
than 100 MHz, assert this pin LOW.
PORTSTD[1:0]L
[20] PORTSTD[1:0]R
[20] Port Clock/Address/Control/Data/Echo Clock/ I/O Standard Select Input. Assert these
pins LOW/LOW for LVTTL, LOW/HIGH for HSTL, HIGH/LOW for 2.5V LVCMOS, and
HIGH/HIGH for 1.8V LVCMOS, respectively. Connect these pins to a VTTL supply.
R/WLR/WRRead/Write Enable Input. Assert this pin LOW to Write to, or HIGH to Read from the
dual-port memory array.
READYLREADYRPort DLL Ready Output. This signal will be asserted LOW when the DLL and Variable
Impedance Matching circuits have completed calibration. This is a wired OR capable output.
CNT/MSKLCNT/MSKRPort Counter/Mask Select Input. Counter control input.
ADSLADSRPort Counter Address Load Strobe Input. Counter control input.
CNTENLCNTENRPort Counter Enable Input. Counter control input.
CNTRSTLCNTRSTRPort Counter Reset Input. Counter control input.
CNTINTLCNTINTRPort Counter Interrupt Output. This pin is asserted LOW one cycle before the unmasked
portion of the counter is incremented to all “1s”.
WRPLWRPRPort Counter Wrap Input. When the burst counter reaches the maximum count, on the next
counter increment WRP can be set LOW to load the unmasked counter bits to 0 or set HIGH
to load the counter with the value stored in the mirror register.
RETLRETRPort Counter Retransmit Input. Assert this pin LOW to reload the initial address for
repeated access to the same segment of memory.
Notes:
19. C and C are complimentary for DDR operation.
20. Pins D14 and W9 of the FullFlex72 have an internal pull-down resistor.
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 9 of 48
Selectable I/O Standard
The FullFlex families of devices also offer the option of
choosing one of four port standards for the device. Each port
can independently select standards from single-ended HSTL
class I, single-ended LVTTL, 2.5V LVCMOS, or 1.8V
LVCMOS. The selection of the standard is determined by the
PORTSTD pins for each port. These pins must be connected
to a VTTL power supply. This will determine the input clock,
address, control, data, and Echo clock standard for each port
as shown in Table 2.
Operating mode with different IO standards combined with
different core power supply will result in different maximum
speed as shown in Table 3.
Clocking
Separate clocks synchronize the operations on each port.
Each port has two clock inputs C and C. In SDR mode only the
C input clock is used and C should be tied to VSS. In this
mode, all the transactions on the address, control, and data
will be on the C rising edge. In DDR mode, both C and C will
be used and these signals are complementary. In this mode,
all transactions on the address and control, except for the byte
enables, will occur on the C rising edge. Transactions on the
data input, output, and byte enables will be on the C and C
rising edges.
Double Data Rate (DDR)
In DDR mode with a x36 bus width, the input data is sampled
on both edges of the input clock. During a write, on the rising
edge of C, the first 36 bits (DQ[71:36]) will be latched into a
register. On the rising edge of C, the next 36 bits (DQ[35:0])
will be latched into a register. During a read, the first 36 bits
are driven out first on the rising edge of C. The next 36 bits will
be driven out on the rising edge of C. The internal bus width of
the FullFlex72 family is still x72. All counter operation is based
upon the x72 word width. The DDR option is set on a per port
basis by the configuration of the DDRON pin. Table 4 shows
the data assignment for SDR and DDR configuration. The
column on the right (Data Pin Name) shows the pins on which
data is presented on the data lines.
VREFLVREFRPort External HSTL I/O Reference Input.
VDDIOLVDDIORPort Data I/O Power Supply.
FTSELLFTSELRPort Flow-Through Mode Select Input. Assert this pin LOW to select Flow-Through mode.
Assert this pin HIGH to select Pipeline mode. Selection for SDR only.
MRST Master Reset Input. MRST is an asynchronous input signal and affects both ports. Asserting
MRST LOW performs all of the reset functions as described in the text. A MRST operation
is required at power-up. This pin must be driven by VDDIO referenced levels.
VC_SEL Core Power Supply Select. Assert this pin LOW to select 1.8V Core operation. Assert this
pin HIGH to select 1.5V Core operation. This pin must be driven by VTTL referenced levels.
TMS JTAG Test Mode Select Input. It controls the advance of JTAG TAP state machine. State
machine transitions occur on the rising edge of TCK. Operation for LVTTL or 2.5V LVCMOS.
TDI JTAG Test Data Input. Data on the TDI input will be shifted serially into selected registers.
Operation for LVTTL or 2.5V LVCMOS.
TRST JTAG Reset Input. Operation for LVTTL or 2.5V LVCMOS.
TCK JTAG Test Clock Input. Operation for LVTTL or 2.5V LVCMOS.
TDO JTAG Test Data Output. TDO transitions occur on the falling edge of TCK. TDO is normally
three-stated except when captured data is shifted out of the JTAG TAP. Operation for LVTTL
or 2.5V LVCMOS.
VSS Ground Inputs.
VCORE Device Core Power Supply.
VTTL LVTTL Power Supply.
Pin Definitions (continued)
Left Port Right Port Description
Table 2. Port Standard Selection
PORTSTD1 PORTSTD0 I/O Standard
VSS VSS LVTTL
VSS VTTL HSTL
VTTL VSS 2.5V LVCMOS
VTTL VTTL 1.8V LVCMOS
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 10 of 48
Table 3. Operating Mode vs. Speed, I/O Standard and Pipeline Stages
Operating Mode Maximum Speed (MHz) Core Voltage (V) I/O Standard Latency Cycles
SDR 250 1.8 HSTL/1.8V LVCMOS 2
SDR 200 1.8 LVTTL/2.5V LVCMOS 2
SDR 200 1.5 HSTL/LVTTL/2.5V LVCMOS/1.8V
LVCMOS
2
DDR 200 1.8 HSTL/1.8V LVCMOS 2.5
DDR 167 1.5 HSTL/LVTTL/2.5V LVCMOS/1.8V
LVCMOS
2.5
Table 4. Data Pin Assignment for SDR and DDR Configuration
BE Pin Name for
DDR
BE Pin Name for
SDR
x72 SDR Mode x36 DDR Mode
Data Pin Name
Related Rising Edge
Clock for Write
Related Rising Edge
Clock for Read
Data Pin
Name
BE[3] BE[7] DQ[71] C C DQ[35]
BE[3] BE[3] DQ[35] C C
BE[3] BE[7] DQ[70] C C DQ[34]
BE[3] BE[3] DQ[34] C C
BE[3] BE[7] DQ[69] C C DQ[33]
BE[3] BE[3] DQ[33] C C
BE[3] BE[7] DQ[68] C C DQ[32]
BE[3] BE[3] DQ[32] C C
BE[3] BE[7] DQ[67] C C DQ[31]
BE[3] BE[3] DQ[31] C C
BE[3] BE[7] DQ[66] C C DQ[30]
BE[3] BE[3] DQ[30] C C
BE[3] BE[7] DQ[65] C C DQ[29]
BE[3] BE[3] DQ[29] C C
BE[3] BE[7] DQ[64] C C DQ[28]
BE[3] BE[3] DQ[28] C C
BE[3] BE[7] DQ[63] C C DQ[27]
BE[3] BE[3] DQ[27] C C
BE[2] BE[6] DQ[62] C C DQ[26]
BE[2] BE[2] DQ[26] C C
BE[2] BE[6] DQ[61] C C DQ[25]
BE[2] BE[2] DQ[25] C C
BE[2] BE[6] DQ[60] C C DQ[24]
BE[2] BE[2] DQ[24] C C
BE[2] BE[6] DQ[59] C C DQ[23]
BE[2] BE[2] DQ[23] C C
BE[2] BE[6] DQ[58] C C DQ[22]
BE[2] BE[2] DQ[22] C C
BE[2] BE[6] DQ[57] C C DQ[21]
BE[2] BE[2] DQ[21] C C
BE[2] BE[6] DQ[56] C C DQ[20]
BE[2] BE[2] DQ[20] C C
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 11 of 48
BE[2] BE[6] DQ[55] C C DQ[19]
BE[2] BE[2] DQ[19] C C
BE[2] BE[6] DQ[54] C C DQ[18]
BE[2] BE[2] DQ[18] C C
BE[1] BE[5] DQ[53] C C DQ[17]
BE[1] BE[1] DQ[17] C C
BE[1] BE[5] DQ[52] C C DQ[16]
BE[1] BE[1] DQ[16] C C
BE[1] BE[5] DQ[51] C C DQ[15]
BE[1] BE[1] DQ[15] C C
BE[1] BE[5] DQ[50] C C DQ[14]
BE[1] BE[1] DQ[14] C C
BE[1] BE[5] DQ[49] C C DQ[13]
BE[1] BE[1] DQ[13] C C
BE[1] BE[5] DQ[48] C C DQ[12]
BE[1] BE[1] DQ[12] C C
BE[1] BE[5] DQ[47] C C DQ[11]
BE[1] BE[1] DQ[11] C C
BE[1] BE[5] DQ[46] C C DQ[10]
BE[1] BE[1] DQ[10] C C
BE[1] BE[5] DQ[45] C C DQ[9]
BE[1] BE[1] DQ[9] C C
BE[0] BE[4] DQ[44] C C DQ[8]
BE[0] BE[0] DQ[8] C C
BE[0] BE[4] DQ[43] C C DQ[7]
BE[0] BE[0] DQ[7] C C
BE[0] BE[4] DQ[42] C C DQ[6]
BE[0] BE[0] DQ[6] C C
BE[0] BE[4] DQ[41] C C DQ[5]
BE[0] BE[0] DQ[5] C C
BE[0] BE[4] DQ[40] C C DQ[4]
BE[0] BE[0] DQ[4] C C
BE[0] BE[4] DQ[39] C C DQ[3]
BE[0] BE[0] DQ[3] C C
BE[0] BE[4] DQ[38] C C DQ[2]
BE[0] BE[0] DQ[2] C C
BE[0] BE[4] DQ[37] C C DQ[1]
BE[0] BE[0] DQ[1] C C
BE[0] BE[4] DQ[36] C C DQ[0]
BE[0] BE[0] DQ[0] C C
Table 4. Data Pin Assignment for SDR and DDR Configuration (continued)
BE Pin Name for
DDR
BE Pin Name for
SDR
x72 SDR Mode x36 DDR Mode
Data Pin Name
Related Rising Edge
Clock for Write
Related Rising Edge
Clock for Read
Data Pin
Name
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 12 of 48
Selectable Pipeline/Flow-Through Mode
To meet data rate and throughput requirements, the FullFlex
families offer selectable pipeline or flow-through mode.
