S-8424A Series BATTERY BACKUP SWITCHING IC www.sii-ic.com Rev.3.0_00 (c) Seiko Instruments Inc., 2001-2010 The S-8424A Series is a CMOS IC designed for use in the switching circuits of primary and backup power supplies on a single chip. It consists of two voltage regulators, three voltage detectors, a power supply switch and its controller, as well as other functions. In addition to the switching function between the primary and backup power supply, the S-8424A Series can provide the micro controllers with three types of voltage detection output signals corresponding to the power supply voltage. Moreover adopting a special sequence for switch control enables the effective use of the backup power supply, making this IC ideal for configuring a backup system. Features * Low power consumption Normal operation: 15 A Max. (VIN = 6 V) Backup: 2.1 A Max. * Voltage regulator Output voltage tolerance : 2 % Output voltage: Independently selectable in 0.1 V steps in the range of 2.3 V to 5.4 V * Three built-in voltage detectors (CS, PREEND , RESET ) Detection voltage precision: 2 % Detection voltage: Selectable in 0.1 V steps in the range of 2.4 V to 5.3 V (CS voltage detector) Selectable in 0.1 V steps in the range of 1.7 V to 3.4 V ( PREEND , RESET voltage detector) * Switching circuit for primary power supply and backup power supply configurable on one chip * Efficient use of backup power supply possible * Special sequence Backup voltage is not output when the primary power supply voltage does not reach the initial voltage at which the switch unit operates. * Lead-free, Sn 100%, halogen-free*1 *1. Refer to " Product Name Structure" for details. Packages * 8-Pin TSSOP * 8-Pin SON(B) Applications * Video camera recorders * Still video cameras * Memory cards * SRAM backup equipment Seiko Instruments Inc. 1 BATTERY BACKUP SWITCHING IC Rev.3.0_00 S-8424A Series Product Name Structure 1. Product name (1) 8-Pin TSSOP S-8424A xx FT - TB - x Environmental code U: Lead-free (Sn 100%), halogen-free G: Lead-free (for details, please contact our sales office) IC direction in tape specification Package code FT: 8-Pin TSSOP Serial code (2) 8-Pin SON(B) S-8424A xx PA - TF - G Environmental code G: Lead-free (for details, please contact our sales office) IC direction in tape specification Package code PA: 8-Pin SON(B) Serial code 2. Package Package Name 8-Pin TSSOP 8-Pin SON(B) 2 Environmental code = G Environmental code = U Package FT008-A-P-SD FT008-A-P-SD PA008-B-P-SD Seiko Instruments Inc. Drawing Code Tape FT008-E-C-SD FT008-E-C-SD PA008-B-C-SD Reel FT008-E-R-SD FT008-E-R-S1 PA008-B-R-SD BATTERY BACKUP SWITCHING IC S-8424A Series Rev.3.0_00 3. Product name list Part No. Package Output CS Voltage RESET Voltage PREEND Switch Voltage Voltage (V) (V) Voltage (V) Type (V) (V) VRO VOUT -VDET1 +VDET1 -VDET2 +VDET2 -VDET3 +VDET3 VSW1 3.000 3.000 3.300 3.401 2.200 2.312 2.600 2.748 +VDET1 x 0.85 S-8424AAAFT-TB-x 8-Pin TSSOP S-8424AAAPA-TF-G 8-Pin SON(B) S-8424AABFT-TB-x 8-Pin TSSOP 3.300 3.300 4.000 4.129 2.300 2.420 2.500 2.640 +VDET1 x 0.77 S-8424AACFT-TB-x 8-Pin TSSOP 3.200 3.200 3.300 3.401 2.400 2.528 2.600 2.748 +VDET1 x 0.85 S-8424AADFT-TB-x 8-Pin TSSOP 5.000 5.000 4.600 4.753 2.300 2.420 2.500 2.640 +VDET1 x 0.77 S-8424AAEFT-TB-x 8-Pin TSSOP 3.150 3.150 4.200 4.337 2.300 2.420 2.500 2.640 +VDET1 x 0.77 S-8424AAFFT-TB-x 8-Pin TSSOP 3.200 3.200 4.400 4.545 2.400 2.528 2.600 2.748 +VDET1 x 0.77 S-8424AAGFT-TB-x 8-Pin TSSOP 2.800 2.800 4.400 4.545 2.400 2.528 2.600 2.748 +VDET1 x 0.77 S-8424AAHFT-TB-x 8-Pin TSSOP 5.000 5.000 4.600 4.753 2.550 2.690 2.700 2.856 +VDET1 x 0.77 S-8424AAJFT-TB-x 8-Pin TSSOP 3.100 3.100 4.400 4.545 2.200 2.312 2.600 2.748 +VDET1 x 0.77 S-8424AAKFT-TB-x 8-Pin TSSOP 3.200 3.200 4.600 4.753 2.400 2.528 2.600 2.748 +VDET1 x 0.77 Caution Set the CS voltage so that the switch voltage (VSW1) is equal to or greater than the RESET detection voltage (-VDET2). Remark 1. The selection range is as follows. VRO, VOUT: 2.3 to 5.4 V (0.1 V steps) 2.4 to 5.3 V (0.1 V steps) -VDET1: 1.7 to 3.4 V (0.1 V steps ) -VDET2: 1.7 to 3.4 V (0.1 V steps) -VDET3: +VDET1 x 0.85 or +VDET1 x 0.77 VSW1: 2. If a product with a voltage other than above is required, contact our sales representative. 3. x: G or U 4. Please select products of environmental code = U for Sn 100%, halogen-free products. Seiko Instruments Inc. 3 BATTERY BACKUP SWITCHING IC Rev.3.0_00 S-8424A Series Block Diagram VOUT M1 VIN VBAT REG2 PREEND PREEND Voltage detector VSW1 Detector CS RESET CS Voltage detector VSW2 Detector Switch controller RESET Voltage detector REG1 VSS Figure 1 Block Diagram 4 Seiko Instruments Inc. VRO BATTERY BACKUP SWITCHING IC S-8424A Series Rev.3.0_00 Pin Configurations Table 1 8-Pin TSSOP Top View VSS PREEND VBAT CS 1 2 8 7 VRO 3 4 6 5 VOUT VIN RESET Pin No. 1 2 3 4 5 6 7 8 Figure 2 Symbol VSS PREEND VBAT*1 CS Description Output pin of PREEND voltage detector Backup power supply input pin Output pin of CS voltage detector RESET VOUT*2 VIN*3 VRO*4 Output pin of RESET voltage detector Output pin of voltage regulator 2 Primary power supply input pin Output pin of voltage regulator 1 Ground *1 to *4. Mount capacitors between VSS (GND pin) and the VIN, VBAT, VOUT, and VRO pins. (Refer to the "Standard Circuit") Table 2 8-Pin SON(B) Top View VSS 1 PREEND 2 8 VRO 7 VIN 6 VOU T 5 RESET 3 CS 4 VBAT Figure 3 Pin No. 1 2 3 4 5 6 7 8 Symbol VSS PREEND VBAT*1 CS Description Output pin of PREEND voltage detector Backup power supply input pin Output pin of CS voltage detector RESET VOUT*2 VIN*3 VRO*4 Output pin of RESET voltage detector Output pin of voltage regulator 2 Primary power supply input pin Output pin of voltage regulator 1 Ground *1 to *4. Mount capacitors between VSS (GND pin) and the VIN, VBAT, VOUT, and VRO pins. (Refer to the "Standard Circuit") Seiko Instruments Inc. 5 BATTERY BACKUP SWITCHING IC Rev.3.0_00 S-8424A Series Absolute Maximum Ratings Table 3 Absolute Maximum Ratings (Unless otherwise specified: Ta = 25C) Parameter Symbol Ratings Unit V Primary power supply input voltage VIN VSS-0.3 to VSS+18 Backup power supply input voltage Output voltage of voltage regulator CS output voltage VBAT VRO, VOUT VSS-0.3 to VIN+0.3 VCS VSS-0.3 to VSS+18 RESET output voltage V RESET PREEND output voltage Power dissipation 8-Pin TSSOP V PREEND PD 300 (When not mounted on board) 700*1 300 (When not mounted on board) 750*1 mW Operating ambient temperature Topr -40 to +85 C Storage temperature Tstg -40 to +125 8-Pin SON(B) *1. When mounted on board [Mounted board] (1) Board size: 114.3 mm x 76.2 mm x t1.6 mm (2) Board name: JEDEC STANDARD51-7 Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions. 700 (2) When not mounted on board 400 8-Pin SON(B) 600 500 400 300 8-Pin TSSOP 200 100 0 0 50 100 150 Power Dissipation PD (mW) Power Dissipation PD (mW) (1) When mounted on board 800 300 8-Pin TSSOP 200 100 8-Pin SON(B) 0 0 Ambient Temperature Ta (C) 50 Seiko Instruments Inc. 150 Ambient Temperature Ta (C) Figure 4 Power Dissipation of Package 6 100 BATTERY BACKUP SWITCHING IC S-8424A Series Rev.3.0_00 Electrical Characteristics 1. S-8424AAAxx Table 4 Electrical Characteristics (Unless otherwise specified: Ta = 25C) Parameter Voltage regulator Min. Typ. Max. Unit 3.060 V VIN = 7.2 V, IRO = 3 mA 2.940 3.000 Dropout voltage 1 Vdrop1 VIN = 7.2 V, IRO = 3 mA 41 59 mV Load stability 1 VRO1 VIN = 7.2 