LTC2387-16
8
238716f
For more information www.linear.com/LTC2387-16
TYPICAL PERFORMANCE CHARACTERISTICS
Supply Current vs Sample Rate
Analog Input Current
vs Differential Input Voltage
Internal Reference Output
vs Temperature
TA = 25°C, VDD = 5V, VDDL = 2.5V, OVDD = 2.5V,
REFIN = 2.048V, fSMPL = 15Msps, unless otherwise noted.
PIN FUNCTIONS
GND (Pins 1, 4, 10, 21, 26, 29 ): Ground. Connect to a
solid ground plane in the PCB underneath the ADC.
IN+, IN– (Pins 2, 3): Positive and Negative Differential
Analog Inputs. The inputs must be driven differentially
and 180° out of phase, with a common mode voltage of
2.048V. The differential input range is ±4.096V (each input
pin swings from 0V to 4.096V.)
REFGND (Pins 5, 6): Reference Ground. The two pins
should be shorted together and connected to the refer-
ence bypass capacitor with a short, wide trace. In ad-
dition, connect the pins to the exposed pad (Pin 33). A
suggested layout is shown in the ADC Reference section
of the data sheet.
REFBUF (Pins 7, 8): Internal Reference Buffer Output.
The output voltage of the internal 2× gain reference buffer,
nominally 4.096V, is provided on this pin. The two pins
should be shorted together and bypassed to REFGND with
a 10µF (X7R, 0805 size) ceramic capacitor. If the internal
buffer is not required, tie REFIN to GND to power down
the buffer and connect an external 4.096V reference to
REFBUF.
REFIN (Pin 9): Internal Reference Output/Reference Buffer
Input. The output voltage of the internal reference, nomi-
nally 2.048V, is output on this pin. An external reference
can be applied to REFIN if a more accurate reference is
required. For increased filtering of reference noise, bypass
this pin to GND using a 0.1µF or larger ceramic capacitor.
If the internal reference buffer is not used, tie REFIN to
GND to power down the buffer and connect an external
buffered reference to REFBUF.
VDD (Pins 11, 12): 5V Analog Power Supply. The range
of VDD is 4.75V to 5.25V. The two pins should be shorted
together and bypassed to GND with 0.1μF and 10μF ce-
ramic capacitors.
PD (Pin 13): Digital input that enables power-down mode.
When PD is low, the LTC2387 enters power-down mode,
and all circuitry (including the LVDS interface) is shut
down. When PD is high, the part operates normally. Logic
levels are determined by OVDD.
TESTPAT (Pin 14): Digital input that forces the LVDS data
outputs to be a test pattern. When TESTPAT is high, the
digital outputs are a test pattern. When TESTPAT is low,
the digital outputs are the ADC conversion result. Logic
levels are determined by OVDD.
DB–/DB+, DA–/DA+ (Pins 15/16, 17/18): Serial LVDS
Data Outputs. In one-lane output mode, DB–/DB+ are not
used and their LVDS driver is disabled to reduce power
consumption.
ANALOG INPUT CURRENT (mA)