HITFET BTS 949 Smart Lowside Power Switch Features Product Summary * Logic Level Input Drain source voltage VDS 60 V * Input Protection (ESD) On-state resistance RDS(on) 18 m * Thermal Shutdown Current limit ID(lim) 9.5 A * Overload protection Nominal load current ID(ISO) 19 A * Short circuit protection Clamping energy EAS 6000 mJ * Overvoltage protection * Current limitation * Maximum current adjustable with external resistor * Current sense * Status feedback with external input resistor * Analog driving possible Application * All kinds of resistive, inductive and capacitive loads in switching or linear applications * C compatible power switch for 12 V and 24 V DC applications * Replaces electromechanical relays and discrete circuits General Description N channel vertical power FET in Smart SIPMOS chip on chip technology. Fully protected by embedded protected functions. V bb + LOAD 2 M NC dv/dt limitation 1 IN 4 Drain 3 Source 5 Overvoltage protection Current limitation CC ESD R CC Overload protection Overtemperature protection Short circuit circuit Short protection protection HITFET Semiconductor Group Page 1 14.07.1998 BTS 949 Maximum Ratings at Tj = 25 C unless otherwise specified Parameter Symbol Drain source voltage VDS Drain source voltage for short circuit protection RCC = 0 VDS(SC) Value 60 V 15 without RCC Continuous input current Unit 50 1) mA IIN -0.2V VIN 10V no limit VIN < -0.2V or VIN > 10V | IIN | 2 Operating temperature Tj - 40 ... +150 C Storage temperature Tstg - 55 ... +150 Power dissipation Ptot 240 W EAS 6000 mJ 3000 V TC = 25 C Unclamped single pulse inductive energy ID(ISO) = 19 A Electrostatic discharge voltage (Human Body Model) VESD according to MIL STD 883D, method 3015.7 and EOS/ESD assn. standard S5.1 - 1993 Load dump protection VLoadDump2) = VA + VS V VLD VIN=low or high; VA=13.5 V td = 400 ms, RI = 2 , ID=0,5*19A 110 td = 400 ms, RI = 2 , ID= 19A 92 DIN humidity category, DIN 40 040 E IEC climatic category; DIN IEC 68-1 40/150/56 Thermal resistance junction - case: RthJC 0.7 junction - ambient: RthJA 75 RthJA 45 SMD version, device on PCB: 3) K/W 1A sensor holding current of 500 A has to be guaranted in the case of thermal shutdown (see also page 3) 2V Loaddump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 3Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70 m thick) copper area for Drain connection. PCB is vertical without blown air. Semiconductor Group Page 2 14.07.1998 BTS 949 Electrical Characteristics Symbol Parameter at Tj=25C, unless otherwise specified Values Unit min. typ. max. 60 - 73 V - - 25 A 1.3 1.7 2.2 V IIN(1) - - 100 A Input current - current limitation mode, ID=ID(lim) : IIN(2) - 400 1000 1500 3000 6000 Tj = 25 C 500 - - Tj = 150 C 300 - - Characteristics Drain source clamp voltage VDS(AZ) Tj = - 40 ...+ 150C, ID = 10 mA Off state drain current IDSS VDS = 32 V, Tj = -40...+150 C, VIN = 0 V Input threshold voltage VIN(th) ID = 3,9 mA Input current - normal operation, ID 2 mA @ VIN >10V. t2 : Semiconductor Group Page 5 tm t1 t2 Turn on into a short circuit Measurementpoint for ID(lim) Activation of the fast temperature sensor and regulation of the drain current to a level wher the junction temperature remains constant. Thermal shutdown caused by the second temperature sensor, achieved by an integrating measurement. 