V, IRO = 0.1 to 10 mA 50 100 mV Input stability 1 VRO2 VIN = 4 to 16 V, IRO = 3 mA 5 20 mV Ta = -40C to +85C 100 ppm/C Output voltage temperature coefficient 1 Output voltage 2 VRO Ta * VRO VOUT VIN = 7.2 V, IOUT = 23 mA 2.940 3.000 3.060 V Vdrop2 VIN = 7.2 V, IOUT = 23 mA 187 252 mV Load stability 2 VOUT1 VIN = 7.2 V, IOUT = 0.1 to 60 mA 50 100 mV Input stability 2 VOUT2 VIN = 4 to 16 V, IOUT = 23 mA 5 20 mV Ta = -40C to +85C 100 ppm/C Dropout voltage 2 Output voltage temperature coefficient 2 Primary power input voltage Voltage detector Conditions VRO Output voltage 1 VOUT Ta * VOUT -VDET1 CS release voltage +VDET1 RESET detection voltage -VDET2 RESET release voltage +VDET2 PREEND detection voltage -VDET3 PREEND release voltage +VDET3 Operating voltage Detection voltage temperature coefficient Leakage current VIN CS detection voltage Sink current Switch unit Symbol VIN voltage detection VOUT voltage detection VBAT voltage detection V 2.156 2.200 2.244 V 2.256 2.312 2.367 V 2.548 2.600 2.652 V V 16 V - VDET1 Ta * - VDET1 Ta = -40C to +85C 100 ppm/C - VDET 2 Ta * - VDET 2 Ta = -40C to +85C 100 ppm/C - VDET 3 Ta * - VDET 3 Ta = -40C to +85C 100 ppm/C ISINK ILEAK VDS = 0.5 V, VIN = VBAT = 2.0 V RESET 1.50 2.30 mA PREEND 1.50 2.30 mA CS 1.50 2.30 mA A VDS = 16 V, VIN = 16 V VBAT switch leakage current ILEAK 0.1 +VDET1 +VDET1 +VDET1 x 0.83 x 0.85 x 0.87 1 2 3 V 4 V 5 VOUT VOUT VOUT x 0.93 x 0.95 x 0.97 VIN = 3.6 V, VBAT = 0 V 0.1 A 6 RSW VSW 1 Ta * VSW 1 VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 A 30 60 7 Ta = -40C to +85C 100 ppm/C 4 VSW 2 Ta * VSW 2 Ta = -40C to +85C 100 ppm/C 5 VIN = 3.6 V, VBAT = 3.0 V, Unload 7 15 A 8 0.26 0.50 A Ta = 25C 1.0 2.1 A Ta = 85C 3.5 A 1.7 4.0 V ISS1 IBAT1 Total 3.482 2.814 VBAT = 3.0 V, VOUT voltage detection IBAT2 Backup power supply input voltage 3.401 - VSW2 Current consumption 3.319 2.748 CS output inhibit voltage CS output inhibit voltage temperature V V 1.7 VBAT = 2.8 V, VIN voltage detection coefficient 16 3.366 2.682 VSW1 Switch voltage temperature coefficient 3.300 VIN or VBAT Vopr Switch voltage VBAT switch resistance 3.234 Test Circuit VBAT VIN = Open, VBAT = 3.0 V, Unload 7 Remark The number in the Test Circuit column corresponds to the circuit number in the "Test Circuit"section. Seiko Instruments Inc. 7 BATTERY BACKUP SWITCHING IC Rev.3.0_00 S-8424A Series 2. S-8424AABxx Table 5 Electrical Characteristics (Unless otherwise specified: Ta = 25C) Voltage regulator Parameter Typ. Max. Unit VRO VIN = 6 V, IRO = 30 mA 3.234 3.300 3.366 V Vdrop1 VIN = 6 V, IRO = 30 mA 356 474 mV Load stability 1 VRO1 VIN = 6 V, IRO = 0.1 to 40 mA 50 100 mV Input stability 1 VRO2 VIN = 6 to 16 V, IRO = 30 mA 5 20 mV VRO Ta * VRO Ta = -40C to +85C 100 ppm/C Output voltage 2 VOUT VIN = 6 V, IOUT = 50 mA 3.234 3.300 3.366 V Dropout voltage 2 Vdrop2 VIN = 6 V, IOUT = 50 mA 401 540 mV Output voltage temperature coefficient 1 Load stability 2 VOUT1 VIN = 6 V, IOUT = 0.1 to 60 mA 50 100 mV Input stability 2 VOUT2 VIN = 6 to 16 V, IOUT = 50 mA 5 20 mV Ta = -40C to +85C 100 ppm/C VOUT Ta * VOUT 16 V 3.920 4.000 4.080 V 4.030 4.129 4.228 V 2.254 2.300 2.346 V 2.362 2.420 2.478 V 2.450 2.500 2.550 V 2.576 2.640 2.703 V VIN or VBAT 1.7 16 V - VDET1 Ta * - VDET1 Ta = -40C to +85C 100 ppm/C - VDET 2 Ta * - VDET 2 Ta = -40C to +85C 100 - VDET 3 Ta * - VDET 3 Ta = -40C to +85C 100 ppm/C RESET 1.50 2.30 mA PREEND 1.50 2.30 mA CS 1.50 2.30 mA 0.1 A +VDET1 +VDET1 +VDET1 x 0.75 x 0.77 x 0.79 -VDET1 CS release voltage +VDET1 RESET detection voltage -VDET2 RESET release voltage +VDET2 PREEND detection voltage -VDET3 PREEND release voltage +VDET3 Operating voltage Detection voltage temperature coefficient Leakage current ISINK ILEAK VSW1 CS output inhibit voltage VSW2 VBAT switch leakage current ILEAK Switch voltage temperature coefficient CS output inhibit voltage temperature coefficient Current consumption VIN voltage detection VOUT voltage detection VBAT voltage detection Vopr Switch voltage VBAT switch resistance VIN CS detection voltage Sink current RSW VSW 1 Ta * VSW 1 VSW 2 Ta * VSW 2 ISS1 VDS = 0.5 V, VIN = VBAT = 2.0 V VDS = 16 V, VIN = 16 V VBAT = 2.8 V, VIN voltage detection VBAT = 3.0 V VOUT voltage detection Total IBAT2 VBAT VOUT VOUT VOUT x 0.93 x 0.95 x 0.97 Test Circuit 1 2 ppm/C 3 V 4 V 5 VIN = 6V, VBAT = 0 V 0.1 A 6 VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 A 30 60 7 Ta = -40C to +85C 100 ppm/C 4 Ta = -40C to +85C 100 ppm/C 5 VIN = 6 V, VBAT = 3.0 V, Unload 7 15 A 8 A 0.26 0.50 Ta = 25C 1.0 2.1 A Ta = 85C 3.5 A 1.7 4.0 V IBAT1 Backup power supply input voltage VIN = Open, VBAT = 3.0 V, Unload Remark The number in the Test Circuit column corresponds to the circuit number in the "Test Circuit" section. 8 Min. Dropout voltage 1 Primary power input voltage Voltage detector Conditions Output voltage 1 Output voltage temperature coefficient 2 Switch unit Symbol Seiko Instruments Inc. 7 BATTERY BACKUP SWITCHING IC S-8424A Series Rev.3.0_00 3. S-8424AACxx Table 6 Electrical Characteristics (Unless otherwise specified: Ta = 25C) Parameter Voltage regulator Min. Typ. Max. Unit VIN = 3.6 V, IRO = 15 mA 3.136 3.200 3.264 V Dropout voltage 1 Vdrop1 VIN = 3.6 V, IRO = 15 mA 181 243 mV Load stability 1 VRO1 VIN = 3.6 V, IRO = 0.1 to 20 mA 50 100 mV Input stability 1 VRO2 VIN = 3.6 to 16 V, IRO = 15 mA 5 20 mV Ta = -40C to +85C 100 ppm/C Output voltage temperature coefficient 1 Output voltage 2 VRO Ta * VRO VOUT VIN = 3.6 V, IOUT = 15mA 3.136 3.200 3.264 V Vdrop2 VIN = 3.6 V, IOUT = 15 mA 123 167 mV Load stability 2 VOUT1 VIN = 3.6 V, IOUT = 0.1 to 20 mA 50 100 mV Input stability 2 VOUT2 VIN = 3.6 to 16 V, IOUT = 15 mA 5 20 mV Ta = -40C to +85C 100 ppm/C Dropout voltage 2 Output voltage temperature coefficient 2 Primary power input voltage Voltage detector Conditions VRO Output voltage 1 VOUT Ta * VOUT -VDET1 CS release voltage +VDET1 RESET detection voltage -VDET2 RESET release voltage +VDET2 PREEND detection voltage -VDET3 PREEND release voltage +VDET3 Operating voltage Detection voltage temperature coefficient Leakage current VIN CS detection voltage Sink current Switch unit Symbol VIN voltage detection VOUT voltage detection VBAT voltage detection V 2.352 2.400 2.448 V 2.467 2.528 2.589 V 2.548 2.600 2.652 V 2.682 2.748 2.814 V Ta = -40C to +85C 100 ppm/C - VDET 2 Ta * - VDET 2 Ta = -40C to +85C 100 ppm/C - VDET 3 Ta * - VDET 3 Ta = -40C to +85C 100 ppm/C ISINK ILEAK VDS = 0.5 V, VIN = VBAT = 2.0 V ILEAK VIN = 3.6 V, VBAT = 0 V 1.50 2.30 mA PREEND 1.50 2.30 mA CS 1.50 2.30 mA VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 A RSW VSW 1 Ta * VSW 1 Ta = -40C to +85C VSW 2 Ta * VSW 2 Ta = -40C to +85C ISS1 RESET VDS = 16 V, VIN = 16 V VBAT switch leakage current VIN = 3.6 V, VBAT = 3.0 V, Unload IBAT2 VBAT VIN = Open, VBAT = 3.0 V, Unload 2 3 0.1 A +VDET1 +VDET1 V 4 x 0.83 x 0.85 x 0.87 V 5 A 6 VOUT VOUT VOUT x 0.93 x 0.95 x 0.97 0.1 30 60 7 100 ppm/C 4 100 ppm/C 5 8 7 15 A 0.26 0.50 A Ta = 25C 1.0 2.1 A Ta = 85C 3.5 A 1.7 4.0 V 1 +VDET1 IBAT1 Total 3.482 V VBAT = 3.0 V, VOUT voltage detection Backup power supply input voltage 3.401 16 VSW2 Current consumption 3.319 CS output inhibit voltage CS output inhibit voltage temperature V V 1.7 VBAT = 2.8 V, VIN voltage detection coefficient 16 3.366 VIN or VBAT Vopr VSW1 Switch voltage temperature coefficient 3.300 - VDET1 Ta * - VDET1 Switch voltage VBAT switch resistance 