Flow-through mode is only supported in the FullFlex72
devices when the port is configured in SDR mode. Echo clocks
are not supported in flow-through mode and the DLL must be
disabled.
Flow-Through mode is selected by the FTSEL pin. Strapping
this pin HIGH selects pipeline mode. Strapping this pin LOW
selects flow-through mode.
DLL
The FullFlex families of devices have an on-chip DLL.
Enabling the DLL reduces the clock to data valid time allowing
more setup time for the receiving device. For operation at or
below 100 MHz, the DLL must be disabled. This is selectable
by strapping LowSPD LOW. For information on DLL lock and
reset time, please see the Master Reset section below.
Echo Clocking
As the speed of data increases, on-board delays caused by
parasitics make providing accurate clock trees extremely
difficult. To counter this problem, the FullFlex families incor-
porate Echo Clocks. Echo Clocks are enabled on a per port
basis. The dual-port receives input clocks (C and C for DDR
mode, C for SDR mode) that are used to clock in the address
and control signals for a read operation. The dual-port
retransmits the input clocks relative to the data output. The
buffered clocks are provided on the CQ1, CQ1, CQ0, and CQ0
outputs. Each port has two pairs of Echo clocks. Each clock is
associated with half the data bits. The output clock will match
the corresponding ports I/O configuration.
To enable Echo clock outputs, tie CQEN HIGH. To disable
Echo clock outputs, tie CQEN LOW.
Deterministic Access Control
Deterministic Access Control is provided for ease of design.
The circuitry detects when both ports are accessing the same
location and provides an external BUSY flag to the port on
which data may be corrupted. The collision detection logic
saves the address in conflict (Busy Address) to a readable
register. In the case of multiple collisions, the first Busy
address will be written to the Busy Address register.
If both ports are accessing the same location at the same time
and only one port is doing a write, if tCCS is met, then the data
being written to and read from the address is valid data. For
example, if the right port is reading and the left port is writing
and the left ports clock meets tCCS, then the data being read
from the address by the right port will be the old data. In the
same case, if the right ports clock meets tCCS, then the data
being read out of the address from the right port will be the new
data. In the above case, if tCCS is violated by the either ports
clock with respect to the other port and the right port gets the
external BUSY flag, the data from the right port is corrupted.
Table 5 shows the tCCS timing that must be met to guarantee
the data.
Table 6 shows that in the case of the left port writing and the
right port reading, when an external BUSY flag is asserted on
the right port, the data read out of the device will not be
guaranteed.
The value in the busy address register can be read back to the
address lines. The required input control signals for this
function are shown in Table 9. The value in the busy address
register will be read out to the address lines tCA after the same
amount of latency as a data read operation in SDR mode. In
DDR mode, the address latency is only 2 cycles instead of 2.5
which is the data latency. After an initial address match, the
address under contention is saved in the busy address
register. All following address matches cause the BUSY flag
to be generated, however, none of the addresses are saved
into the busy address register. Once a busy readback is
performed, the address of the first match which happens at
least two clock cycles after the busy readback, is saved into
the busy address register.
Figure 2. SDR Echo Clock Delay
Figure 3. DDR Echo Clock Delay
Input Clock
Echo Clock
Data Out
Echo Clock
Input Clock
Data Out
Input Clock
Echo Clock
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 13 of 48
Variable Impedance Matching (VIM)
Each port contains a Variable Impedance Matching circuit to
set the impedance of the I/O driver to match the impedance of
the on board traces. The impedance is set for all outputs
except JTAG and is done on a per port basis. To take
advantage of the VIM feature, connect a calibrating resistor
(RQ) that is five times the value of the intended line impedance
from the ZQ pin to VSS. The output impedance is then
adjusted to account for drifts in supply voltage and temper-
ature every 1024 clock cycles. If a port’s clock is suspended,
the VIM circuit will retain its last setting until the clock is
restarted where it will then resume periodic adjustment. In the
case of a significant change in device temperature or supply
voltage, the recalibration period is multiples of 1024 clock
cycles. A Master Reset will initialize the VIM circuitry. Ta ble 7
shows the VIM parameters and Table 8 describes the VIM
operation modes.
In order to disable VIM, the ZQ pin must be connected to
VDDIO of the relative supply for the I/Os before a Master
Reset.
Address Counter and Mask Register Operations[1]
Each port of the FullFlex families contains a programmable
burst address counter. The burst counter contains four
registers: a counter register, a mask register, a mirror register,
and a busy address register.
The counter register contains the address used to access the
RAM array. It is changed only by the master reset (MRST),
Counter Reset, Counter Load, Retransmit, and Counter
Increment operations.
Table 5. tCCS Timing for All Operating Modes
Port A – Early Arriving Port Port B – Late Arriving Port tCCS C/C Rise to Opposite C/C Rise Set-up Time
for Non-corrupt Data UnitMode Active Edge Mode Active Edge
SDR C SDR C tCYC(min) – 1 ns
SDR C DDR C tCYC(min) – 1 ns
DDR C SDR C 0.55 * tCYC + tCYC(min) – 1 ns
DDR C DDR C 0.55 * tCYC + tCYC(min) – 1 ns
Table 6. Deterministic Access Control Winning Port
Left Port Right Port
Clock Timing
BUSYLBUSYRDescriptionLeft Clock Right Clock
Read Read X X H H No Collision
Write Read >tCCS 0 H H Read OLD Data
0>t
CCS H H Read NEW Data
<tCCS 0 H H Read OLD Data
H L Data Not Guaranteed
0<t
CCS H H Read NEW Data
H L Data Not Guaranteed
Read Write >tCCS 0 H H Read NEW Data
0>t
CCS H H Read OLD Data
<tCCS 0 H H Read NEW Data
L H Data Not Guaranteed
0<t
CCS H H Read OLD Data
L H Data Not Guaranteed
Write Write 0 >–tCCS & <tCCS L L Array Data Corrupted
0>t
CCS L H Array Stores Right Port Data
>tCCS 0 H L Array Stores Left Port Data
Table 7. Variable Impedance Matching Parameters
Parameter Min. Max. Unit Tolerance
RQ Value 100 275 ±2%
Output Impedance 20 55 ±15%
Reset Time N/A 1024 Cycles N/A
Update Time N/A 1024 Cycles N/A
Table 8. Variable Impedance Matching Operation
RQ Connection Output Configuration
100–275 to
VSS
Output Driver Impedance = RQ/5 ± 15% at
Vout = VDDIO/2
ZQ to VDDIO VIM Disabled. Rout < 20 at Vout =
VDDIO/2
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 14 of 48
The mask register value affects the Counter Increment and
Counter Reset operations by preventing the corresponding
bits of the counter register from changing. It also affects the
counter interrupt output (CNTINT). The mask register is only
changed by Mask Reset, Mask Load, and MRST. The Mask
Load operation loads the value of the address bus into the
mask register. The mask register defines the counting range
of the counter register. It divides the counter register into two
or three consecutive regions. Zero or more “0s” define the
masked region and one or more “1s” define the unmasked
portion of the counter register. The counter register may only
be divided into up to three regions. The region containing the
least significant bits must be no more than two bits. Bits one
and zero may be “10” respectively, masking the least signif-
icant counter bit and causing the counter to increment by two
instead of one. If bits one and zero are “00”, the two least
significant bits are masked and the counter will increment by
four instead of one. For example, in the case of a 256Kx72
configuration, a mask register value of 003FC divides the
mask register into three regions. With bit 0 being the least
significant bit and bit 17 being the most significant bit, the two
least significant bits are masked, the next eight bits are
unmasked, and the remaining bits are masked.
The mirror register is used to reload the counter register on
retransmit operations (see “retransmit” below) and wrap
functions (see “counter increment” below). The last value
loaded into the counter register is stored in the mirror register.
The mirror register is only changed by master reset (MRST),
Counter Reset, and Counter Load.
Table 9 summarizes the operations of these registers and the
required input control signals. All signals except MRST are
synchronized to the ports clock.
Counter Load Operation[1]
The address counter and mirror registers are both loaded with
the address value presented on the address lines. This value
ranges from 0 to FFFFF.
Mask Load Operation[1]
The mask register is loaded with the address value presented
on the address bus. This value ranges from 0 to FFFFF though
not all values permit correct increment operations. Permitted
values are in the form of 2n–1, 2n–2, or 2n4. The counter
register can only be segmented in up to three regions. From
the most significant bit to the least significant bit, permitted
values have zero or more “0s”, one or more “1s”, and the least
significant two bits can be “11”, “10”, or “00”. Thus FFFFE,
7FFFF, and 03FFC are permitted values but 2FFFF, 03FFA,
and 7FFE4 are not.
Counter Readback Operation
The internal value of the counter register can be read out on
the address lines. The address will be valid tCA after the
selected number of latency cycles configured by FTSEL. This
is the same as data in SDR mode and one half cycle earlier
than data latency for DDR mode. The data bus (DQ) is
tri-stated on the cycle that the address is presented on the
address lines. Figure 4 shows a block diagram of the
operation.
