Copyright © Cirrus Logic, Inc. 2006
(All Rights Reserved)
http://www.cirrus.com
Evaluation Board for CS4352
Features
Demonstrates Recommended Layout And
Grounding Arrangements
CS8416 Receives S/PDIF, & EIAJ-340-
Compatible Digital Audio
Headers for External PCM Audio
Requires Only a Digital Signal Source and
Power Supplies for a Complete Digital-to-
Analog Converter System
Description
The CDB4352 evaluation board is an excellent means
for quickly evaluating the CS4352 24-bit, high-perfor-
mance stereo D/A converter. Evaluation requires an
analog signal analyzer, a digital signal source, and a
power supply. Analog line-level outputs are provided via
RCA phono jacks.
The CS8416 digital audio receiver IC provides the sys-
tem timing necessary to operate the Digital-to-Analog
converter and will accept S/PDIF and EIAJ-340-com-
patible audio data. The evaluation board may also be
configured to accept external timing and data signals for
operation in a user application during system
development.
ORDERING INFORMATION
CDB4352 Evaluation Board
Analog Output
(Line Level)
CS4352
S/PDIF Input
(CS8416)
Clocks/Data
Header
Reset
Reset
Hardware Switches
Mux
Muting
SEPTEMBER '06
DS684DB1
CDB4352
2DS684DB1
CDB4352
TABLE OF CONTENTS
1. CDB4352 SYSTEM OVERVIEW ............................................................................................................ 4
2. CS4352 DIGITAL-TO-ANALOG CONVERTER ..................................................................................... 4
3. CS8416 DIGITAL AUDIO RECEIVER .................................................................................................... 4
4. INPUT FOR CLOCKS AND DATA ......................................................................................................... 4
5. POWER SUPPLY CIRCUITRY ............................................................................................................... 4
6. GROUNDING AND POWER SUPPLY DECOUPLING .......................................................................... 5
7. HARDWARE CONTROL ........................................................................................................................ 5
8. ANALOG OUTPUT FILTERING ........ ... ... ... ... .... ... ................ ... .... ... ... ... ... .... ... ... ... .................................. 5
9. PERFORMANCE PLOTS ....................................................................................................................... 6
10. DESIGN NOTE ................................................................................................................................... 11
11. SCHEMATICS .......................................................................... 12
12. REVISION HISTORY ......................................................................................................................... 21
LIST OF FIGURES
Figure 1. FFT (48 kHz, 0 dB) .................... ... ... ... .... ... ................... .................... ................... ........................ 6
Figure 2. FFT (48 kHz, -60 dB) .................... ... ... .................... ... ... .................... ... ... ..................................... 6
Figure 3. FFT (48 kHz, No Input) . ... ... .... ... ... ... .................... ................... ................... .................................. 6
Figure 4. FFT (48 kHz Out-of-Band, No Input) ....... ... ... ... .... ... ... ... .... ... ... ................... .................... .............. 6
Figure 5. 48 kHz, THD+N vs. Input Freq ..................................................................................................... 6
Figure 6. 48 kHz, THD+N vs. Level ............................................................................................................ 6
Figure 7. 48 kHz, Fade-to-Noise Linearity .................................................................................................. 7
Figure 8. 48 kHz, Frequency Response ...................................................................................................... 7
Figure 9. 48 kHz, Crosstalk ......................................................................................................................... 7
Figure 10. 48 kHz, Impulse Response ........................................................................................................ 7
Figure 11. FFT (96 kHz, 0 dB) .................................................................................................................... 7
Figure 12. FFT (96 kHz, -60 dB) ................................................................................................................. 7
Figure 13. FFT (96 kHz, No Input) .............................................................................................................. 8
Figure 14. FFT (96 kHz Out-of-Band, No Input) .......................................................................................... 8
Figure 15. 96 kHz, THD+N vs. Input Freq .... ... ... .... ... ... ... .... ... ... ... .... ... ... ... .................... ... ... ........................ 8
Figure 16. 96 kHz, THD+N vs. Level ........................ ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ........................... 8
Figure 17. 96 kHz, Fade-to-Noise Linearity ................................................................................................ 8
Figure 18. 96 kHz, Frequency Response ............... ......... .......... .......... ......... .......... .......... ......... .................. 8