3.234 Test Circuit 7 Remark The number in the Test Circuit column corresponds to the circuit number in the "Test Circuit" section. Seiko Instruments Inc. 9 BATTERY BACKUP SWITCHING IC Rev.3.0_00 S-8424A Series 4. S-8424AADxx Table 7 Electrical Characteristics (Unless otherwise specified: Ta = 25C) Voltage regulator Parameter Typ. Max. Unit VRO VIN = 6 V, IRO = 30 mA 4.900 5.000 5.100 V Vdrop1 VIN = 6 V, IRO = 30 mA 356 474 mV Load stability 1 VRO1 VIN = 6 V, IRO = 0.1 to 40 mA 50 100 mV Input stability 1 VRO2 VIN = 6 to 16 V, IRO = 30 mA 5 20 mV VRO Ta * VRO Ta = -40C to +85C 100 ppm/C Output voltage 2 VOUT VIN = 6 V, IOUT = 50 mA 4.900 5.000 5.100 V Dropout voltage 2 Vdrop2 VIN = 6 V, IOUT = 50 mA 401 540 mV Output voltage temperature coefficient 1 Load stability 2 VOUT1 VIN = 6 V, IOUT = 0.1 to 60 mA 50 100 mV Input stability 2 VOUT2 VIN = 6 to 16 V, IOUT = 50 mA 5 20 mV Ta = -40C to +85C 100 ppm/C VOUT Ta * VOUT 16 V 4.508 4.600 4.692 V 4.639 4.753 4.867 V 2.254 2.300 2.346 V 2.362 2.420 2.478 V 2.450 2.500 2.550 V 2.576 2.640 2.703 V VIN or VBAT 1.7 16 V - VDET1 Ta * - VDET1 Ta = -40C to +85C 100 ppm/C - VDET 2 Ta * - VDET 2 Ta = -40C to +85C 100 ppm/C - VDET 3 Ta * - VDET 3 Ta = -40C to +85C 100 ppm/C RESET 1.50 2.30 mA PREEND 1.50 2.30 mA CS 1.50 2.30 mA A -VDET1 CS release voltage +VDET1 RESET detection voltage -VDET2 RESET release voltage +VDET2 PREEND detection voltage -VDET3 PREEND release voltage +VDET3 Operating voltage Detection voltage temperature coefficient Leakage current VIN CS detection voltage Sink current VIN voltage detection VOUT voltage detection VBAT voltage detection Vopr ISINK ILEAK VDS = 0.5 V, VIN = VBAT = 2.0 V VDS = 16 V, VIN = 16 V Switch voltage VSW1 VBAT = 2.8 V, VIN voltage detection CS output inhibit voltage VSW2 VBAT = 3.0 V, VOUT voltage detection VBAT switch leakage current ILEAK VIN = 6 V, VBAT = 0 V VBAT switch resistance Switch voltage temperature coefficient CS output inhibit voltage temperature coefficient Current consumption 0.1 +VDET1 +VDET1 x 0.75 x 0.77 x 0.79 VOUT VOUT VOUT x 0.93 x 0.95 x 0.97 1 2 3 V 4 V 5 0.1 A 6 VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 A 30 60 7 Ta = -40C to +85C 100 ppm/C 4 VSW 2 Ta * VSW 2 Ta = -40C to +85C 100 ppm/C 5 VIN = 6 V, VBAT = 3.0 V, Unload 7 15 A 8 ISS1 IBAT1 Total +VDET1 Test Circuit RSW VSW 1 Ta * VSW 1 IBAT2 VIN = Open, VBAT = 3.0 V, Unload Ta = 25C Ta = 85C Backup power supply input voltage VBAT Remark The number in the Test Circuit column corresponds to the circuit number in the "Test Circuit" section. 10 Min. Dropout voltage 1 Primary power input voltage Voltage detector Conditions Output voltage 1 Output voltage temperature coefficient 2 Switch unit Symbol Seiko Instruments Inc. 0.26 0.50 A 1.0 2.1 A 3.5 A 1.7 4.0 V 7 BATTERY BACKUP SWITCHING IC S-8424A Series Rev.3.0_00 5. S-8424AAExx Table 8 Electrical Characteristics (Unless otherwise specified: Ta = 25C) Parameter Voltage regulator Min. Typ. Max. Unit 3.087 3.150 3.213 V VIN = 6 V, IRO = 30 mA Dropout voltage 1 Vdrop1 VIN = 6 V, IRO = 30 mA 356 474 mV Load stability 1 VRO1 VIN = 6 V, IRO = 0.1 to 30 mA 50 100 mV Input stability 1 VRO2 Output voltage temperature coefficient 1 Output voltage 2 VIN = 6 to 16 V, IRO = 30 mA 5 20 mV VRO Ta * VRO Ta = -40C to +85C 100 ppm/C VOUT VIN = 6 V, IOUT = 50 mA 3.087 3.150 3.213 V Vdrop2 VIN = 6 V, IOUT = 50 mA 401 540 mV Load stability 2 VOUT1 VIN = 6 V, IOUT = 0.1 to 60 mA 50 100 mV Input stability 2 VOUT2 VIN = 6 to 16 V, IOUT = 50 mA 5 20 mV Ta = -40C to +85C 100 ppm/C Dropout voltage 2 Output voltage temperature coefficient 2 Primary power input voltage Voltage detector Conditions VRO Output voltage 1 VOUT Ta * VOUT -VDET1 CS release voltage +VDET1 RESET detection voltage -VDET2 RESET release voltage +VDET2 PREEND detection voltage -VDET3 PREEND release voltage +VDET3 Operating voltage Detection voltage temperature coefficient Leakage current VIN CS detection voltage Sink current Switch unit Symbol VIN voltage detection VOUT voltage detection VBAT voltage detection V 2.254 2.300 2.346 V 2.362 2.420 2.478 V 2.450 2.500 2.550 V 2.576 2.640 2.703 V Ta = -40C to +85C 100 ppm/C - VDET 2 Ta * - VDET 2 Ta = -40C to +85C 100 ppm/C - VDET 3 Ta * - VDET 3 Ta = -40C to +85C 100 ppm/C ISINK ILEAK RESET 1.50 2.30 mA PREEND 1.50 2.30 mA CS 1.50 2.30 mA A VDS = 0.5 V, VIN = VBAT = 2.0 V VDS = 16 V, VIN = 16 V VBAT switch leakage current ILEAK 0.1 +VDET1 +VDET1 +VDET1 x 0.75 x 0.77 x 0.79 1 2 3 V 4 V 5 VOUT VOUT VOUT x 0.93 x 0.95 x 0.97 VIN = 6 V, VBAT = 0 V 0.1 A 6 RSW VSW 1 Ta * VSW 1 VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 A 30 60 7 Ta = -40C to +85C 100 ppm/C 4 VSW 2 Ta * VSW 2 Ta = -40C to +85C 100 ppm/C 5 VIN = 6 V, VBAT = 3.0 V, Unload 7 15 A 8 0.26 0.50 A Ta = 25C 1.0 2.1 A Ta = 85C 3.5 A 1.7 4.0 V ISS1 IBAT1 Total 4.441 V VBAT = 3.0 V, VOUT voltage detection IBAT2 Backup power supply input voltage 4.337 16 VSW2 Current consumption 4.233 CS output inhibit voltage CS output inhibit voltage temperature V V 1.7 VBAT = 2.8 V, VIN voltage detection coefficient 16 4.284 VIN or VBAT Vopr VSW1 Switch voltage temperature coefficient 4.200 - VDET1 Ta * - VDET1 Switch voltage VBAT switch resistance 4.116 Test Circuit VBAT VIN = Open, VBAT = 3.0 V, Unload 7 Remark The number in the Test Circuit column corresponds to the circuit number in the "Test Circuit" section. Seiko Instruments Inc. 11 BATTERY BACKUP SWITCHING IC Rev.3.0_00 S-8424A Series 6. S-8424AAFxx Table 9 Electrical Characteristics (Unless otherwise specified: Ta = 25C) Voltage regulator Parameter Typ. Max. Unit VRO VIN = 6 V, IRO = 30 mA 3.136 3.200 3.264 V Vdrop1 VIN = 6 V, IRO = 30 mA 356 474 mV Load stability 1 VRO1 VIN = 6 V, IRO = 0.1 to 30 mA 50 100 mV Input stability 1 VRO2 VIN = 6 to 16 V, IRO = 30 mA 5 20 mV VRO Ta * VRO Ta = -40C to +85C 100 ppm/C Output voltage 2 VOUT VIN = 6 V, IOUT = 50 mA 3.136 3.200 3.264 V Dropout voltage 2 Vdrop2 VIN = 6 V, IOUT = 50 mA 401 540 mV Output voltage temperature coefficient 1 Load stability 2 VOUT1 VIN = 6 V, IOUT = 0.1 to 50 mA 50 100 mV Input stability 2 VOUT2 VIN = 6 to 16 V, IOUT = 50 mA 5 20 mV Ta = -40C to +85C 100 ppm/C VOUT Ta * VOUT 16 V 4.312 4.400 4.488 V 4.436 4.545 4.654 V 2.352 2.400 2.448 V 2.467 2.528 2.589 V 2.548 2.600 2.652 V 2.682 2.748 2.814 V VIN or VBAT 1.7 16 V - VDET1 Ta * - VDET1 Ta = -40C to +85C 100 ppm/C - VDET 2 Ta * - VDET 2 Ta = -40C to +85C 100 ppm/C - VDET 3 Ta * - VDET 3 Ta = -40C to +85C 100 ppm/C RESET 1.50 2.30 mA PREEND 1.50 2.30 mA CS 1.50 2.30 mA 0.1 A +VDET1 +VDET1 +VDET1 x 0.75 x 0.77 x 0.79 -VDET1 CS release voltage +VDET1 RESET detection voltage -VDET2 RESET release voltage +VDET2 PREEND detection voltage -VDET3 PREEND release voltage +VDET3 Operating voltage Detection voltage temperature coefficient Leakage current VIN CS detection voltage Sink current VIN voltage detection VOUT voltage detection VBAT voltage detection Vopr ISINK ILEAK VDS = 0.5 V, VIN = VBAT = 2.0 V VDS = 16 V, VIN = 16 V Switch voltage VSW1 VBAT = 2.8 V, VIN voltage detection CS output inhibit voltage VSW2 VBAT = 3.0 V, VOUT voltage detection VBAT switch leakage current ILEAK VIN = 6 V, VBAT = 0 V VBAT switch resistance Switch voltage temperature coefficient CS output inhibit voltage temperature coefficient Current consumption Total VOUT VOUT x 0.95 x 0.97 1 2 3 V 4 V 5 0.1 A 6 VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 A 30 60 7 Ta = -40C to +85C 100 ppm/C 4 VSW 2 Ta * VSW 2 Ta = -40C to +85C 100 ppm/C 5 VIN = 6 V, VBAT = 3.0 V, Unload 7 15 A 8 A ISS1 IBAT2 Backup power supply input voltage VOUT x 0.93 Test Circuit RSW VSW 1 Ta * VSW 1 0.26 0.50 Ta = 25C 1.0 2.1 A Ta = 85C 3.5 A 1.7 4.0 V IBAT1 VBAT VIN = Open, VBAT = 3.0 V, Unload Remark The number in the Test Circuit column corresponds to the circuit number in the "Test Circuit" section. 