Mask Readback Operation
The internal value of the mask register can be read out on the
address lines. The address will be valid tCA after the selected
number of latency cycles configured by FTSEL. For pipelined
SDR and DDR mode this is two cycles. The data bus (DQ) is
tri-stated on the cycle that the address is presented on the
address lines. Figure 4 shows a block diagram of the
operation.
Table 9. Burst Counter and Mask Register Control Operation (Any Port) [21,22]
CMRSTCNTRST CNT/MSK CNTEN ADS RET Operation Description
X L X X X X X Master Reset Reset address counter to all 0s, mask register
to all 1s, and BUSY address to all 0’s.
H L H X X X Counter Reset Reset counter and mirror unmasked portion to
all 0s.
H L L X X X Mask Reset Reset mask register to all 1s.
H H H L L X Counter Load Load burst counter and mirror with external
address value presented on address lines.
H H L L L X Mask Load Load mask register with value presented on the
address lines.
H H H L H L Retransmit Load counter with value in the mirror register
H H H L H H Counter
Increment
Internally increment address counter value.
H H H H H H Counter Hold Constantly hold the address value for multiple
clock cycles.
H H H H L H Counter
Readback
Read out counter internal value on address
lines.
H H L H L H Mask Readback Read out mask register value on address lines.
Notes:
21. X” = “Don’t Care,” “H” = HIGH, “L” = LOW.
22. Counter operation and mask register operation is independent of chip enables.
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 15 of 48
Counter Reset Operation
All unmasked bits of the counter are reset to “0”. All masked
bits remain unchanged. The new burst counter value is loaded
into the mirror registers. A mask reset followed by a counter
reset will reset the counter and mirror registers to 00000.
Mask Reset Operation
The mask register is reset to all “1s”, which unmasks every bit
of the burst counter.
Increment Operation[1]
Once the address counter is initially loaded with an external
address, the counter can internally increment the address
value and address the entire memory array. Only the
unmasked bits of the counter register are incremented. In
order for a counter bit to change, the corresponding bit in the
mask register must be “1”. If the two least significant bits of the
mask register are “11”, the burst counter will increment by one.
If the two least significant bits are “10”, the burst counter will
increment by two, and if they are “00”, the burst counter will
increment by four. If all unmasked counter bits are incre-
mented to “1” and WRP is deasserted, the next increment will
wrap the counter back to the initially loaded value. The cycle
before an increment will result in the unmasked counter bits
being “1s”, a counter interrupt flag (CNTINT) is asserted if the
counter is continuously incrementing. The next increment will
cause the counter to reach its maximum value and the second
increment will return the counter register to its initial value
which was stored in the mirror register when WRP is
deasserted. When WRP is asserted, the second increment
after CNTINT is asserted will load the unmasked counter bits
with “0”. The example shown in Figure 5 shows an example of
the CYDD36S18V18 device with the mask register loaded with
a mask value of 0007F unmasking the seven least significant
bits. Setting the mask register to this value allows the counter
to access the entire memory space. The address counter is
then loaded with an initial value of 00005 assuming WRP is
deasserted. The base address bits (in this case, the seventh
address through the twentieth address) do not increment once
the counter is configured for increment operation. The counter
address will start at address 00005 and will increment its
internal address value until it reaches the mask register value
of 0007F. The counter wraps around the memory block to
location 00005 at the next count. CNTINT is issued when the
counter reaches the maximum –1 count.
Hold Operation
The value of all three registers can be constantly maintained
unchanged for an unlimited number of clock cycles. Such
operation is useful in applications where wait states are
needed, or when address is available a few cycles ahead of
data in a shared bus interface.
Retransmit
Retransmit allows repeated access to the same block of
memory without the need to reload the initial address. An
internal mirror register stores the address counter value last
loaded. When the burst counter reaches its maximum value
set by the mask register, it wraps back to the initial value stored
in the mirror register as long as WRP is deasserted. The
unmasked counter bits will be loaded with “0” if WRP is
asserted. If the counter is configured to continuously be in
increment mode, it increments once again to the maximum
value and wraps back to the value initially stored in the mirror
register as long as WRP is deasserted. While RET is asserted
low, the counter will continue to wrap back to the value in the
mirror register independent of the state of WRP
.
Counter Interrupt
The counter interrupt (CNTINT) is asserted LOW one clock
cycle before an increment operation that results in the
unmasked portion of the counter register being all “1s”. It is
deasserted by counter reset, counter load, mask reset, mask
load, counter increment, re-transmit, and MRST.
Counting by Two
When the two least significant bits of the mask register are
“10,” the counter increments by two.
Counting by Four
When the two least significant bits of the mask register are
“00,” the counter increments by four.
Mailbox Interrupts
The upper two memory locations can be used for message
passing and permit communications between ports. Tabl e 10
shows the interrupt operation for both ports. The highest
memory location is the mailbox for the right port and the
maximum address–1 is the mailbox for the left port.
When one port Writes to the other ports mailbox, the INT flag
of the port that the mailbox belongs to is asserted LOW. The
INT flag remains asserted until the mailbox location is read by
the other port. When a port reads it’s mailbox, the INT flag is
H H L H H L Busy Address
Readback
Read out first busy address after last busy
address readback
HH L LHXReserved
HH L HLLReserved
HH L HHHReserved
HH H HLLReserved
HH H HHLReserved
Table 9. Burst Counter and Mask Register Control Operation (Any Port) (continued)[21,22]
CMRSTCNTRST CNT/MSK CNTEN ADS RET Operation Description
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 16 of 48
deasserted HIGH after one cycle of latency with respect to the
input clock of the port to which the mailbox belongs and is
independent of OE.
Table 10 shows that in order to set the INTR flag, a Write
operation by the left port to address FFFFF will assert INTR
LOW. A valid Read of the FFFFF location by the right port will
reset INTR HIGH after one cycle of latency with respect to the
right port’s clock. At least one byte enable has to be activated
to set or reset the mailbox interrupt.
From
Mask
Register
Mirror Counter
Address
Decode
RAM
Array
Wrap
1
0
Increment
Logic
1
0
+1
+2
1
0
Wrap
Detect
From
Mask
From
Counter
To
Counter
Bit 0
and 1
Wrap
Figure 4. Counter, Mask, and Mirror Logic Block Diagram[1]
21 21
21
21
21
1
0
Load/Increment
CNT/MSK
CNTEN
A
CNTRST
C
Decode
Logic
Bidirectional
Address
Lines
Mask
Register
Counter/
Address
Register
From
Address
Lines To Readback
and Address
Decode
21
21
MRST
RET
+4
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 17 of 48
Master Reset
The FullFlex family of dual-ports undergo a complete reset by
asserting MRST. MRST must be connected to VDDIO. The
MRST can be asserted asynchronously to the clocks and must
remain asserted for at least tRS. Once asserted MRST
deasserts READY, initializes the internal burst counters,
internal mirror registers, and internal Busy Addresses to zero,
and initializes the internal mask register to all “1s”. All mailbox
interrupts (INT), Busy Address Outputs (BUSY), and burst
counter interrupts (CNTINT) are deasserted upon master
reset. Releasing MRST also signifies that the power supplies
and all port clocks are stable. This begins calibration of the
DLL and VIM circuits. READY will be asserted within 1024
clock cycles. READY is a wired OR capable output with a
strong pull-up and weak pull-down. Up to four outputs may be
connected together. For faster pull-down of the signal, connect
a 250-Ohm resistor to VSS. If the DLL and VIM circuits are
disabled for a port, the port will be operational within five clock
cycles. However, the READY will be asserted within 160 clock
cycles.
IEEE 1149.1 Serial Boundary Scan (JTAG)
The FullFlex families incorporate an IEEE 1149.1 serial
boundary scan test access port (TAP). The TAP operates
using JEDEC-standard 3.3V or 2.5V I/O logic levels depending
on the VTTL power supply. It is composed of four input
connections and one output connection required by the test
logic defined by the standard.
Notes:
23. CE is internal signal. CE = LOW if CE0 = LOW and CE1 = HIGH. For a single Read operation, CE only needs to be asserted once at the rising edge of the C and
can be deasserted after that. Data will be out after the following C edge and will be tri-stated after the next C edge.
24. OE is “Don’t Care” for mailbox operation.
25. At least one of BE0, BE1, BE2, BE3, BE4, BE5, BE6, or BE7 must be LOW.
26. The “X” in this diagram represents the counter upper bits.
219 218 2621
2522
242320
219 218 2621
2522
242320
219 218 2621
2522
242320
219 218 2621
2522
242320
H
H
L
H
11
0s 1
01
0111
00
Xs 0
X1
X001
11
Xs 1
X1
X111
00
Xs 0
X1
X001
Masked Address Unmasked Address
Mask
Register
LSB
Address
Counter
LSB
CNTINT
Example:
Load
Counter-Mask
Register = 00007F
Load
Address
Counter = 000005
Max
Address
Value
Max + 1
Address
Value
Figure 5. Programmable Counter-Mask Register Operation[1,26]
0
27
X
27
X
27
X
27
Table 10.Interrupt Operation Example [1, 22, 23, 24, 25]
Function
Left Port Right Port
R/WLCELA0L–19L INTLR/WRCERA0R–19R INTR
Set Right INTR Flag L L Max. Address X X X X L
Reset Right INTR Flag X X X X H L Max. Address H
Set Left INTL Flag X X X L L L Max. Address–1 X
Reset Left INTL Flag H L Max. Address–1 H X X X X
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 18 of 48
Table 11.Identification Register Definitions
Part Number Configuration Value
CYDD36S72V18 512Kx72 0C040069h
CYDD36S36V18 512Kx72 0C041069h
CYDD36S18V18 1024Kx36 0C042069h
CYDD18S72V18 256Kx72 0C043069h
CYDD18S36V18 256Kx72 0C044069h
CYDD18S18V18 512Kx36 0C045069h
CYDD09S72V18 128Kx72 0C046069h
CYDD09S36V18 128Kx72 0C047069h
CYDD09S18V18 256Kx36 0C048069h
CYDD04S72V18 64Kx72 0C049069h
CYDD04S36V18 64Kx72 0C04A069h
CYDD04S18V18 128Kx36 0C04B069h
Table 12.Scan Registers Sizes
Register Name Bit Size
Instruction 4
Bypass 1
Identification 32
Boundary Scan n[27]
Table 13.Instruction Identification Codes
Instruction Code Description
EXTEST 0000 Captures the Input/Output ring contents. Places the BSR between the TDI and TDO.