Figure 19. 96 kHz, Crosstalk ....................................................................................................................... 9
Figure 20. 96 kHz, Impulse Response ........................................................................................................ 9
Figure 21. FFT (192 kHz, 0 dB) .................................................................................................................. 9
Figure 22. FFT (192 kHz, -60 dB) ............................................................................................................... 9
Figure 23. FFT (192 kHz, No Input) ............................................................................................................ 9
Figure 24. FFT (192 kHz Out-of-Band, No Input) ........................................................................................ 9
Figure 25. 192 kHz, THD+N vs. Input Freq ............................................................................................... 10
Figure 26. 192 kHz, THD+N vs. Level ...................................................................................................... 10
Figure 27. 192 kHz, Fade-to-Noise Linearity ............................................................................................ 10
Figure 28. 192 kHz, Frequency Response ................................................................................................ 10
Figure 29. 192 kHz, Crosstalk ......... ... .... ... ... ... ... .... ... ... ... .... ... ................... .................... ............................ 10
Figure 30. 192 kHz, Impulse Response ................. ... ... ... .... ... ... ................... .... ... ... ... .... ... ......................... 10
Figure 31. System Block Diagram and Signal Flow .................................................................................. 12
Figure 32. CS4352 .................... ................................ ... ... .... ... ... ... .... ... ... ... ................................................ 13
Figure 33. Analog Outputs ........................................................................................................................ 14
Figure 34. PCM Input Headers ................................................................................................................. 15
Figure 35. CS8416 S/PDIF Input .............. ... ................... .................... ................... ................... ................ 16
Figure 36. Power ............. ... ... .... ... ... ... .... ... ... ... ... .... ................... ................... ............................................. 17
Figure 37. Silkscreen Top ......................................................................................................................... 18
DS684DB1 3
CDB4352
Figure 38. Top Side ................................................................................................................................... 19
Figure 39. Bottom Side ............................................................................................................................. 20
LIST OF TABLES
Table 1. System Connections .................................................................................................................... 5
Table 2. CDB4352 Jumper Settings .......................................................................................................... 11
4DS684DB1
CDB4352
1. CDB4352 SYSTEM OVERVIEW
The CDB4352 evaluation board is an excellent means of quickly evaluating the CS4352. The CS8416 digital audio
interface receiver provide s an easy interface to digital au dio signal sources including the majority of digital a udio test
equipment. The eval uation board also allows the user to supply exter nal PCM clocks and data through a he ader for
system development.
The CDB4352 schematic has been partitioned into five schematics, as shown in Figures 32 through 36. Each par-
titioned schematic is represented in the system diagram shown in Figure 31. Notice that the system diagram also
includes the interconnections between the partitioned schematics.
2. CS4352 DIGITAL-to-ANALOG CONVERTER
A description of the CS4352 is included in the CS4352 datasheet.
3. CS8416 DIGITAL AUDIO RECEIVER
The system receives and decodes the standard S/PDIF data format using a CS8416 Digital Audio Receiver,
Figure 35. The outputs of the CS84 16 include a serial bit clock, serial data, left-right clock, and a 128/256 Fs master
clock. The CS8416 data format is fixed to I²S. The operation of the CS8416 and a discussion of the digital audio
interface is included in the CS8416 datasheet.
The evaluation board has been designed such that the input can be either optical or coaxial, see Figure 35. How-
ever, both inputs cannot be dr iven simultaneously.
Position 2 of S1 sets the outpu t MCLK to LRCK ra tio of t he CS8416 . This switch should be set to 256 ( LO) for input
Fs<=48 kHz and can be either 256 (LO) or 128 (HI) for Fs>48 kHz
4. INPUT FOR CLOCKS AND DATA
The evaluation board has been designed to allow interfacing to external systems via the header J13. Header J13
allows the evaluation board to accept externally generated PCM clocks and data. The schematic for the clock/data
input is shown in Figure 34. Switch position 1 of S1 selects the source as either CS8416 or header J13.
Please see the CS4352 datasheet for more information.