12 Min. Dropout voltage 1 Primary power input voltage Voltage detector Conditions Output voltage 1 Output voltage temperature coefficient 2 Switch unit Symbol Seiko Instruments Inc. 7 BATTERY BACKUP SWITCHING IC S-8424A Series Rev.3.0_00 7. S-8424AAGxx Table 10 Electrical Characteristics (Unless otherwise specified: Ta = 25C) Parameter Voltage regulator Min. Typ. Max. Unit 2.744 2.800 2.856 V VIN = 6 V, IRO = 30 mA Dropout voltage 1 Vdrop1 VIN = 6 V, IRO = 30 mA 356 474 mV Load stability 1 VRO1 VIN = 6 V, IRO = 0.1 to 30 mA 50 100 mV Input stability 1 VRO2 Output voltage temperature coefficient 1 Output voltage 2 VIN = 6 to 16 V, IRO = 30 mA 5 20 mV VRO Ta * VRO Ta = -40C to +85C 100 ppm/C VOUT VIN = 6 V, IOUT = 50 mA 2.744 2.800 2.856 V Vdrop2 VIN = 6 V, IOUT = 50 mA 401 540 mV Load stability 2 VOUT1 VIN = 6 V, IOUT = 0.1 to 50 mA 50 100 mV Input stability 2 VOUT2 VIN = 6 to 16 V, IOUT = 50 mA 5 20 mV Ta = -40C to +85C 100 ppm/C Dropout voltage 2 Output voltage temperature coefficient 2 Primary power input voltage Voltage detector Conditions VRO Output voltage 1 VOUT Ta * VOUT -VDET1 CS release voltage +VDET1 detection voltage -VDET2 RESET release voltage +VDET2 PREEND detection voltage -VDET3 PREEND release voltage +VDET3 Operating voltage Detection voltage temperature coefficient 16 V 4.312 4.400 4.488 V 4.436 4.545 4.654 V VOUT voltage detection 2.352 2.400 2.448 V 2.467 2.528 2.589 V VBAT voltage detection 2.548 2.600 2.652 V VIN CS detection voltage Sink current Switch unit Symbol VIN voltage detection 2.682 2.748 2.814 V VIN or VBAT 1.7 16 V - VDET1 Ta * - VDET1 Ta = -40C to +85C 100 ppm/C - VDET 2 Ta * - VDET 2 Ta = -40C to +85C 100 ppm/C - VDET 3 Ta * - VDET 3 Ta = -40C to +85C 100 ppm/C Vopr ISINK VDS = 0.5 V, VIN = VBAT = 2.0 V RESET 1.50 2.30 mA PREEND 1.50 2.30 mA CS 1.50 2.30 mA 0.1 A +VDET1 +VDET1 +VDET1 x 0.75 x 0.77 x 0.79 Leakage current ILEAK VDS = 16 V, VIN = 16 V Switch voltage VSW1 VBAT = 2.8 V, VIN voltage detection CS output inhibit voltage VSW2 VBAT = 3.0 V, VOUT voltage detection VBAT switch leakage current ILEAK VIN = 6 V, VBAT = 0 V VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 A VBAT switch resistance Switch voltage temperature coefficient CS output inhibit voltage temperature coefficient Current consumption RSW VSW 1 Ta * VSW 1 VSW 2 Ta * VSW 2 ISS1 Total Backup power supply input voltage VBAT 1 2 3 V 4 V 5 VOUT VOUT VOUT x 0.93 x 0.95 x 0.97 0.1 A 6 30 60 7 Ta = -40C to +85C 100 ppm/C 4 Ta = -40C to +85C 100 ppm/C 5 VIN = 6 V, VBAT = 3.0 V, Unload 7 15 A 8 0.26 0.50 A Ta = 25C 1.0 2.1 A Ta = 85C 3.5 A 1.7 4.0 V IBAT1 IBAT2 Test Circuit VIN = Open, VBAT = 3.0 V, Unload 7 Remark The number in the Test Circuit column corresponds to the circuit number in the "Test Circuit" section. Seiko Instruments Inc. 13 BATTERY BACKUP SWITCHING IC Rev.3.0_00 S-8424A Series 8. S-8424AAHxx Table 11 Electrical Characteristics (Unless otherwise specified: Ta = 25C) Voltage regulator Parameter Typ. Max. Unit VRO VIN = 6 V, IRO = 30 mA 4.900 5.000 5.100 V Vdrop1 VIN = 6 V, IRO = 30 mA 356 474 mV Load stability 1 VRO1 VIN = 6 V, IRO = 0.1 to 40 mA 50 100 mV Input stability 1 VRO2 VIN = 6 to 16 V, IRO = 30 mA 5 20 mV VRO Ta * VRO Ta = -40C to +85C 100 ppm/C Output voltage 2 VOUT VIN = 6 V, IOUT = 50 mA 4.900 5.000 5.100 V Dropout voltage 2 Vdrop2 VIN = 6 V, IOUT = 50 mA 401 540 mV Output voltage temperature coefficient 1 Load stability 2 VOUT1 VIN = 6 V, IOUT = 0.1 to 60 mA 50 100 mV Input stability 2 VOUT2 VIN = 6 to 16 V, IOUT = 50 mA 5 20 mV Ta = -40C to +85C 100 ppm/C VOUT Ta * VOUT -VDET1 CS release voltage +VDET1 detection voltage -VDET2 RESET release voltage +VDET2 PREEND detection voltage -VDET3 PREEND release voltage +VDET3 Operating voltage Detection voltage temperature coefficient Leakage current VIN CS detection voltage Sink current VIN voltage detection VOUT voltage detection VBAT voltage detection 4.867 V 2.499 2.550 2.601 V 2.625 2.690 2.754 V 2.646 2.700 2.754 V 2.787 2.856 2.924 V Ta = -40C to +85C 100 ppm/C - VDET 2 Ta * - VDET 2 Ta = -40C to +85C 100 ppm/C - VDET 3 Ta * - VDET 3 Ta = -40C to +85C 100 ppm/C ISINK ILEAK VDS = 0.5 V, VIN = VBAT = 2.0 V ILEAK RSW VSW 1 Ta * VSW 1 VSW 2 Ta * VSW 2 ISS1 RESET 1.50 2.30 mA PREEND 1.50 2.30 mA CS 1.50 2.30 mA A VDS = 16 V, VIN = 16 V VBAT switch leakage current IBAT2 0.1 +VDET1 +VDET1 x 0.75 x 0.77 x 0.79 1 2 3 V 4 V 5 VOUT VOUT VOUT x 0.95 x 0.97 VIN = 6 V, VBAT = 0 V 0.1 A 6 VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 A 30 60 7 Ta = -40C to +85C 100 ppm/C 4 Ta = -40C to +85C 100 ppm/C 5 VIN = 6 V, VBAT = 3.0 V, Unload 7 15 A 8 0.26 0.50 A 1.0 2.1 A 3.5 A 1.7 4.0 V VIN = Open, VBAT = 3.0 V, Unload Ta = 25C Ta = 85C VBAT +VDET1 Test Circuit x 0.93 IBAT1 Total 4.753 V VBAT = 3.0 V, VOUT voltage detection Backup power supply input voltage 4.639 16 VSW2 Current consumption V V CS output inhibit voltage coefficient 16 4.692 1.7 VBAT = 2.8 V, VIN voltage detection Switch voltage temperature coefficient 4.600 VIN or VBAT Vopr VSW1 VBAT switch resistance 4.508 - VDET1 Ta * - VDET1 Switch voltage CS output inhibit voltage temperature Remark The number in the Test Circuit column corresponds to the circuit number in the "Test Circuit" section. 14 Min. Dropout voltage 1 Primary power input voltage Voltage detector Conditions Output voltage 1 Output voltage temperature coefficient 2 Switch unit Symbol Seiko Instruments Inc. 7 BATTERY BACKUP SWITCHING IC S-8424A Series Rev.3.0_00 9. S-8424AAJFxx Table 12 Electrical Characteristics (Unless otherwise specified: Ta = 25C) Parameter Symbol Conditions Min. Typ. Max. Unit Test Circuit VRO VIN = 6 V, IRO = 10 mA Dropout voltage 1 Vdrop1 Load stability 1 VRO1 Input stability 1 VRO2 Voltage regulator Output voltage 1 Output voltage temperature coefficient 1 Output voltage 2 3.162 V VIN = 6 V, IRO = 10 mA 123 167 mV VIN = 6 V, IRO = 0.1 to 15 mA 50 100 mV VIN = 6 to 16 V, IRO = 10 mA 5 20 mV VRO Ta * VRO Ta = -40C to +85C 100 ppm/C VOUT VIN = 6 V, IOUT = 50 mA 3.038 3.100 3.162 V Vdrop2 VIN = 6 V, IOUT = 50 mA 401 540 mV VOUT1 VIN = 6 V, IOUT = 0.1 to 60 mA 50 100 mV Input stability 2 VOUT2 VIN = 6 to 16 V, IOUT = 50 mA 5 20 mV Ta = -40C to +85C 100 ppm/C Primary power input voltage Voltage detector 3.100 Load stability 2 Dropout voltage 2 Output voltage temperature coefficient 2 VOUT Ta * VOUT -VDET1 CS release voltage +VDET1 RESET detection voltage -VDET2 RESET release voltage +VDET2 PREEND detection voltage -VDET3 PREEND release voltage +VDET3 Operating voltage Detection voltage temperature coefficient Leakage current VIN CS detection voltage Sink current Switch unit 3.038 VIN voltage detection VOUT voltage detection VBAT voltage detection V 2.156 2.200 2.244 V 2.256 2.312 2.367 V 2.548 2.600 2.652 V 2.682 2.748 2.814 V Ta = -40C to +85C 100 ppm/C - VDET 2 Ta * - VDET 2 Ta = -40C to +85C 100 ppm/C - VDET 3 Ta * - VDET 3 Ta = -40C to +85C 100 ppm/C ISINK ILEAK VDS = 0.5 V, VIN = VBAT = 2.0 V RESET 1.50 2.30 mA PREEND 