14.07.1998 BTS 949 Maximum allowable power dissipation On-state resistance Ptot = f(Tc ) RON = f(Tj); ID=19A; VIN=10V BTS 949 40 240 W m 200 Ptot RDS(on)30 180 160 25 max. 140 20 120 100 typ. 15 80 10 60 40 5 20 0 0 20 40 60 80 100 120 C 0 -50 150 -25 0 25 50 75 100 C 150 Tj 150 On-state resistance Typ. input threshold voltage RON = f(Tj); ID= 19A; V IN=5V VIN(th) = f(Tj ); ID =3,9A; VDS=12V 45 2.0 m V 1.6 35 RDS(on) VIN(th) 1.4 30 max. 1.2 25 1.0 typ. 20 0.8 15 0.6 10 0.4 5 0 -50 0.2 -25 0 25 50 75 100 C 150 Tj Semiconductor Group 0.0 -50 -25 0 25 50 75 100 C 150 Tj Page 6 14.07.1998 BTS 949 Typ. transfer characteristics Typ. short circuit current ID = f(VIN); VDS =12V; Tj=25C IDlim = f(Tj); RCC =0, VDS =12V Parameter: VIN 250 160 A 10V A ID 9V ID 120 8V 100 150 7V 80 6V 100 60 5V 40 4V 50 20 0 0 3V 1 2 3 4 5 V 0 -50 7 -25 0 25 50 75 100 VIN C 150 Tj Typ. output characteristic Safe Operating Area ID = f(VDS); Tj=25C ID(SC) = f(VDS); T j=25C Parameter: VIN 150 300 10V A A 6V ID ID 100 200 5V 75 150 4V 50 100 25 50 VIN=3V 0 0 1 2 3 4 5 V 0 0 7 VDS Semiconductor Group 10 20 30 V 50 VDS Page 7 14.07.1998 BTS 949 Typ. current limit versus RCC Typ. current sense characteristics ID(lim) = f(RCC); Tj =25C VCC = f(ID); VIN =10V Parameter: VIN Parameter: RCC, Tj 250 600 A V 10V 500 200 ID no Rcc VCC 175 450 25C 400 150 82 Ohm 350 125 300 125C 250 100 5V 47 Ohm 200 75 150 22 Ohm 50 100 25 50 0 -2 10 -1 10 10 0 10 1 10 2 10 RCC 4 0 0 10 20 30 40 50 A 65 ID Transient thermal impedance ZthJC = f(tP ) Parameter: D=tP /T 10 0 K/W ZthJC10 D=0.5 0.2 -1 0.1 0.05 0.02 10 -2 0.01 0.005 10 -3 0 10 -4 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 s 10 2 tP Semiconductor Group Page 8 14.07.1998 BTS 949 Application examples: Current Sense Features and Status Signals IN D HITFET C CC V bb S RCC V CC IN open load thermal shutdown Vcc Vcc reached triptemperature The accuray of Vcc is at each temperature about 10 % Status signal of thermal shutdown by monitoring input current R St IN C V IN D HITFET CC V bb S V V IN thermal shutdown V = RST *IIN(3) Semiconductor Group Page 9 14.07.1998 BTS 949 Package and ordering code all dimensions in mm Ordering code: Q67060-S6703-A4 Ordering Code: Q67060-S6703-A2 Ordering Code: Q67060-S6703-A3 Semiconductor Group Page 10 14.07.1998 BTS 949 Edition 7.97 Published by Siemens AG, Bereich Halbleiter Vetrieb, Werbung, Balanstrae 73, 81541 Munchen (c) Siemens AG 1997 All Rights Reserved. Attention please! As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies. The information describes a type of component and shall not be considered as warranted characteristics. Terms of delivery and rights to change design reserved. For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide (see address list). Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Siemens Office, Semiconductor Group. Siemens AG is an approved CECC manufacturer. Packing Please use the recycling operators known to you. We can also help you - get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred. Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components 1 of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems2 with the express written approval of the Semiconductor Group of Siemens AG. 1)A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. 2)Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain and/or protecf human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Semiconductor Group Page 11 14.07.1998