Features * Power Supply Control * * * * * * * * * * - Power Supply Control: Power-on Factor (2 External Signals and 2 Internal Signals) - Battery Voltage Detection - Reset Detection - Thermal Protection - SMPL (Sudden Momentary Power Loss) Function Power Supply Function - Step-down DC/DC Converter x 1 (One-shot PWM) - LDO x 9 (ECO-mode for LDO1 and 3) - Over-current Protection (All Linear Regulators) Li-ion Battery Charger - CC/CV Charge - Internal P-MOS, Current Sense Resistor and Schottky Diode - Charge Current Control by Chip Temperature White LED Driver and Charge Pump - White LED Driver for Backlight: Up to 25 mA/LED x 4 - White LED Driver Charge Pump: Up to 100 mA RTC - Built-In Coin Charge Regulator - 32 kHz Crystal Oscillator (with Time Adjustment Function) - 32 kHz Output Audio CODEC - Voice CODEC: 16-bit Linear CODEC - Audio DAC: 16-bit Linear Stereo DAC - Tone Generator: Supports 16 DTMF Tones - Mono MIC Amplifier: Differential Amplifier - Stereo Headphone Amplifier: 22 mW (32 Ohm Load) - Mono Receiver Amplifier: 60 mW (32 Ohm BTL Load) - Mono Speaker Amplifier: 300 mW (8 Ohm BTL Load) - Microphone Bias Supply: Output Voltage = 2.2V PLL - Jack Detect Input 200 kOhm Pull-up CPU Interface - SPI (Max 10 MHz) Others - GPIO 4ch2ch: Common Use with ADC Input - 8-bit ADC (Battery Monitor, Charge Current Monitor, 2 Channels of External Input) Package - 96-pin CSP Package (Body size: 9 x 9 x 1mm, Pin pitch 0.8mm) Process - CMOS Process Power Management And Analog Companions (PMAAC) AT73C206 Power Management IC and Audio Codec 6329A-PMAAC-12-Aug-07 1. Description The AT73C206 is the integrated analog device for VoIP and Cellular phones. It integrates a power management IC, which includes LDO, DC/DC converter, Li-ion battery charger, White LED driver, Charge Pump, RTC and GPIO, as well as Audio CODEC in one chip. 2. Pin Configuration Figure 2-1. Pin Configuration 1 2 3 4 5 6 7 8 9 10 A B C D E TOP VIEW F G H J K A XIN XOUT KEYLED ONSW PSHOLD IRQB P2 VDDIO VO1 VO3 B VIN7 VSB GNDKEY VIN6 ONOB ADPINB P3 SEN VDC1 VO4 C DIN3 DIN4 GNDLED SMPL RSTB P0 SDI SCLK VIN4 VO5 D DIN1 DIN2 CPOUT GNDD OUT32K P1 SDO GNDA REFO VO6 E C1P C2P VIN1 LDO1SEL SMIC BIAS VIN5 VO7 VO8 SMICP SMICM MICBIAS VO9 T O P V IE W 2 F C1M C2M GNDCP GSP G VIN3 VIN2 FB J KDETI LRCKIO VSS MICP MICM VDDANA VO10 H LX GNDDC GNDCHG CKOUT DOUT DIN SPOM RECOP VDDHP VSSANA J CHGOUT IMONI VCAP CKIN J KDETO BCKIO SPOP RECOM VSSHP AVREF K CHGADP VSSPLL ACAP VDDPLL VDD VBSP GNDSP HPOL HPOR VCOM 1 2 3 4 5 6 7 8 9 10 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 3. Typical Application Circuit Coin Battery XIN 1k VSB OSCREG Coin Charge VIN7 0.1uF XOUT RTC Logic DIN4 GNDKEY DIN3 White LED Driver @25mA DIN2 Keypad LED GSP DIN1 PWRCNT 5bit DAC GNDLED Keypad LED KEYLED LDO1SEL VIN6 ONSW Power SW TSHUT SMPL CPOUT BATDET C1P 2.2uF C2P 1.0uF RESDET Charge Pump 4.8V/100mA VIN1 2.2uF 1.0uF C1M 8bit ADC C2M PSHOLD ONOB RSTB OUT32K IRQB ADPINB P0/AN0 GNDCP VIN2 P1/AN1 1uF GPIO VIN3 Stepdown DC/DC Converter 2.2uF 2.2uH LX VO2 GNDD P3 VDDIO 1.8V 650mA (IO/Mems) GNDDC P2 SDI SDO SPI FB 4.7uF SCLK SEN GNDCHG AC Adaptor 5V CHGADP 4.7uF CHGOUT Li-ion Battery LDO1 Li-ion Linear Charger 0.9/1.0/1.3/1.5V 300mA(Core) VO1 2.2uF LDO3 IMONI 2.7k VDC1 VO3 2.5V 100mA(IO) CHG Logic LDO4 1uF VO4 1.8/2.8/3.0V 200mA(SIM) VDDPLL 0.1uF 2.2uF VIN4 VCAP LDO5 2.8/3.0/3.3V 100mA(Vibrator) ACAP 1uF VO5 PLL 1uF VSSPLL VREF 2.0V CKIN CKOUT REFO GNDA VDD LDO6 200k 1.3V 20mA(PLL) Jack Detector JKDETI 0.47uF VO6 LDO7 JKDETO 1uF VO7 1.3V 20mA(PLL) VDD LDO8 0.1uF SENO SCLKO SI 1uF VO8 1.8V/2.8V 150mA(Display) Audio DAC Logic 1uF VIN5 LDO9 2.8V/100mA (Analog Audio) 1uF VO9 1uF DOUT LRCKIO BCKIO DIN LDO10 2.8V/100mA (Digital Audio) Voice CODEC Logic VO10 1uF SMIC Bias 2.2V/1mA VSS MIC Bias SMICBIAS MICBIAS 0.1uF 2.2V/1mA VBSP VDDANA SPOP Speaker 1uF VSSANA SPOM GNDSP RECOP Receiver RECOM VDDHP SMICP CODEC Analog MIC SMICM MICP MIC MICM HPOL Headphone L 1uF Headphone R 0.1uF HPOR VSSHP AVREF VCOM 3 6329A-PMAAC-12-Aug-07 4. Pin Description Table 4-1. No. Pin Description Block Pin Name I/O B2 VSB O 2 B1 VIN7 VCC 3 C2 DIN4 O Backlight White LED driver output 4 C1 DIN3 O Backlight White LED driver output 3 C3 GNDLED GND D2 DIN2 O Backlight White LED driver output 2 7 D1 DIN1 O Backlight White LED driver output 1 8 D3 CPOUT O Charge Pump output for White LED driver 9 E2 C2P O Voltage-boost capacitor connection pin for Charge Pump E1 C1P O Voltage-boost capacitor connection pin for Charge Pump E3 VIN1 VCC 12 F1 C1M O Voltage-boost capacitor connection pin for Charge Pump 13 F2 C2M O Voltage-boost capacitor connection pin for Charge Pump 14 F3 GNDCP GND 15 G3 FB I 16 G2 VIN2 VCC VBAT Power supply for DC/DC converter control block G1 VIN3 VCC VBAT Power supply for DC/DC converter driver 18 H1 LX O VBAT DC/DC converter switch output 19 H2 GNDDC GND GND GND for DC/DC converter 20 H3 GNDCHG GND GND GND for charger block Filter connection pin for J2 IMONI O 22 J1 CHGOUT O VBAT Li-ion battery charger output 23 K1 CHGADP VCC ACADP Charger block power (AC adaptor connected) 24 K2 VSSPLL GND GND PLL for GND 25 J3 VCAP O Filter connection pin for Voice PLL K3 ACAP O Filter connection pin for Audio PLL 27 K4 VDDPLL VCC 28 J4 CKIN I Clock input 29 H4 CKOUT O Clock output G4 JKDETI I JACKDET input J5 JKDETO O JACKDET output 1 If Level Description Notes Power input of coin charge regulator output and RTC RTC 4 5 6 White LED Driver 10 11 17 CHG Pump DC/DC 21 VBAT GND VBAT GND Power supply for RTCREG GND for Backlight White LED driver Power supply for Charge Pump GND for Charge Pump Output voltage feedback input of DC/DC converter Battery charge current monitor Charger 26 PLL 30 VO10 PLL power Jackdet 31 4 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 No Pin Name I/O If Level Description 32 K5 VDD VCC VO10 Power supply for CODEC digital block 33 H5 DOUT O VDD Voice CODEC output 34 G5 LRCKIO I/O VDD Audio / Voice interface L/R select input / output 35 J6 BCKIO I/O VDD Audio / Voice interface serial clock input / output 36 H6 DIN I VDD Audio and Voice interface serial data input 37 G6 VSS GND GND GND for CODEC digital block 38 K6 VBSP VCC VBAT Power supply for speaker AMP 39 J7 SPOP O Speaker AMP output + 40 H7 SPOM O Speaker AMP output - 41 K7 GNDSP GND 42 H8 RECOP O Receiver AMP output + 43 J8 RECOM O Receiver AMP output - H9 VDDHP VCC K8 HPOL O Headphone output L 46 K9 HPOR O Headphone output R 47 J9 VSSHP GND 48 K10 VCOM O Reference voltage Don't load this pin 49 J10 AVREF O Reference voltage Don't load this pin 50 G7 MICP I MIC input + 51 G8 MICM I MIC input - 52 H10 VSSANA GND GND GND for analog CODEC 53 G9 VDDANA VCC VO9 Power for analog CODEC 54 F7 SMICP I SMIC input + 55 F8 SMICM I SMIC input - 56 F9 MICBIAS O MIC Bias output 57 E7 SMICBIAS O SMIC Bias output 58 G10 VO10 O LDO10 output 59 F10 VO9 O LDO9 output 60 E8 VIN5 VCC E10 VO8 O LDO8 output E9 VO7 O LDO7 output 63 D10 VO6 O LDO6 output 64 D8 GNDA GND 65 D9 REFO O 44 45 Block Audio /Voice 61 62 LDO GND VO9 GND VBAT GND Notes GND for speaker AMP output Power supply for headphone AMP output GND for headphone AMP Power supply for LDO6, 7, 8, 9, 10 GND for analog circuit Capacitor connection pin for reference voltage source Don't load this pin 5 6329A-PMAAC-12-Aug-07 No Block Pin Name I/o 66 C10 VO5 O 67 C9 VIN4 VCC B10 VO4 O LDO4 output 69 A10 VO3 O LDO3 output 70 A9 VO1 O LDO1 output 71 B9 VDC1 VCC VO2 Power supply for LDO1(DC/DC Output) 72 B8 SEN I VDDIO SPI enable input signal 73 C8 SCLK I VDDIO SPI clock input D7 SDO O VDDIO SPI data output 75 C7 SDI O VDDIO SPI data input 76 A8 VDDIO VCC VO3 Power supply for I/O 77 B7 P3 I/O VDDIO General purpose I/O port 3 A7 P2 I/O VDDIO General purpose I/O port 2 79 D6 P1/AN1 I/O VDDIO General purpose I/O port 1/ADC input 1 80 C6 P0/AN0 I/O VDDIO General purpose I/O port 0/ADC input 0 81 B6 ADPINB O VDDIO AC adaptor insertion detection output 82 A6 IRQB O VDDIO Interrupt request output 83 D5 OUT32K O VDDIO 32 kHz oscillation output 84 C5 RSTB O VDDIO Reset output (Low-active) 85 B5 ONOB O VDDIO Inverted output signal of ONSW. A5 PSHOLD I VDDIO Signal input pin to maintain power-on. D4 GNDD GND GND GND for digital circuit 88 C4 SMPL I VBAT SMPL enable signal input Pull-down 89 A4 ONSW I VBAT Power-on switch enable signal input Pull-down 90 B4 VIN6 VCC VBAT Power supply for VBAT detector and other circuits 91 E4 LDO1SEL I VBAT LDO1 initial value select input pin(1.5V or 1.3V) 92 F4 GSP I VBAT Initial state select input pin A3 KEYLED O B3 GNDKEY GND A2 XOUT O 32.768kHz crystal oscillator output A1 XIN I 32.768kHz crystal oscillator Input 68 If Level Description Notes LDO5 output VBAT Power supply for LDO3, 4, 5 and VREF LDO 74 SPI 78 GPIO 86 87 Power Control 93 Keypad LED output (Nch open-drain) Keypad LED 94 95 GND GND for Keypad LED driver RTC 96 6 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 5. Functional Blocks 5.1 Power Control & Reset 5.1.1 Power Control & Reset Block Diagram Figure 5-1. Power Control & Reset Block Diagram chgpon L/S (From CHG) VIN6 VIN6 BATDET rtcpon batdet L/S (From RTC) VDDIO VIN6 ONOB pon regoff TSHUT VBAT poweron VIN6 (To LDO & DCDC) ONSW 1M smpl 32kHz VIN6 1M SMPL VO3 1M pshold PS Hold & Self Reset VDDIO PSHOLD (From RTC) VIN6 L/S clkstp RESDET VDDIO resdet Reset Timer RSTB resdetsel self reset Internal Reset 32kHz (From RTC Block) Table 5-1. Pin/Signal Description Pin/signal Name Function Level ONSW Power-on signal input pin VBAT ONOB Inverted output signal of ONSW VDDIO SMPL Power-on hold time setting capacitor connection at SMPL VDDO PSHOLD - Signal input pin to maintain power-on - Self-reset input pin VDDIO RSTB CPU reset signal output pin VDDIO chgpon Power-on signal from charger block (Rapid Charge signal) 7 6329A-PMAAC-12-Aug-07 Table 5-1. Pin/Signal Description Pin/signal Name Function rtcpon RTC alarm interrupt signal clkstp 32 kHz oscillator stop signal poweron DC/DC & LDO enable signal output Note: 5.1.2 Level Pin & Bit name (capital letter), Signal name (lowercase), Register name (r + capital letter) Power ON/OFF Operation The AT73C206 is asserted by ONSW (External pin), rtcpon(RTC alarm interrupt), SMPL (Sudden Momentary Power Loss) or chgpon (Power-on signal from charger block). Figure 5-2. Power ON/OFF Sequence VBAT (VIN6) 3.1V batdet ONSW ONOB poweron DCDC (VDC1) 90% LDO's VO3(LDO3):90% resdet RDLY(60ms) RSTB PSHOLD pshold TSRES(20ms) 1.5V SMPL Depend on external capasita 0.7V smpl 1. Power ON by ONSW pin When the "H" signal is input into ONSW pin at battery voltage over 3.1V, poweron signal goes "H" and DC/DC, LDO (GSP= "L":LDO1, 3, 6, 7, GSP= "H": LDO1,3,5,6,8) are turned on. ONOB goes "L". When the output voltage of LDO3 reaches 90% of its regulation voltage, the internal 8 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 reset timer starts and outputs "L" through the RSTB pin. CPU powers up and RSTB pin becomes "H" after reset delay time 60ms (Typ). After CPU finishes its system initialization, CPU will turn PSHOLD to "H".The system can keep power on by holding this PSHOLD at "H". For this operation, it needs to push PSHOLD signal "H" before ONSW pin falls "L". If ONSW falls "L" before pushing PSHOLD "H", AT73C206 will power off. 2. Power ON by rtcpon signal When an interrupt generates in RTC block, rtcpon goes "H" and AT73C206 powers on performing same power-on sequence as ONSW. 3. Power ON by SMPL pin When PSHOLD goes "H", SMPL becomes "H" through the internal diode. SMPL keeps "H" by external capacitor even when the battery is momentarily disconnected. If it keeps "H" until battery is reconnected, AT73C206 powers on performing same power-on sequence as ONSW. 4. Power ON by chgpon signal When AC adapter is inserted, AT73C206 enters to Rapid Charge Mode and chgpon goes "H" and poweron signal goes "H" irrespective of BATDET output. PSHOLD functions as same as when power-on by ONSW. AT73C206 cannot perform power-off during Rapid Charge. Figure 5-3. Power ON/OFF Sequence by chgpon chgpon Rapid Charge CHGONB = "1" poweron DCDC (VDC1) 90% LDO's VO3(LDO3):90% resdet RDLY(60ms) RSTB PSHOLD pshold SMPL TSRES(20ms) 1.5V 0.7V Depend on external capasita smpl 9 6329A-PMAAC-12-Aug-07 5.1.3 SMPL Operation When the battery loses contact momentarily due to impact or vibration on the handset by some event such as dropping the device, SMPL remains "H" with capacitor and re-powers as the battery is reconnected. The SMPL "H" maintain time depends on the capacitor size. To achieve this function, pull PSHOLD "H" before SMPL falls down to 0.7V. Figure 5-4. SMPL Operation Timing Battery Voltage SMPL 0.7V Power ON Factor DCDC LDO's PSHOLD 5.1.3.1 Relation of SMPL-high-maintain-time vs. Capacitor when momentary power loss Figure 5-5. SMPL-high-maintain-time when momentary power loss (VIN6 = 3.6V) 1800 1600 1400 Tim e m s 1200 1000 800 600 400 200 0 0 5.1.4 10 0.2 0.4 0.6 0.8 C apacitor uF C[uF] Time[ms] 0.10 157 0.22 345 0.47 738 1.00 1570 1 1.2 Voltage Detector The AT73C206 has two voltage detectors in power control block, BATDET and RESDET. BATDET detects low battery voltage and RESDET detects the LDO3 output voltage and generates AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 the reset signal through RSTB pin. RESDET needs to change by LDO3 output voltage set. When raise LDO3 output setting voltage, set LDO3 output voltage by LDO3SEL bit first and then change RESDET voltage by RESDETSEL bit with 200us of delay time. Adversely, when lower LDO3 output setting voltage, RESDETSEL bit should be set prior to LDO3SEL bit. Figure 5-6. VO3 and RESDET Control Timing (85%) VO3 RVDET (85%) (85%) 200us (min) 5.1.5 BATDET Electrical Characteristic Operating Conditions (unless otherwise specified) Ta = 25 C. Table 5-2. 5.1.6 BATDET Electrical Characteristics Symbol Parameter Condition Min Typ Max Units BVREL BATDET Cancellation Voltage Battery Voltage Rising -3 % 3.1 +3 % V BVDET BATDET Detection Voltage Battery Voltage Falling 2.9 V RESDET Electrical Characteristic Operating Conditions (unless otherwise specified) VIN = 3.6V, Ta = 25 C. Table 5-3. 5.1.7 0us(min) RESDET Electrical Characteristics Symbol Parameter Condition Min Typ Max Units RVREL RESDET Cancellation Voltage VO3 Voltage Rising -3 90 +3 % RVDET RESDET Detection Voltage VO3 Voltage Falling 85 % RSTB Electrical Characteristic Operating Conditions (unless otherwise specified) VIN = 3.6V, Ta = 25 C. Table 5-4. RSTB Electrical Characteristics Symbol Parameter Condition RDLY Reset Delay Timer Delay Time from VO390% to RSTB = "H" Min Typ 60 Max Units ms 11 6329A-PMAAC-12-Aug-07 5.1.8 5.1.8.1 Thermal Shutdown Circuit The thermal shutdown circuit consists of Thermal Detection Circuit and Comparator. Thermal Shutdown Block Diagram Figure 5-7. Thermal Shutdown Block Diagram VIN6 Thermal Detection Circuit regoff REFO pon 5.1.8.2 Thermal Shutdown Explanation of Operation Thermal shutdown circuit detects overheat state by comparing the output voltages of Thermal Detection Circuit and REFO. If the overheat state is detected, AT73C206 will turn off to protect itself from overheating. It is impossible to power on AT73C206 at overheat state. 