1.50 2.30 mA CS 1.50 2.30 mA A VDS = 16 V, VIN = 16 V VBAT switch leakage current ILEAK 0.1 +VDET1 +VDET1 +VDET1 x 0.75 x 0.77 x 0.79 2 3 V 4 V 5 VOUT VOUT VOUT x 0.93 x 0.95 x 0.97 VIN = 6 V, VBAT = 0 V 0.1 A 6 RSW VSW 1 Ta * VSW 1 VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 A 30 60 7 Ta = -40C to +85C 100 ppm/C 4 VSW 2 Ta * VSW 2 Ta = -40C to +85C 100 ppm/C 5 VIN = 6 V, VBAT = 3.0 V, Unload 7 15 A 8 0.26 0.50 A Ta = 25C 1.0 2.1 A Ta = 85C 3.5 A 1.7 4.0 V ISS1 IBAT1 Total 4.654 V VBAT = 3.0 V, VOUT voltage detection IBAT2 Backup power supply input voltage 4.545 16 VSW2 Current consumption 4.436 CS output inhibit voltage CS output inhibit voltage temperature V V 1.7 VBAT = 2.8 V, VIN voltage detection coefficient 16 4.488 VIN or VBAT Vopr VSW1 Switch voltage temperature coefficient 4.400 - VDET1 Ta * - VDET1 Switch voltage VBAT switch resistance 4.312 1 VBAT VIN = Open, VBAT = 3.0 V, Unload 7 Remark The number in the Test Circuit column corresponds to the circuit number in the "Test Circuit" section. Seiko Instruments Inc. 15 BATTERY BACKUP SWITCHING IC Rev.3.0_00 S-8424A Series 10. S-8424AAKxx Table 13 Electrical Characteristics (Unless otherwise specified: Ta = 25C) Voltage regulator Parameter Typ. Max. Unit VRO VIN = 6 V, IRO = 10 mA 3.136 3.200 3.264 V Vdrop1 VIN = 6 V, IRO = 10 mA 123 167 mV Load stability 1 VRO1 VIN = 6 V, IRO = 0.1 to 15 mA 50 100 mV Input stability 1 VRO2 VIN = 6 to 16 V, IRO = 10 mA 5 20 mV VRO Ta * VRO Ta = -40C to +85C 100 ppm/C Output voltage 2 VOUT VIN = 6 V, IOUT = 50 mA 3.136 3.200 3.264 V Dropout voltage 2 Vdrop2 VIN = 6 V, IOUT = 50 mA 401 540 mV Output voltage temperature coefficient 1 Load stability 2 VOUT1 VIN = 6 V, IOUT = 0.1 to 60 mA 50 100 mV Input stability 2 VOUT2 VIN = 6 to 16 V, IOUT = 50 mA 5 20 mV Ta = -40C to +85C 100 ppm/C VOUT Ta * VOUT 16 V CS detection voltage -VDET1 VIN voltage detection 4.508 4.600 4.692 V CS release voltage +VDET1 4.639 4.753 4.867 V RESET detection voltage -VDET2 VOUT voltage detection 2.352 2.400 2.448 V RESET release voltage +VDET2 2.467 2.528 2.589 V PREEND detection voltage -VDET3 VBAT voltage detection 2.548 2.600 2.652 V PREEND release voltage +VDET3 2.682 2.748 2.814 V VIN or VBAT 1.7 16 V - VDET1 Ta * - VDET1 Ta = -40C to +85C 100 ppm/C - VDET 2 Ta * - VDET 2 Ta = -40C to +85C 100 ppm/C - VDET 3 Ta * - VDET 3 Ta = -40C to +85C 100 ppm/C RESET 1.50 2.30 mA PREEND 1.50 2.30 mA CS 1.50 2.30 mA 0.1 A +VDET1 +VDET1 +VDET1 x 0.75 x 0.77 x 0.79 Operating voltage Detection voltage temperature coefficient Sink current Leakage current VIN Vopr ISINK ILEAK VDS = 0.5 V, VIN = VBAT = 2.0 V VDS = 16 V, VIN = 16 V Switch voltage VSW1 VBAT = 2.8 V, VIN voltage detection CS output inhibit voltage VSW2 VBAT = 3.0 V, VOUT voltage detection VBAT switch leakage current ILEAK VIN = 6 V, VBAT = 0 V VBAT switch resistance Switch voltage temperature coefficient CS output inhibit voltage temperature coefficient Current consumption Total VOUT VOUT VOUT x 0.93 x 0.95 x 0.97 Test Circuit 1 2 3 V 4 V 5 - 0.1 A 6 RSW VSW 1 Ta * VSW 1 VIN = Open, VBAT = 3.0 V, IOUT = 10 to 500 A 30 60 7 Ta = -40C to +85C 100 ppm/C 4 VSW 2 Ta * VSW 2 Ta = -40C to +85C 100 ppm/C 5 VIN = 6 V, VBAT = 3.0 V, Unload 7 15 A 8 ISS1 IBAT1 IBAT2 VIN = Open, VBAT = 3.0 V, Unload Ta = 25C Ta = 85C Backup power supply input voltage VBAT Remark The number in the Test Circuit column corresponds to the circuit number in the "Test Circuit" section. 16 Min. Dropout voltage 1 Primary power input voltage Voltage detector Conditions Output voltage 1 Output voltage temperature coefficient 2 Switch unit Symbol Seiko Instruments Inc. 0.26 0.50 A 1.0 2.1 A 3.5 A 1.7 4.0 V 7 BATTERY BACKUP SWITCHING IC S-8424A Series Rev.3.0_00 Test Circuit 1. 2. VBAT VIN V VRO or VOUT VIN 100 k VSS 10 F V 100 k VBAT VOUT VIN PREEND VIN V 100 k RESET CS VSS V V V To measure VDET3, apply 6 V to VIN. 3. 4. VIN VBAT VOUT CS VIN PREEND VSS VIN A V A RESET VBAT VIN VBAT VOUT V VSS A VDS Measure the value after applying 6 V to VIN. 5. 6. VOUT Oscilloscope VBAT CS 100 k Oscilloscope VIN F.G. VSS VIN VBAT VIN A VSS VBAT 7. 8. VOUT VIN VBAT VIN VBAT VIN IOUT VBAT V ISS VSS VIN Leave open and measure the value after applying 6 V to VIN. A A IBAT VSS VBAT To measure IBAT2, apply 6 V to VIN and then leave VIN open and measure IBAT. Figure 5 Test Circuit Seiko Instruments Inc. 17 BATTERY BACKUP SWITCHING IC Rev.3.0_00 S-8424A Series Operation Timing Chart VIN (V) VRO (V) VOUT (V) VBAT (V) VCS (V) VPREEND (V ) V RESET (V ) Remark CS, PREEND and RESET are pulled up to VOUT. Y-axis is an arbitrary scale. Figure 6 Operation Timing Chart 18 Seiko Instruments Inc. BATTERY BACKUP SWITCHING IC S-8424A Series Rev.3.0_00 Operation The internal configuration of the S-8424A Series is as follows. * Voltage regulator 1, which stabilizes input voltage (VIN) and outputs it to VRO * Voltage regulator 2, which stabilizes input voltage (VIN) and outputs it to VOUT * CS voltage detector, which monitors input voltage (VIN) * PREEND voltage detector, which monitors output voltage (VBAT) * RESET voltage detector, which monitors output voltage (VOUT) * Switch unit The functions and operations of the above-listed elements are described below. 1. Voltage Regulators The S-8424A Series features on-chip voltage regulators with a small dropout voltage. The voltage of the VRO and VOUT pins (the output pins of the voltage regulator) can separately be selected for the output voltage in 0.1 V steps between the range of 2.3 to 5.4 V. [Dropout voltage Vdrop1, Vdrop2] Assume that the voltage output from the VRO pin is VRO(E) under the conditions of output voltage 1 described in the electrical characteristics table. VIN1 is defined as the input voltage at which output voltage from the VRO pin becomes 98% of VRO(E) when the input voltage VIN is decreased. Then, the dropout voltage Vdrop1 is calculated by the following expression. Vdrop1 = VIN1 - VRO(E) x 0.98 Similarly, assume that the voltage of the VOUT pin is VOUT(E) under the conditions of output voltage 2 described in the electrical characteristics table. VIN2 is defined as the input voltage at which the output voltage from the VOUT pin becomes 98% of VOUT(E). Then, the dropout voltage Vdrop2 is calculated by the following expression. Vdrop2 = VIN2 - VOUT(E) x 0.98 2. Voltage Detector The S-8424A Series incorporates three high-precision, low power consuming voltage detectors with hysteresis characteristics. The power of the CS voltage detector is supplied from the VIN and VBAT pins. Therefore, the output is stable as long as the primary or backup power supplies are within the operating voltage range (1.7 to 16 V). All outputs are Nch open-drain, and need pull-up resistors of about 100 k. 2.1 CS Voltage Detector The CS voltage detector monitors the input voltage VIN (VIN pin voltage). The detection voltage can be selected from between 2.4 and 5.3 V in 0.1 V steps. The result of detection is output at the CS pin: "Low" for lower voltage than the detection level and "High" for higher voltage than the release level (however, when the VOUT pin voltage is the CS output inhibit voltage (VSW2), a low level is output). Input voltage Release voltage Detection voltage Output voltage Figure 7 Definition of Detection and Release Voltages Seiko Instruments Inc. 19 BATTERY BACKUP SWITCHING IC Rev.3.0_00 S-8424A Series 2.2 PREEND Voltage Detector The PREEND voltage detector monitors the input voltage VBAT (VBAT pin voltage). The detection voltage can be selected from between 1.7 V and 3.4 V in 0.1 V steps. A higher voltage can also be seclected keeping a constant difference with the RESET voltage. This function enables the warning that the backup battery is running out. The detection result is output to the PREEND pin: "Low" for lower voltages than the detection voltage and "High" for higher voltages than the release voltage. The power supply of the PREEND voltage detector is supplied from the VIN pin. The output is valid only when the voltage is supplied from the VIN pin to the VOUT pin (VIN VSW1). The output is the low level when the voltage is supplied from the VBAT pin to the VOUT pin (VIN < VSW1). 