BYPASS 1111 Places the BYR between TDI and TDO.
IDCODE 1011 Loads the IDR with the vendor ID code and places the register between TDI and TDO.
HIGHZ 0111 Places BYR between TDI and TDO. Forces all FullFlex72 and FullFlex36 output drivers
to a High-Z state.
CLAMP 0100 Controls boundary to 1/0. Places BYR between TDI and TDO.
SAMPLE/PRELOAD 1000 Captures the input/output ring contents. Places BSR between TDI and TDO.
RESERVED All other codes Other combinations are reserved. Do not use other than the above.
Note:
27. Details of the boundary scan length can be found in the BSDL file for the device.
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 19 of 48
Maximum Ratings
(Above which the useful life may be impaired. For user guide-
lines, not tested.)
Storage Temperature ................................ –65°C to + 150°C
Ambient Temperature with
Power Applied............................................–55°C to + 125°C
Supply Voltage to Ground Potential .............. –0.5V to + 4.1V
DC Voltage Applied to
Outputs in High-Z State......................–0.5V to VCORE + 0.5V
DC Input Voltage............................... –0.5V to VCORE + 0.5V
Output Current into Outputs (LOW) ............................ 20 mA
Static Discharge Voltage ...........................................> 2200V
(JEDEC JESD8-6, JESD8-B)
Latch-up Current .....................................................> 200 mA
Operating Range
Range Ambient Temperature VCORE
Commercial 0°C to +70°C 1.8V ± 100 mV
1.5V ± 80 mV
Industrial –40°C to +85°C 1.8V ± 100 mV
1.5V ± 80 mV
Power Supply Requirements
Min. Typ. Max.
LVTTL VDDIO 3.0V3.3V3.6V
2.5V LVCMOS VDDIO 2.3V 2.5V 2.7V
HSTL VDDIO 1.4V1.5V1.9V
1.8V LVCMOS VDDIO 1.7V 1.8V 1.9V
3.3V VTTL 3.0V 3.3V 3.6V
2.5V VTTL 2.3V 2.5V 2.7V
HSTL VREF 0.68V 0.75V 0.95V
Electrical Characteristics Over the Operating Range
Parameter Description Configuration
-250[15,17] -200[16,17]
UnitMin. Typ. Max. Min. Typ. Max.
VOH Output HIGH Voltage
(VCORE = Min., IOH = –8 mA)
LVTTL 2.4[28] 2.4[28] V
(VCORE = Min., IOH = –4 mA) HSTL (DC)[29] VDDIO – 0.4[28] VDDIO – 0.4[28] V
(VCORE = Min., IOH = –4 mA) HSTL (AC)[29] VDDIO – 0.5[28] VDDIO – 0.5[28] V
(VCORE = Min., IOH = –6 mA) 2.5V LVCMOS 1.7[28] 1.7[28] V
(VCORE = Min., IOH = –4 mA) 1.8V LVCMOS 1.6[28] 1.6[28] V
VOL Output HIGH Voltage
(VCORE = Min., IOL = 8 mA)
LVTTL 0.4[28] 0.4[28] V
(VCORE = Min., IOL = 4 mA) HSTL (DC) 0.4[28] 0.4[28] V
(VCORE = Min., IOL = 4 mA) HSTL (AC) 0.5[28] 0.5[28] V
(VCORE = Min., IOL = 6 mA) 2.5V LVCMOS 0.7[28] 0.7[28] V
(VCORE = Min., IOL = 4 mA) 1.8V LVCMOS 0.2[28] 0.2[28] V
VIH Input HIGH Voltage LVTTL 2 VDDIO
+ 0.3
2VDDIO
+ 0.3
V
HSTL (DC) VREF + 0.1 VDDIO
+ 0.3
VREF + 0.1 VDDIO
+ 0.3
V
HSTL (AC) VREF + 0.2 VREF + 0.2 V
2.5V LVCMOS 1.7 1.7 V
1.8V LVCMOS 1.26 1.26 V
VIL Input LOW Voltage LVTTL –0.3 0.8 –0.3 0.8 V
HSTL (DC) –0.3 VREF
0.1
–0.3 VREF
– 0.1
V
HSTL (AC) VREF
0.2
VREF
– 0.2
V
2.5V LVCMOS 0.7 0.7 V
1.8V LVCMOS 0.36 0.36 V
Notes:
28. These parameters are met with VIM disabled.
29. The (DC) specifications are measured under steady state conditions. The (AC) specifications are measured while switching at speed.
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 20 of 48
READY
VOH
Output HIGH Voltage
(VCORE = Min., IOH = –24 mA)
LVTTL 2.7[28] 2.7[28] V
(VCORE = Min., IOH = –12 mA) HSTL (DC)[29] VDDIO – 0.4[28] VDDIO – 0.4[28] V
(VCORE = Min., IOH = –12 mA) HSTL (AC)[29] VDDIO – 0.5[28] VDDIO – 0.5[28] V
(VCORE = Min., IOH = –15 mA) 2.5V LVCMOS 2.0[28] 2.0[28] V
(VCORE = Min., IOH = –12 mA) 1.8V LVCMOS VDDIO – 0.45[28] VDDIO –
0.45[28] V
READY
VOL
Output HIGH Voltage
(VCORE = Min., IOL = 0.12 mA)
LVTTL 0.4[28] 0.4[28] V
(VCORE = Min., IOL = 0.12 mA) HSTL (DC) 0.4[28] 0.4[28] V
(VCORE = Min., IOL = 0.12 mA) HSTL (AC) 0.5[28] 0.5[28] V
(VCORE = Min., IOL = 0.15 mA) 2.5V LVCMOS 0.7[28] 0.7[28] V
(VCORE = Min., IOL = 0.08 mA) 1.8V LVCMOS 0.2[28] 0.2[28] V
IOZ Output Leakage Current –10 10 –10 10 µA
IIX1 Input Leakage Current 10 10 10 10 µA
IIX2 Input Leakage Current TDI,
TMS, MRST, TRST, TCK
–300 10 –300 10 µA
IIX3 Input Leakage Current
PORTSTD, DDRON,
VC_SEL
–10 300 –10 300 µA
ICC Operating Current
(VCORE = Max.,IOUT = 0 mA)
Outputs Disabled
512Kx72 TBD TBD TBD TBD TBD TBD mA
1024Kx36 TBD TBD TBD TBD TBD TBD mA
256Kx72 TBD TBD TBD TBD TBD TBD mA
512Kx36 TBD TBD TBD TBD TBD TBD mA
128Kx72 TBD TBD TBD TBD TBD TBD mA
256Kx36 TBD TBD TBD TBD TBD TBD mA
64Kx72 TBD TBD TBD TBD TBD TBD mA
128Kx36 TBD TBD TBD TBD TBD TBD mA
ISB1 Standby Current
(Both Ports TTL Level)
CEL and CER VIH,
f = fMAX
512Kx72 TBD TBD TBD TBD TBD TBD mA
1024Kx36 TBD TBD TBD TBD TBD TBD mA
256Kx72 TBD TBD TBD TBD TBD TBD mA
512Kx36 TBD TBD TBD TBD TBD TBD mA
128Kx72 TBD TBD TBD TBD TBD TBD mA
256Kx36 TBD TBD TBD TBD TBD TBD mA
64Kx72 TBD TBD TBD TBD TBD TBD mA
128Kx36 TBD TBD TBD TBD TBD TBD mA
Electrical Characteristics Over the Operating Range (continued)
Parameter Description Configuration
-250[15,17] -200[16,17]
UnitMin. Typ. Max. Min. Typ. Max.
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 21 of 48
ISB2 Standby Current
(One Port TTL Level)
CEL | CER VIH,
f = fMAX
512Kx72 TBD TBD TBD TBD TBD TBD mA
1024Kx36 TBD TBD TBD TBD TBD TBD mA
256Kx72 TBD TBD TBD TBD TBD TBD mA
512Kx36 TBD TBD TBD TBD TBD TBD mA
128Kx72 TBD TBD TBD TBD TBD TBD mA
256Kx36 TBD TBD TBD TBD TBD TBD mA
64Kx72 TBD TBD TBD TBD TBD TBD mA
128Kx36 TBD TBD TBD TBD TBD TBD mA
ISB3 Standby Current
(Both Ports CMOS Level)
CEL and CER VCORE
0.2V, f = 0
512Kx72 TBD TBD TBD TBD TBD TBD mA
1024Kx36 TBD TBD TBD TBD TBD TBD mA
256Kx72 TBD TBD TBD TBD TBD TBD mA
512Kx36 TBD TBD TBD TBD TBD TBD mA
128Kx72 TBD TBD TBD TBD TBD TBD mA
256Kx36 TBD TBD TBD TBD TBD TBD mA
64Kx72 TBD TBD TBD TBD TBD TBD mA
128Kx36 TBD TBD TBD TBD TBD TBD mA
ISB4 Standby Current
(One Port CMOS Level)
CEL | CER VIH,
f = fMAX
512Kx72 TBD TBD TBD TBD TBD TBD mA
1024Kx36 TBD TBD TBD TBD TBD TBD mA
256Kx72 TBD TBD TBD TBD TBD TBD mA
512Kx36 TBD TBD TBD TBD TBD TBD mA
128Kx72 TBD TBD TBD TBD TBD TBD mA
256Kx36 TBD TBD TBD TBD TBD TBD mA
64Kx72 TBD TBD TBD TBD TBD TBD mA
128Kx36 TBD TBD TBD TBD TBD TBD mA
Electrical Characteristics Over the Operating Range (continued)
Parameter Description Configuration
-250[15,17] -200[16,17]
UnitMin. Typ. Max. Min. Typ. Max.