5.1.8.3 Target Thermal Shutdown Electrical Characteristics Operating Conditions (unless otherwise specified) VIN = 3.6V Table 5-5. 5.1.9 Thermal Shutdown Electrical Characteristics Symbol Parameter Condition Min Typ TDET Detected Temperature 140 TRET Return Temperature 110 ISS1 Supply Current Ta = 25 C ISS2 Standby Current Ta = 25 C 5 Max Units 15 uA 1 uA Self-reset by PSHOLD When PSHOLD pin is held at "L" more than 20 ms, AT73C206 powers off as described in Section 5.1.2 "Power ON/OFF Operation" on page 8. However, if PSHOLD pin is pushed up "H" within 20 ms, the AT73C206 will conduct self-reset by RSTB= "L" for 60 ms. When self-reset, the DC/DC and LDOs are all reset to initial state since all the register is initialized. After self-reset, AT73C206 maintains power-on by PSHOLD="H" as same as when normal power-on. 12 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 Figure 5-8. Self-reset TPSHOLD 20ms or less 20ms or more 100ms PSHOLD TDLY(60ms) RSTB TSRES(20ms) Push PSHOLD pin "H" within 20 ms. Initial ON LDOs and DCDC Power-on by programm is possible Initial OFF LDOs poweron Table 5-6. 5.1.10 Self-reset Electrical Characteristics Symbol Parameter Condition Min Typ Max Units TSRES Self-reset time 20 ms TPSHOLD PSHOLD time 100 ms Oscillator Stop If the 32 kHz clock oscillator stops, clkstp signal goes "H" and self-reset function becomes invalid. In this case, PSHOLD= "L" will power off the AT73C206. Also, when the 32 kHz clock oscillator stops, AT73C206 generates an interrupt. (See "Power-on reset and Oscillator stop detection function" on page 42.) 5.2 Regulators The AT73C206 has 9 Low Drop Output regulators. The output voltage of LDO1, 3, 4, 5 and 8 are programmable. LDO1 must be power supplied by DC/DC output (1.8V) and the other LDOs are power supplied by battery. The initial output voltage of LDO1 is selectable by LDO1SEL pin or GSP pin. After power-on, the LDO1 output voltage is programmable via SPI. After power-on, the output voltages for LDO3, 4, 5 and 8 are programmable via SPI. Power on/off of LDO4 to 10 regulators and switchover between ECO-mode and Normal-mode of LDO1 and 3 are controllable via SPI. For optimized phase compensation, the bypass capacitor must be ceramic type. VREF regulator provides reference voltage to LDO1, 3, 5, 6, 7, 10, RESDET and TSHUT. 13 6329A-PMAAC-12-Aug-07 5.2.1 LDO Regulator Block Diagram Figure 5-9. LDO Regulator Block Diagram VIN2 Power Control poweron DCDC VIN3 (IO/Mems) VO2 4.7uF LDO1SEL LDO1CNT LDO1DAC OPMODE1 VDC1 LDO1 (Core) VO1 2.2uF GSP LDO3CNT LDO3SEL OPMODE3 LDO4ON LDO4CNT LDO4DAC LDO5ON LDO5CNT LDO5DAC VO3 LDO3 (IO) 1uF VO4 LDO4 (SIM) 2.2uF VIN4 LDO5 (Vibrator) VO5 1uF VREF REFO 0.47uF LDO6ON LDO6 (PLL) LDO7ON LDO7 (PLL) LDO8ON LDO8CNT VO6 1uF VO7 1uF VO8 LDO8 LDO8SEL (Display) LDO9ON LDO9 1uF VIN5 (Audio-A) VO9 1uF LDOEN LDO10ON LDO10 (Audio-D) VO10 1uF 14 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 5.2.2 Linear Regulators Table Table 5-7. Linear Regulators Table GSP L Initial Value H Output current max LDO9 LDO10 LDO1 LDO3 LDO4 LDO5 LDO6 LDO7 LDO8 (Audio (Audio (Core) (IO) (SIM) (Vibrator) (PLL) (PLL) (Display) Analog) Digital) 1.3V/1.5V (LDO1SEL) 1.3V/1.5V (LDO1SEL) 300mA 0.9V Programmable 1.0V Output Voltage 1.3V 1.8V 3.0V 2.8V 1.8V 2.8 V 100mA 200mA 100mA 1.8V 2.7V 2.8V 2.8V 3.0V 3.0V 3.1V 3.3V 1.8V 1.3V 2.5V 2.8V 3.0V 1.5V Initial State 2.5V 1.3V 2.8V 2.8V 100mA 100mA Fixed Fixed 2.8V 20mA 20mA Fixed Fixed 150mA 1.8V 2.8V L ON ON OFF OFF ON ON OFF OFF OFF H ON ON OFF ON ON OFF ON OFF OFF Yes Yes No No No No No No No ECO-mode ON/OFF Control Bypass Capacitor (COUT) 2.2uF 1.0uF Table 5-8. Capacitor SPI SPI SPI SPI SPI SPI SPI (LDO4ON) (LDO5ON) (LDO6ON) (LDO7ON) (LDO8ON) (LDO9ON) (LDO10ON) 2.2uF 1.0uF 1.0uF 1.0uF 1.0uF 1.0uF 1.0uF Recommended Capacitor Manufacturer Model No (R) 2.2 uF TAIYO YUDEN JMK107BJ225KA 1.0 uF TAIYO YUDEN(R) JMK105BJ105KVB 15 6329A-PMAAC-12-Aug-07 5.2.3 ECO-mode of LDO1 and 3 During ECO-mode, LDO1 and 3 are operating on the low bias current for reducing the power consumption. When CPU are in Sleep State or Low Power State, ECO-mode makes it possible to keep outputting voltage to peripheral ICs at low power consumption current. The maximum output current in ECO-mode is half as much as in Normal-mode. LDO1 and 3 can be ECO-mode by setting the corresponding bits to the operation mode control register OPMODE1and OPMODE3. 5.2.3.1 Timing Chart of Switchover between ECO-mode and Normal-mode Figure 5-10. Transition from Normal to ECO, ECO to Normal OPMODE bit write ("1") Normal-mode Note: 16 OPMODE bit write ("0") ECO-mode Normal-mode 1ms 1ms Transition Time Transition Time When operation mode is changed, AT73C206 has 1ms of transition time. Mode transition is not recommendable during this mode transition time (1ms). The maximum output current during transition is same as ECO-mode. AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 5.2.4 LDO1 Electrical Characteristic 5.2.4.1 NORMAL Mode Operating Normal Conditions (unless otherwise specified): VDDIN1 = DCDCOUT = 1.8V, COUT = 2.2uF, Ta = 25 C. Table 5-9. LDO1 Normal Mode Electrical Characteristics Symbol Parameter Condition Min Typ Max Units VOUT1 Output Voltage 1.8V(-3%) VDDIN1 1.8V(+3%) 50uA < IOUT1 < Ioutmax -3% 1.3/1.5 +3% V IOUT1 Output Current ----- 300 mA ISHT1 Short Current VO1=0V VOUT1 VIN Line Regulation 1.8V(-3%) VDDIN1 1.8V(+3%) IOUT1 = Ioutmax/2 10 mV VOUT1 IOUT1 Load Regulation 50uA < IOUT1 < Ioutmax 30 mV VOUT1 Ta Output Voltage Temperature Coefficient -40 C Ta 85 C +100 ppm RR1 Ripple Rejection f=1kHz, IOUT1= Ioutmax/2 60 dB EN1 Output Noise (RMS) BW=100Hz-100kHz, IOUT1= Ioutmax/2 70 uVrms ISS1 Supply Current (IOUT1=0mA) 80 uA IOFF1 Standby Current IOUT1=0mA VTr1 Rising Time IOUT1= 0mA VO1 > VOUT1 x 90% VTf1 Falling Time IOUT1=0mA VO1 < 0.5V POUT1 Programmable Output Voltage IOUT1= Ioutmax/2 200 mA 1 200 us 500 0.9V 1.0V 1.3V 1.5V uA us V 17 6329A-PMAAC-12-Aug-07 5.2.4.2 ECO mode Table 5-10. LDO1 ECO Mode Electrical Characteristics Symbol Parameter Condition Min Typ Max Units VOUT1 Output Voltage 1.8V(-3%) VDDIN1 1.8V(+3%) IOUT1= Ioutmax/2 -3% 1.3/1.5 +3% V IOUT1 Output Current ----- 150 mA ISHT1 Short Current VO1=0V 200 mA ISS1 Supply Current IOUT1= 0mA 3 uA POUT1 18 Programmable Output Voltage -4% 0.9V 1.0V -3% 1.3V 1.5V +4% IOUT1= Ioutmax/2 V +3% AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 5.2.5 LDO3 Electrical Characteristic 5.2.5.1 NORMAL mode Operating Normal Conditions (unless otherwise specified): VIN = 3.6V, COUT = 1uF, Ta = 25 C Table 5-11. LDO3 Normal Mode Electrical Characteristics Symbol Parameter Condition Min Typ Max Units VOUT3 Output Voltage 3.1V VIN 4.2V 50uA < IOUT3 < Ioutmax -3% 2.5 +3% V IOUT3 Output Current ----- 100 mA ISHT3 Short Current VO3=0V VOUT3 VIN Line Regulation 3.1V VIN 4.2V IOUT3=Ioutmax/2 10 mV VOUT3 IOUT3 Load Regulation 50uA < IOUT3 < Ioutmax 20 mV VOUT3 Ta Output Voltage Temperature Coefficient -40 C Ta 85 C +100 ppm RR3 Ripple Rejection f=1kHz, IOUT3= Ioutmax/2 60 dB EN3 Output Noise (RMS) BW=100Hz-100kHz, IOUT3= Ioutmax/2 100 uVrms ISS3 Supply Current (IOUT3=0mA) 50 uA IOFF3 Standby Current IOUT3=0mA VTr3 Rising Time IOUT3= 0mA VO3 > VOUT3 x 90% VTf3 Falling Time IOUT3=0mA VO3 < 0.5V POUT3 Programmable Output Voltage IOUT3= Ioutmax/2 5.2.5.2 Table 5-12. 60 mA 1 uA 200 -3% 2.5V 2.8V 3.0V us 500 us +3% V ECO mode LDO3 ECO Mode Electrical Characteristics Symbol Parameter Condition Min Typ Max Units VOUT3 Output Voltage 3.1V VIN 4.2V IOUT3= Ioutmax/2 -3% 2.5 +3% V IOUT3 Output Current ----- 50 mA ISHT3 Short Current VO3=0V 60 mA ISS3 Supply Current IOUT3= 0mA 3 uA POUT3 Programmable Output Voltage IOUT3= Ioutmax/2 2.5V 2.8V 3.0V -3% +3% V 19 6329A-PMAAC-12-Aug-07 5.2.6 LDO4 Electrical Characteristic Operating Conditions (unless otherwise specified) VIN = 3.6V, COUT = 2.2uF, Ta = 25 C. Table 5-13. LDO4 Electrical Characteristics Symbol Parameter Condition Min Typ Max Units VOUT4 Output Voltage 3.1V VIN 4.2V 50uA < IOUT4 < Ioutmax -3% 1.8 +3% V IOUT4 Output Current ----- 200 mA ISHT4 Short Current VO4=0V VOUT4 VIN Line Regulation 3.1V VIN 4.2V IOUT4=Ioutmax/2 10 mV VOUT4 IOUT4 Load Regulation 50uA < IOUT4 < Ioutmax 30 mV VOUT4 Ta Output Voltage Temperature Coefficient -40 C Ta 85 C +100 ppm RR4 Ripple Rejection f=1kHz, IOUT4 = Ioutmax/2 60 dB EN4 Output Noise (RMS) BW=100Hz-100kHz, IOUT4= Ioutmax/2 50 uVrms ISS4 Supply Current (IOUT4=0mA) 80 uA IOFF4 Standby Current IOUT4=0mA VTr4 Rising Time IOUT4= 0mA VO4 > VOUT4 x 90% VTf4 Falling Time IOUT4=0mA VO4 < 0.5V POUT4 20 Programmable Output Voltage IOUT4 = Ioutmax/2 100 mA 1 200 us 500 1.8V 2.8V 3.0V 3.1V uA us V AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 5.2.7 LDO5 Electrical Characteristic Operating Conditions (unless otherwise specified): VIN = 3.6V, COUT = 1 uF, Ta = 25 C. Table 5-14. LDO5 Electrical Characteristics Symbol Parameter Condition Min Typ Max Units VOUT5 Output Voltage 3.1V VIN 4.2V 50uA < IOUT5 < Ioutmax -3% 3.0 +3% V IOUT5 Output Current ----- 100 mA ISHT5 Short Current VO5=0V VOUT5 VIN Line Regulation 3.1V VIN 4.2V IOUT5=Ioutmax/2 10 mV VOUT5 IOUT5 Load Regulation 50uA < IOUT5 < Ioutmax 20 mV VOUT5 Ta Output voltage Temperature Coefficient -40 C Ta 85 C +100 ppm/ ISS5 Supply Current IOUT5 = 0mA 50 uA IOFF5 Standby Current IOUT5 = 0mA VTr5 Rising Time IOUT5= 0mA VO5 > VOUT5 x 90% VTf5 Falling Time IOUT5=0mA VO5 < 0.5V POUT5 Programmable Output Voltage IOUT5 = Ioutmax/2 60 mA 1 200 us 500 2.8V 3.0V 3.3V uA us V 21 6329A-PMAAC-12-Aug-07 5.2.8 LDO6 Electrical Characteristic Operating Conditions (unless otherwise specified): VIN = 3.6V, COUT = 1uF, Ta = 25 C. Table 5-15. LDO6 Electrical Characteristics Symbol Parameter Condition Min Typ Max Units VOUT6 Output Voltage 3.1V VIN 4.2V 50uA < IOUT6 < Ioutmax -3% 1.3 +3% V IOUT6 Output Current ----- 20 mA VOUT6 VIN Line Regulation 3.1V VIN 4.2V IOUT6 = Ioutmax/2 10 mV VOUT6 IOUT6 Load Regulation 50uA < IOUT6 < Ioutmax 10 mV VOUT6 Ta Output Voltage Temperature Coefficient -40 C Ta 85 C +100 ppm/ RR6 Ripple Rejection f=1kHz, IOUT6= Ioutmax/2 60 dB ISS6 Supply Current (IOUT6=0mA) 50 uA IOFF6 Standby Current IOUT6=0mA VTr6 Rising Time IOUT6=0mA VO6 > VOUT6 x 90% VTf6 Falling Time IOUT6=0mA VO6 < 0.5V 22 1 200 uA us 500 us AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 5.2.9 LDO7 Electrical Characteristic Operating Conditions (unless otherwise specified) VIN = 3.6V, COUT = 1uF, Ta = 25 C. Table 5-16. LDO7 Electrical Characteristics Symbol Parameter Condition Min Typ Max Units VOUT7 Output Voltage 3.1V VIN 4.2V 50uA < IOUT7 < Ioutmax -3% 1.3 +3% V IOUT7 Output Current ----- 20 mA VOUT7 VIN Line Regulation 3.1V VIN 4.2V IOUT7 = Ioutmax/2 10 mV VOUT7 IOUT7 Load Regulation 50uA < IOUT7 < Ioutmax 10 mV VOUT7 Ta Output Voltage Temperature Coefficient -40 C Ta 85 C +100 ppm/ RR7 Ripple Rejection f=1kHz, IOUT7= Ioutmax/2 60 dB ISS7 Supply Current (IOUT7=0mA) 50 uA IOFF7 Standby Current IOUT7=0mA VTr7 Rising Time IOUT7=0mA VO7 > VOUT7 x 90% VTf7 Falling Time IOUT7 = 0mA VO7 < 0.5V 1 200 uA us 500 us 23 6329A-PMAAC-12-Aug-07 5.2.10 LDO8 Electrical Characteristic Operating Conditions (unless otherwise specified) VIN = 3.6V, COUT = 1uF, Ta = 25 C. Table 5-17. LDO8 Electrical Characteristics Symbol Parameter Condition Min Typ Max Units VOUT8 Output Voltage 3.1V VIN 4.2V 50uA < IOUT8 < Ioutmax -3% 1.8 +3% V IOUT8 Output Current ----- 150 mA ISHT8 Short Current VO8=0V VOUT8 VIN Line Regulation 3.1V VIN 4.2V IOUT8=Ioutmax/2 10 mV VOUT8 IOUT8 Load Regulation 50uA < IOUT8 < Ioutmax 30 mV VOUT8 Ta Output Voltage Temperature Coefficient -40 C Ta 85 C +100 ppm/ RR8 Ripple Rejection f=1kHz, IOUT8= 30mA 70 dB EN8 Output Noise (RMS) BW=100Hz-100kHz, IOUT8=30 mA 50 uVrms ISS8 Supply Current IOUT8 = 0mA 100 uA IOFF8 Standby Current IOUT8 = 0mA VTr8 Rising Time IOUT8= 0mA VO8 > VOUT8 x 90% VTf8 Falling Time IOUT8=0mA VO8 < 0.5V POUT8 Programmable Output Voltage IOUT8 = Ioutmax/2 24 100 mA 1 200 us 500 1.8 2.8 uA us V AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 5.2.11 LDO9 Electrical Characteristic Operating Conditions (unless otherwise specified) VIN = 3.6V, COUT = 1uF, Ta = 25 C. Table 5-18. LDO9 Electrical Characteristics Symbol Parameter Condition Min Typ Max Units VOUT9 Output Voltage 3.1V VIN 4.2V 50uA < IOUT9 < Ioutmax -3% 2.8 +3% V IOUT9 Output Current ----- 100 mA ISHT9 Short Current VO9=0V VOUT9 VIN Line Regulation 3.1V VIN 4.2V IOUT9=Ioutmax/2 10 mV VOUT9 IOUT9 Load Regulation 50uA < IOUT9 < Ioutmax 20 mV VOUT9 Ta Output Voltage Temperature Coefficient -40 C Ta 85 C +100 ppm/ RR9 Ripple Rejection f=1kHz, IOUT9=Ioutmax/2 70 dB EN9 Output Noise (RMS) BW=100Hz-100kHz, IOUT9=Ioutmax/2 50 uVrms ISS9 Supply Current IOUT9 = 0mA 100 uA IOFF9 Standby Current IOUT9 = 0mA VTr9 Rising Time IOUT9= 0mA VO9 > VOUT9 x 90% VTf9 Falling Time IOUT9=0mA VO9 < 0.5V 60 mA 1 200 uA us 500 us 25 6329A-PMAAC-12-Aug-07 5.2.12 LDO10 Electrical Characteristic Operating Conditions (unless otherwise specified) VIN = 3.6V, COUT = 1uF, Ta = 25 C. Table 5-19. LDO10 Electrical Characteristics Symbol Parameter Condition Min Typ Max Units VOUT10 Output Voltage 3.1V VIN 4.2V 50uA < IOUT10 < Ioutmax -3% 2.8 +3% V IOUT10 Output Current ----- 100 mA ISHT10 Short Current VO10=0V VOUT10 VIN Line Regulation 3.1V VIN 4.2V IOUT10=Ioutmax/2 10 mV VOUT10 IOUT10 Load Regulation 50uA < IOUT10 < Ioutmax 20 mV VOUT10 Ta Output Voltage Temperature Coefficient -40 C Ta 85 C +100 ppm/ RR10 Ripple Rejection f=1kHz, IOUT10=Ioutmax/2 60 dB EN10 Output Noise (RMS) BW=100Hz-100kHz, IOUT10=Ioutmax/2 110 uVrms ISS10 Supply Current IOUT10 = 0mA 50 uA IOFF10 Standby Current IOUT10 = 0mA VTr10 Rising Time IOUT10= 0mA VO10 > VOUT10 x 90% VTf10 Falling Time IOUT10=0mA VO10 < 0.5V 26 60 mA 1 200 uA us 500 us AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 5.3 Step-down DC/DC Converter AT73C206 has a one-shot PWM DC/DC converter. It employs external inductor and capacitor for smoothing output voltage and also external R1, R2 and Cf for both voltage setting and phase compensation. The Control Circuit is power supplied by VIN2 and the Switch Transistor is power supplied by VIN3. AT73C206 features soft-start to reduce inrush current at power-on and current limit circuit for over-current protection. 5.3.1 Step-down DC/DC Converter Block Diagram Figure 5-11. Step-down DC/DC Converter Block Diagram VIN2 VIN3 Current Limit poweron L LX VO2 Switching Control Circuit R1 Cf Cout FB One-Shot Circuit R2 + GND DCDC Vref Soft-start 5.3.2 GND GNDDC GND Step-down DC/DC Converter Operation During standby mode, LX pin is high impedance. When DC/DC becomes active, the internal soft-start circuit is enabled and output voltage starts boosting. AT73C206 compares internal reference voltage (typ.0.6V) and FB voltage. If FB voltage is below the reference voltage, it turns on high-side switch by enabling one-shot circuit. The high-side switch remains on for minimum-on-time or until FB voltage rises over the reference voltage or inductor current exceeds limit current. Once the high-side switch is disabled, it remains off until FB voltage falls below the reference voltage or inductor current falls below the limit current. During high-side switch is off, low-side switch remains on until inductor current approaches 0. The DC/DC converter regulates the output voltage by repeating the above operation. Therefore, oscillator frequency varies by input voltage, output voltage, output current and external circuit (R1, L, Cf). In addition, the feedback loop from LX pin through R1 and from VO2 through Cf eliminate phase lag by output capacitor providing the stable loop and fast transient response. 