2.3 RESET Voltage Detector The RESET voltage detector monitors the output voltage VOUT (VOUT pin voltage). The detection voltage can be selected from between 1.7 V and 3.4 V in 0.1 V steps. The result of detection is output at the RESET pin: "Low" for lower voltages than the detection level and "High" for higher voltages than the release level. RESET outputs the normal logic if the VOUT pin voltage is 1.0 V or more. Caution The PREEND and RESET voltage detectors use the different pins, respectively. Practically, the current is taken from the VBAT side, and consider the I/O voltage difference (Vdif) of M1 when M1 is ON. 3. Switch Unit The switch unit consists of the VSW1 and VSW2 detectors, a switch controller, voltage regulator 2, and switch transistor M1 (Refer to "Figure 8 Switch Unit"). VOUT M1 VIN VBAT REG2 Switch controller Figure 8 VSW1 detector VSW2 detector Switch Unit 3.1 VSW1 Detector The VSW1 detector monitors the power supply voltage VIN and sends the results of detection to the switch controller. The detection voltage (VSW1) can be set to 77 2% or 85 2% of the CS release voltage +VDET1. 20 Seiko Instruments Inc. BATTERY BACKUP SWITCHING IC S-8424A Series Rev.3.0_00 3.2 VSW2 Detector The VSW2 detector monitors the VOUT pin voltage and keeps the CS release voltage output low until the VOUT pin voltage rises to VSW2 voltage. The CS pin output then changes from low to high if the VIN pin voltage is more than the CS release voltage (+VDET1) when the VOUT pin voltage rises to 95 2% of the output voltage of voltage regulator 2 (VOUT). The CS pin output changes from high to low regardless of the VSW2 voltage when the VIN pin voltage drops to less than the CS detection voltage (-VDET1). The CS pin output remains high if the VIN pin voltage stays higher than the CS detection voltage (-VDET1) when the VOUT pin voltage drops to less than the VSW2 voltage due to an undershoot. 3.3 Switch Controller The switch controller controls voltage regulator 2 and switch transistor M1. There are two statuses corresponding to the power supply voltage VIN (or power supply voltage VBAT) sequence: a special sequence status and a normal sequence status. When the power supply voltage VIN rises and becomes equal to or exceeds the CS release voltage (+VDET1), the normal sequence status is entered, but until then the special sequence status is maintained. (1) Special sequence status The switch controller sets voltage regulator 2 ON and switch transistor M1 OFF from the initial status until the primary power supply voltage VIN is connected and reaches more than the CS release voltage (+VDET1) in order to prevent consumption of the backup power supply regardless of the VSW1 detector status. This status is called the special sequence status. (2) Normal sequence status The switch controller enters the normal sequence status from the special sequence status once the primary power supply voltage VIN reaches more than the CS release voltage (+VDET1). Once the normal sequence is entered, the switch controller switches voltage regulator 2 and switch transistor M1 ON/OFF as shown in Table 14 according to the power supply voltage VIN. The time required for voltage regulator 2 to be switched from OFF to ON is a few hundred s at most. During this interval, voltage regulator 2 and switch transistor M1 may both switch OFF and the VOUT pin voltage may drop. To prevent this, connect a capacitor of 10 F or more to the VOUT pin. When the VOUT pin voltage becomes lower than the RESET detection voltage, the status returns to the special sequence status. Table 14 ON/OFF Switching of Voltage Regulator 2 and Switch Transistor M1 According to Power Supply Voltage (VIN) Power Supply Voltage (VIN) Voltage Regulator 2 Switch Transistor M1 VOUT Pin Voltage VIN > VSW1 ON OFF VOUT VIN < VSW1 OFF ON VBAT - Vdif Seiko Instruments Inc. 21 BATTERY BACKUP SWITCHING IC Rev.3.0_00 S-8424A Series 3.4 Switch Transistor M1 Voltage regulator 2 is also used to switch from VIN pin to VOUT pin. Therefore, no reverse current flows from VOUT pin to VIN pin when voltage regulator 2 is OFF. The output voltage of voltage regulator 2 can be selected from between 2.3 V and 5.4 V in 0.1 V steps. The on-resistance of switch transistor M1 is 60 or lower (IOUT = 10 to 500 A). Therefore, when M1 is switched ON and VOUT pin is connected to VBAT pin, the voltage drop (Vdif) caused by M1 is 60 x IOUT (output current) at maximum., and VBAT - Vdif (max.) is output to the VOUT pin at minimum. When voltage regulator 2 is ON and M1 is OFF, the leakage current of M1 is kept below 0.1 A max. (VIN = 6 V, Ta = 25C) with the VBAT pin grounded (VSS pin). VOUT Vdif VIN VBAT REG2 M1 Figure 9 Definition of Vdif 22 Seiko Instruments Inc. BATTERY BACKUP SWITCHING IC S-8424A Series Rev.3.0_00 Transient Response 1. Line Transient Response Against Input Voltage Variation The input voltage variation differs depending on whether the power supply input (0 V to 10 V square wave) is applied or the power supply variation (6 V and 10 V square waves) is applied. This section describes the ringing waveforms and parameter dependency of each type. The test circuit is shown for reference. Power supply application: 0 V to 10 V Square wave Fast amplifier 10 V Input voltage VIN 0V VOUT Oscilloscope S-8424A Series COUT VSS RL Overshoot Undershoot P.G. Output voltage Figure 11 Test Circuit Figure 10 Power Supply Application: 0 V to 10 V Square Wave Power Supply Application VOUT pin VRO pin COUT = 22 F, IOUT = 50 mA, Ta = 25C CRO = 22 F, IRO = 30 mA, Ta = 25C 10 V Input Voltage (5 V/div) 10 V Input Voltage (5 V/div) 0V Output Voltage (0.5 V/div) Output Voltage (0.5 V/div) t (100 s/div) t (100 s/div) Figure 12 0V Ringing Waveform of Power Supply Application (VOUT Pin) Figure 13 Seiko Instruments Inc. Ringing Waveform of Power Supply Application (VRO Pin) 23 BATTERY BACKUP SWITCHING IC Rev.3.0_00 S-8424A Series Power supply variation: 6 V and 10 V square waves Fast amplifier 10 V Input voltage VOUT VIN S-8424A Series 6V VSS Output Oscillo-scope COUT RL Overshoot P.G. voltage Undershoot Figure 14 Power Supply Variation: 6 V and 10 V Square Waves Figure 15 Test Circuit Power Supply Variation VOUT pin COUT = 22 F, IOUT = 50 mA, Ta = 25C 10 V 10 V Input Voltage 6 V (4 V/div) 6V Output Voltage (50 mV/div) t (100 s/div) Figure 16 Ringing Waveform of Power Supply Variation (VOUT Pin) VRO pin CRO = 22 F, IRO = 30 mA, Ta = 25C 10 V 10 V 6V Input Voltage 6 V (4 V/div) Output Voltage (50 mV/div) t (100 s/div) Figure 17 24 Ringing Waveform of Power Supply Variation (VRO Pin) Seiko Instruments Inc. BATTERY BACKUP SWITCHING IC S-8424A Series Rev.3.0_00 Reference data: Dependency of output current (IOUT), load capacitance (COUT), input variation width (VIN), temperature (Ta) For reference, the following pages describe the results of measuring the ringing amounts at the VOUT and VRO pins using the output current (IOUT), load capacitance (COUT), input variation width (VIN), and temperature (Ta) as parameters. 