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 22 of 48
Electrical Characteristics Over the Operating Range (continued)
Parameter Description Configuration
-167
UnitMin. Typ. Max.
VOH Output HIGH Voltage
(VCORE = Min., IOH = –8 mA)
LVTTL 2.4[28] V
(VCORE = Min., IOH = –4 mA) HSTL (DC) VDDIO – 0.4[28] V
(VCORE = Min., IOH = –4 mA) HSTL (AC) VDDIO – 0.5[28] V
(VCORE = Min., IOH = –6 mA) 2.5V LVCMOS 1.7[28] V
(VCORE = Min., IOH = –4 mA) 1.8V LVCMOS 1.6[28] V
VOL Output HIGH Voltage
(VCORE = Min., IOL = 8 mA)
LVTTL 0.4[28] V
(VCORE = Min., IOL = 4 mA) HSTL (DC) 0.4[28] V
(VCORE = Min., IOL = 4 mA) HSTL (AC) 0.5[28] V
(VCORE = Min., IOL = 6 mA) 2.5V LVCMOS 0.7[28] V
(VCORE = Min., IOL = 4 mA) 1.8V LVCMOS 0.2[28] V
VIH Input HIGH Voltage LVTTL 2 VDDIO + 0.3 V
HSTL (DC) VREF + 0.1 VDDIO + 0.3 V
HSTL (AC) VREF + 0.2 V
2.5V LVCMOS 1.7 V
1.8V LVCMOS 1.26 V
VIL Input LOW Voltage LVTTL –0.3 0.8 V
HSTL (DC) –0.3 VREF – 0.1 V
HSTL (AC) VREF – 0.2 V
2.5V LVCMOS 0.7 V
1.8V LVCMOS 0.36 V
READY VOH Output HIGH Voltage
(VCORE = Min., IOH = –24 mA)
LVTTL 2.7[28] V
(VCORE = Min., IOH = –12 mA) HSTL (DC)[29] VDDIO – 0.4[28] V
(VCORE = Min., IOH = –12 mA) HSTL (AC)[29] VDDIO – 0.5[28] V
(VCORE = Min., IOH = –15 mA) 2.5V LVCMOS 2.0[28] V
(VCORE = Min., IOH = –12 mA) 1.8V LVCMOS VDDIO – 0.45[28] V
READY VOL Output HIGH Voltage
(VCORE = Min., IOL = 0.12 mA)
LVTTL 0.4[28] V
(VCORE = Min., IOL = 0.12 mA) HSTL (DC) 0.4[28] V
(VCORE = Min.,IOL = 0.12 mA) HSTL (AC) 0.5[28] V
(VCORE = Min., IOL = 0.15 mA) 2.5V LVCMOS 0.7[28] V
(VCORE = Min., IOL = 0.08 mA) 1.8V LVCMOS 0.2[28] V
IOZ Output Leakage Current –10 10 µA
IIX1 Input Leakage Current 10 10 µA
IIX2 Input Leakage Current TDI,
TMS, MRST, TRST, TCK
–300 10 µA
IIX3 Input Leakage Current
PORTSTD, DDRON,
VC_SEL
–10 300 µA
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 23 of 48
ICC Operating Current
(VCORE = Max.,IOUT = 0 mA)
Outputs Disabled
512Kx72 TBD TBD TBD mA
1024Kx36 TBD TBD TBD mA
256Kx72 TBD TBD TBD mA
512Kx36 TBD TBD TBD mA
128Kx72 TBD TBD TBD mA
256Kx36 TBD TBD TBD mA
64Kx72 TBD TBD TBD mA
128Kx36 TBD TBD TBD mA
ISB1 Standby Current
(Both Ports TTL Level)
CEL and CER VIH, f = fMAX
512Kx72 TBD TBD TBD mA
1024Kx36 TBD TBD TBD mA
256Kx72 TBD TBD TBD mA
512Kx36 TBD TBD TBD mA
128Kx72 TBD TBD TBD mA
256Kx36 TBD TBD TBD mA
64Kx72 TBD TBD TBD mA
128Kx36 TBD TBD TBD mA
ISB2 Standby Current
(One Port TTL Level)
CEL | CER VIH, f = fMAX
512Kx72 TBD TBD TBD mA
1024Kx36 TBD TBD TBD mA
256Kx72 TBD TBD TBD mA
512Kx36 TBD TBD TBD mA
128Kx72 TBD TBD TBD mA
256Kx36 TBD TBD TBD mA
64Kx72 TBD TBD TBD mA
128Kx36 TBD TBD TBD mA
ISB3 Standby Current
(Both Ports CMOS Level)
CEL and CER VCORE – 0.2V,
f = 0
512Kx72 TBD TBD TBD mA
1024Kx36 TBD TBD TBD mA
256Kx72 TBD TBD TBD mA
512Kx36 TBD TBD TBD mA
128Kx72 TBD TBD TBD mA
256Kx36 TBD TBD TBD mA
64Kx72 TBD TBD TBD mA
128Kx36 TBD TBD TBD mA
ISB4 Standby Current
(One Port CMOS Level)
CEL | CER VIH, f = fMAX
512Kx72 TBD TBD TBD mA
1024Kx36 TBD TBD TBD mA
256Kx72 TBD TBD TBD mA
512Kx36 TBD TBD TBD mA
128Kx72 TBD TBD TBD mA
256Kx36 TBD TBD TBD mA
64Kx72 TBD TBD TBD mA
128Kx36 TBD TBD TBD mA
Electrical Characteristics Over the Operating Range (continued) (continued)
Parameter Description Configuration
-167
UnitMin. Typ. Max.
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 24 of 48
AC Test Load and Waveforms
Notes:
30. Capacitance for the 36M x18 device is 20 pF, capacitance for all other 36M or x18 devices is 12 pF.
31. Cout also references to CI/O.
32. Input and Output switch from 0V to 3V or from 3V to 0V.
Table 14.Capacitance
Parameter Description Test Conditions Max. Unit
CIN[30] Input Capacitance TA = 25°C, f = 1MHz,
VDD = 3V[32] 10 pF
COUT[30, 31] Output Capacitance 12 pF
Figure 6. Output Test Load for LVTTL/CMOS
Figure 7. Output Test Load for HSTL
Output
50 Ohm 50 Ohm
VTH = 1.5V for LVTTL
VTH = 50% VDDIO for 2.5V CMOS
VTH = 50% VDDIO for 1.8V CMOS
ZQ
RQ=250 Ohm
Device under
test
VREF
VREF = 0V
Test Point
C = 10pF
R=250 Ohm
READY VTH
Output
50 O hm 50 O hm
VTH = 50% VDDIO
ZQ
R Q =250 O hm
D evice under
te s t
VREF
VREF = 0.75V
Test Point
C= 0pF for DDR
C = 10pF for SD R
R =250 O hm
READY
VTH
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 25 of 48
Switching Characteristics Over the Operating Range
Table 15.DDR Mode with 2.5 Pipeline Stages and DLL Enabled (LOWSPD-HIGH)[36]
Parameter Description
-200[16,17,34] -167[17]
UnitMin. Max. Min. Max.
fMAX Maximum Operating Frequency 159 200 127 167 MHz
tCYC C/C Clock Cycle Time 5.00 6.3 6.00 7.88 ns
tCH C/C Clock HIGH Time 2.00 2.40 ns
tCL C/C Clock LOW Time 2.00 2.40 ns
tCHCH C/C Clock Rise to C/C Clock Rise 2.20 2.70 ns
tSD Data Input Set-up Time to C/C Rise 0.40[35] 0.50[35] ns
tHD Data Input Hold Time after C/C Rise 0.40[35] 0.50[35] ns
tSBE Byte enable Set-up Time to C/C Rise 0.40[35] 0.50[35] ns
tHBE Byte enable Hold Time after C/C Rise 0.40[35] 0.50[35] ns
tSAC Address & Control Input except BE Set-up Time to C Rise 1.50 1.70 ns
tHAC Address & Control Input except BE Hold Time after C Rise 0.50 0.60 ns
tOE Output Enable to Data Valid 4.40[35] 5.00[35] ns
tOLZ[33] OE to Low Z 1.00 1.00 ns
tOHZ[33] OE to High Z 1.00[35] 4.40[35] 1.00[35] 5.00[35] ns
tCD C/C Rise to DQ Valid 0.50[35] 0.60[35] ns
tDC DQ Output Hold after C/C Rise –0.50 –0.60 ns
tCCQ C/C Rise to CQ/CQ Rise –0.50 0.50 –0.60 0.60 ns
tCQHQV Echo Clock (CQ/CQ) High to Output Valid, SC = LOW 0.35[35] 0.40[35] ns
tCQHQX Echo Clock (CQ/CQ) High to Output Hold, SC = LOW –0.35 –0.40 ns
tCKHZ[33] C Rise to DQ Output High Z 0.50[35] 0.60[35] ns
tCKLZ[33] C Rise to DQ Output Low Z –0.50 –0.60 ns
tCA C Rise to Address Readback Valid 5.00 6.00 ns
tAC Address Output Hold after C Rise 1.00 1.00 ns
tCKHZA[33] C Rise to Address Output High Z 1.00 5.00 1.00 6.00 ns
tCKLZA[33] C Rise to Address Output Low Z 1.00 1.00 ns
tSCINT C Rise to CNTINT Low 1.00 3.30 1.00 4.00 ns
tRCINT C Rise to CNTINT High 1.00 3.30 1.00 4.00 ns
tSINT C Rise to INT Low 0.50 7.00 0.50 8.00 ns
tRINT C Rise to INT High 0.50 7.00 0.50 8.00 ns
tBSY C Rise to BUSY Valid 1.00 3.30 1.00 4.00 ns
Notes:
33. Parameters specified with the load capacitance in Figure 6 and Figure 7.
34. These parameters apply for the HSTL and 1.8V LVCMOS standards.
35. For the x18 devices, add 200 ps to this parameter in the table above.
36. Test conditions assume a signal transition time of 2 V/ns
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 26 of 48
Table 16.SDR Mode with DLL Enabled (LOWSPD-HIGH) [36]
Parameter Description
-250[15,17] -200[15,17] -167[17]
UnitMin. Max. Min. Max. Min. Max.