27 6329A-PMAAC-12-Aug-07 However, the output voltage is reduced by output current on DCR of inductor. (Theoretically, output voltage falls [IOUT(A) x DCR(Ohm)]) 5.3.3 Output Voltage Setting Calculation Formula VIN LX 2.2uH R1 DC/DC Step Down VO2 The output voltage can be calculated by formular below. VOUT2 = Cf FB (0.6V) 4.7uF GND R2 VOUT2 = Output Voltage R1= Upper part resistance The phase margin capacitor is determined by formular below. R2 =100k Cf GNDDC (R1+R2)x0.6 L x 10 GND R1 GND Use the external components below for VOUT2=1.8V. L=2.2 uH, R1=200 k, R2=100 k, VOUT2=1.8V, Cf=110 pF, Cout=4.7 uF 5.3.4 Step-down DC/DC Converter Electrical Characteristic Operating Conditions (unless otherwise specified): VIN=3.6V, Ta = 25 C, L=2.2uH, Cout=4.7uF Table 5-20. Step-down DC/DC Converter Electrical Characteristics Symbol Parameter Condition VBATT Input Voltage 3.1 VOUT2 Output Voltage Range 0.9 IOUTD Output current VIN=3.1 to 4.2V ISSD Consumption Current VIN=3.1 to 4.2V IOUTD=0mA, no switching IOFFD Standby Current VIN=4.2V OFF state ILIMD Limit detection Current 800 VFB FB Voltage -1.5% VFB VIN FB Line Regulation VIN=3.1 to 4.2V IOUTD= Ioutmax/2 5 h Efficiency R1=200 k, R2=100 k, Cf=110 pF, IOUTD=200mA 90 tr Rising Time Soft-start 120 us VFB T FB Voltage Temperature Coefficient -30 Ta +85 100 ppm/ Tonmin Minimum-On-Time 100 ns Note: Min Typ 1.8 Max Units 4.2 V 2.5 V 650 mA 80 uA 1 uA mA 0.6 +1.5% V mV Load Regulation, which is determined by DC resistance (DCR) on inductor, is given by: Load Regulation(Typ) = DCR() x IOUTDA (A) For example, if DCR is 100 m; 28 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 0.1 x 0.65A = 65 mV (Typ.) 5.4 5.4.1 White LED Driver and Charge Pump Charge Pump The AT73C206 integrates boost Charge Pump for White LED driver. For maximized power efficiency, the Charge Pump operates in 1x mode, 1.5x mode and 2x mode. It includes over-voltage lockout circuit to control the output voltage below the over-voltage detection voltage and Softstart circuit to prevent excessive inrush current at power-on. The Charge Pump is on except when LEDCNT register is set to "0". 5.4.2 White LED Driver The AT73C206 White LED driver drives up to 4 White LEDs with regulated constant current. It integrates 5-bit DAC and performs the brightness control in 32-step by register set. 5.4.3 Block Diagram Figure 5-12. White LED Driver and Charge Pump Block Diagram 1.0uF 1.0uF C1P C1M C2M C2P CPOUT VIN1 Charge Pump 2.2uF 2.2uF GNDCP GND ON Feed Back Current Control DIN1 DIN2 ON White LED Driver Current Setting Signal rLEDCNT DIN3 DIN4 5-bit DAC GNDLED GND 5.4.4 5.4.4.1 Charge Pump Operation Initial When AT73C206 powers on, the Charge Pump initially starts in 1x mode and VOUT outputs VIN voltage. At this moment, the built-in soft-start circuit prevents excessive inrush current. See (1) in Figure 5-13 on page 31. 5.4.4.2 1x mode The Charge Pump switches to 1.5x mode if any DIN pin meets the following condition: DIN<0.25V 29 6329A-PMAAC-12-Aug-07 See (2) in Figure 5-13 on page 31. 5.4.4.3 1.5x mode The Charge Pump switches to 2x mode if any DIN pin meets the following condition: DIN<0.25V See (3) in Figure 5-13 on page 31. Every second, Charge Pump switches to 1x check mode only for 100us. Then it switches to: * 1x mode if any DIN pin meets the following condition: DIN>0.4V See (5) in Figure 5-13 on page 31. * 1.5x mode if any DIN pin meets the following condition: DIN<0.4V See (6) in Figure 5-13 on page 31. 5.4.4.4 2x mode Every second, Charge Pump switches to 1.5x check mode for 100us. Then it switches to: * 1.5x mode if any DIN pin meets the following condition: DIN>0.4V See (8) in Figure 5-13 on page 31. * 2x mode if any DIN pin meets the following condition: DIN<0.4V See (9) in Figure 5-13 on page 31. 30 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 5.4.4.5 1x/1.5x/2x mode transition Figure 5-13. Mode Transition Diagram Initial CPOUT = 0V Soft Start CPOUT= 0V -> VIN (1) (5) DIN > 0.4V 1x Mode 1x Check Mode(100us) (6) DIN < 0.4V (2) DIN < 0.25V (4) Every second (8) DIN > 0.4V 1.5x Check Mode(100us) 1.5x Mode (9) DIN < 0.4V (3) DIN < 0.25V (7) Every second 2x Mode 5.4.5 Protection Circuit When any DIN pin is floating or grounded during operation, Charge Pump pin switches over to 2x mode following mode transition sequence. At that time, over-voltage lockout circuit regulates output voltage below the protection voltage by on/off boost operation periodically. Besides, when CPOUT is smaller than 1.2V, Short-Circuit Protection stops boost-operation and regulates output current. In addition, the protection operation halts when Charge Pump stops. 5.4.6 Unused DIN Pin In case there is any unused DINx pin, connect it to GND. Then, the AT73C206 recognizes the unused pin at power-on and then excludes it from mode transition condition. 5.4.7 Target Charge Pump and White LED Driver Electrical Characteristics Unless noted, VIN=3.6V, Ta=25 C, C1=C2=1uF, Cout=2.2uF 31 6329A-PMAAC-12-Aug-07 Table 5-21. Symbol Charge Pump and White LED Driver Electrical Characteristics Parameter Conditions Min 3.1 Typ Max Units 4.5 V Charge Pump VIN Operation voltage range VIN1 voltage VOVLV Over-voltage lockout voltage Repeat ON/OFF IOUT Output current VIN1>3.1V, CPOUT=4.2V fCP Switching frequency 1.25 MHz tS Soft-start time 0.3 ms uA Supply current 1x mode, No load, (DET, Reference ON) 500 ISS 1.5x mode or 2x mode 5 mA 4.8 V 100 mA IOFF Standby supply current VIN1 current 1 uA ISHT Short current CPOUT=0V 50 mA White LED Driver ILED Sink current range DIN1-4 0 25 mA Iacc LED current accuracy IDIN=25mA=1Fh, DINx=0.25V -5 5 % Imat LED current matching -3 3 % Vtth 1x to 1.5x, 1.5x to 2x transition threshold voltage Vthys 250 mV 1x to 1.5x, 1.5x to 2x transition hysteresis voltage 150 mV ttr 1x to 1.5x, 1.5x to 2x transition time 100 us Ilsd DIN1-4 leakage current when shut-down 0.01 uA 32 If any pin among DIN1-4 falls under, AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 5.5 Li-ion Battery Charger 5.5.1 Description The Li-ion battery charger contains a Charge Regulator, Charge Control Circuit, Charge Current Monitor, AC Adapter Detector, AC Adaptor Over-voltage Detector and Chip Temperature Detector. It has 2 charge modes, Trickle Charge and Rapid Charge, the charge current of which is controlled by registers. When AT73C206 detects that chip temperature approaches the die temperature by chip temperature Detector, which is user selectable by register, it reduces charge current to 20% of charge current. When AT73C206 detects over-voltage by adaptor over-voltage detector, it stops charging and outputs over-voltage interrupt request flag (ADPBIR & ADPIR). Thousandth of charge current is output from IMONI pin. The resistor on IMONI pin converts the charge current to voltage. This feature allows AT73C206 to monitor charge current through ADC. 5.5.2 Li-ion Battery Charger Block Diagram Figure 5-14. Li-ion Battery Charger Block Diagram AC Adapter CHGADP Charge Regualtor rCHGCNT 4.7uF Charger Control Circuit VBAT Li-ion Battery RPC[2:0] CHGONB CHGOUT Temperature Detector TP[1:0] 1uF Charge Current Monitor IMONI 2.7k Ohm Over Voltage Detector ADPBIREN/ ADPIREN To IRQ Monitor ADPBIR/ADPIR VDDIO ADPINB Adapter Detector GNDCHG Table 5-22. To 8-bit ADC Pin Description Pin Name Function Level CHGADP Power input pin for charger block (Connected to AC adaptor) 5V CHGOUT Charge output pin (Connected to battery) VBAT IMONI Charge current monitor output (Pull-down with external 2.7 kOhm resistor) ADPINB AC adaptor insertion detection output (Output "L" when AC adaptor inserted.) VDDIO 33 6329A-PMAAC-12-Aug-07 5.5.3 5.5.3.1 Li-ion Battery Charger Operation When AC Adapter is connected, charge is asserted from charge off state. See (1) in Figure 5-15 on page 35. Charge OFF Mode At Charge OFF state, charge is disabled and charge current is 0mA. And, the power-on signal from charger block (chgpon) is "L". AT73C206 moves to Trickle Charge mode if: VCHGADP > 4.6V and VCHGADP 5.9V and CHGONB bit = "0" See (2) in Figure 5-15 on page 35. 5.5.3.2 Trickle Charge Mode Perform the Trickle Charge with 10% of the Rapid Charge current, which is register-programmable. The power-on signal from charger block (chgpon) is "L". AT73C206 moves to Rapid Charge 1 Mode with Soft-start if: VCHGOUT > 2.7V See (3) in Figure 5-15 on page 35. 5.5.3.3 Rapid Charge 1 Mode Rapid Charge 1 current is register-programmable. The power-on signal from charger block (chgpon) becomes "H". AT73C206 moves to Trickle Charge mode with Soft-stop if: VCHGOUT 2.6V See (4) in Figure 5-15 on page 35. Also, over-temperature is detected by chip temperature detector, AT73C206 moves to Rapid Charge 2 with Soft-stop. See (5) in Figure 5-15 on page 35. 5.5.3.4 Rapid Charge 2 Mode Perform the Rapid Charge 2 with 20% of Rapid Charge 1 current, which is register-programmable. The power-on signal from charger block (chgpon) is "H". When chip temperature falls, the charge current returns back to Rapid Charge Mode 1 with Soft-start. See (6) in Figure 5-15 on page 35. 5.5.3.5 Any state AT73C206 moves to Charge OFF mode if: VCHGADP < 4.5V or VCHGADP >6V or CHGONB bit = "1" See (7) in Figure 5-15 on page 35. AT73C206 monitors charge current with ADC and disables charging by writing CHGONB= "1". 34 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 5.5.4 Li-ion Battery Charger State Diagram Figure 5-15. Li-ion Battery Charger State Diagram AC adapter connected Asynchronous from any state VCHGADP < 4.5V or VCHGADP > 6V or CHGONB bit = 1 Charge OFF chgpon=L Charge Current=0mA VCHGADP > 4.6V and VCHGADP < 5.9V and CHGONB bit = 0 Trickle Charge chgpon=L 10% Charge Current VCHGOUT > 2.7V ADPINB=H Soft-Stop Soft-Start VCHGADP < 4.5V VCHGADP > 4.6V VCHGOUT < 2.6V Rapid Charge1 ADPINB=L chgpon=H 100% Charge Current VCHGOUT4.2V High Tempreature Detected Soft-Start Soft-Stop High Tempreature Released Rapid Charge2 20% Charge Current chgpon=H VCHGOUT4.2V 5.5.5 Li-ion Battery Charger Chip Temperature Detection When Rapid Charge 1, if chip temperature approaches the die temperature, which is user selectable by register TP [1:0], AT73C206 reduces charge current to 20% of Rapid Charge 1 current. (Rapid Charge 2) When chip temperature falls, the charge current returns back to its full current. By repeating this process, AT73C206 is able to keep itself in temperature regulation. This feature not only pro- 35 6329A-PMAAC-12-Aug-07 tects AT73C206 from overheating, but also allows higher charge current without risking damage to the system. Soft-start/stop is used to minimize in-rush current on battery. Figure 5-16. Chip Temperature Detection and Soft-start/stop I Charge When AT73C206 detects over chip temperature, it gradually reduces charge current down to 20% (Soft-stop). 500mA(100%) Soft-start Soft-stop Soft-start 100mA(20%) If the chip temperature falls, A73C206 gradually pulls charge current back to 100% (Soft-start). 50mA(10%) Time 0 3ms 3ms 3ms Start Trickle Charge Start Rapid 1Charge 5.5.6 Li-ion Battery Charger Electrical Characteristics Operating Conditions (unless otherwise specified): VIN= 3.6V, Ta = 25 C, CHGOUT=1uF. Table 5-23. Li-ion Battery Charger Electrical Characteristics Symbol Parameter VCHGADP AC adapter Operation Voltage AVDET AC adapter Detection Voltage AVOVLO AC Adapter Over Voltage Lock-Out CISS Consumption Current VCHG Battery Charge Voltage RIMONI IMONI Resistor VIMONI Charge Current Monitor Output 36 Condition Min Typ 4.5 VCHGADP, rising 4.6 hysteresis 0.1 VCHGADP, rising 6 hysteresis 0.1 Rapid Charge = 500mA 3 Max Units 6.3 V V V mA Charge OFF ICHGOUT = 0, Ta = 0 to 85 C RIMONI=2.7k, ICHGOUT = 850mA 1 4.2 V 2.7 k 2.295 V AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 Table 5-23. Li-ion Battery Charger Electrical Characteristics CIRapid Rapid Charge Current CITrickle Trickle Charge Current CTth Chip Temperature Detection Threshold CVT Transition Voltage to Rapid Charge 1 Mode VCHGOUT =2.2V, Ta = 0 to 85 C Percentage of CIRapid -12% 500 550 600 650 700 750 800 850 +12% mA 5 10 15 % 95 105 115 135 VCHGOUT, rising 2.7 hysteresis 0.1 V 37 6329A-PMAAC-12-Aug-07 5.6 A/D Converter The AT73C206 has an 8-bit A/D converter with 4 channels. * Input is selectable by register set: External pins AN0 & AN1 (Common use with P0 and P1 pins of GPIO), battery voltage monitor (batmon) and charge current monitor (IMONI). * Input voltage ranges from 0V to VDDIO. * Generates the clock using RTC 32KHz * Starts conversion by register set and inform the end of conversion to CPU through ADCECIR. * The Resistive Voltage Divider for battery voltage monitor is on/off controllable by register. * Buffer is on/off controllable by register. Figure 5-17. ADC Block Diagram VDDIO P1/AN1 P0/AN0 IMONI batmon M U X rADDATA[7:0] Buf 8bit ADC ADSTART Control Circuit VIN6 32kHz from RTC ADEND rADSTART ADIREN ADECIR ADECIR BUFEN rADCCNT ADSEL[1:0] BTMEN 5.6.1 Explanation of Operation Writing "1" in ADSTART bit starts conversion. ADSTART bit will be automatically cleared after conversion starts. After the conversion is completed, AT73C206 sets ADEND bit and notices completion of conversion to CPU through IRQB. The ADEND bit will be cleared by reading the converted data or by writing "1" in ADSTART bit. And ADCECIR is cleared by writing "0". For reconversion, write "1" in ADSTART bit. Changing ADSEL is prohibited during AD Conversion. 38 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 Figure 5-18. ADC Timing Diagram min 100us wait conversion time conversion time conversio time pow eron VO3 rADSEL 2'h00 rBUFEN (rBTMEN) rADEND rADCECIR rADDATA[7:0] conversion data rADSTART reading ADDATA clearing rADCECIR Figure 5-19. ADC Internal Operation Sequence 1 2 3 4 5 12 32kHz ADSTART ADEND ADCECIR SAMPLE POINT reading ADDATA clearing rADCECIR 5.6.2 Electrical Specification 5.6.2.1 A/D Converter Operating Conditions (unless otherwise specified) Table 5-24. Symbol VDDIO=2.5V or 2.8V or 3.0V, Ta = 25 C. A/D Converter Electrical Characteristics Item Condition Min Typ Max Units 8 bits A/D Converter ADBIT Resolution INLE Integral nonlinearity error AN(0,1) = 0 to VDDIO-0.1V -1 1 LSB DNLE Differential nonlinearity error AN(0,1) = 0 to VDDIO-0.1V -1 1 LSB 0 VDDIO V Input voltage range Conversion time 397 us 39 6329A-PMAAC-12-Aug-07 Table 5-24. A/D Converter Electrical Characteristics While Converting ISS 1 mA Supply Current Sleeping (Note) 1 uA Buffer BUFEN=1 ISS 250 uA Supply Current BUFEN=0 1 uA Battery monitor Ratio Resistive voltage divider ratio 0.5 Times Rdiv Resistive voltage divider 2 M Note: 40 After conversion, A/D converter shifts to sleep mode automatically. AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 5.7 Real Time Clock The Real Time Clock provides the coin charge regulator and 2 system of alarm function, which generate an interrupt on a set time. The accuracy of clock is dependant on the Clock Error Offset circuit. Real Time Clock operates with 32.768 kHz of external X'tal and capacitor. 