5. POWER SUPPLY CIRCUITRY
Power is supplied to the evaluation board by three binding po sts (GND, VL, and VA_H), see Figure 36. The VL sup-
ply can be jumpered to a +3.3 V regulator or provided e xternally through the VL binding post. VD and VA is normally
supplied by the 3.3 V regulator but ca n be discon nected usin g J4 and J6 and then have external voltage applied to
the VD and VA test points. The +5 V supply (which powers the regulators for this board) is normally supplied by a
5 V regulator but can be supplied externally by rem oving J7 and applying 5 V to TP8.
Power consumption of the CS4352 can be measured through the voltage drop at J8, J9, J10, and J11 when the
shunts are removed.
WARNING:Refer to the CS4352 data sheet for maximum allowabl e voltages levels. Operation outside of this range
can cause permanent damage to the device.
DS684DB1 5
CDB4352
6. GROUNDING AND POWER SUPPLY DECOUPLING
As with any high-performance converter, the CS4352 requires careful attention to power supply and grounding ar-
rangements to optimize performance. Figure 32 details the connections to the CS4352 and Figures 37, 38, and 39
show the component placement and top and bottom layout. The decoupling capacitors are located as close to the
CS4352 as possible. Extensive use of ground plane fill in the eval uation board yields large reductions in radiated
noise.
7. HARDWARE CONTROL
The CDB4352 is controlled through settings on switch S1. This allows for configuration of the board without a PC.
A switch is provided for CS8416 MCLK speed, clock and data source for the b oard, and the hardwa re mode config-
uration of the CS4352.
8. ANALOG OUTPUT FILTERING
The analog output on the CDB4352 has been designed according to the CS4352 datasheet. This output circuit in-
cludes an AC coupling cap, the BJT mute circuit, and a single-pole R and C.
Table 1. System Connections
CONNECTOR INPUT/OUTPUT SIGNAL PRESENT
VL Input + 1.5 V to +3.3 V power for the CS4352 serial interface
VA_H Input +9 V to +12 V positive supply for the CS4352 high-voltage analog and
the CDB4352 regulators
GND Input Ground connection from power supply
SPDIF INPUT - J16 Input Digital audio interface input via coaxial cable
SPDIF INPUT - OPT1 Input Digital audio interface input via optical cable
PCM INPUT - J13 Input Input for master, serial, left/right clocks and serial data
AOUTA and AOUTB Output RCA line-level analog outputs
6DS684DB1
CDB4352
9. PERFORMANCE PLOTS
-140
+0
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
20 20k50 100 200 500 1k 2k 5k 10k
Hz
-140
+0
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
20 20k50 100 200 500 1k 2k 5k 10k
Hz
Figure 1. FFT (48 kHz, 0 dB) Figure 2. FFT (48 kHz, -60 dB)
-140
+0
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
20 20k50 100 200 500 1k 2k 5k 10k
Hz
-140
+0
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
20k 120k40k 60k 80k 100k
Hz
Figure 3. FFT (48 kHz, No Input) Figure 4. FFT (48 kHz Out-of-Band, No Input)
-110
+0
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
20 20k50 100 200 500 1k 2k 5k 10k
Hz
-110
+0
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
-120 +0-100 -80 -60 -40 -20
dBFS
Figure 5. 48 kHz, THD+N vs. Input Freq Figure 6. 48 kHz, THD+N vs. Level
DS684DB1 7
CDB4352
-40
+40
-35
-30
-25
-20
-15
-10
-5
+0
+5
+10
+15
+20
+25