1.1 IOUT Dependency (1) VOUT pin (2) VRO pin COUT = 22 F, VIN = 6 V and 10 V, Ta = 25C 0.25 CRO = 22 F, VIN = 6 V and 10 V, Ta = 25C 0.25 Ringing amount (V) Ringing amount (V) 0.20 0.15 0.10 0.05 0.00 0.20 0.15 0.10 0.05 0.00 0 20 40 60 0 20 40 60 IRO (mA) IOUT (mA) 1.2 COUT Dependency (1) VOUT pin (2) VRO pin 0.40 0.30 0.20 0.10 0.00 IRO = 30 mA, VIN = 6 V and 10 V, Ta = 25C 0.50 Ringing amount (V) Ringing amount (V) IOUT = 50 mA, VIN = 6 V and 10 V, Ta = 25C 0.50 0 10 20 30 40 50 COUT (F) 0.40 0.30 0.20 0.10 0.00 0 10 20 30 40 50 CRO (F) Overshoot Undershoot Seiko Instruments Inc. 25 BATTERY BACKUP SWITCHING IC Rev.3.0_00 S-8424A Series 1.3 VIN Dependency VIN shows the difference between the low voltage fixed to 6 V and the high voltage. For example, VIN = 2 V means the difference between 6 V and 8 V. (1) VOUT pin (2) VRO pin 0.30 IOUT=50 mA, COUT=22 F, Ta=25C 0.30 0.25 Ringing amount (V) Ringing amount (V) 0.25 IRO=30 mA, CRO=22 F, Ta=25C 0.20 0.15 0.10 0.05 0.00 0.20 0.15 0.10 0.05 0.00 0 1 2 3 4 5 0 VIN (V) 1 2 3 4 5 VIN (V) 1.4 Temperature Dependency (2) VRO pin 0.30 0.30 0.25 0.25 Ringing amount (V) Ringing amount (V) (1) VOUT pin 0.20 0.15 0.10 0.05 VIN=6 10 V, IOUT=50 mA, COUT=22 F 0.20 0.15 0.10 0.05 0.00 VIN=6 10 V, IOUT=30 mA, CRO=22 F 0.00 -50 0 50 100 Ta (C) -50 0 50 100 Ta (C) Overshoot Undershoot 26 Seiko Instruments Inc. BATTERY BACKUP SWITCHING IC S-8424A Series Rev.3.0_00 2. Load Transient Response Based on Output Current Fluctuation The overshoot and undershoot are caused in the output voltage if the output current fluctuates between 10 A and 50 mA (VRO is between 10 A and 30 mA) while the input voltage is constant. Figure 18 shows the output voltage variation due to the output current. Figure 19 shows the test circuit for reference. The latter half of this section describes ringing waveform and parameter dependency. Output current 50 mA S-8424A Series COUT VSS Overshoot Oscilloscope VOUT VIN 10 A Undershoot Output current Figure 18 Output Voltage Variation due to Output Current Figure 19 Test Circuit Figure 20 shows the ringing waveforms at the VOUT pin and Figure 21 shows the ringing waveforms at the VRO pin due to the load variation, respectively. VOUT pin VIN = 6.0 V, COUT = 22 F, Ta = 25C 50 mA Output current 50 mA 10 A 10 A Output voltage (50 mV/div) t (50 s/div) t (500 ms/div) Figure 20 Ringing Waveform due to Load Variation (VOUT Pin) VRO pin VIN=6.0 V, CRO=22 F, Ta=25C 30 mA Output current 30 mA 10 A 10 A Output voltage (20 mV/div) t (20 ms/div) Figure 21 t (50 s/div) Ringing Waveform due to Load Variation (VRO Pin) Seiko Instruments Inc. 27 BATTERY BACKUP SWITCHING IC Rev.3.0_00 S-8424A Series Reference data: Dependency of input voltage (VIN), load capacitance (COUT), output variation width (IOUT), and temperature (Ta) 2.1 VIN Dependency (1) VOUT pin (2) VRO pin CRO = 22 F, IRO = 30 mA and 10 A, Ta = 25C 0.12 0.12 0.10 0.10 Ringing amount (V) Ringing amount (V) COUT = 22 F, IOUT = 50 mA and 10 A, Ta = 25C 0.08 0.06 0.04 0.02 0.00 4 5 6 7 8 9 10 0.08 0.06 0.04 0.02 0.00 4 5 VIN (V) 6 7 8 9 10 VIN (V) 2.2 COUT Dependency (2) VRO pin VIN = 6.0 V, IOUT = 50 mA and 10 A, Ta = 25C 0.60 VIN = 6.0 V, IRO = 30 mA and 10 A, Ta = 25C 0.30 0.50 0.25 Ringing amount (V) Ringing amount (V) (1) VOUT pin 0.40 0.30 0.20 0.15 0.10 0.05 0.10 0.00 0.20 0.00 0 10 20 30 COUT (F) 40 50 0 10 20 30 40 50 CRO (F) Overshoot Undershoot 28 Seiko Instruments Inc. BATTERY BACKUP SWITCHING IC S-8424A Series Rev.3.0_00 2.3 IOUT Dependency IOUT and IRO show the fluctuation between the low current stabilized at 10 A and the high current. example, IOUT = 10 mA means a fluctuation between 10 A and 10 mA. (1) VOUT pin For (2) VRO pin CRO=22 F, VIN=6.0 V, Ta=25C COUT = 22 F, VIN = 6 V, Ta = 25C 0.12 Ringiing amount (V) Ringing amount (V) 0.12 0.10 0.08 0.06 0.04 0.02 0.10 0.08 0.06 0.04 0.02 0.00 0 0.00 0 10 20 30 40 50 60 IRO (mA) 10 20 30 40 50 60 IOUT (mA) 2.4 Temperature Dependency (1) VOUT pin (2) VRO pin VIN=6.0 V, IOUT=50 mA 10 A, COUT=22 F 0.16 VIN=6.0 V, IRO=30 mA 10 A, CRO=22 F 0.08 0.07 0.12 Ringing amount (V) Ringing amount (V) 0.14 0.10 0.08 0.06 0.04 0.02 0.00 -50 0.06 0.05 0.04 0.03 0.02 0.01 0 50 100 Ta (C) 0.00 -50 0 50 100 Ta (C) Overshoot Undershoot Seiko Instruments Inc. 29 BATTERY BACKUP SWITCHING IC Rev.3.0_00 S-8424A Series Standard Circuit VRO + 1 k VRO VBAT VIN VOUT 6V + 10 F 10 F + S-8424A Series VSS 10 F 0.1 F 3V VOUT 100 k RESET CS VOUT PREEND VOUT VOUT 100 k 100 k Figure 22 Standard Circuit Caution 1. Be sure to add a 10 F or more capacitor to the VOUT and VRO pins. 2. The above connections and values will not guarantee correct operation. Before setting these values, perform sufficient evaluation on the application to be actually used. 30 Seiko Instruments Inc. BATTERY BACKUP SWITCHING IC S-8424A Series Rev.3.0_00 Precautions * In applications with small IRO or IOUT, the output voltages VRO and VOUT may rise, causing the load stability to exceed standard levels. Set IRO and IOUT to 10 A or more. * Attach the proper capacitor to the VOUT pin to prevent the RESET voltage detector (which monitors the VOUT pin) from coming active due to undershoot. * Watch for overshoot and ensure it does not exceed the ratings of the IC chips and/or capacitors attached to the VRO and VOUT pins. * Add a 10 F or more capacitor to the VOUT and VRO pins. * When VIN rises from the voltage more than VSW1, a low pulse of less than 4 ms flows through the PREEND pin even when VBAT is more than the PREEND release voltage. Thus when monitoring the PREEND pin, make sure to take the 4 ms interval or more after the rise of VIN. * Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit. Application Circuits 1. When Using Timer Micro controllers for Backup to display PREEND in the primary CPU + 100 k VOUT + 10 F 1 k 6V VIN 100 k S-8424A Series VBAT 10 F VCC CS CS Timer microcontroller PREEND 0.1 F 3V RESET + VRO 10 F RESET VSS 100 k VCC RESET Main CPU INT Address data Figure 23 Application Circuit 1 Seiko Instruments Inc. 31 BATTERY BACKUP SWITCHING IC Rev.3.0_00 S-8424A Series 2. When Using Secondary Battery as Backup Battery + + 10 F 10 F VRO 100 k S-8424A Series + 10 F 6V VCC VOUT VIN VBAT 100 k Microcontroller INT CS 0.1 F RESET 3V RESET VSS Figure 24 Application Circuit 2 Remark The backup battery can be floating-recharged by using voltage regulator 1. 