5.7.1 Features * Coin charge regulator built in with Reverse-current protection diode * Counters for Clock and Calendar * Alarm function - Combination of day of the week, hour and minute - Combination of hour and minute only * Provides 32.768 kHz clock output * Power-on flag, which recognizes that a power supplier turns on from 0V * Automatic definition for leap year is 2099, 12-hour or 24-hour format selectable * High-accuracy of clock error offset circuit function * Alarm Interrupts power on AT73C206 5.7.2 Block Diagram Figure 5-20. RTC Block Diagram Coin Charge Regulator VIN7 Coin Battery 1k VSB XIN rtcpon RF XOUT OSC REG RD 1sec Timer RTCCTFGM RTC Logic RTCWAFGM RTCDAFGM OSC Stop Detector CLKSTP VDDIO OUT32K 32kHz rCK32EN 41 6329A-PMAAC-12-Aug-07 5.7.3 Power Supply and Charge of External Coin Battery When battery voltage over monitoring voltage The external coin battery performs charge with the regulated voltage applied from battery and, at the same time, this power is supplied to Real Time Clock. 5.7.4 Function of Real Time Clock 1. Clock Function The clock and calendar in term of seconds, minutes, hours, day, month and below 2-digit-year are readable and writable via CPU. A low-order 2-digit-year that can be divided by 4 is defined as leap year. AT73C206 provides an automatic definition of leap year until 2099. 2. Alarm function AT73C206 provides an alarm function, which generates interrupt signal for CPU on a programmed time. There are 2 types of alarm; Alarm_W and Alarm_D. Alarm_W can program a minute, hour and day of the week. Single and multiple day of the week are also programmable. However, Alarm_D is minute and hour programmable. These two alarms are output from IRQB pins. The CPU is allowed to check the status of each alarm by reading the corresponding register. 3. High-accuracy clock error offset circuit function Oscillator circuit is configured by connecting an external X'tal and capacitors (CG & CD). For accuracy of the clock, AT73C206 has the internal Clock Error Offset circuit which keeps the clock precise by compensating the oscillator frequency drift with about 3 ppm (or about 1 ppm) step in range of 189 ppm (or about 63 ppm). (Error 1.5 ppm (or 0.5 ppm) at 25 C after the compensation.) The compensation of frequency in each system; * Enables high-accuracy of clock by using the X'tal which covers wide fluctuation. * Compensates a season-frequency-drift by correcting the clock error every season. * Enables high-accuracy of clock by correcting the clock error according to the temperature fluctuation. (This function is available only for the system with temperature detection function.) 4. Constant cycle interrupt generation function In addition to alarm function, constant cycle interrupt is output through IRQB pin. The cycle is selectable from 2 Hz (1 time/0.5 sec.), 1 Hz (1 time/1sec.), 1/60 Hz (minute), 1/3600 Hz (hour) and month (first day of each month). There are two types of output waveforms selectable in constant cycle; one is the waveform (2 Hz, 1 Hz) on normal pulse and the other is the one (every second, minute, hour and month), which is designed considering a CPU interrupt and a level interrupt. The status of register pin can be checked. 5. 32768 Hz clock output Oscillator frequency clock of X'tal units can be output through an OUT32K pin. The enable/disable of clock output is controllable by the CK32EN bit. 6. Power-on reset and Oscillator stop detection function a. Power-on reset function (PON Flag) When the VSB Power-supply pin rises from 0V, AT73C206 resets the control register and, simultaneously, allows CPU informed it by issuing flag. This feature allows CPU to judge whether VSB Power-supply pin has raised from 0V or it has been power-supplied by battery. 42 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 b. Oscillator stop detection function (OSC stop detector) AT73C206 has a register, which remembers on/off of oscillator. This feature allows CPU judge whether oscillation has stopped. OSC stop detector generates interrupt when it detects that the clock stops. Enabling/disabling of the interrupt is selectable by STPIREN bit in CLKCNT register. Also, the output of the OSC stop detector can be read from the Status Monitor register. 5.7.5 Electrical Specification Operating Conditions (unless otherwise specified): VIN = 3.6V, Ta = 25 C. Table 5-25. Symbol RTC Electrical Characteristics Parameter Condition Min. TYP. Max Unit 2.943 3.050 3.157 V COIN CHARGE REGULATOR CCROUT VSB Output Voltage VIN7=3.1 to 4.2V Iout=0uA Vf Diode Forward Voltage Iout = 1mA VSBV Oscillator Operating Voltage VIN7=OPEN Tosc Oscillation Start Time OSCtor Oscillation Tolerance ISS Supply Current 0.75 V 3.0 V RTC 5.7.6 1.3 1 5 s times 1.5 uA Structure of Oscillation Circuit Figure 5-21. Structure of Oscillation Circuit VSB O SC R EG Internal clock 32kHz XIN CG RF 32kHz CD XOUT RD A Note: Recommended external device: X'tal: FC-135 (EPSON(R)), (f: 32.768 kHz), (R =70k max), CL = 9 pF CG, CD: 12 pF typ Note: Standard of Internal device: RF: 20M typ RD: 100k typ Note: Oscillation circuit operates in internal voltage regulator. Note: X'tal units: For X'tal units, use FC-135 (CL=9pF) of EPSON. Check with the manufacturer about the value of crystal units in use. Note: Notes on mounting: Place the crystal units as close as possible to the IC. Do not place signal/power supply lines near the oscillation circuit. 43 6329A-PMAAC-12-Aug-07 Make the insulation resistance between XIN/XOUT pins and PCB board as high as possible. Do not wire XIN and XOUT in a long parallel line. Condensation may stop the crystal oscillation or cause other errors. 5.8 5.8.1 Note: External input of clock (32.768 kHz) to XIN Note: DC binding: Forbidden due to the inconsistency with input level. Note: AC binding: Possible. However, oscillation stop detection is not assured, for error detection may occur due to the noise and other effects. Note: Do not operate other IC with oscillation output (XOUT output) in order to protect the stability of oscillation characteristics. Audio/Voice Features * Voice CODEC: 16-bit Linear CODEC (Sampling frequency: 8 kHz and 16 kHz) * Audio DAC: 16-bit Linear Stereo DAC (Sampling frequency: 48 kHz to 8 kHz) * Tone generator: Supports 16 DTMF tones * Mono MIC amplifier: Differential amplifier * Stereo headphone amplifier: 22 mW (32 Ohm load,THD+N=0.5%) * Mono receiver amplifier: 60 mW (32 Ohm BTL load,THD+N=1%) * Mono speaker amplifier: 300 mW (8 Ohm BTL load,THD+N=1%) * Microphone bias supply: Output Voltage=2.2V * PLL: Reference clock=32.768 kHz * Jack detect: Input 200 kOhm pull-up 5.8.2 Block Diagram Power supply * Digital: 2.8V (VDD) * Analog: 2.8V(VDDANA) * Speaker Amplifier: 3.6V[Battery Voltage level] (VBSP) * Receiver Amplifier: 2.8V (VDDHP) * Headphone Amplifier: 2.8V (VDDHP) * PLL: 2.8V (VDDPLL) 44 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 Figure 5-22. CODEC Block Diagram VSSANA CODEC Block VDDANA TONE/DTMF BLOCK SMICPON SMICBIAS TNG1(3:0) -15 to 0dB 1dB step 0.1uF MUTESMIC ATT TNG3(2:0) -42 to 0dB 6dB step 0.1uF SMICBIAS TONE1 FREQSEL(4:0) ATT 1uF 1k (Note) MICPON TONE2 TNG2(3:0) -15 to 0dB 1dB step MICBIAS MICBIAS MICAG(3:0) 0 to 30dB step 2dB 0.1uF MUTEMIC 1uF MICDG(4:0) MUTE ,-10 to 20dB 1dB step VTTNSW VBCKO ATT MICP +0dB DRIVER AMP VOICE ADC Micro phone 1uF MICM delta-Sigma Modulator 1k (Note) 1k (Note) FS=2Vpp VLRCKO DIN VOICE CODEC Decimation Filter Micro phone SMICP 1uF TNCON SMICM ATT 1k (Note) DSP I/F SIDE TONE VRTNSW DOUT ATT MUTEDRV MUTESIDE SIDEDG(5:0) -62dB to 0dB 1dB step Digital Filter SPOP +6dB delta-Sigma Modulator VOICE DAC LPF SPOM 8ohm FS=1.5Vpp RECDG(4:0) MUTE,-30 to 0dB 1dB step RECOP +6dB MIXER VASEL AUDIO D/A CONVERTER MUX BCKIO ATT ALRCKIO Serial Interface DIN Control Interface AFORMAT(1:0) ACLKSEL IFEN PLL VDDPLL VSSPLL AUDIO DAC Lch delta-Sigma Modulator AUDIO DAC Rch HPOL AUL 47uF LPF AUR +0dB RO HPOR FS=1.5Vpp 32ohm DATTR(5:0) MUTE,- 62 to 0dB 1dB step Reference Circuit VCAP 0.1uF 0.1uF TONE GENERATOR VOICE CODEC Interrupt Deglitch 200kohm JKDETI JKDETO AUDIO D/A CONVERTER AUDIO PLL AVREF VCOM 1 msec x4 VOICE PLL 32ohm DRVAG(4:0) -40.5 to 6dB step1.5dB VFS VPLLSRC VDIVN/M(11:0) VPLLPON From RTC ACAP +0dB LO LPF MUTEDA ATT 32ohm 47uF delta-Sigma Modulator FS=1.5Vpp Digital Filter RECOM VO DATTL(5:0) MUTE,-62 to 0dB 1dB step ABCKIO LRCKIO VOLUME VBSP GNDSP 1uF VDDHP AFS(2:0) APLLSRC ADIVN/M(11:0) APLLPON VSSHP 0.1uF CKIN CKOUT MODECO(3:0) Note: The value of resistance must be determined depending on the specification of the microphone which is used. When power analog CODEC (VDDANA), it is also required to supply power to digital CODEC (VDD). 45 6329A-PMAAC-12-Aug-07 5.8.3 Voice Codec * 16-bit Linear CODEC * Sampling frequency: 8 kHz and 16 kHz * Interface: IIS * Data format: Linear * Transmit channel: 1ch * Inputs: 2ch (MICP/MICM, SMICP/SMICM) * Outputs: Receiver, Stereo Headphone, Speaker * Internal Tone generator: DTMF/Single Tone * Mode: Master * Level Diagram: Analog Input=2.0Vpp -> DOUT Output=3.17dBm0 DIN Input=0dBFS -> Analog Output=1.5Vpp * TONE DATA MIX Function: Mix of TONE DATA and VOICE DATA is controlled by register set * Attenuator: TX System: MUTE, -10dB to 20dB / 1dB step RX System: MUTE, -30dB to 0dB / 1dB step * SIDE TONE: Loop-back of TX side to RX side (MUTE,-62dB to 0dB) * Smoothing Gain control: Gain changes to the current set value by Smoothing Gain control at 1dB/fs - Available in TX System, RX System and SIDE TONE 5.8.4 Audio DAC * DAC: 16-bit Linear Stereo DAC * Sampling frequency: 48 kHz, 44.1 kHz, 32 kHz, 24 kHz, 22.05 kHz, 16 kHz, 11.025 kHz, 8 kHz * Interface Data format: IIS, LJF, RJF * Interface Mode: Master and Slave * Level Diagram: DIN Input=3.17dBm0 -> Analog Output=1.5Vpp * Outputs: Receiver, Stereo Headphone, Speaker * Attenuator: MUTE,-62dB to 0dB / 1dB step * Smoothing Gain control: Gain changes to the current set value by Smoothing Gain control at 1dB/fs * Available in Lch and Rch 5.8.5 Tone Generator * 16 DTMF tones: DTMF Low tone is 697,770, 852 or 941Hz. - DTMF High tone is 1209,1336, 1477 or 1633Hz. * 2 programmable tones: From 0Hz to 3992.1875Hz - Frequency of programmable tone1/2 = 7.8125Hz x PTN1/2 can be generated independently * Software start: Writing the register (TNCON bit) via SPI starts tone generating * Hardware stop: Internal programmable hardware timer stops tone generating. The range of the time is from 80ms to 200ms (default 100ms) 46 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 * Gain Control: Gains of TONE1 and TONE2 in Tone generator are individually settable. After mixing TONE1 and TONE2, the gain of TONE3 is settable. 5.8.6 Analog Control * Mode Control: Driver AMP (Receiver AMP/ Speaker AMP/ Headphone AMP) - Power-down / Stand-by - Mono/ Stereo * Mute Control: MICAMP, SMICAMP Mute - DRIVER amplifier Mute * Gain Control: MIC-Gain: 0 to 30dB/ Step 2dB Driver-Gain -40.5 to 6dB/ Step 1.5dB 5.8.7 MICBIAS, SMICBIAS MICBIAS and SMICBIAS consist of Power supply, Error amplifier, Driver transistor and Resistor set for output voltage setting. ON/OFF of MICBIAS and SMICBIAS is controllable by register set. The regulator has an internal sink transistor. Figure 5-23. MICBIAS, SMICBIAS MICBIAS (SMICBIAS) VDDANA 0.1uF MICBIAS (SMICBIAS) VREF 1:ON 0:OFF NchTr MICPON (SMICPON) VSSANA 5.8.8 PLL There are two types of PLL: PLL for Voice CODEC and PLL for Audio DAC. It provides the clock corresponding to the register-set sampling frequency by regulating the reference clock.Power down control of PLL for Voice CODEC and PLL for Audio DAC can be operated independently. When Power down control of PLL for Voice is set, Digital Voice codec block also goes to powerdown mode. When Power down control of PLL for Audio is set, Digital Audio DAC block also goes powerdown mode. 47 6329A-PMAAC-12-Aug-07 5.8.9 Jack Detector AT73C206 integrates an input port (with 200 kOhm of pull-up resistor) and an output port for detecting headset insertion. The detection signal will be output through the output port after perform chattering rejection (1ms x 4). When the insertion/removal of the headset jack is detected, AT73C206 will generate an interrupt. Permit/prohibit of the interrupt is controllable by register. 5.8.10 5.8.10.1 Interface Timing Data Format Voice Interface Timing Figure 5-24. Voice Interface Timing LR C KIO tB LR B C KIO tA D S tA D H D IN tB A D O DO UT Operating Conditions (unless otherwise specified): VDD=2.8V, Ta = 25 C, fs:16 kHz, 8 kHz Table 5-26. Voice Interface Electrical Characteristics Parameter Min Typ Max 32* fs Unit BCKIO Frequency tBCLK LRCKIO Delay Time tBLR BCKIO falling -10 DIN Setup Time tADS BCKIO rising 50 ns DIN Hold Time tADH BCKIO rising 50 ns DOUT Delay Time tBADO BCKIO falling - Note: 48 Condition kHz 100 50 ns ns fs: 16kHz, 8kHz AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 5.8.10.2 Voice Interface Data Format Linear Figure 5-25. Voice Interface Data Format: IIS Format LRCKIO Lch Rch BCKIO DOUT D15 D14 D1 D0 D15 DIN D15 D14 D1 D0 D15 Figure 5-26. Voice Interface Data Format: Left justify Format LRCKIO Lch Rch BCKIO DOUT D15 D14 D1 D0 D15 D14 DIN D15 D14 D1 D0 D15 D14 49 6329A-PMAAC-12-Aug-07 5.8.10.3 Audio Interface Timing - Slave and Master Modes Figure 5-27. Audio Interface Timing (Slave mode) LRCKIO tBLR BCKIO tADS tADH DIN Operating Conditions (unless otherwise specified) VDD =2.8V, Ta = 25 C. Table 5-27. Audio Interface (Slave mode) Electrical Characteristics Parameter Conditions Min Typ Max Unit 32*fs 64*fs kHz 100 ns BCKIO Frequency tBCLK LRCLKO Delay Time tBLR BCKIO falling -100 DIN Setup Time tADS BCKIO rising 50 ns DIN Hold Time tADH BCKIO rising 50 ns Note: fs: 48 kHz, 44.1 kHz, 32 kHz, 24 kHz, 22.05 kHz, 16 kHz, 11.025 kHz, 8 kHz Figure 5-28. Audio Interface Timing (Master mode) LRCKIO tBLR BCKIO tADS tADH DIN Operating Conditions (unless otherwise specified): VDD=2.8V Ta = 25 C. Table 5-28. Audio Interface (Master mode) Electrical Characteristics Parameter Min Typ Max 64*fs Unit BCKIO Frequency tBCLK LRCKIO Delay Time tBLR BCKIO falling -10 DIN Setup Time tADS BCKIO rising 50 ns DIN Hold Time tADH BCKIO rising 50 ns Note: 50 Conditions kHz 100 ns fs: 48 kHz, 44.1 kHz, 32 kHz, 24 kHz, 22.05 kHz, 16 kHz, 11.025 kHz, 8 kHz AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 5.8.10.4 Audio Interface Format - IIS, Left Justify, Right Justify Figure 5-29. Audio Interface Format - IIS Lch LRCKIO Rch BCKIO DIN D15 D14 D1 D15 D0 D14 D1 D0 Figure 5-30. Audio Interface Format - Left Justify Format Rch Lch LRCKIO BCKIO DIN D15 D14 D1 D15 D0 D14 D1 D0 Figure 5-31. Audio Interface Format - Right justify Format Rch Lch LRCKIO BCKIO DIN D1 D0 D15 D14 D1 D0 D15 D14 D1 D0 where: LRCKIO: Audio interface