fMAX (PIPELINED) Maximum Operating Frequency for
Pipelined Mode
100 250 100 200 100 167 MHz
fMAX
(FLOW-THROUGH)
Maximum Operating Frequency for
Flow-through Mode
100 77 66.7 MHz
tCYC (PIPELINED) C Clock Cycle Time for Pipelined mode 4.00 10.00 5.00 10.00 6.00 10.00 ns
tCYC
(FLOW-THROUGH)
C Clock Cycle Time for Flow-through
mode
10.00 13.00 15.00 ns
tCKD C Clock Duty Time 45 55 45 55 45 55 %
tCHCH C/C Clock Rise to C/C Clock Rise N/A N/A N/A ns
tSD Data Input Set-up Time to C Rise 1.20[35] 1.50[35] 1.70[35] ns
tHD Data Input Hold Time after C Rise 0.50[35] 0.50[35] 0.50[35] ns
tSAC Address & Control Input Set-up Time to C
Rise
1.20 1.50 1.70 ns
tHAC Address & Control Input Hold Time after
C Rise
0.50 0.50 0.60 ns
tOE Output Enable to Data Valid 3.40[35] 4.40[35] 5.00[35] ns
tOLZ[33] OE to Low Z 1.00 1.00 1.00 ns
tOHZ[33] OE to High Z 1.00[35] 3.40 [35] 1.00[35] 4.40[35] 1.00[35] 5.00[35] ns
tCD1 C Rise to DQ Valid for Flow-through Mode
(LowSPD = 1)
7.20 9.00 11.00 ns
tCD2 C Rise to DQ Valid for Pipelined Mode
(LowSPD = 1)
2.6 [35] 3.30[35] 4.00[35] ns
tCA1 C Rise to Address Readback Valid for
Flow-through Mode
7.20 9.00 11.00 ns
tCA2 C Rise to Address Readback Valid for
Pipelined Mode
4.00 5.00 6.00 ns
tDC DQ Output Hold after C Rise 1.00 1.00 1.00 ns
tCCQ C Rise to CQ Rise 1.00 2.64 1.00 3.30 1.00 4.00 ns
tCQHQV Echo Clock (CQ) High to Output Valid 0.70[35] 0.76[35] 0.80[35] ns
tCQHQX Echo Clock (CQ) High to Output Hold –0.66 –0.72 –0.76 ns
tCKHZ1[33] C Rise to DQ Output High Z in
Flow-through Mode
1.00 7.20 1.00 9.00 1.00 11.00 ns
tCKLZ1[33] C Rise to DQ Output Low Z in
Flow-Through Mode
1.00 1.00 1.00 ns
tCKHZ2[33] C Rise to DQ Output High Z in
Flow-through Mode
1.00[35] 2.64 [35] 1.00[35] 3.30[35] 1.00[35] 4.00[35]
tCKLZ2[33] C Rise to DQ Output Low Z in
Flow-Through Mode
1.00 1.00 1.00
tAC Address Output Hold after C Rise 1.00 1.00 1.00 ns
tCKHZA1[33] C Rise to Address Output High Z for
flow-through mode
1.00 7.20 1.00 9.00 1.00 11.00 ns
tCKHZA2[33] C Rise to Address Output High Z for
pipelined mode
1.00 4.00 1.00 5.00 1.00 6.00 ns
tCKLZA[33] C Rise to Address Output Low Z 1.00 1.00 1.00 ns
tSCINT C Rise to CNTINT Low 1.00 2.64 1.00 3.30 1.00 4.00 ns
tRCINT C Rise to CNTINT High 1.00 2.64 1.00 3.30 1.00 4.00 ns
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 27 of 48
tSINT C Rise to INT Low 0.50 6.00 0.50 7.00 0.50 8.00 ns
tRINT C Rise to INT High 0.50 6.00 0.50 7.00 0.50 8.00 ns
tBSY C Rise to BUSY Valid 1.00 2.64 1.00 3.30 1.00 4.00 ns
Table 17.SDR Mode with DLL Disabled (LOWSPD-LOW)[36]
Parameter Description
-100
UnitMin. Max.
fMAX (PIPELINED) Maximum Operating Frequency for Pipelined mode 100 MHz
fMAX (FLOW-THROUGH) Maximum Operating Frequency for Flow-through mode 55.6 MHz
tCYC (PIPELINED) C Clock Cycle Time for Pipelined mode 7.00 10.00 ns
tCYC (FLOW-THROUGH) C Clock Cycle Time for Flow-through mode 18.00 ns
tCKD C Clock Duty Time 45 55 %
tCHCH C/C Clock Rise to C/C Clock Rise N/A ns
tSD Data Input Set-up Time to C Rise 1.80[35] ns
tHD Data Input Hold Time after C Rise 0.50[35] ns
tSAC Address & Control Input Set-up Time to C Rise 1.80 ns
tHAC Address & Control Input Hold Time after C Rise 0.70 ns
tOE Output Enable to Data Valid 5.50[35] ns
tOLZ[33] OE to Low Z 1.00 ns
tOHZ[33] OE to High Z 1.00[35] 5.50[35] ns
tCD1 C Rise to DQ Valid for Flow-through Mode (LowSPD = 0) 13.00 ns
tCD2 C Rise to DQ Valid for Pipelined Mode (LowSPD = 0) 6.00[35] ns
tCA1 C Rise to Address Readback Valid for Flow-through Mode 13.00 ns
tCA2 C Rise to Address Readback Valid for Pipelined Mode 7.50 ns
tDC DQ Output Hold after C Rise 1.00 ns
tCCQ C Rise to CQ Rise 1.00 6.00 ns
tCQHQV Echo Clock (CQ) High to Output Valid 0.90[35] ns
tCQHQX Echo Clock (CQ) High to Output Hold –0.90 ns
tCKHZ1[33] C Rise to DQ Output High Z in Flow-through Mode 1.00 13.00 ns
tCKLZ1[33] C Rise to DQ Output Low Z in Flow-Through Mode 1.00 ns
tCKHZ2[33] C Rise to DQ Output High Z in Flow-through Mode 1.00[35] 6.00[35]
tCKLZ2[33] C Rise to DQ Output Low Z in Flow-Through Mode 1.00
tAC Address Output Hold after C Rise 1.00 ns
tCKHZA1[33] C Rise to Address Output High Z for flow-through mode 1.00 13.00 ns
tCKHZA2[33] C Rise to Address Output High Z for pipelined mode 1.00 7.50 ns
tCKLZA[33] C Rise to Address Output Low Z 1.00 ns
tSCINT C Rise to CNTINT Low 1.00 4.50 ns
tRCINT C Rise to CNTINT High 1.00 4.50 ns
tSINT C Rise to INT Low 0.50 8.50 ns
tRINT C Rise to INT High 0.50 8.50 ns
tBSY C Rise to BUSY Valid 1.00 4.50 ns
Table 16.SDR Mode with DLL Enabled (LOWSPD-HIGH) (continued)[36]
Parameter Description
-250[15,17] -200[15,17] -167[17]
UnitMin. Max. Min. Max. Min. Max.
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 28 of 48
Table 18.Master Reset Timing
Parameter Description
-250[15,17] -200[16,17] -167
UnitMin. Max. Min. Max. Min. Max.
tPUP Power-up Time 1 1 1 ms
tRS Master Reset Pulse Width 5 5 5 cycles
tRSR Master Reset Recovery Time 5 5 5 cycles
tRSF Master Reset to Outputs Inactive/Hi-Z 10 10 10 ns
tRDY[37] Master Reset Release to Port Ready 1024 1024 1024 cycles
tCORDY[38] C Rise to Port Ready 8 9.5 11 ns
Table 19.JTAG Timing
Parameter Description
-250[15,17] -200[16,17] -167[17]
UnitMin. Max. Min. Max. Min. Max.
fJTAG JTAG TAP Controller Frequency 20 20 20 MHz
tTCYC TCK Cycle Time 50 50 50 ns
tTH TCK High Time 20 20 20 ns
tTL TCK Low Time 20 20 20 ns
tTMSS TMS Set-up to TCK Rise 10 10 10 ns
tTMSH TMS Hold to TCK Rise 10 10 10 ns
tTDIS TDI Set-up to TCK Rise 10 10 10 ns
tTDIH TDI Hold to TCK Rise 10 10 10 ns
tTDOV TCK Low to TDO Valid 10 10 10 ns
tTDOX TCK Low to TDO Invalid 0 0 0 ns
tJXZ TCK Low to TDO hi-Z 15 15 15 ns
tJZX TCK Low to TDO Active 15 15 15 ns
Notes:
37. READY is a wired OR capable output with a weak pull-down. For a decreased falling delay, connect a 250 Ohm resistor to VSS.