+30
+35
d
B
r
A
-140 +0-120 -100 -80 -60 -40 -20
dBFS
-5
+5
-4
-3
-2
-1
+0
+1
+2
+3
+4
d
B
r
A
20 20k50 100 200 500 1k 2k 5k 10k
Hz
Figure 7. 48 kHz, Fade-to-Noise Linearity Figure 8. 48 kHz, Frequency Response
-140
+0
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
20 20k50 100 200 500 1k 2k 5k 10k
Hz
-3
3
-2.5
-2
-1.5
-1
-500m
0
500m
1
1.5
2
2.5
V
03m500u 1m 1.5m 2m 2.5m
sec
Figure 9. 48 kHz, Crosstalk Figure 10. 48 kHz, Impulse Response
-140
+0
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
20 20k50 100 200 500 1k 2k 5k 10k
Hz
-140
+0
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
20 20k50 100 200 500 1k 2k 5k 10k
Hz
Figure 11. FFT (96 kHz, 0 dB) Figure 12. FFT (96 kHz, -60 dB)
8DS684DB1
CDB4352
-140
+0
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
20 20k50 100 200 500 1k 2k 5k 10k
Hz
-140
+0
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
20k 120k40k 60k 80k 100k
Hz
Figure 13. FFT (96 kHz, No Input) Figure 14. FFT (96 kHz Out-of-Band, No Input)
-110
+0
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
20 20k50 100 200 500 1k 2k 5k 10k
Hz
-110
+0
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
-120 +0-100 -80 -60 -40 -20
dBFS
Figure 15. 96 kHz, THD+N vs. Input Freq Figure 16. 96 kHz, THD+N vs. Level
-40
+40
-35
-30
-25
-20
-15
-10
-5
+0
+5
+10
+15
+20
+25
+30
+35
d
B
r
A
-140 +0-120 -100 -80 -60 -40 -20
dBFS
-5
+5
-4
-3
-2
-1
+0
+1
+2
+3
+4
d
B
r
A
20 20k50 100 200 500 1k 2k 5k 10k
Hz
Figure 17. 96 kHz, Fade-to-Noise Linearity Figure 18. 96 kHz, Frequency Response
DS684DB1 9
CDB4352
-140
+0
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
20 20k50 100 200 500 1k 2k 5k 10k
Hz
-3
3
-2.5
-2
-1.5
-1
-500m
0
500m
1
1.5
2
2.5
V
01.5m250u 500u 750u 1m 1.25m
sec
Figure 19. 96 kHz, Crosstalk Figure 20. 96 kHz, Impulse Response
-140
+0
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
20 20k50 100 200 500 1k 2k 5k 10k
Hz
-140
+0
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
20 20k50 100 200 500 1k 2k 5k 10k
Hz
Figure 21. FFT (192 kHz, 0 dB) Figure 22. FFT (192 kHz, -60 dB)
-140
+0
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
20 20k50 100 200 500 1k 2k 5k 10k
Hz
-140
+0
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
20k 120k40k 60k 80k 100k
Hz
Figure 23. FFT (192 kHz, No Input) Figure 24. FFT (192 kHz Out-of-Band, No Input)
10 DS684DB1
CDB4352
-110
+0
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
20 20k50 100 200 500 1k 2k 5k 10k
Hz
-110
+0
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
r
A
-120 +0-100 -80 -60 -40 -20
dBFS
Figure 25. 192 kHz, THD+N vs. Input Freq Figure 26. 192 kHz, THD+N vs. Level
-40
+40
-35
-30
-25
-20
-15
-10
-5
+0
+5
+10
+15
+20
+25
+30
+35
d
B
r
A
-140 +0-120 -100 -80 -60 -40 -20
dBFS
-5
+5
-4
-3
-2
-1
+0
+1
+2
+3
+4
d
B
r
A
20 20k50 100 200 500 1k 2k 5k 10k
Hz
Figure 27. 192 kHz, Fade-to-Noise Linearity Figure 28. 192 kHz, Frequency Response
-140
+0
-130
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
d
B
20 20k50 100 200 500 1k 2k 5k 10k
Hz
-3
3
-2.5
-2
-1.5
-1
-500m
0
500m
1
1.5
2
2.5
V
0600u200u 400u
sec
Figure 29. 192 kHz, Crosstalk Figure 30. 192 kHz, Impulse Response
DS684DB1 11
CDB4352
Table 2. CDB4352 Jumper Settings
*Default Factor y Sett ings .
10.DESIGN NOTE
10.1 CDB4352 Revision A.0
D2 has been removed and shorted and R2 has been removed.