L/R select input/output BCKIO: Audio interface serial bit clock input/output DIN: Audio interface serial data input Note: Input/output mode of LRCKIO and BCKIO pins is controllable by register set. (Slave Mode/Master Mode) 51 6329A-PMAAC-12-Aug-07 5.8.11 Audio Electrical Characteristics Operating Conditions (unless otherwise specified): VDD=2.8V, VDDANA = 2.8V, VBSP=3.6V, VDDHP=2.8V, VDDPLL=2.8V, Ta = 25 C. Table 5-29. Electrical Characteristics Parameter Conditions Digital Power Supply Current Min Typ Max Units Audio playback mode, fs=48kHz 12 15 mA Analog Power Supply Quiescent Current No Load, No Signal 12 15 mA Speaker Driver Quiescent Current No Load, No Signal 3 6 mA Digital Power down Current 1.0 5 uA Analog Power down Current 0.5 3 uA Micamp Input impedance 60 kohm Headphone Amplifier Output Power THD+N = 0.5%, fOUT = 1kHz RL=32 ohm 22 mW Mono Receiver Amplifier Output Power THD+N = 1%, fOUT = 1kHz RL=32 ohm 60 mW Mono Speaker Amplifier Output Power THD+N = 1%, fOUT = 1kHz RL=8ohm 300 mW Headphone Amplifier Total Harmonic Distortion + Noise1 fIN = 1kHz, POUT = 16 mW RL=32 ohm Audio DAC path 0.01 % Mono Receiver Amplifier Total Harmonic Distortion + Noise fIN = 1kHz, POUT = 40 mW RL=32 ohm Audio DAC path 0.01 % Mono Speaker Amplifier Total Harmonic Distortion + Noise fIN = 1kHz, POUT = 200 mW RL=8 ohm 0.2 % Signal-to-Noise Ratio (Voice Playback Path) Signal=0dBFS@1 kHz; Noise=digital zero, A-weighted; 0dB gain setting fs = 8KHz 85 dB Signal-to-Noise Ratio (Audio Playback Path) Signal=0dBFS@1 kHz; Stereo Load; Noise=digital zero, A-weighted; 0dB gain setting 90 dB Dynamic Range (Voice Playback Path) Signal=-60dBFS@1 kHz; Stereo Load; A-weighted; 0dB gain setting fs = 8 kHz 85 dB Dynamic Range (Audio Playback Path) Signal=-60dBFS@1 kHz; Stereo Load; A-weighted; 0dB gain setting fs = 44.1kHz 90 dB 52 Comment AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 Table 5-29. Electrical Characteristics Parameter Conditions Signal-to-Noise Ratio (Voice ADC Path) Reference signal = 0dBFS; MICP, MICM terminated with 2uF to ground; 20 dB MICAMP gain setting fs = 8 kHz 75 dB Dynamic Range (Voice ADC Path) MICP, MICM terminated with Signal=-60dBFS@1 kHz 0dB MIC preamp gain setting fs = 8 kHz 75 dB Stereo Channel-to-Channel Crosstalk fS=44.1 kHz, fIN=1 kHz sine wave at -3dBFS -75 dB Maximum Voltage Differential MIC Input Voltage 0dB MIC Preamp gain setting 2 VP-P MICBIAS Output Voltage 10uA IOUT IOUTmax Note: Min 2.1 Typ 2.2 Max 2.3 Units Comment V Conditions of Dynamic Range: +60dB SINAD at -60dB FS digital input. 53 6329A-PMAAC-12-Aug-07 5.8.11.1 Voice ADC CODEC Electrical Characteristics Operating Conditions (unless otherwise specified) VDD=2.8V, VDDANA = 2.8V, VBSP=3.6V, VDDHP=2.8V, VDDPLL=2.8V, Ta = 25 C. Table 5-30. Voice ADC Electrical Characteristics Parameter Conditions Min Max Unit Absolute Gain 0dBm0@1020Hz, Gain=0dB -1 Typ 1 dB 3dBm0 to 40dBm0 -0.3 0.3 dB -40dBm0 to 55dBm0 -0.5 0.5 dB Comment -10dBm0@1020Hz Gain Tracking 73 S/N 8kHz: C-Message 83 dB 1020Hz, Analog Gain=0dB 3dBm0 1020Hz, Analog Gain=0dB THD+N BW= C-Message 3dBm0 -50 -40 dB 0dBm0 -50 -40 dB -5dBm0 -60 -50 dB -10dBm0 -60 -50 dB -20dBm0 -50 -40 dB -30dBm0 -45 -35 dB -40dBm0 -40 -30 dB Speech Delay Idle Channel Noise8kHz:CMessage 54 0.5 Analog Gain=0dB ms -86 dBV AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 5.8.11.2 Voice DAC CODEC Electrical Characteristics Operating Conditions (unless otherwise specified) VDD=2.8V, VDDANA = 2.8V, VBSP=3.6V, VDDHP=2.8V, VDDPLL=2.8V, Ta = 25 C. Table 5-31. Voice DAC Electrical Characteristics Parameter Conditions Min Absolute Gain 0dBm0@1020Hz, Gain=0dB Typ Max Unit -1 1 dB 3dBm0 to 40dBm0 -0.3 0.3 dB -40dBm0 to 55dBm0 -0.5 0.5 dB 1020Hz, Gain=0dB 3dBm0 73 Comment -10dBm0@1020Hz, Gain=0dB Gain Tracking S/N HPOL Output 8kHz: C-Message 83 dB 1020Hz, Gain=0dB THD+N HPOL Output 8kHz:C-Message 3dBm0 -60 -50 dB 0dBm0 -60 -50 dB -5dBm0 -70 -60 dB -10dBm0 -70 -60 dB -20dBm0 -60 -50 dB -30dBm0 -50 -40 dB -40dBm0 -40 -30 dB Speech Delay Idle Channel Noise 8kHz:C-Message 0.5 HPOL Output ms -90 dBV 55 6329A-PMAAC-12-Aug-07 5.8.11.3 Audio DAC Electrical Characteristics Operating Conditions (unless otherwise specified): VDD=2.8V, VDDANA=2.8V, VBSP=3.6V, VDDHP=2.8V, VDDPLL=2.8V, Ta = 25 C, Gain:0dB, fs =44.1kHz Table 5-32. Audio DAC Electrical Characteristics Parameter Conditions Min Absolute Gain -3dBFS@1020Hz, Gain=0dB Typ Max Unit -1 1 dB 0dBFS to 35dBFS -0.3 0.3 dB -35dBFS to 50dBFS -0.5 0.5 dB Comment -10dBFS@1020Hz Gain Tracking 0dBFS@1020Hz S/N 84 90 A-Weight dB Gain=0dB THD+N 0dBFS@1020Hz -80 -70 BW=20Hz to 20kHz Crosstalk -75 dB Operating Conditions (unless otherwise specified) VDD=2.8V, VDDANA = 2.8V, VBSP=3.6V, VDDHP=2.8V, VDDPLL=2.8V, Ta = 25 C. Table 5-33. Audio DAC Digital Filter Electrical Characteristics Parameter Conditions Pass Band Pass Band Ripple Min Typ Max 0.445 0Fs to 0.445 fs Stop Band -0.3 Unit Comment fs 0 0.3 dB 0.555 fs Stop Band attenuation 0.555 fs to 1 fs -50 dB 48/44.1/32kHz Stop Band attenuation 0.555 fs to 1 fs -75 dB 24/22.05/16/11.025/8 kHz 56 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 5.8.11.4 TONE Generator Electrical Characteristics Operating Conditions (unless otherwise specified) VDD=2.8V, VDDANA = 2.8V, VBSP=3.6V, VDDHP=2.8V, VDDPLL=2.8V, Ta = 25 C. Table 5-34. Tone Generator Electrical Characteristics Parameter Conditions Min Signal Output Level Gain=0dB Setting Frequency Deviation 50Hz to 3.4kHz THD+N HPOL(ToneGain=0dB) Typ Max 3.17 -2 Unit Comment dBm0 2 Hz -40 dB 5.8.11.5 MICBIAS, SMICBIAS Electrical Characteristics Operating Conditions (unless otherwise specified) VDD=2.8V, VDDANA = 2.8V, VBSP=3.6V, VDDHP=2.8V, VDDPLL=2.8V, Ta = 25 C. Table 5-35. MIC(SMIC)BIAS Electrical Characteristics Symbol Parameter Conditions Min Typ Max Unit VOUT Output Voltage 10uA IOUT IOUTmax 2.1 2.2 2.3 V IOUT Output Current 1 mA Iss Consumption Current on Operation-mode IOUT=0mA 200 Istnby Consumption Current on OFF-mode MICBIAS on OFF-mode 0.01 RR Ripple Rejection Rate 2.8V+0.1Vp-p IOUT=IOUTmax/2=217Hz 65 dB VOUT/ topt Output Voltage Temperature Efficiency -30 C Ta 85 C 100 ppm/ en Output Noise Level BW=20Hz to 6.6kHz(with C-Message), IOUT=IOUTmax/2 10 uVrms tu Rise Time Cout=0.1uF, IOUT=IOUTmax, VOUT > 90% 100 us td Fall Time Cout=0.1uF, IOUT=0mA, VOUT < 0.5V 500 us uA 1 uA 57 6329A-PMAAC-12-Aug-07 5.8.12 CLK Voice PLL generates the clock for Voice block. Audio PLL generates the clock for Audio block. 5.8.12.1 Block Diagram Figure 5-32. Clock Block Diagram 32.768kHz XIN OSC 32.768KHz XOUT CKIN Voice PLL rVPLLSRC Divide factor Select PLL 32.768KHz Voice Block CKIN rVPLLPON powerdown rAFS Audio PLL rAPLLSRC Divide factor Select PLL 32.768KHz 32.768KHz Audio Block CKIN div/Mux rAPLLPON powerdown CKOUT Figure 5-33. PLL Block Diagram VCAP Voice PLL Generated Clock for Voice ACAP Audio PLL Generated Clock for Audio 58 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 5.8.13 Voice PLL The internally generated clock frequency for voice PLL should be: fv=53.248MHz. If input clock=XIN (When XIN selected, it is automatically multiplied by 1625.) The internally generated clock fv= 32.768kHz x 1625=53.248MHz. If input clock = CKIN, the internally generated clock can be calculated by: fv=CKIN x MV NV (MV= VDIVM +1, NV=VDIVN+1) Example: If CKIN=26 MHz, fv=26MHz x 5.8.14 256 125 = 53.248MHz Audio PLL The internally generated clock frequency for Audio PLL should be: fA = fs x 512 If input clock = XIN (When XIN selected, it is automatically multiplied by AFS bit value). Table 5-36. Audio PLL (Input clock = XIN) fs (kHz) NA MA Internally generated fA(MHz) 48 1 750 24.576 44.1 1 689 22.577152 32 1 500 16.384 Note: MA = ADIVM + 1, NA = ADIVN + 1 If input clock=CKIN (This does not exist in AFS bit.) fA=CKIN x MA NA Example: If CKIN = 26MHz: Table 5-37. Audio PLL (Input clock = CKIN) fs (kHz) NA MA Internally generated fA(MHz) 48 347 328 24.576369 44.1 114 99 22.578947 32 411 259 16.384428 Note: Set each register value considering the relation between the main system clock and Audio codec clock when the Audio codec clock needs to synchronize with the main system clock. Note: Sampling Rate Setting: When using CKIN for input clock, set NV(NA) at CKIN / NV(NA) > 30 kHz. 59 6329A-PMAAC-12-Aug-07 5.8.15 Clock Output Function Each clock can be output through CKOUT pin. The output clock is selectable by CKOSEL bit. Figure 5-34. Clock Output Diagram 32.768kHz CKOUT M U X div. fA CKOSEL[2:0] 5.8.16 PLL 5.8.16.1 AUDIO PLL/VOICE PLL Electrical Characteristics: VDDPLL=2.8V, Ta = 25 C. Table 5-38. PLL Electrical Characteristics Parameter Conditions Min Input Frequency CKIN pin 0.1 Output jitter Typ Unit 30 MHz Comment XIN pin 32.768 KHz Short term, 200 ps No impact on Audio DAC No impact on Audio DAC Output Duty Cycle 40 Lock Time 50 60 % 5 10 ms 3 mA Supply Current (Voice) Input Clock = 19.2 MHz 1 Supply Current (Audio) Input Clock = 19.2 MHz 1 60 Max mA AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 5.9 Keypad LED KEYLED driver has Nch open-drain type large current output pin. And, the LED ON/OFF is controllable by register set and the brightness is settable by external current control resistor 5.9.1 Block Diagram Figure 5-35. Keypad LED Driver Block Diagram VIN KEYLED Keypad LED KLEDEN GNDKEY Table 5-39. Keypad LED Driver Pin Description Pin Name I/O Function KEYLED O KEYLED driver GNDKEY G GND only for KEYLED driver 5.9.2 Explanation of Operation KEYLED ON/OFF is controllable by KLEDEN bit. When KLEDEN bit is "1", KEYLED is enabled. 5.9.3 Electrical Characteristics VIN=3.6V, Ta = 25 C. Table 5-40. Keypad LED Driver Electrical Characteristics Symbol Parameter Condition VOL Output voltage "L" Level IOZ Output OFF leakage Min Typ Max Unit Iout = -100 mA 0.5 V VIN=04.2V 1 uA 61 6329A-PMAAC-12-Aug-07 5.10 General Purpose I/O AT73C206 supports 4-channel GPIO. All GPIO input/output are controlled by register configure independently. 5.10.1 Block Diagram Figure 5-36. General Purpose IO Block Diagram VDDIO GPOSET[1:0] OEB P0/AN0 P1/AN1 GPIMON[1:0] GPAIN[1:0] GPIODIR[1:0] to ADC Block VDDIO GPOSET[3:2] OEB P2 P3 GPIMON[3:2] GPIODIR[3:2] 5.10.2 Explanation of Operation The GPIO has 4-channel I/O function. With pin control, it is possible to control input or output setting of each channel individually. When it is set in output modeGPIODIR= "1", the output data, which is written in GPOSET register, is output. When it is set in input mode GPIODIR= "0", the pin level is readable from GPIMON register. I/O voltage varies by VDDIO voltage. Set GPAIN= "0" when connect analog signal to P0/AN0 and P1/AN1. Then, GPIODIR becomes invalid and GPIO starts operating in analog input mode. And, the GPIMONI will be set to "0". 62 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 Table 5-41. GPIO Truth Table Reading Register Setting Register GPAIN GPIODIR GPOSET GPIO Terminal GPIMON 0 (Analog input mode) Don't care Don't care Analog signal input -> ADC 8-bit L 1 (Output mode) 1 H 1 0 L 0 H 1 1 0 (Input mode) Don't care L Hi-z Note: 0 (1) X 1. Hi-z is prohibited. 63 6329A-PMAAC-12-Aug-07 5.11 IRQ Monitor With IRQ monitor, AT73C206 can read all the permitted interrupt request flags coming from different functional blocks When interrupt occurred, CPU is informed it by asserting IRQB and read register rIRQMON register to identify which block is producing the interrupt. The rIRQMON is read only register. NOR gate signal of each permitted interrupt request flags will be output from IRQB. Figure 5-37. IRQ Monitor Block Diagram JACKBIR JKBIREN JACKIR JKIREN ADPBIR ADPBIREN ADPIR ADPIREN IRQB STPIR STPIREN ADCEC IR ADC IREN CTFG CT[2:0] WAFG WALE DAFG WAFGM DAFGM ADCECIRM CTFGM ADPIRM STPIRM JACKIRM ADPBIRM JACKBIRM DALE rIRQMON 64 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 5.12 CPU Interface AT73C206 employs a synchronous SPI for interfacing to CPU. 5.12.1 SEN and Data Read Write Timing AT73C206 interfaces with CPU using 4 signal lines. SDI is data input (Write) from CPU and SDO is data output (Read) to CPU. SCLK is synchronous clock and CPU outputs data at falling edge of SCLK and inputs at rising edge of SCLK. AT73C206 CPU interface consists of Address decoder, Address latch, Shift register, Control circuit and Clock counter. Refer to the diagram below. Figure 5-38. CPU Interface Configuration CE Address decoder Address latch SDI 5.12.2 WDATA[7:0] Shift register SDO Shift register SEN Control circuit SCLK Clock counter Register Block RDATA[7:0] WB Data Transmission Format An "H" to "L" transition on SEN line asserts data transmission and an "L" to "H" transition deasserts data transmission. The data is transmitted by byte. The first 7 bits contains register address and the last bit determines Read or Write. When writing mode, the following 1 byte will be the data. When read mode, the following 8-bit is ignored and an appointed address data (8bit) is output from SDO pin. CPU needs to deassert SEN everytime after read and write data. Figure 5-39. Writing Data Writing data SEN SCLK SDI SDO A6 Hi-Z A5 A4 A3 A2 A1 A0 0 D7 D6 D5 D4 D3 D2 D1 D0 Hi-Z 65 6329A-PMAAC-12-Aug-07 Figure 5-40. Reading Data Reading data SEN SCLK SDI SDO 5.12.3 A5 A4 A3 A2 A1 A0 1 Hi-Z Don't care D7 D6 D5 D4 D3 D2 D1 D0 Hi-Z Target Electrical Characteristics AC characteristics: Ta = -30 C to 85 C Table 5-42. 