3. Memory Card Card unit VIN VIN + 100 k 100 k 10 F VOUT S-8424A Series BDT2 PREEND BDT1 RESET 10 F + 100 k SRAM CS CS VBAT VSS 0.1 F 3V CS Figure 25 Application Circuit 3 Caution The above connections and values will not guarantee correct operation. Before setting these values, perform sufficient evaluation on the application to be actually used. 32 Seiko Instruments Inc. BATTERY BACKUP SWITCHING IC S-8424A Series Rev.3.0_00 Characteristics 1. Voltage Regulator Unit (VRO = VOUT = 3.0 V) 1.1 Input Voltage (VIN) vs. Output Voltage (VRO) Characteristics (REG1) (1) Ta = 85C (2) Ta = 25C IRO = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA IRO = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA 3.2 3.2 VRO (V) VRO (V) IRO = 10 mA 2.8 IRO = 90 mA IRO = 10 mA 2.8 IRO = 90 mA 2.4 2.4 2.0 2.0 3.0 4.0 2.0 2.0 5.0 3.0 VIN (V) 4.0 5.0 VIN (V) (3) Ta = -40C IRO = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA VRO (V) 3.2 IRO = 10 mA 2.8 IRO = 90 mA 2.4 2.0 2.0 3.0 4.0 5.0 VIN (V) 1.2 Input Voltage (VIN) vs. Output Voltage (VOUT) Characteristics (REG2) (1) Ta = 85C (2) Ta = 25C IOUT = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA IOUT = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA 3.2 3.2 2.8 VOUT (V) VOUT (V) IOUT = 10 mA IOUT = 90 mA 2.4 2.0 2.0 3.0 4.0 5.0 IOUT = 10 mA 2.8 IOUT = 90 mA 2.4 2.0 2.0 3.0 4.0 5.0 VIN (V) VIN (V) (3) Ta = -40C IOUT = 10 mA, 30 mA, 50 mA, 70 mA, 90 mA VOUT (V) 3.2 IOUT = 10 mA 2.8 IOUT = 90 mA 2.4 2.0 2.0 3.0 4.0 5.0 VIN (V) Seiko Instruments Inc. 33 BATTERY BACKUP SWITCHING IC Rev.3.0_00 S-8424A Series 1.3 Output Current (IRO) vs. Dropout Voltage (Vdrop1) Characteristics 1.0 0.8 Vdrop2 (V) Vdrop1 (V) 1.0 Ta = 85C 25C -40C 0.8 1.4 Output Current (IOUT) vs. Dropout Voltage (Vdrop2) Characteristics 0.6 0.4 Ta = 85C 25C -40C 0.6 0.4 0.2 0.2 0.0 0.0 0 0.02 0.04 0.06 0 0.02 0.04 IRO (A) 1.5 Output Current (IRO) vs. Output Voltage (VRO) Characteristics 1.6 Output Current (IOUT) vs. Output Voltage (VOUT) Characteristics 3.25 3.25 Ta = -40C 25C 85C 3.05 VIN = 6 V 2.95 2.85 1 Ta = -40C 25C 85C 3.15 VRO (V) VOUT (V) 3.15 3.05 VIN = 6 V 2.95 100 10 m 2.85 1 1 100 1.7 Output voltage (VRO) Temperature Characteristics 30 VRO (mV) VOUT (mV) V IN = 6 V, IRO = 30 mA 20 Based on VRO voltage when Ta is 25C 10 0 -10 20 VIN = 6 V, IOUT = 50 mA 10 Based on VOUT voltage when Ta is 25C 0 -10 -20 -20 -30 -40 -20 0 20 40 60 80 -40 -20 100 0 1.9 Input Stability (VRO) Temperature Characteristics 40 60 80 100 1.10 Input Stability (VOUT) Temperature Characteristics 20 20 VOUT2 (mV) VRO2 (mV) 20 Ta (C) Ta (C) 15 10 5 15 10 5 0 0 - 40 - 20 0 20 40 60 80 - 40 100 - 20 0 Ta (C) 30 30 VOUT (mV) 40 20 10 0 -20 20 60 80 100 20 10 0 0 40 1.12 Load Stability (VRO) Temperature Characteristics 40 -40 20 Ta (C) 1.11 Load Stability (VRO) Temperature Characteristics VRO1 (mV) 1 1.8 Output voltage (VOUT) Temperature Characteristics 30 40 60 80 100 -40 -20 0 20 Ta (C) Ta (C) 34 10 m IRO (A) IRO (A) -30 0.06 IOUT (A) Seiko Instruments Inc. 40 60 80 100 BATTERY BACKUP SWITCHING IC S-8424A Series Rev.3.0_00 2. Voltage Detector 2.1 CS Voltage Detector (-VDET1 = 3.3 V) (1) Detection voltage (-VDET1) temperature characteristics (2) Output current (ISINK) characteristics 20 25 Based on CS (-VDET1) voltage when Ta is 25C CS ISINK (mA) CS (mV) 10 30 0 -10 Ta = 25C VIN = 3 V 20 15 10 VIN = 1.7 V 5 -20 -40 -20 0 20 40 60 80 0 100 0.0 1.0 Ta (C) 2.0 3.0 4.0 VDS (V) (3) Output current (ISINK) temperature characteristics 10 VIN = V BAT = 2.0 V, V DS = 0.5 V CS ISINK (mA) 8 6 4 2 0 -40 -20 0 20 40 Ta ( C) 60 80 100 2.2 RESET Voltage Detector (-VDET2 = 2.2 V) (1) Detection voltage (-VDET2) temperature characteristics (2) Output current (ISINK) characteristics 20 30 25 when Ta is 25C 10 RESET ISINK (mA) RESET (mV) Based on RESET (-VDET2) voltage 0 -10 -20 -40 -20 0 20 40 60 80 100 Ta ( C) VIN = 3 V Ta = 25C 20 15 10 VIN = 1.7 V 5 0 0.0 1.0 2.0 3.0 4.0 VDS (V) (3) Output current (ISINK) temperature characteristics RESET ISINK (mA) 10 VIN = VBAT = 2.0 V, VDS = 0.5 V 8 6 4 2 0 -40 -20 0 20 40 Ta (C) 60 80 100 Seiko Instruments Inc. 35 BATTERY BACKUP SWITCHING IC Rev.3.0_00 S-8424A Series 2.3 PREEND Voltage Detector (-VDET3 = 2.6 V) (2) Output current (ISINK) characteristics (1) Detection voltage (-VDET3) temperature characteristics 30 Based on PREEND (-VDET3) voltage when Ta is 25C 10 25 PREEND ISINK (mA) PREEND (mV) 20 0 -10 -20 -40 -20 0 20 40 60 80 100 VDS (V) PREEND ISINK (mA) 10 VIN = VBAT = 2.0 V, V DS = 0.5 V 6 4 2 0 -40 -20 0 20 40 60 80 100 Ta ( C) 36 20 15 VIN = 1.7 V 10 5 0 0.0 1.0 2.0 VDS (V) (3) Output current (ISINK) temperature characteristics 8 VIN = 3 V Ta = 25 C Seiko Instruments Inc. 3.0 4.0 BATTERY BACKUP SWITCHING IC S-8424A Series Rev.3.0_00 3. Switch Unit 3.1 Switch Voltage (VSW1) Temperature Characteristics 3.2 CS Output Inhibit Voltage (VSW2) Temperature Characteristics 20 20 Based on VSW2 voltage when Ta is 25C 10 Based on V SW1 voltage when Ta is 25C VSW2 (mV) VSW1 (mV) 10 0 -10 -20 -40 - 20 0 20 40 60 80 0 -10 -20 100 Ta (C) 3.3 Input Voltage (VBAT) vs. VBAT Switch Resistance(RSW) Characteristics -20 0 20 Ta (C) 40 60 80 100 3.4 VBAT Switch Resistance (RSW) Temperature Characteristics 60 60 50 50 IOUT = 500 A 40 RSW () RSW () -40 30 20 10 VBAT = 3 V, IOUT = 500 A 40 30 20 10 0 0 1 2 3 4 5 -40 -20 0 20 40 60 80 100 Ta (C) VBAT (V) 3.5 VBAT Switch Leakage Current (ILEAK) Temperature Characteristics 30 ILEAK (nA) 25 VIN = 6.0 V, VBAT = 0 V 20 15 10 5 0 -40 -20 0 20 40 60 80 100 Ta (C) Seiko Instruments Inc. 37 BATTERY BACKUP SWITCHING IC Rev.3.0_00 S-8424A Series 4. Consumption Current 4.1 VIN vs. VIN Consumption Current (ISS1) Characteristics 4.2 VBAT vs. VBAT2 Consumption Current (IBAT2) Characteristics 16 2.0 Ta = 85C 25C -40C 8 4 0 2 4 6 8 10 VIN (V) 12 14 16 0.0 2.0 18 2.8 3.2 3.6 4.0 (2) IBAT2 16 2.0 VIN = 6.0 V, VBAT = 3.0 V 1.5 IBAT2 (A) 12 8 4 -40 -20 0 20 40 60 80 100 VIN = open, VBAT = 3.0 V 1.0 0.5 0.0 Ta (C) 38 2.4 VBAT (V) 4.3 Consumption Current Temperature Characteristics (1) ISS1 ISS1 (A) 1.0 0.5 0 0 Ta = 85C 25C -40C 1.5 IBAT2 (A) ISS1 (A) 12 -40 -20 0 20 Ta (C) Seiko Instruments Inc. 40 60 80 100 +0.3 3.00 -0.2 8 5 1 4 0.170.05 0.20.1 0.65 No. FT008-A-P-SD-1.1 TITLE TSSOP8-E-PKG Dimensions FT008-A-P-SD-1.1 No. SCALE UNIT mm Seiko Instruments Inc. 4.00.1 2.00.05 o1.550.05 0.30.05 +0.1 8.00.1 o1.55 -0.05 (4.4) +0.4 6.6 -0.2 1 8 4 5 Feed direction No. FT008-E-C-SD-1.0 TITLE TSSOP8-E-Carrier Tape FT008-E-C-SD-1.0 No. SCALE UNIT mm Seiko Instruments Inc. 13.41.0 17.51.0 Enlarged drawing in the central part o210.8 20.5 o130.5 No. FT008-E-R-SD-1.0 TITLE TSSOP8-E-Reel No. FT008-E-R-SD-1.0 SCALE QTY. UNIT mm Seiko Instruments Inc. 3,000 13.41.0 17.51.0 Enlarged drawing in the central part o210.8 20.5 o130.5 No. FT008-E-R-S1-1.0 TITLE TSSOP8-E-Reel FT008-E-R-S1-1.0 No. SCALE UNIT QTY. mm Seiko Instruments Inc. 4,000 3.000.2 0.525typ. 0.65 +0.1 0.30 -0.05 (o1.0) No. PA008-B-P-SD-3.0 (2.4) TITLE SON8B-B-PKG Dimensions PA008-B-P-SD-3.0 No. SCALE UNIT mm Seiko Instruments Inc. 8.00.1 4.00.1 2.00.05 3.40.1 4 1 5 8 1.20.1 o1.550.05 o1.550.05 0.30.05 Feed direction No. PA008-B-C-SD-1.1 TITLE SON8B-B-Carrier Tape No. PA008-B-C-SD-1.1 SCALE UNIT mm Seiko Instruments Inc. 20.3 13.50.5 Enlarged drawing in the central part o130.2 No. PA008-B-R-SD-1.1 TITLE SON8B-B-Reel No. PA008-B-R-SD-1.1 SCALE QTY. UNIT 3,000 mm Seiko Instruments Inc. www.sii-ic.com * * * * * * * The information described herein is subject to change without notice. Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design. When the products described herein are regulated products subject to the Wassenaar Arrangement or other agreements, they may not be exported without authorization from the appropriate governmental authority. Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Seiko Instruments Inc. is strictly prohibited. The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc. The products described herein are not designed to be radiation-proof. Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.