The serial audio decode table for S1 is incorrect. ‘01’ should be RJ-24 and ‘10’ should be LJ
The polarity of the silkscreen for Z1, Z2, Z3, Z4, and Z5 is incorrect
The CS4352 revision is A1
10.2 CDB4352 Revision B.0
No errors at this time
JUMPER /
SWITCH PURPOSE POSITION FUNCTION SELECTED
J7 Selects source of voltage for
the +5V supplies +5 V
*+5V_REG Voltage source is +5 V test point (TP8)
Voltage source is +5 V regulator
J4 Selects source of voltage for
the VD supplies VD
*+3.3V REG Voltage source is VD test point (TP2)
Voltage source is +3.3 V regulator
J5 Selects source of voltage for
the VL supply VL
*+3.3V REG Voltage source is VL binding post
Voltage source is +3.3 V regulator
J6 Selects source of voltage for
the VA supply VA
*+3.3V REG Voltage source is VA test point (TP7)
Voltage source is +3.3 V regulator
J8 Current measure for VD *shunted When shunt is removed, the voltage can be measured
across a fixed resistance to determine current.
J9 Current measure for VL *shunted When shunt is removed, the voltage can be measured
across a fixed resistance to determine current.
J10 Current measure for VA *shunted When shunt is removed, the voltage can be measured
across a fixed resistance to determine current.
J11 Current measure for VA_H *shunted When shunt is removed, the voltage can be measured
across a fixed resistance to determine current.
S1 Sets clock source, CS8416
clock speed, and CS4352 set-
tings
*1 = open
*2, 3, 4, 5 = closed
position 1: 0 = external clock source, 1 = CS8416
position 2: 0 = 8416 MCLK is 256xFs, 1 = 128xFs
Position 3,4,5: see CS4352 datasheet
S2 Reset - Enables reset for CS4352 and CS8416 when pressed
J12
J17 Mute Disable *LED
MUTE Bypasses muting to turn on LED
Normal muting circuit
12 DS684DB1
CDB4352
11.SCHEMATICS
Figure 31. System Block Diagram and Signal Flow
CS4352
PCM Inputs
8416 Digital
Audio Receiver
MCLK
SCLK
LRCK
SDIN
Hardware Switch
Reset
Circuit
Channel A
Channel B
Outputs and Mute
Outputs and Mute
Figure 32
Figure 34
Figure 34
Figure 35
Figure 33
Figure 33
Power
Figure 36
DS684DB1 13
CDB4352
Figure 32. CS4352
14 DS684DB1
CDB4352
Figure 33. Analog Outputs
DS684DB1 15
CDB4352
Figure 34. PCM Input Headers
16 DS684DB1
CDB4352
Figure 35. CS8416 S/PDIF Input
DS684DB1 17
CDB4352
Figure 36. Power
DS684DB1 18
CDB4352
Figure 37. Silk sc r e en Top
19 DS684DB1
CDB4352
Figure 38. Top Side
20 DS684DB1
CDB4352
Figure 39. Bottom Side
DS684DB1 21
CDB4352
12.REVISION HISTORY
Release Changes
DB1 Initial Release
DB2 Added Performance Plots
Contacting Cirrus Logic Support
For all product questions and inq uiries, contact a Cirrus Logic Sales Represen tative.
To find the one nearest you, go to www.cirrus.com.
IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject
to change without not ice and is pr ovided "AS IS" witho ut warr anty of any kind (express or implied). Customers are advised to obtain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by C irrus
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringemen t of patents or o ther righ ts of third
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any paten ts, mask wo rk rights,
copyrights, tradem arks, trade secrets or oth er intellectual prop erty rights. Cirrus ow ns the copyrights a ssociated with the information contained herein and gives con-
sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJ URY, OR SEVERE PROP-
ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE
IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DE-
VICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDER-
STOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED,
INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY C IRRUS PRODUCT
THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERM ITS THE USE OF CIRRUS PRODUCTS IN CRITICAL
APPLICATI ONS, CUSTO MER AGREES, BY SUCH US E, TO FULL Y INDEMNIF Y CIRRUS, ITS OF FICE RS, DIRE CTORS, EMPLOYEES, DISTRI BUTORS AND
OTHER AGENTS FROM ANY AND ALL LIA BILITY, INCLUDING ATTORNE YS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION
WITH THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks
or service marks of their respective owners.