66 A6 AC Characteristics Symbol Parameter Min Typ Max tcymc CLK cycle time 100 ns twhmc CLK cycle high interval 50 ns twlmc CLK cycle low interval 50 ns trmc CLK rise time 20 ns tfmc CLK fall time 20 ns tws Write data setup time 20 ns twh Write data hold time 10 ns trd Read data delay time trh Read data hold time tdre Read data output enable delay time 25 ns tdrd Read data output disable delay time 25 ns tses Time from SEN "H" to a SCK input 50 ns tseh SEN "H" hold time 100 ns tsel SEN Minimum "L" time 100 ns 25 0 Units ns ns AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 Figure 5-41. CPU Interface Timing Chart tseh tses SEN tcymc trmc tfmc twhmc tsel twlmc SCLK tws A7 SDI twh A5 A0 SEN SCLK tdre SDO trd tdrd trh D0 D7 67 6329A-PMAAC-12-Aug-07 6. Registers Name Address Register R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 00 LDOEN R/W - LDO10ON LDO9ON LDO8ON LDO7ON LDO6ON LDO5ON LDO4ON 01 LDO1CNT R/W OPMODEV - - OPMODE1 - - LDO1DAC[1] LDO1DAC[0] 02 LDO3CNT R/W - OPMODE3 - - LDO3DAC[1] LDO3DAC[0] 03 LDO4CNT 04 RESDET RESDET DAC[1] DAC[0] R/W - - - - - - LDO4DAC[1] LDO4DAC[0] LDO5CNT R/W - - - - - - LDO5DAC[1] LDO5DAC[0] 05 LDO8CNT R/W - - - - - - - LDO8SEL 06 LEDCNT R/W D7 D6 D5 D4 D3 D2 D1 D0 07 CHGCNT1 R/W - - TP[1] TP[0] RPC[2] RPC[1] RPC[0] CHGONB 08 CHGCNT2 R/W - - - - ADPBIREN ADPIREN ADPBIR ADPIR 09 ADCCNT R/W - - BUFEN BTMEN ADCECIR ADCIREN ADSEL[1] ADSEL[0] 0A ADSTART R/W - - - - - - ADEND ADSTART 0B ADCDATA R ADDATA[3] ADDATA[2] ADDATA[1] ADDATA[0] Keypad LED 0C KLED R/W - - - - - - - KLEDEN CLK 0D CLKCNT R/W - - - - - STPIREN STPCLKIR CK32EN 0E IRQMON1 R - - - - JACKBIRM JACKIRM ADPBIRM ADPIRM 0F IRQMON2 R - - - CTFGM WAFGM DAFGM 10 SEC R/W - S40 S20 S10 S8 S4 S2 S1 11 MIN R/W - M40 M20 M10 M8 M4 M2 M1 12 HOUR R/W - - H20PA H10 H8 H4 H2 H1 13 WEEK R/W - - - - - W4 W2 W1 14 DAY R/W - - D20 D10 D8 D4 D2 D1 15 MONTH R/W - - - MO10 MO8 MO4 MO2 MO1 16 YEAR R/W Y80 Y40 Y20 Y10 Y8 Y4 Y2 Y1 17 RTCADJ R/W - F6 F5 F4 F3 F2 F1 F0 18 WAL_MIN R/W - WM40 WM20 WM10 WM8 WM4 WM2 WM1 19 WAL_HOUR R/W - - WH20PA WH10 WH8 WH4 WH2 WH1 1A WAL_WEEK R/W - WW6 WW5 WW4 WW3 WW2 WW1 WW0 R/W - DM40 DM20 DM10 DM8 DM4 DM2 DM1 DAL_HOUR R/W - - DH20PA DH10 DH8 DH4 DH2 DH1 LDO White LED Driver Charger ADC ADDATA[7] ADDATA[6] ADDATA[5] ADDATA[4] IRQ CLKSTPM ADCECIRM RTC 1B 1C 68 DAL_MIN 1D - - - - - - - - - - 1E RTCCNT1 R/W WALE DALE Z1224 SCRA TEST CT2 CT1 CT0 1F RTCCNT2 R/W - XSTZ PON SCRB CTFG WAFG DAFG AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 Audio/Voice STATUS Addres s Register R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 20 PWRCNT R/W - - SMICPON MICPON - - DAUON DVOON 21 VMODE R/W VASEL MSSEL IFEN VFS - - - VFORMAT 22 AMODE R/W - AFS[2] AFS[1] AFS[0] - - 23 OMODE R/W - - - - 24 MUTE R/W - - MUTEDA MUTESIDE - 25 DRVAG R/W - - - DRVAG[4] DRVAG[3] DRVAG[2] DRVAG[1] DRVAG[0] 26 MICAG R/W - - - - MICAG[3] MICAG[2] MICAG[1] MICAG[0] 27 MICDG R/W - - - MICDG[4] MICDG[3] MICDG[2] MICDG[1] MICDG[0] 28 Reserved R/W - - - - - - - - 29 Reserved R/W - - - - - - - - 2A SIDEDG R/W - - 2B RECDG R/W - - - RECDG[4] RECDG[3] RECDG[2] RECDG[1] RECDG[0] 2C DATTL R/W - - DATTL[5] DATTL[4] DATTL[3] DATTL[2] DATTL[1] DATTL[0] 2D DATTR R/W - - DATTR[5] DATTR[4] DATTR[3] DATTR[2] DATTR[1] DATTR[0] 2E Reserved R/W - - - - - - - - 2F TNCNT R/W TNCON VRTNSW VTTNSW - 30 TNSET R/W TNG3[2] TNG3[1] TNG3[0] 31 TNGAIN R/W TNG2[3] TNG2[2] TNG2[1] TNG2[0] TNG1[3] TNG1[2] TNG1[1] TNG1[0] 32 PTN1SETL R/W PTN1[7] PTN1[6] PTN1[5] PTN1[4] PTN1[3] PTN1[2] PTN1[1] PTN1[0] 33 PTN1SETH R/W - - - - - - - PTN1[8] 34 PTN2SETL R/W PTN2[7] PTN2[6] PTN2[5] PTN2[4] PTN2[3] PTN2[2] PTN2[1] PTN2[0] 35 PTN2SETH R/W - - - - - - - PTN2[8] 36 APLLCNT R/W APLLPON CKOSEL[2] CKOSEL[1] CKOSEL[0] - - - APLLSRC 37 VPLLCNT R/W VPLLPON - - - - - - VPLLSRC 38 ADIVNL R/W ADIVN[7] ADIVN[6] ADIVN[5] ADIVN[4] ADIVN[3] ADIVN[2] ADIVN[1] ADIVN[0] 39 ADIVNH R/W - - - - ADIVN[11] ADIVN[10] ADIVN[9] ADIVN[8] 3A ADIVML R/W ADIVM[7] ADIVM[6] ADIVM[5] ADIVM[4] ADIVM[3] ADIVM[2] ADIVM[1] ADIVM[0] 3B ADIVMH R/W - - - - ADIVM[11] ADIVM[10] ADIVM[9] ADIVM[8] 3C VDIVNL R/W VDIVN[7] VDIVN[6] VDIVN[5] VDIVN[4] VDIVN[3] VDIVN[2] VDIVN[1] VDIVN[0] 3D VDIVNH R/W - - - - VDIVN[11] VDIVN[10] VDIVN[9] VDIVN[8] 3E VDIVML R/W VDIVM[7] VDIVM[6] VDIVM[5] VDIVM[4] VDIVM[3] VDIVM[2] VDIVM[1] VDIVM[0] 3F VDIVMH R/W - - - - VDIVM[11] VDIVM[10] VDIVM[9] VDIVM[8] 40 STMON R - - - - AFORMAT[ AFORMAT[ 1] 0] MODECO[3 MODECO[2 MODECO[1 MODECO[0 ] ] ] ] MUTEDRV MUTESMIC MUTEMIC SIDEDG[5] SIDEDG[4] SIDEDG[3] SIDEDG[2] SIDEDG[1] SIDEDG[0] TNTIME[3] TNTIME[2] TNTIME[1] TNTIME[0] FREQSEL[4 FREQSEL[3 FREQSEL[2 FREQSEL[1 FREQSEL[0 ] ] ] ] ] - JACKMON CLKSTPMO ONSWMON N 69 6329A-PMAAC-12-Aug-07 GPIO JACK Notes: 41 GPIODIR R/W - - GPAIN1 GPAIN0 GPIODIR3 GPIODIR2 GPIODIR1 GPIODIR0 42 GPOSET R/W - - - - GPOSET3 GPOSET2 GPOSET1 GPOSET0 43 GPIMON R - - - - GPIMON3 GPIMON2 GPIMON1 GPIMON0 44 JACKCNT R/W - - - - JKBIREN JKIREN JACKBIR JACKIR 1. Don't set "1" to reserved bits. 2. Don't write "1" or "0" to undefined registers. 3. The registers 07h08h are power supplied from CHGADP. When not connected to AC adaptor, these registers(07h08h)will be cleared. 4. The registers 10h1Fh are power supplied from VSB. When there is no sub-battery, these registers(10h1Fh ) will be cleared. 5. The registers 20H3Fh are power supplied from VDD. If turn off LDO10, registers 20H3Fh will be cleared. At this time, writing in these registers will not be available. 6.1 6.1.1 Regulators Registers LDOEN: LDOs Output Control Register (Address 00h) Initial value Bit Symbol R/W Function 1 0 GSP=L GSP=H 7 ----- ----- Reserved ----- ----- ----- ----- 6 LDO10ON R/W LDO10 ON/OFF control bit ON OFF 0 0 5 LDO9ON R/W LDO9 ON/OFF control bit ON OFF 0 0 4 LDO8ON R/W LDO8 ON/OFF control bit ON OFF 0 1 3 LDO7ON R/W LDO7 ON/OFF control bit ON OFF 1 0 2 LDO6ON R/W LDO6 ON/OFF control bit ON OFF 1 1 1 LDO5ON R/W LDO5 ON/OFF control bit ON OFF 0 1 0 LDO4ON R/W LDO4 ON/OFF control bit ON OFF 0 0 70 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 6.1.2 LDO1CNT: LDO1 Control Register (Address 01h) Bit Symbol R/W Function 1 0 Initial value 7 OPMODEV R/W VREF ECO/Normal control bit ECO Mode Normal Mode 0 6-5 ----- ----- Reserved ----- ----- ----- 4 OPMODE1 R/W LDO1 ECO/Normal control bit ECO Mode Normal Mode 0 3-2 ----- ----- Reserved ----- ----- ----- 1-0 LDO1DAC[1:0] R/W Setting the output voltage to LDO1 See the LDO1 output voltage table below (Note) Output voltage for LDO1 LDO1DAC [1:0] Output voltage 11 1.5V 10 1.3V 01 1.0V 00 0.9V Initial value select for LDO1 LDO1SEL LDO1DAC Initial Value H 11 L 10 Note: The Initial value is selectable by LDO1SEL pin. VREF ECO-mode (OPMODEV= "1") is settable only when LDO1 and LDO3 are in ECO-mode (OPMODE1, OPMODE3) and LDO4~10 are disabled. In other case, set it in Normal-mode (OPMODEV= "0"). 71 6329A-PMAAC-12-Aug-07 6.1.3 LDO3CNT: LDO3 Control Register (Address 02h) Initial value Bit Symbol R/W Function 1 0 GSP=L GSP=H 7-6 RESDETDAC[1:0] R/W Setting the RESDET Voltage As below 00 01 5 ----- ----- Reserved ----- ----- ----- 4 OPMODE3 R/W LDO3 ECO/Normal control bit ECO Mode Normal Mode 0 3-2 ----- ----- Reserved ----- ----- ----- 1-0 LDO3DAC[1:0] R/W Setting the output voltage to LDO3 As below 00 01 RESDET detection voltage RESDETDAC [1:0] Detection voltage 11 ----- 10 For 3.0V 01 For 2.8V 00 For 2.5V Output voltage of LDO3 72 LDO3DAC [1:0] Output voltage 11 ----- 10 3.0V 01 2.8V 00 2.5V AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 6.1.4 LDO4CNT: LDO4 Control Register (Address 03h) Bit Symbol R/W Function 1 0 Initial value 7-2 ----- ----- Reserved ----- ----- ----- 1-0 LDO4DAC[1:0] R/W Setting the output voltage to LDO4 As below 00 Output voltage of LDO4 LDO4DAC [1:0] Output voltage 11 3.1V 10 3.0V 01 2.8V 00 1.8V 73 6329A-PMAAC-12-Aug-07 6.1.5 LDO5CNT: LDO5 Control Register (Address 04h) Initial value Bit Symbol R/W Function 1 0 GSP=L GSP=H 7-2 ----- ----- Reserved ----- ----- ----- ----- 1-0 LDO5DAC[1:0] R/W Setting the output voltage to LDO5 As below 10 01 Output voltage of LDO5 6.1.6 LDO5DAC [1:0] Output voltage 11 3.3V 10 3.0V 01 2.8V 00 2.7V LDO8CNT: LDO8 Control Register (Address 05h) Initial value Bit Symbol R/W Function 1 0 GSP=L GSP=H 7-1 ----- ----- Reserved ----- ----- ----- ----- 0 LDO8SEL R/W Setting the output voltage to LDO8 2.8V 1.8V 0 1 74 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 6.2 6.2.1 White LED Driver Register LEDCNT: White LED Brightness (Address 06h) Each sink current of DIN1-4 can be set by the code of D4-D0. Defaults shown in bold. LED Current (mA) Data White LED D7 D6 D5 D4 D3 D2 D1 D0 Charge Pump 25.0 ----- ----- ----- 1 1 1 1 1 ON 24.2 ----- ----- ----- 1 1 1 1 0 ON 23.4 ----- ----- ----- 1 1 1 0 1 ON 22.6 ----- ----- ----- 1 1 1 0 0 ON 21.8 ----- ----- ----- 1 1 0 1 1 ON 21.0 ----- ----- ----- 1 1 0 1 0 ON 20.2 ----- ----- ----- 1 1 0 0 1 ON 19.4 ----- ----- ----- 1 1 0 0 0 ON 18.5 ----- ----- ----- 1 0 1 1 1 ON 17.7 ----- ----- ----- 1 0 1 1 0 ON 16.9 ----- ----- ----- 1 0 1 0 1 ON 16.1 ----- ----- ----- 1 0 1 0 0 ON 15.3 ----- ----- ----- 1 0 0 1 1 ON 14.5 ----- ----- ----- 1 0 0 1 0 ON 13.7 ----- ----- ----- 1 0 0 0 1 ON 12.9 ----- ----- ----- 1 0 0 0 0 ON 12.1 ----- ----- ----- 0 1 1 1 1 ON 11.3 ----- ----- ----- 0 1 1 1 0 ON 10.5 ----- ----- ----- 0 1 1 0 1 ON 9.7 ----- ----- ----- 0 1 1 0 0 ON 8.9 ----- ----- ----- 0 1 0 1 1 ON 8.1 ----- ----- ----- 0 1 0 1 0 ON 7.3 ----- ----- ----- 0 1 0 0 1 ON 6.5 ----- ----- ----- 0 1 0 0 0 ON 5.6 ----- ----- ----- 0 0 1 1 1 ON 4.8 ----- ----- ----- 0 0 1 1 0 ON 4.0 ----- ----- ----- 0 0 1 0 1 ON 3.2 ----- ----- ----- 0 0 1 0 0 ON 2.4 ----- ----- ----- 0 0 0 1 1 ON 1.6 ----- ----- ----- 0 0 0 1 0 ON 0.8 ----- ----- ----- 0 0 0 0 1 ON off ----- ----- ----- 0 0 0 0 0 OFF 75 6329A-PMAAC-12-Aug-07 6.3 6.3.1 Charger Control Registers CHGCNT1 : Charger Control Register1 (Address 07h) Bit Name R/W Function 1 0 Initial value 7-6 ----- ----- Reserved ----- ----- ----- 5-4 TP[1:0] R/W Chip temperature detection threshold As below 01 3-1 RPC [2:0] R/W Rapid Charge current select bits As below 000 0 CHGONB R/W Charger ON/OFF control bit OFF ON 0 * TP1, TP0 (bit5, 4) [W]: Chip temperature detection threshold select bits TP [1:0] Chip temperature detection threshold 11 135 10 115 01 105 00 95 * RPC [2:0] (bit3, 2, 1) [W]: Rapid Charge current select bits 6.3.2 RPC [2:0] Rapid Charge current 111 850 mA 110 800 mA 101 750 mA 100 700 mA 011 650 mA 010 600 mA 001 550 mA 000 500 mA CHGCNT2 : Charger Control Register2 (Address 08h) Bit Name R/W Function 1 0 Initial value 7-4 ----- ----- Reserved ----- ----- ----- 3 ADPBIREN R/W Over voltage adaptor disconnection interrupt enable Enable Disable 0 2 ADPIREN R/W Over voltage adaptor connection interrupt enable Enable Disable 0 1 ADPBIR R Over voltage adaptor disconnection interrupt flag Generated None --- 0 ADPIR R Over voltage adaptor connection interrupt flag Generated None --- 76 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 6.4 6.4.1 A/D Converter Registers ADCCNT: A/D Converter Control Register (Address 09h) Bit Symbol R/W Function 1 0 Initial value 7-6 ----- ----- Reserved ----- ----- ----- 5 BUFEN R/W Buffer enable bit Enable Disable 0 4 BTMEN R/W Battery monitor enable bit Enable Disable 0 3 ADCECIR R/W ADC "End of Conversion" interrupt request bit (1) Generated None 0 2 ADCIREN R/W ADC interrupt enable bit Enable Disable 0 1-0 ADSEL [1:0] R/W ADC input select As below As below 00 Note: 1. This bit can be cleared by writing "0" but can not set flag by writing "1". ADSEL: Selecting ADC input 6.4.2 11 P1/AN1 10 P0/AN0 01 IMONI 00 BATMONI ADSTART: A/D Converter Conversion Start Register (Address 0Ah) Bit Symbol R/w Function 1 0 Initial Value 7-2 ----- ----- Reserved ----- ----- ----- 1 ADEND R End of the AD conversion bit As below 0 0 ADSTART W Start of the AD conversion command As below 0 * ADEND: End of the AD conversion bit 1: AD conversion is completed. This bit is cleared by reading the converted data. * ADSTART: Start of the AD conversion command 1: Start AD conversion This bit is automatically cleared after conversion starts. 77 6329A-PMAAC-12-Aug-07 6.4.3 ADCDATA: Conversion Data Register (Address 0Bh) Bit Symbol R/w Function 1 7-0 ADDATA [7:0] R Conversion Data Conversion Data 78 Result ADC AN0 AN1 IMONI(V) BATMONI(V) 255 VDDIO VDDIO VDDIO VDDIO x 2 0 0.000 0.000 0.000 0.000 0 Initial Value 0 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 6.5 6.5.1 Keypad LED Registers KLED: Keypad LED Control Register (Address 0Ch) Initial value Bit Symbol R/W Function 1 0 GSP=L GSP=H 7-1 ----- ----- Reserved ----- ----- ----- ----- 0 KLEDEN R/W Enable KEYLED Driver ON OFF 0 0 79 6329A-PMAAC-12-Aug-07 6.6 6.6.1 Clock Control Register CLKCNT: Clock Control Register (Address 0Dh) Initial value Bit Symbol R/W Function 1 0 GSP=L GSP=H -3 ----- ----- Reserved ----- ----- ----- ----- 2 STPIREN R/W Clock stop interrupt enable Enable Disable 0 0 1 STPIR R/W Clock stop interrupt request flag (Note) Generated None 0 0 0 CK32EN R/W OUT32K output enable Enable Disable 1 0 Note: 80 This bit can be cleared by writing "0" but can not set flag by writing "1". AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 6.7 6.7.1 Interrupt Request Flag Monitor Registers IRQMON1: Interrupt Request Flag Monitor 1 Register (Address 0Eh) Bit Symbol R/W Function 1 0 Initial value 7-4 ----- ----- Reserved ----- ----- ----- 3 JACKBIRM R Jack disconnection interrupt flag monitor Requested None 0 2 JACKIRM R Jack connection interrupt flag monitor Requested None 0 1 ADPBIRM R Over voltage adaptor disconnection interrupt flag monitor Requested None 0 0 ADPIRM R Over voltage adaptor connection interrupt flag monitor Requested None 0 Note: 6.7.2 The bit, whose interrupt is prohibited from generating by each interrupt enable/disable register bit, has "0". IRQMON2: Interrupt Request Flag Monitor 2 Register (Address 0Fh) Bit Symbol R/W Function 1 0 Initial value 7-5 ----- --- Reserved ----- ----- ----- 4 STPIRM R Clock stop detection interrupt flag monitor Requested None 0 3 ADCECIRM R ADC "End of conversion" interrupt flag monitor Requested None 0 2 CTFGM R RTC CTFG flag monitor Requested None 0 1 WAFGM R RTC WAFG flag monitor Requested None 0 0 DAFGM R RTC DAFG flag monitor Requested None 0 Note: The bit, whose interrupt is prohibited from generating by each interrupt enable/disable register bit, has "0". 81 6329A-PMAAC-12-Aug-07 6.8 6.8.1 6.8.1.1 6.8.1.2 6.8.1.3 RTC Registers RTC Counter Registers SEC: Second Counter Register (Address 10h) Bit 7 6 5 4 3 2 1 0 Symbol Reserved S40 S20 S10 S8 S4 S2 S1 R/W --- R/W R/W R/W R/W R/W R/W R/W Default --- --- --- --- --- --- --- --- MIN: Minute Counter Register (Address 11h) Bit 7 6 5 4 3 2 1 0 Symbol Reserved M40 M20 M10 M8 M4 M2 M1 R/W --- R/W R/W R/W R/W R/W R/W R/W Default --- --- --- --- --- --- --- --- HOUR: Hour Counter Register (Address 12h) Bit 7 6 5 4 3 2 1 0 Symbol Reserved Reserved H20PA H10 H8 H4 H2 H1 R/W --- --- R/W R/W R/W R/W R/W R/W Default --- --- --- --- --- --- --- --- Digit display(BCD code) Second: Range is 00 to 59. The second digit is rounded up to the minute digit when the count changes from 59 to 00. Minute: Range is 00 to 59. The minute digit is rounded up to the hour digit when the count changes from 59 to 00. Hour: The hour digit is rounded up to the day or day of the week when the count changes from PM11 to PM12 or from 23 to 00. The lower-order counter than one second counter is reset when the writing second counter is conducted. Rounding up from any incorrect and invalid data in the counter register results in unpredictable behavior. Only valid and correct data must be written to the counter register. 82 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 6.8.1.4 WEEK: A Day of a Week Counter Register (Address 13h) Bit 7 6 5 4 3 2 1 0 Symbol Reserved Reserved Reserved Reserved Reserved W4 W2 W1 R/W --- --- --- --- --- R/W R/W R/W Default --- --- --- --- --- --- --- --- When the day digit is rounded up, the digit is incremented by 1. Day of week display (septet incremental count): (W4W2W1)=(000) -> (001) -> ...(110) -> (000) Correspondence between day of the week and count value are user programmable. (e.g. Sunday=000) Writing (W4W2W1)=(111) is prohibited except when day of the week is unused. 