38. Add this propagation delay after tRDY for all Master Reset Operations
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 30 of 48
READ Cycle for Pipelined Mode, DDRON = LOW
WRITE Cycle for Pipelined and Flow-Through Modes, DDRON = LOW
Switching Waveforms (continued)
C
tCYC
R/W
A
2 pipeline stages
AnAn+1 An+2 An+3 An+4 An+5 An+6
DQx-1 DQxDQnDQn+1 DQn+2 DQn+3 DQn+4
tDC tCD
tSAC tHAC
DQ
tCYC
C
R/W
AAnAn+1 An+2 An+3 An+4 An+5 An+6
DQnDQn+1 DQn+2 DQn+3 DQn+4 DQn+5 DQn+6
2 pipeline stages
tSD tHD
DQ
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 31 of 48
READ with Address Counter Advance for Pipelined Mode, DDRON = LOW
READ with Address Counter Advance for Flow-Through Mode, DDRON = LOW
Switching Waveforms (continued)
C
tCYC
DQx-1 DQxDQnDQn+1 DQn+2
A
Internal
ADS
Address
CNTEN
An
An
An+1 An+2 An+3
DQn+3
DQ
tCYC
C
tSAC tHAC
tHAC
tDC
tCD1
tSAC
READ EXTERNAL ADDRESS READ W ITH COUNTERCOUNTER HOLDREAD WITH COUNTER
DQx DQn + 1 DQn + 2 DQn + 3 DQn + 4DQn
An
A
DQ
CNTEN
ADS
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 32 of 48
Mailbox Interrupt Output, DDRON = LOW
Switching Waveforms (continued)
tCYC
CL
AL
R/WL
DQL
INTR
CR
AR
R/WR
DQR
AMAX
DQMAX
AMAX
tSINT tRINT
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 33 of 48
Port-to-Port WRITE–READ for Pipelined Mode, DDRON = LOW
Chip Enable READ for Pipelined Mode, DDRON = LOW
Switching Waveforms (continued)
CL
An
DQn
Left Port
R/WL
CR
Right Port
An
R/WR
DQRDQn
tCD2 tDC
tSAC tHAC
tCYC
tCYC
tCCS
DQL
AL
AR
C
R/W
AAnAn+1 An+2 An+3 An+4 An+5 An+6
tSAC tHAC
tCYC
CE0
CE1
DQ DQnDQn+3
tCD2 tCKHZ2 tCKLZ2
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 34 of 48
OE Controlled WRITE for Pipelined Mode, DDRON = LOW
OE Controlled WRITE for Flow-Through Mode, DDRON = LOW
Switching Waveforms (continued)
C
R/W
AAx+1 Ax+2 Ax+3 AnAn+1 An+2 An+3
tCYC
DQx-1 DQx
DQx+1
DQnDQn+1 DQn+2 DQn+3
OE
DQ
t
OHZ
C
R/W
AAx+1 Ax+2 Ax+3 AnAn+1 An+2 An+3
tCYC
DQxDQx+1
DQx+2
DQnDQn+1 DQn+2 DQn+3
OE
DQ
tOHZ
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 35 of 48
Byte-Enable READ for Pipelined Mode, DDRON = LOW
Switching Waveforms (continued)
C
R/W
AAnAn+1 An+2 An+3
tCYC
BE7
BE6
BE5
BE4
BE3
BE2
BE1
BE0
DQ63:71
DQ54:62
DQ45:53
DQ36:44
DQ27:35
DQ18:26
DQ9:17
DQ0:8
DQn+1(63:71)
DQn+1(54:62)
DQn+1(27:35)
DQn+2(45:53)
DQn+2(36:44)
DQn+2(18:26)
DQn+3(9:17)
DQn+3(0:8)
tCKLZ2 tCKHZ2
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 36 of 48
Port-to-Port WRITE-to-READ for Flow-Through Mode, DDRON = LOW
Busy Address Readback for Pipelined and Flow-Through Modes, DDRON = LOW[39]
Note:
39. Amatch is the matching address which will be reported on the address bus of the losing port. The counter operation selected for reporting the address is “Busy
Address Readback.”
Switching Waveforms (continued)
tHD
tSD
tCD1
tDC
tDC
tSAC tHAC
tCD1
tCCS
tHAC
tSAC
MATCH
VALID
NO MATCH
NO MATCH
MATCH
VALID VALID
CL
R/WL
CR
AL
DQL
R/WR
AR
DQR
`
Internal
Amatch+2 Amatch+3 Amatch+4
tCYC
C
BUSY
~
~
~
~
~
~
CNTEN
ADS
External
Amatch
tCA tAC
A
ddress
Address
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 37 of 48
Read Cycle for Flow-Through Mode, DDRON = LOW
READ-to-WRITE for Pipelined Mode, DDRON = LOW (OE = VIL)[40, 41, 42]
Notes:
40. When OE = VIL, the last read operation is allowed to complete before the DQ bus is tri-stated and the user is allowed to drive write data.
41. Two dummy writes should be issued to accomplish bus turnaround. The third instruction is the first valid write.
42. Chip enable or all byte enables should be held inactive during the two dummy writes to avoid data corruption.
Switching Waveforms (continued)
tCYC
tSAC tHAC
tCKHZ1
tDC
tOE
tOLZ
tOHZ
tDCtCD1
tCKLZ1
An
tHACtSAC
CE1
CE0
C
An + 1 An + 3An + 2
DQn DQn + 1 DQn + 2
R/W
OE
BEn
A
DQ
C
AAxAnAn+1 An+2
tCYC
DQx-2 DQx-1 DQxDQnDQn+1 DQn+2
tCH
tCL
tSAC tHAC tSAC tHAC
tDC
tCD2 tCKHZ2 tSD tHD
R/W
DQ
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 38 of 48
READ-to-WRITE for Pipelined Mode, DDRON = LOW (OE Controlled)[43, 44]
READ-to-WRITE-to-READ for DDR, DDRON = HIGH[40,41,45,46]
Notes:
43. OE should be deasserted and tOHZ allowed to elapse before the first write operation is issued.
44. Any write scheduled to complete after OE is deasserted will be preempted.
45. The address should be held constant during the two dummy writes and first valid write to avoid data corruption.
46. D[1] / Q [1] contains data [71:36]; D[0] / Q[0] contains data [35:0].
Switching Waveforms (continued)
C
R/W
AAxAx+1 Ax+2 AnAn+1 An+2 An+3
tCYC
DQx-2 DQx-1
DQx
DQnDQn+1 DQn+2 DQn+3
tSAC tHAC
tOHZ tSD tHD
OE
DQ
C
tCYC
C
AAxAnAn+1 An+2
tSAC tHAC
tSAC tHAC
R/W
tCD tDC
tCKHZ
tSD tHD
DQx-2[0]
DQx-1[1] DQx-1[0] DQx[1] DQx[0]
DQn[1] DQn[0]
DQn+1[1]
DQn+1[0]
tCH tCL
tCHCH tCHCH
DQn+2[1]
DQn+2[0]
DQn+2[1]
DQ
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 39 of 48
Read-to-Write-to-Read for Flow-Through Mode, DDRON = LOW (OE = LOW)
Switching Waveforms (continued)
tHDtSD
tSAC
tCKHZ1
tDC
tCD1
tCD1
tSAC
tCYC
tHAC
tDC
tCD1tCD1
tCKLZ1
READ READWRITENOP
An An + 1 An + 2 An + 2 An + 3 An + 4
DQn + 2
DQn DQn + 1 DQn + 3
C
R/W
BEn
CE1
DQOUT
DQIN
A
tHAC
CE0
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 40 of 48
Read-to-Write-to-Read for Flow-Through Mode, DDRON = LOW (OE Controlled)
Switching Waveforms (continued)
tCD1
tCKLZ1
tHDtSD
tOHZ
tDCtCD1
tHAC
tSAC
tCYC
tDC
tCD1
tOE
READ READWRITE
An An + 1 An + 2 An + 3 An + 4 An + 5
DQn + 2 DQn + 3
DQn DQn + 4
C
R/W
BEn
CE1
DQOUT
DQIN
A
OE
tHAC
tSAC
CE0
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 41 of 48
BUSY Timing, WRITE-WRITE Collision for Pipelined and Flow-Through Modes, Clock Timing Violates tCCS. (Flag Both
Ports)
Switching Waveforms (continued)
Port A
A
R/W
tBSY tBSY
BUSY
Port B
< tCCS
A
R/W
tBSY tBSY
BUSY
C
Losing Port
C
A
R/W
tBSY tBSY
BUSY
Winning Port
A
R/W
C
tccs
Match
C
BUSY Timing, WRITE-WRITE Collision for Pipelined and Flow-Through Modes, Clock Timing Meets tCCS. (Flag Losing
Port)
BUSY
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 42 of 48
Read with Echo Clock for Pipelined and Flow-Through Modes (CQEN = HIGH)
Switching Waveforms (continued)
C
R/W
AAnAn+1 An+2 An+3 An+4 An+5 An+6
DQx-1 DQxDQnDQn+1 DQn+2 DQn+3 DQn+4
tSAC tHAC
DQ
CQ1
CQ1
CQ0
CQ0
tCCQ
tCQHQV tCQHQX
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 43 of 48
Ordering Information
512K
×
72 (36 Mbit) 1.8V Synchronous CYDD36S72V18 Dual-Port SRAM (SDR and DDR I/O)
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
200 CYDD36S72V18-200BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
CYDD36S72V18-200BBI BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Industrial
167 CYDD36S72V18-167BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
CYDD36S72V18-167BBi BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Industrial
256K
×
72 (18 Mbit) 1.8V Synchronous CYDD18S72V18 Dual-Port SRAM (SDR and DDR I/O)
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
250 CYDD18S72V18-250BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
200 CYDD18S72V18-200BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
CYDD18S72V18-200BBI BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Industrial
167 CYDD18S72V18-167BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
CYDD18S72V18-167BBI BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Industrial
128K
×
72 (9 Mbit) 1.8V Synchronous CYDD09S72V18 Dual-Port SRAM (SDR and DDR I/O)
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
200 CYDD09S72V18-200BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
CYDD09S72V18-200BBI BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Industrial
167 CYDD09S72V18-167BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
CYDD09S72V18-167BBI BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Industrial
64K
×
72 (4 Mbit) 1.8V Synchronous CYDD04S72V18 Dual-Port SRAM (SDR and DDR I/O)
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
250 CYDD04S72V18-250BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
200 CYDD04S72V18-200BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
CYDD04S72V18-200BBI BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Industrial
167 CYDD04S72V18-167BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