6.8.1.5 6.8.1.6 6.8.1.7 DAY: Day Counter Register (Address 14h) Bit 7 6 5 4 3 2 1 0 Symbol Reserved Reserved D20 D10 D8 D4 D2 D1 R/W --- --- R/W R/W R/W R/W R/W R/W Default --- --- --- --- --- --- --- --- MONTH: Month Counter and 100year bit Register (Address 15h) Bit 7 6 5 4 3 2 1 0 Symbol Reserved Reserved Reserved MO10 MO8 MO4 MO2 MO1 R/W --- --- --- R/W R/W R/W R/W R/W Default --- --- --- --- --- --- --- --- YEAR: Year Counter Register (Address 16h) Bit 7 6 5 4 3 2 1 0 Symbol Y80 Y40 Y20 Y10 Y8 Y4 Y2 Y1 R/W R/W R/W R/W R/W R/W R/W R/W R/W Default --- --- --- --- --- --- --- --- Digit display (BCD code) is as follows according to the auto calendar function. Day digit: 1 to 31 (January, March, May, July, August, October, and December) 1 to 30 (April, June, September, and November) 1 to 29 (February in a leap year) 1 to 28 (February in regular year) 83 6329A-PMAAC-12-Aug-07 (The day digit is rounded up to the month digit when the count value returns to 1.) Month digit: Range is 1 to 12. The month digit is rounded up to the year digit when the count value returns to 1. Year digit: Range is 00 to 99. Years 00, 04, 08, ..., 92, 96 are leap years (corresponding to the year 2000 to 2099). Rounding up from any incorrect and invalid data in the counter register results in unpredictable behavior of the chip. Only valid and correct data must be written to the counter register. 6.8.1.8 RTCADJ: RTC Adjustment Register (Address 17h) Bit 7 6 5 4 3 2 1 0 Symbol Reserved F6 F5 F4 F3 F2 F1 F0 R/W --- R/W R/W R/W R/W R/W R/W R/W Default --- --- --- --- --- --- --- --- F6 ~ F0 The count value of one second is changed by the value of this register. Normally, the second count is incremented by 32768 clock pulses generated by the oscillator. The clock error offset circuit functions by writing data to this register. Register value F6="0": The count value is incremented by ((F5,F4,F3,F2,F1,F0)-1) x 2. Register value F6="1": The count value is decremented by((/F5,/F4,/F3,/F2,/F1,/F0)+1) x 2. When F6,F5,F4,F3,F2,F1,F0= (*,0,0,0,0,0,*), there is no change in the count value. /F5, /F4, /F3, /F2, /F1, /F0 indicate reversed F5, F4, F3, F2, F1, F0. Example When (F6,F5,F4,F3,F2,F1,F0)=(0,0,0,0,1,1,1) and second digit is 00, 20 or 40, the count value becomes 32768+(7-1)2=32780.It puts clock back. When (F6,F5,F4,F3,F2,F1,F0)=(0,0,0,0,0,0,1) and second digit is 00, 20 or 40, count value is hold at 32768 without making any change. When 2 pulses are added to clock every 20sec, the count value becomes 2/(32768 x 20)=3.051 ppm and the clock will be put back around 3ppm. Likewise, when 2 pulses are reduced, 3ppm will be put forward. The clock error can be regulated in maximum 1.5ppm. But the clock error offset corrects only clock not oscillator frequency. (32k clock output not guaranteed.) 84 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 6.8.2 6.8.2.1 6.8.2.2 6.8.2.3 RTC Alarm_W Registers WAL_MIN: Alarm_W Minute Register (Address 18h) Bit 7 6 5 4 3 2 1 0 Symbol Reserved WM40 WM20 WM10 WM8 WM4 WM2 WM1 R/W --- R/W R/W R/W R/W R/W R/W R/W Default --- --- --- --- --- --- --- --- WAL_HOUR: Alarm_W Hour Register (Address 19h) Bit 7 6 5 4 3 2 1 0 Symbol Reserved Reserved WH20PA WH10 WH8 WH4 WH2 WH1 R/W --- --- R/W R/W R/W R/W R/W R/W Default --- --- --- --- --- --- --- --- WAL_WEEK: Alarm_W A Day of a Week Register (Address 1Ah) Bit 7 6 5 4 3 2 1 0 Symbol Reserved WW6 WW5 WW4 WW3 WW2 WW1 WW0 R/W --- R/W R/W R/W R/W R/W R/W R/W Default --- --- --- --- --- --- --- --- Alarm_W hour register: Register D5 indicates AM/PM on 12-hour format (AM:0, PM: 1) and 20 WH20PA on 24-hour format. Set the alarm register only to correct time for proper alarm operation since incorrect data to the alarm register results in no match between the counter and alarm register. Hour digit on 12-hour format: AM 0 o'clock -> 12, PM 0 o'clock -> 32 WW0 ~ WW6 correspond to day of the week counter (W4,W2,W1) = (0,0,0) ~ (1,1,0) When WW0 ~ WW6 are all "0", Alarm_W will not be output. 85 6329A-PMAAC-12-Aug-07 6.8.3 6.8.3.1 6.8.3.2 RTC Alarm_D Registers DAL_MIN : Alarm_D Minute Register (Address 1Bh) Bit 7 6 5 4 3 2 1 0 Symbol Reserved DM40 DM20 DM10 DM8 DM4 DM2 DM1 R/W --- R/W R/W R/W R/W R/W R/W R/W Default --- --- --- --- --- --- --- --- DAL_HOUR : Alarm_D Hour Register (Address 1Ch) Bit 7 6 5 4 3 2 1 0 Symbol Reserved Reserved DH20PA DH10 DH8 DH4 DH2 DH1 R/W --- --- R/W R/W R/W R/W R/W R/W Default --- --- --- --- --- --- --- --- Alarm_D hour Register: D5 indicates AM/PM on 12-hour format(AM:0, PM:1) and DH20PA on 24-hour format. Set the alarm register only to correct time for proper alarm operation since incorrect data to the alarm register results in no match occurring between the counter and alarm register. Hour digit on 12-hour format: AM 0 o'clock -> 12, PM 0 o'clock -> 32 86 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 6.8.4 RTCCNT1 : RTC Control Register 1 (Address 1Eh) Bit Name R/W Function 1 0 Initial value 7 WALE R/W ALARM_W enable bit Enable Disable 0 6 DALE R/W ALARM_D enable bit Enable Disable 0 5 Z1224 R/W Selecting 12-hour/24-hour format As below 4 SCRA R/W Scratch bit (for user) 1 3 TEST W TEST control bit As below 0 2-0 CT [2:0] R/W Constant cycle interrupt select bit As below 000 0 0 0 * Z1224 (bit5) [R/W] : 12-hour/24-hour format select bit Z1224 Selecting 12-hour/24-hour format 1 24-hour format 0 AM/PM display 12hour format Setting 12-hour /24-hour must be preceded writing of time data. Time-digit display table is shown below. 24-hour format 12-hour format 24-hour format 12-hour format 00 12 (AM12) 12 32 (PM12) 01 01 (AM 1) 13 21 (PM 1) 02 02 (AM 2) 14 22 (PM 2) 03 03 (AM 3) 15 23 (PM 3) 04 04 (AM 4) 16 24 (PM 4) 05 05 (AM 5) 17 25 (PM 5) 06 06 (AM 6) 18 26 (PM 6) 07 07 (AM 7) 19 27 (PM 7) 08 08 (AM 8) 20 28 (PM 8) 09 09 (AM 9) 21 29 (PM 9) 10 10 (AM10) 22 30 (PM10) 11 11 (AM11) 23 31 (PM11) * SCRA (bit4) [R/W] The written value in SCRA (scratch bit) has no effect on RTC operation. And, it is not initialized even at power-off and hold by VSB power. * TEST (bit3) [W] 87 6329A-PMAAC-12-Aug-07 It is prohibited to write "1" to the Test bit. TEST TEST bit 1 Test Mode (Note) Read data is fixed "0". 0 Normal Mode * CT [2:0] (bit 2,1,0): Constant Cycle Interrupt select bit Description CT [2:0] Waveform mode Cycle and falling timing 111 Level mode *2) 1 time/1 month (every month 1day AM 00 o'clock 00 minute 00 second) 110 Level mode *2) 1 time/1 hour (every hour, 00 minute 00 second) 101 Level mode *2) 1 time/1 min. (every minute, 00 second) 100 Level mode *2) 1 time/ 1sec. (simultaneous with second count-up) 011 Pulse mode *1) 1Hz (Duty50%) 010 Pulse mode *1) 2Hz (Duty50%) 001 - "L" fixed 000 - OFF(H) 1. Pulse mode 2 Hz, 1 Hz for clock is provided. See diagram below for second count-up. Figure 6-1. Pulse Mode Diagram CTFG Bit IRQB Pin Second count-up Rewrite of second count-up There is a delay from falling edge of output in second count-up. And about 1 sec delayed time than RTC will be readable right after the falling edge of output. Even though second counter is re-written, IRQB goes "L" once since lower-order counter than one second sec is reset. 2. Level mode Interrupt cycle is selectable from 1 second, 1 minute, 1 hour or 1 month. Second count-up is synchronous with falling of interrupt output. See the timing chart with interrupt cycle set at 1 second below. 88 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 Figure 6-2. Level Mode Diagram CTFG Bit IRQB Pin Second count-up Writing "0" to CTFG Writing "0" to CTFG Second count-up Second count-up The interrupt cycle varies 1 time/20 sec or 1 time/1 min when use Clock Error Offset circuit Pulse mode: The period of "L" output pulse fluctuates in maximum 3.784 ms. For example, duty is 500.3784% at 1Hz. Level mode: The cycle/1 sec fluctuates in maximum 3.784 ms. 89 6329A-PMAAC-12-Aug-07 6.8.5 RTCCNT2 : RTC Control Register 2 (Address 1Fh) Bit Name R/W Function 1 0 Initial value 7-6 ----- ----- Reserved ----- ----- ----- 5 XSTZ R/W Oscillator stop detection monitor bit As below ----- 4 PON R/W Power-on reset bit As below 1 3 SCRB R/W Scratch bit (for user) 1 2 CTFG R/W Constant cycle interrupt flag bit As below 0 1 WAFG R/W Alarm_W flag bit As below 0 0 DAFG R/W Alarm_D flag bit As below 0 0 0 * XSTZ (bit5) [R/W]: Oscillator stop detection monitor bit XSTZ Oscillator stop detection monitor bit 1 Normal operation of oscillator 0 Oscillator stop detected When AT73C206 detects oscillator stop at XSTZ="1", it clears "1" to "0". By reading this bit, host judges whether oscillator has stopped. * PON (bit4) [R/W]: Power-on reset bit PON Power-on reset bit 1 Power-on reset detected 0 Normal operation Once Power-supply becomes 0V, PON becomes "1" and it is kept at "1" even though power-supply voltage returns to normal operation voltage. The validity of clock and calendar data can be judged by XSTZ. When PON = "1", clock error offset register, control register1 and control register2 (except PON and XSTZ) become "0" so that IRQB and OUT32K pins stop outputting. "0"is only valid value in PON. Writing "1" makes no change. When PON = "1", writing to control register 1,2, second counter register and clock error offset register is not possible. (But, PON can be cleared.) * SCRB (bit3) [R/W] The written value in the SCRB (Scratch bit) has no effect on RTC operation. It will not be initialized even at power-off and hold by VSB power. 90 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 * CTFG (bit2) [R/W]: Constant cycle interrupt flag bit CTFG Constant cycle interrupt flag bit 1 Constant cycle interrupt output on (L) 0 Constant cycle interrupt output off (H) CTFG becomes "1" when constant clock cycle interrupt outputs (IRQB pin). "0" is only valid data in CTFG when constant cycle interrupt is on level mode. Writing "0" disables IRQB pin ("H"). In next cycle, it will become "L" again. "0" is only valid data in CTFG. Writing "1" makes no change. * WAFG, DAFG (bit1, 0): Alarm_W flag bit, Alarm_D flag bit WAFG Alarm_W flag bit DAFG Alarm_D flag bit 1 Alarm set time detected 1 Alarm set time detected 0 Alarm set time not detected 0 Alarm set time detected WAFG and DAFG are valid only when both WALE and DALE bits are "1". It becomes "1" and keeps it for about 61us when each alarm set time and present time coincide.Only writing "0" to these bits is valid. By writing "0", IRQB becomes "H"(OFF) and returns "L" at next alarm set time. Writing "1" makes no change. When both WALE and DALE bits are "0", alarm function is disabled and the reading values of WAFG and DAFG bits are "0". See the below diagram for relation of WAFG/ DAFG and IRQB output. 61us approx 61us approx WAFG(DAFG) Bit IRQB Bit Write "0" to WAFG(DAFG) (Alarm set time detect) Write "0" to WAFG(DAFG) (Alarm set time detect) (Alarm set time detect) 91 6329A-PMAAC-12-Aug-07 6.9 6.9.1 Audio Registers PWRCNT: Power Control Register (Address 20h) Bit Symbol R/W Function 1 0 Initial value 7-6 ----- ----- Reserved ----- ----- ----- 5 SMICPON R/W SMICBIAS Power-On ON OFF 0 4 MICPON R/W MICBIAS Power- On ON OFF 0 3-2 ----- ----- Reserved ----- ----- ----- 1 DAUON R/W Audio digital block enable bit ON OFF 0 0 DVOON R/W Voice digital block enable bit ON OFF 0 6.9.2 VMODE: Voice Mode Setting Register (Address 21h) Bit Symbol R/W Function 1 0 Initial value 7 VASEL R/W Voice/Audio mode select of audio serial interface Voice Audio 0 6 MSSEL R/W Setting Slave/Master mode of Audio interface Slave Master 1 5 IFEN R/W Interface enable bit As below 0 4 VFS R/W Setting sampling rate of Voice Codec As below 0 3-1 ----- ----- Reserved ----- ----- ----- 0 VFORMAT R/W Setting Voice interface format As below 0 0 * IFEN: Interface enable bit 1: Enable interface 0: Disable interface Note: LRCKIO and BCKIO are "L" fixed. (But, only when Master mode) * VFS: Setting sample rate of Voice Codec VFS Sampling rate 1 16KHz 0 8KHz * VFORMAT : Setting Voice interface format 92 VFORMAT Format 1 Left Justify 0 IIS AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 6.9.3 AMODE: Audio Mode Setting Register (Address 22h) Bit Symbol R/W Function 1 0 Initial value 7 ----- ----- Reserved ----- ----- ----- 6-4 AFS [2:0] R/W Setting sampling rate of Audio DAC As below 000 3-2 ----- ----- Reserved ----- ----- 1-0 AFORMAT [1:0] R/W Setting Audio interface format As below 00 * AFS [2:0]: Setting sample rate of Audio DAC AFS [2:0] Sampling rate AFS [2:0] Sampling rate 111 8KHz 011 24KHz 110 11.025KHz 010 32KHz 101 16KHz 001 44.1KHz 100 22.05KHz 000 48KHz * AFORMAT [1:0]: Setting Audio interface format AFORMAT [1:0] Format AFORMAT [1:0] Format 11 Don't use 01 Left Justify 10 Right Justify 00 IIS 93 6329A-PMAAC-12-Aug-07 6.9.4 OMODE: CODEC Output Mode Control Register (Address 23h) Bit Symbol R/W Function 1 0 Initial value 7-4 ----- ----- Reserved ----- ----- ----- 3-0 MODECO [3:0] R/W Controlling CODEC output mode As below 0000 * MODECO [3:0]: Controlling CODEC output mode Driver Amplifier 94 Function MODECO[3:0] Receiver Speaker Headphone Receiver Speaker 1111 to 1001 - - - Reserved Reserved 1000 OFF OFF ON Audio Mono 0111 OFF OFF ON Audio Stereo 0110 OFF ON OFF Audio Mono 0101 ON OFF OFF Audio Mono 0100 OFF OFF ON Voice - 0011 OFF ON OFF Voice - 0010 ON OFF OFF Voice - 0001 OFF OFF OFF Standby mode 0000 OFF OFF OFF Power down mode AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 6.9.5 MUTE: MUTE Setting Register (Address 24h) Bit Symbol R/W Function 1 0 Initial value 7-6 ----- ----- Reserved ----- ----- ----- 5 MUTEDA R/W AUDIO DAC MUTE ON OFF 1 4 MUTESIDE R/W SIDETONE MUTE ON OFF 1 3 ----- ----- Reserved ----- ----- ----- 2 MUTEDRV R/W Driver AMP MUTE ON OFF 1 1 MUTESMIC R/W SMIC MUTE ON OFF 1 0 MUTEMIC R/W MIC MUTE ON OFF 1 Note: When set MUTE(only for MUTEDA and MUTESIDE), the gain changes to MUTE(gain=0) with 1dB decrement per fs. When cancel MUTE, the gain returns back to former gain value with 1dB increment per fs as the former gain value is maintained during mute mode. 95 6329A-PMAAC-12-Aug-07 6.9.6 DRVAG: Analog Driver Gain Setting Register (Address 25h) Bit Symbol R/W Function 1 0 Initial value 7-5 ----- ----- Reserved ----- ----- ----- 4-0 DRVAG [4:0] R/W Analog Driver Gain As below 96 DRVAG [4:0] Gain (dB) DRVAG [4:0] Gain (dB) 11111 6 01111 -18 11110 4.5 01110 -19.5 11101 3 01101 -21 11100 1.5 01100 -22.5 11011 0 01011 -24 11010 -1.5 01010 -25.5 11001 -3 01001 -27 11000 -4.5 01000 -28.5 10111 -6 00111 -30 10110 -7.5 00110 -31.5 10101 -9 00101 -33 10100 -10.5 00100 -34.5 10011 -12 00011 -36 10010 -13.5 00010 -37.5 10001 -15 00001 -39 10000 -16.5 00000 -40.5 0000 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 6.9.7 MICAG: Analog MIC Gain Setting Register (Address 26h) Bit Symbol R/W Function 1 0 Initial value 7-4 ----- ----- Reserved ----- ----- ----- 3-0 MICAG [3:0] R/W Analog MIC Gain As below MICAG [3:0] Gain (dB) MICAG [3:0] Gain (dB) 1111 30 0111 14 1110 28 0110 12 1101 26 0101 10 1100 24 0100 8 1011 22 0011 6 1010 20 0010 4 1001 18 0001 2 1000 16 0000 0 0000 97 6329A-PMAAC-12-Aug-07 6.9.8 MICDG: Voice CODEC TX-DATA1(MIC Path) Digital Gain Setting Register (Address 27h) Bit Symbol R/W Function 1 0 Initial value 7-5 ----- ----- Reserved ----- ----- ----- 4-0 MICDG [4:0] R/W Voice CODEC TX-DATA1 Digital Gain As below MICDG [4:0] Gain (dB) 11111 20 11110 19 11101 18 11100 17 - - 00000 (-1dB Step) - - 00011 -8 00010 -9 00001 -10 00000 MUTE Note: 98 Gain changes to the current set value by Smoothing Gain control at 1dB/fs. AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 6.9.9 SIDEDG: Voice CODEC SIDETONE-DATA Digital Gain Setting Register (Address 2Ah) Bit Symbol R/W Function 1 0 Initial value 7-6 ----- ----- Reserved ----- ----- ----- 5-0 SIDEDG [5:0] R/W Voice CODEC SIDETONEDATA Digital Gain As below SIDEDG [5:0] Gain (dB) 111111 MUTE 111110 -62 111101 -61 111100 -60 - - 111111 (-1dB Step) - - 000011 -3 000010 -2 000001 -1 000000 0 Note: Gain changes to the current set value by Smoothing Gain control at 1dB/fs. 99 6329A-PMAAC-12-Aug-07 6.9.10 RECDG: Voice CODEC RX-DATA Digital Gain Setting Register (Address 2Bh) Bit Symbol R/W Function 1 0 Initial value 7-5 ----- ----- Reserved ----- ----- ----- 4-0 RECDG [4:0] R/W Voice CODEC RX-DATA Digital Gain As below RECDG [4:0] Gain (dB) 11111 0 11110 -1 11101 -2 11100 -3 - - 00000 (-1dB Step) - - 00011 -28 00010 -29 00001 -30 00000 MUTE Note: 100 Gain changes to the current set value by Smoothing Gain control at 1dB/fs. AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 6.9.11 DATTL: Audio DAC L-channel Digital Gain Setting Register (Address 2Ch) Bit Symbol R/W Function 1 0 Initial value 7-6 ----- ----- Reserved ----- ----- ----- 5-0 DATTL [5:0] R/W Audio DAC L-channel Digital Gain As below 6.9.12 111111 DATTR: Audio DAC R-channel Digital Gain Setting Register (Address 2Dh) Bit Symbol R/W Function 1 0 Initial value 7-6 ----- ----- Reserved ----- ----- ----- 5-0 DATTR [5:0] R/W Audio DAC R-channel Digital Gain As below DATTL [5:0] DATTR [5:0] Gain (dB) 111111 MUTE 111110 -62 111101 -61 111100 -60 - - 111111 (-1dB Step) - - 000011 -3 000010 -2 000001 -1 000000 0 Gain changes to the current set value by Smoothing Gain control at 1dB/fs. 101 6329A-PMAAC-12-Aug-07 6.9.13 TNCNT: Tone Control Register (Address 2Fh) Bit Symbol R/W Function 1 0 Initial value 7 TNCON R/W Controlling Tone Generator ON OFF 0 6 VRTNSW R/W Mixing RX voice data and Tone data Mix Not Mix 0 5 VTTNSW R/W Mixing TX voice data and Tone data Mix Not Mix 0 4 ----- ----- Reserved ----- ----- ----- 3-0 TNTIME [3:0] R/W Setting time of hardware tone timer As below Note: 102 0010 Setting TNCON bit lets the Tone Generator generate tone for the time set by TNTIME bits. After timer overflows, it stops tone and clears TNCON bit automatically. Setting TNCON is available when Voice block and PLL block for voice are powered-on. TNTIME [3:0] Time (mS) TNTIME [3:0] Time (mS) 1111 Continuous output 0111 150 1110 Don't use (100) 0110 140 1101 Don't use (100) 0101 130 1100 200 0100 120 1011 190 0011 110 1010 180 0010 100 1001 170 0001 90 1000 160 0000 80 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 6.9.14 TNSET: Type of Generated Tone& Tone Gain Setting Register (Address 30h) Bit Symbol R/W Function 1 0 Initial value 7-5 TNG3 [2:0] R/W Setting TONE3 gain As below 111 4-0 FREQSEL [4:0] R/W Setting type of generated tone As below 00000 * TNG3: Setting Tone3 gain TNG3 [2:0] Gain (dB) TNG3 [2:0] Gain (dB) 111 -42 011 -18 110 -36 010 -12 101 -30 001 -6 100 -24 000 0 * FREQSEL: Setting type of generated tone FREQSEL [4:0] DTMF TONE1 Frequency 0 0000 DTMF "1" 1209 Hz 0 0001 DTMF"2" 1336 Hz 0 0010 DTMF"3" 1477 Hz 0 0011 DTMF"A" 1633 Hz 0 0100 DTMF"4" 1209 Hz 0 0101 DTMF"5" 1336 Hz 0 0110 DTMF"6" 1477 Hz 0 0111 DTMF"B" 1633 Hz 0 1000 DTMF"7" 1209 Hz 0 1001 DTMF"8" 1336 Hz 0 1010 DTMF"9" 1477 Hz 0 1011 DTMF"C" 1633 Hz 0 1100 DTMF"*" 1209 Hz 0 1101 DTMF"0" 1336 Hz 0 1110 DTMF"#" 1477 Hz 0 1111 DTMF"D" 1633 Hz 1 xxxx - Programmable Tone1 TONE2 Frequency 697 Hz 770 Hz 852 Hz 941 Hz Programmable Tone2 103 6329A-PMAAC-12-Aug-07 6.9.15 TNGAIN: Tone Gain Setting Register (Address 31h) Bit Symbol R/W Function 1 7-4 TNG2 [3:0] R/W Setting TONE2 gain As below 1111 3-0 TNG1 [3:0] R/W Setting TONE1 gain As below 1111 104 0 TNG1, 2 [3:0] Gain (dB) TNG1, 2 [3:0] Gain (dB) 1111 -15 0111 -7 1110 -14 0110 -6 1101 -13 0101 -5 1100 -12 0100 -4 1011 -11 0011 -3 1010 -10 0010 -2 1001 -9 0001 -1 1000 -8 0000 0 Initial value AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 6.9.16 PTN1SETL: Programmable Tone 1 Frequency Setting Register L (Address 32h) Bit Symbol R/W Function 1 7-0 PTN1 [7:0] R/W Setting frequency of Programmable Tone1 As below 6.9.17 0 Initial value 00000000 PTN1SETH: Programmable Tone 1 Frequency Setting Register H (Address 33h) Bit Symbol R/W Function 1 7-1 ----- ----- Reserved ----- ----- 0 PTN1 [8] R/W Setting frequency of Programmable Tone1 As below 0 6.9.18 Initial value PTN2SETL: Programmable Tone 2 Frequency Setting Register L (Address 34h) Bit Symbol R/W Function 1 7-0 PTN2 [7:0] R/W Setting frequency of Programmable Tone2 As below 6.9.19 0 0 Initial value 00000000 PTN2SETH: Programmable Tone 2 Frequency Setting Register H (Address 35Fh) Bit Symbol R/W Function 1 0 Initial value 7-1 ----- ----- Reserved ----- ----- 0 PTN2 [8] R/W Setting frequency of Programmable Tone2 As below 0 Frequency of programmable tone1 = 7.8125Hz x PTONE1 from 0Hz to 3992.1875Hz Frequency of programmable tone2 = 7.8125Hz x PTONE2 from 0Hz to 3992.1875Hz 105 6329A-PMAAC-12-Aug-07 6.9.20 APLLCNT: Audio PLL Control Register (Address 36h) Bit Symbol R/W Function 1 0 Initial value 7 APLLPON R/W Audio PLL Power-On ON OFF 0 6-4 CKOSEL [2:0] R/W Output Clock Select As below 3-1 ----- ----- Reserved ----- 0 APLLSRC R/W Setting input clock to PLL for Audio As below 000 ----- ----0 * CKOSEL: Output Clock select CKOSEL [2:0 CKOUT Pin Output Clock 000 "L" fixed. 001 32.768kHz 010 fA 011 fA / 2 100 fA / 4 101 fA / 8 110 - 111 - * APLLSRC: Setting input clock to PLL for Audio APLLSRC Mode 1 External clock input and programmable mode (Note) 0 Internal X'tal (32.768KHz) mode Note: 106 Use this mode with setting ADIVN and ADIVM. AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 6.9.21 VPLLCNT: Voice VPLL Control Register (Address 37h) Bit Symbol R/W Function 1 0 Initial value 7 VPLLPON R/W Voice PLL Power-On ON OFF 0 6-1 ----- ----- Reserved ----- ----- ----- 0 VPLLSRC R/W Setting input clock to PLL for voice As below VPLLSRC Mode 1 External clock input and programmable mode (Note) 0 Internal X'tal (32.768KHz) mode Note: 0 Use this mode with setting VDIVN and VDIVM. 107 6329A-PMAAC-12-Aug-07 6.9.22 ADIVNL: Divide factor-N for Audio Setting Register L (Address 38h) Bit Symbol R/W Function 1 7-0 ADIVN[7:0] R/W Setting divide factor-N for Audio As below 6.9.23 0 Initial value 00000000 ADIVNH: Divide factor-N for Audio Setting Register H (Address 39h) Bit Symbol R/W Function 1 0 Initial value 7-4 ----- ----- Reserved ----- ----- ----- 3-0 ADIVN[11:8] R/W Setting divide factor-N for Audio As below 0000 NA= ADIVN + 1 6.9.24 ADIVML: Divide factor-M for Audio Setting Register L (Address 3Ah) Bit Symbol R/W Function 1 7-0 ADIVM[7:0] R/W Setting divide factor-M for Audio As below 6.9.25 0 Initial value 00000000 ADIVMH: Divide factor-M for Audio Setting Register H (Address 3Bh) Bit Symbol R/W Function 1 0 Initial value 7-4 ----- ----- Reserved ----- ----- ----- 3-0 ADIVM[11:8] R/W Setting divide factor-M for Audio As below 0000 MA= ADIVM + 1 108 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 6.9.26 VDIVNL: Divide factor-N for Voice Setting Register L (Address 3Ch) Bit Symbol R/W Function 1 7-0 VDIVN[7:0] R/W Setting divide factor-N for voice As below 6.9.27 0 Initial value 00000000 VDIVNH: Divide factor-N for Voice Setting Register H (Address 3Dh) Bit Symbol R/W Function 1 0 Initial value 7-4 ----- ----- Reserved ----- ----- ----- 3-0 VDIVN[11:8] R/W Setting divide factor-N for voice As below 0000 NV= VDIVN + 1 6.9.28 VDIVML: Divide factor-M for Voice Setting Register L (Address 3Eh) Bit Symbol R/W Function 1 7-0 VDIVM[7:0] R/W Setting divide factor-M for voice As below 6.9.29 0 Initial value 00000000 VDIVMH : Divide factor-M for Voice Setting Register H (Address 3Fh) Bit Symbol R/W Function 1 0 Initial value 7-4 ----- ----- Reserved ----- ----- ----- 3-0 VDIVM[11:8] R/W Setting divide factor-M for voice As below 0000 MV= VDIVM + 1 109 6329A-PMAAC-12-Aug-07 6.10 6.10.1 Status Monitor Register STMON: Status Monitor Register (Address 40h) Bit Symbol R/W Function 1 0 Initial value 7-3 ----- ----- Reserved ----- ----- ----- 2 JACKMON R JACK detector monitor bit Inserted Removed ----- 1 CLKSTPMON R 32KHz OSC stop detection monitor bit Stop Oscillate ----- 0 ONSWMON R ONSW pin input monitor bit H L ----- 110 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 6.11 6.11.1 General Purpose I/O Registers GPIODIR: GPIO Direction Control Register (Address 41h) Bit Symbol R/W Function 1 0 Initial value 7-6 ----- ----- Reserved ----- ----- ----- 5 GPAIN1 R/W Input signal mode Digital Analog 0 4 GPAIN0 R/W Input signal mode Digital Analog 0 3 GPIODIR3 R/W GPIO3 direction control bit Out In 0 2 GPIODIR2 R/W GPIO2 direction control bit Out In 0 1 GPIODIR1 R/W GPIO1 direction control bit Out In 0 0 GPIODIR0 R/W GPIO0 direction control bit Out In 0 Note: 6.11.2 GPIODIR becomes invalid by selecting analog input mode. GPOSET: GPIO Output Setting Register (Address 42h) Bit Symbol R/W Function 1 0 Initial value 7-4 ----- ----- Reserved ----- ----- ----- 3 GPOSET3 R/W GPIO3output logic setting bit H L 0 2 GPOSET2 R/W GPIO2 output logic setting bit H L 0 1 GPOSET1 R/W GPIO1 output logic setting bit H L 0 0 GPOSET0 R/W GPIO0 output logic setting bit H L 0 6.11.3 GPIMON: GPIO Input Status Register (Address 43h) Bit Symbol R/W Function 1 0 Initial value 7-4 ----- ----- Reserved ----- ----- ----- 3 GPIMON3 R GPIO3 input status bit H L - 2 GPIMON2 R GPIO2 input status bit H L - 1 GPIMON1 R GPIO1 input status bit H L - 0 GPIMON0 R GPIO0 input status bit H L - Note: When analog input mode is selected, this register will be set to "0". 111 6329A-PMAAC-12-Aug-07 6.12 6.12.1 Jackdet Control Register JACKCNT : Jackdet control register (Address 44h) Bit Symbol R/W Function 1 0 Initial value 7-4 ----- ----- Reserved ----- ----- ----- 3 JKBIREN R/W Jack disconnection interrupt enable Enable Disable 0 2 JKIREN R/W Jack connection interrupt enable Enable Disable 0 1 JACKBIR R Jack disconnection interrupt flag Generate d None ----- 0 JACKIR R Jack connection interrupt flag Generate d None ----- 112 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 7. DC Electrical Characteristics 7.1 Absolute Maximum Ratings The operation exceeding the below "Absolute Maximum Ratings" may cause permanent damage to the device. The operation of the device within the below stated ratings is not guaranteed. VCC = VBAT,VDD Table 7-1. Absolute Maximum Ratings Symbol Parameter Condition Rated value Units VBAT VBAT Power Pin Voltage VIN1 to 6, VBSP -0.3 to 6.0 V VCHG AC-Adaptor Voltage Input Pins VCHGADP -0.3 to 7.0 V VDD VDD Power Pin Voltage VDDPLL, VDD, VDDHP, VDDANA, VDDIO -0.3 to 4.5 V VSB Backup Part (RTC) VSB -0.3 to 4.5 V VDC LDO1 Power Pin Voltage VDC1 -0.3 to 3.6 V VDIN DIN Pin Input Voltage DIN1 to 4 -0.3 to 7.0 V VPIN Input Voltage Range All Input Pins -0.3 to VCC + 0.3 V Mounted on Board, Ta = 70 C 1500 mW ----- -55 to +125 C (1) PD Package Allowable Dissipation Tstg Storage Temperature Note: 1. Derating 36[mW/ C] above +70 C. 7.2 Recommendation Operating Conditions Table 7-2. Recommended Operating Conditions Symbol Parameter Condition Min Typ Max Units VBAT VBAT Power Pin Voltage VIN16, VBSP 3.1 3.6 4.2 V VCHG AC-Adaptor Voltage Input Pins VCHGADP 4.5 5.0 5.5 V VDD VDD Power Pin Voltage VDDPLL, VDD, VDDHP, VDDANA -3% 2.8 +3% V VDD2 VDD Power Pin Voltage VDDIO -3% 2.5 +3% V VSB Backup Part (RTC) VSB 1.6 3.0 V VDC LDO1 Power Pin Voltage VDC1 -3% +3% V Ta Temperature of Operation -30 1.8 +85 113 6329A-PMAAC-12-Aug-07 7.3 VBAT CMOS Input Pin Application: LDO1SEL, GSP Table 7-3. Electrical Characteristics Symbol Parameter Condition Min ILI Input Leakage Current VIN =0VIN -1 VIH Input Voltage "H" level VIL Input Voltage "L" level 7.4 Typ Max Unit 1 uA VIN x 0.7 V VIN x 0.3 V VBAT CMOS Schmitt Input Pin with Pull-down Application: ONSW Table 7-4. Electrical Characteristics Symbol Parameter Condition Min IIL "L" Input Leakage Current VIN =0 -1 Rpd Pull-down Resistance VT+ Input Rise Threshold Voltage VIN x 0.5 VIN x 0.8 V VT- Input Fall Threshold Voltage VIN x 0.2 VIN x 0.5 V VT Hysteresis VIN x 0.15 7.5 Typ Max Unit 1 uA 1 M V VBAT CMOS Schmitt Input Pin with Pull-down Application: SMPL Table 7-5. Electrical Characteristics Symbol Parameter Condition Min Typ Max Unit IIL "L" Input Leakage Current VIN =0 -1 1 uA Rpd Pull-down Resistance 1 M VT+ Input Rise Threshold Voltage 1.4 V VT- Input Fall Threshold Voltage 0.6 V VT Hysteresis 0.8 V 114 AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 7.6 VDDIO CMOS Input Pin Application: PSHOLD, SDI, SEN, SCLK Table 7-6. Electrical Characteristics Symbol Parameter Condition Min ILI Input Leakage Current VIN =0VDDIO -1 VIH Input Voltage "H" level VIL Input Voltage "L" level 7.7 Typ Max Unit 1 uA VDDIO0.7 V VDDIO0.3 V Max Unit VDDIO CMOS Output Pin Application: SDO, ADPINB, IRQB, OUT32K, RSTB, ONOB Table 7-7. Electrical Characteristics Symbol Parameter Condition Min VOH Output Voltage "H" level Iout=-2mA VDDIO - 0.4 VOL Output Voltage "L" level Iout=2mA 7.8 Typ V 0.4 V VDDIO CMOS I/O Pin Application: P3, P2, P1/AN1, P0/AN0 Table 7-8. Electrical Characteristics Symbol Parameter Condition Min ILI Input Leakage Current VIN =0VDDIO -1 VIH Input Voltage "H" level VIL Input Voltage "L" level VOH Output Voltage "H" level Iout=-2mA VOL Output Voltage "L" level Iout=2mA Typ Max Unit 1 uA VDDIO x 0.7 V VDDIO x 0.3 VDDIO - 0.4 V V 0.4 V 115 6329A-PMAAC-12-Aug-07 7.9 VDD CMOS Input Pin Application: DIN, CKIN Table 7-9. Electrical Characteristics Symbol Parameter Condition Min ILI Input Leakage Current VIN =VDD -1 VIH Input Voltage "H" level VIL Input Voltage "L" level 7.10 Typ Max Unit 1 uA VDD x 0.7 V VDD x 0.3 V Max Unit 1 uA VDD CMOS Schmitt Input Pin with Pull-up Application: JKDETI Table 7-10. Electrical Characteristic Symbol Parameter Condition Min IIH "H" Input Leakage Current VIN =VDD -1 Rpu Pull-up Resistance VT+ Input Rise Threshold Voltage VDD x 0.5 VDD x 0.8 V VT- Input Fall Threshold Voltage VDD x 0.2 VDD x 0.5 V VT Hysteresis VDD x 0.1 7.11 Typ 200 k V VDD CMOS Output Pin Application: JKDETO, DOUT, CKOUT Table 7-11. Electrical Characteristics Symbol Parameter Condition Min VOH Output Voltage "H" level Iout=-2mA VDD - 0.4 VOL Output Voltage "L" level Iout=2mA 7.12 Typ Max Unit V 0.4 V VDD CMOS I/O Pin Application: LRCKIO, BCKIO Table 7-12. Electrical Characteristics Symbol Parameter Condition Min ILI Input Leakage Current VIN =0VDD -1 VIH Input Voltage "H" level VIL Input Voltage "L" level VOH Output Voltage "H" level Iout=-2mA VOL Output Voltage "L" level Iout=2mA 116 Typ Max Unit 1 uA VDD x 0.7 V VDD x 0.3 VDD - 0.4 V V 0.4 V AT73C206 6329A-PMAAC-12-Aug-07 AT73C206 8. Revision History Table 8-1. Document Ref. Comments 6329A First issue Change Request Ref. 117 6329A-PMAAC-12-Aug-07 Headquarters International Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 Atmel Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-enYvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 Technical Support pmaac@atmel.com Sales Contacts www.atmel.com/contacts/ Product Contact Web Site www.atmel.com www.atmel.com/PowerMgmt Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. (c) 2007 Atmel Corporation. All rights reserved. Atmel(R), logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 6329A-PMAAC-12-Aug-07