CYDD04S72V18-167BBI BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Industrial
1024K
×
36 (36 Mbit) 1.8V Synchronous CYDD36S36V18 Dual-Port SRAM (DDR only I/O)
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
200 CYDD36S36V18-200BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
167 CYDD36S36V18-167BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
CYDD36S36V18-167BBI BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Industrial
512K
×
36 (18 Mbit) 1.8V Synchronous CYDD18S36V18 Dual-Port SRAM (DDR only I/O)
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
200 CYDD18S36V18-200BBC BW256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA)
Commercial
167 CYDD18S36V18-167BBC BW256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA)
Commercial
CYDD18S36V18-167BBI BW256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA)
Industrial
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 44 of 48
256K
×
36 (9 Mbit) 1.8V Synchronous CYDD09S36V18 Dual-Port SRAM (DDR only I/O)
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
200 CYDD09S36V18-200BBC BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Commercial
167 CYDD09S36V18-167BBC BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Commercial
CYDD09S36V18-167BBI BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Industrial
128K
×
36 (4 Mbit) 1.8V Synchronous CYDD04S36V18 Dual-Port SRAM (DDR only I/O)
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
200 CYDD04S36V18-200BBC BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Commercial
167 CYDD04S36V18-167BBC BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Commercial
CYDD04S36V18-167BBI BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Industrial
2048K
×
18 (36 Mbit) 1.8V Synchronous CYDD36S18V18 Dual-Port SRAM (DDR only I/O)
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
200 CYDD36S18V18-200BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
167 CYDD36S18V18-167BBC BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Commercial
CYDD36S18V18-167BBI BY484
484-ball Grid Array 23 mm x 23 mm with 1.0 mm pitch (PBGA)
Industrial
1024K
×
18 (18 Mbit) 1.8V Synchronous CYDD18S18V18 Dual-Port SRAM (DDR only I/O)
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
200 CYDD18S18V18-200BBC BW256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA)
Commercial
167 CYDD18S18V18-167BBC BW256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA)
Commercial
CYDD18S18V18-167BBI BW256C
256-ball Grid Array 19 mm x 19 mm with 1.0 mm pitch (FBGA)
Industrial
512K
×
18 (9 Mbit) 1.8V Synchronous CYDD09S18V18 Dual-Port SRAM (DDR only I/O)
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
200 CYDD09S18V18-200BBC BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Commercial
167 CYDD09S18V18-167BBC BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Commercial
CYDD09S18V18-167BBI BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Industrial
256K
×
18 (4 Mbit) 1.8V Synchronous CYDD04S18V18 Dual-Port SRAM (DDR only I/O)
Speed
(MHz) Ordering Code
Package
Name Package Type
Operating
Range
200 CYDD04S18V18-200BBC BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Commercial
167 CYDD04S18V18-167BBC BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Commercial
CYDD04S18V18-167BBI BB256
256-ball Grid Array 17 mm x 17 mm with 1.0 mm pitch (FBGA)
Industrial
Ordering Information (continued)
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 45 of 48
Package Diagrams
BOTTOM VIEW
TOP VIEW
10987654321
A
B
C
D
E
F
G
H
J
K
PIN 1 CORNER
PIN 1 CORNER
0.20(4X)
Ø0.25MCAB
Ø0.05 M C
Ø0.45±0.05(256X)-CPLD DEVICES (37K & 39K)
0.25 C
0.70±0.05
C
SEATING PLANE
0.15 C
16 15 14 13 12 11
T
R
P
M
N
L
N
T
R
P
M
L
K
J
F
G
H
E
D
A
C
B
161513 141210 11928765431
A
B
Ø0.50 (256X)-ALL OTHER DEVICES
+0.10
-0.05
A1 0.36 0.56
A 1.40 MAX. 1.70 MAX.
REFERENCE JEDEC MO-192
15.00
1.00
0.35
A
17.00±0.10
7.50
7.50
15.00
17.00±0.10
1.00
A1
-0.05
+0.10
256-Ball FBGA (17 x 17 mm) BB256
51-85108-*F
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 46 of 48
Package Diagrams (continued)
Package Weight - 1.1 grams
0.70 (REF)
0.56 (REF)
SEATING PLANE
-C-
T
R
H
L
P
N
M
K
J
G
F
E
C
D
B
3
A
24
PIN A1 CORNER
17
56810
9
TOP VIEW
0.15 C
1.70 MAX.
0.35 +0.10/-0.05 0.25 C
0.15(4X)
-A-
-B-
19.00 +/- 0.10
15.00 (REF)
1.00 (REF)
T
R
11
19.00 +/- 0.10
15.00 (REF)
1.00 (REF)
1412 16
11 13 15 16 14 12
15 13
H
L
P
N
M
K
J
G
F
E
C
D
B
A1 CORNER
Ø0.05 M C
5
7
8
10 6
93
42
A
Ø0.50 (256 X)
Ø0.25 M C A B
1
BOTTOM VIEW
Jedec Outline - Design Guide 4.14
256 FBGA (19 x 19 x 1.7 mm) BW256C
001-00915-*A
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 47 of 48
© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
FullFlex is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document are
trademarks of their respective holders.
Package Diagrams (continued)
Ø0.50~Ø0.70(484X)
0.97 REF.
0.20 C
0.56 REF.
f
SEATING PLANE
-C-
30° TYP.
f
0.40~0.60
0.132.03 ±
PIN #1 CORNER
1.00
G
20.00 REF.
AB
AA
3.20*45°(4x)
U
W
Y
V
R
T
P
K
M
N
L
J
H
20.00 REF.
-A-
0.20(4X)
-B-
23.00±0.20
21.00
23.00±0.20
21.00
Ø1.00(3X) REF.
E
F
D
B
C
A
1
24
359
6
7
8
11
10 12
19
1614
13 15
18
17 21
20 22 22
15
19
20
21 17
18 16 1214
13
10
11 9
G
1.00
AB
AA
U
Y
W
V
R
T
P
K
M
N
L
J
H
E
F
D
B
C
A
5
7
8642
31
Package Weight - 2.0 grams
Jedec Outline - Design Guide 4.14
0.25 C
0.35 C
484-ball PBGA (23 mm x 23 mm x 2.03 mm) BY484
51-85218-**
PRELIMINARY FullFlex
Document #: 38-06072 Rev. *E Page 48 of 48
Document History Page
Document Title: FullFlex™ Synchronous DDR Dual-Port SRAM
Document Number: 38-06072
REV. ECN NO.
Issue
Date
Orig. of
Change Description of Change
** 274729 See ECN SPN New data sheet
*A 294239 See ECN SPN Updated VIM section
Added notes 7
Added timing for 100 MHz with DLL Disabled
Removed tPS
*B 301331 See ECN SPN Added note 19
Updates Selectable I/O Standard Section
*C 318834 See ECN SPN Updated Block Diagram
Updated 484 pinouts, changed pins D11, W12, K3, K20
Added note 4 - Leaving pin NC disables VIM
Updated 256 pinout, changed pins C10, G5, N7, N10
Added note 18, 19, 20, 21
Updated parameters in table 16
Updated note 1
*D 386692 See ECN SPN Updated ordering information
Added statement about no echo clocks for flow-through mode
Updated electrical characteristics
Added note 27 (timing for x18 devices)
Updated address readback latency to 2 cycles for DDR mode
Updated DDR timing numbers for tCD, tDC, tCCQ, tCQHQV, tCQHQX, tCKHZ, tCKLZ
Updated input edge rate
Removed -133 speed bin electrical characteristics and timing columns
Updated Table 5 on collision detection to be the same as the one found in the EROS
Added description of busy readback in collision detection section
Changed dummy write descriptions
Updated PORTSTD[1:0] connection details
Updated ZQ pins connection details
Updated address count notes
Updated note 17, BO to BEO
Added power supply requirements to MRST and VC_SEL
Updated 484 ball package
Changed name from FLEX72-E, FLEX36-E, AND FLEX18-E to FullFlex72,
FullFlex36, and FullFlex18
*E 401662 See ECN KGH Updated READY description to include Wired OR note
Updated master reset to include wired OR note for READY
Updated electrical characteristics to include IOH and IOL values
Updated electrical characteristics to include READY
Added IIX3
Updated maximum input capacitance
Added note 29
Updated Pin Definitions for CQ0, CQ0, CQ1, and CQ1
Changed voltage name from VDDQ to VDDIO
Changed voltage name from VDD to VCORE
Updated the Package Type for the CYDXXS36V18 parts
Updated the Package Type for the CYDXXS18V18 parts
Included the Package Diagram for the 256-Ball FBGA (19 x 19 mm) BW256
Included an OE Controlled Write for Flow-Through Mode Switching Waveform
Included a Read with Echo Clock Switching Waveform
Included a Unit column for Table 5
Removed Switching Characteristic tCA from chart
Included tOHZ in Switching Waveform OE Controlled Write for Pipelined Mode
Included tCKLZ2 in Waveform Read-to-Write-to-Read for Flow-Through Mode
Updated AC Test Load and Waveforms
Included FullFlex36 DDR 484-ball BGA Pinout (Top View)
Included FullFlex18 DDR 484-ball BGA Pinout (Top View)Included Timing
Parameter tCORDY