34.807IRELESS
IMPORTANT NOTICE
Dear customer,
As from August 2nd 2008, the wireless operations of STMicroelectronics have moved to a
new company, ST-NXP Wireless.
As a result, the following changes are applicable to the attached document.
Company name - STMicroelectronics NV is replaced with ST-NXP Wireless.
Copyright - the copyright notice at the bottom of the last page “© STMicroelectronics
200x - All rights reserved”, shall now read: “© ST-NXP Wireless 200x - All rights
reserved”.
Web site - http://www.st.com is replaced with http://www.stnwireless.com
Contact information - the list of sales offices is found at http://www.stnwireless.com
under Contacts.
If you have any questions related to the document, please contact our nearest sales office.
Thank you for your cooperation and understanding.
ST-NXP Wireless
34.807IRELESS
www.stnwireless.com
April 2007 Rev 1 1/85
1
STw5098
Dual low power asynchronous stereo audio Codec
with integrated power amplifiers
Features
Dual 20 bit audio resolution, 8kHz to 96kHz
independent rate ADC and DAC
Dual I2S or PCM digital interfaces for dual
master
Sustain complex voice and audio flow with or
without mixing
I2C/SPI compatible control I/F
Asynchronous sampling ADC and DAC: they
do not require oversampled clock and
information on the audio data sampling
frequency (fs). Jitter tolerant fs
Wide master clock range: from 4MHz to 32MHz
Stereo headphones drivers, handsfree
loudspeaker driver, line out drivers
Mixable analog line inputs
Voice filters: 8/16kHz with voice channel filters
Automatic gain control for microphone and line-
in inputs
Freque ncy pr ogr am mab le cl ock outputs
Multibit Σ∆ modulators with data weighted
averaging ADC and DAC
DSP functions for bass-treble-volume control,
mute, mono/stereo selection, voice channel
filters, de-emphasis filter and dynamic
compression
93 dB dynamic range ADC, 0.001% THD with
full scale output @ 2.7V
95 dB dynamic range DAC, 0.02% THD
performance @ 2.7V over 16 load
Applications
Digital cellular telephones with application
processor such as mp3 or gaming and
Bluetooth concurrent application
Description
STw5098 is a dual low power asynchronous
stereo audio CODEC device with headphones
amplifiers for high quality audio listening and
recording.
Two I2S/PCM digital interfaces are available, one
per master for e xample Bluetooth and Application
Processor, enabling concurrent audio and voice
flow between Network and user.
The STw5098 control registers are accessible
through a selectable I2C-bus compatible or SPI
compatible interface.
STw5098
VFBGA 5x5x1 (112 pins)
LFBGA 6x6x1.4 (112 pins)
www.st.com
Contents STw5098
2/85
Contents
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 Naming convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Device programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Power up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Master clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6 Data rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.7 Clock generators and master mode function . . . . . . . . . . . . . . . . . . . . . . 20
4.8 A udio digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.9 Analog inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.10 Analog output drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.11 Analog mix ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.12 AD paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.13 DA paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.14 Analog-onl y operati ons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.15 Automatic Gain Control (AGC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.16 Interrupt request: IRQ pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.17 Headset plug-in and push-button detection . . . . . . . . . . . . . . . . . . . . . . . 26
4.18 Micr ophone biasin g circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5 Control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Supply and power control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 DSP control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5 Analog functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
STw5098 Contents
3/85
5.6 Digital audio interfaces master mode and clock generators . . . . . . . . . . . 41
5.7 Digi tal audio int e rfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.8 Digital filters, software reset and master clock control . . . . . . . . . . . . . . . 45
5.9 Interrupt control and control interface SPI out mode . . . . . . . . . . . . . . . . 46
5.10 AGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6 Control interface and master clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1 Contr ol interface I2C mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Contr ol interface SPI mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3 Master clock timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7 Audio interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8 Timing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9 Operative ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.2 Oper ative supply v o ltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.3 Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.4 Typical power dissipation by entity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.1 Digital interf aces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.2 AMCK with sinusoid input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.3 Analog interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.4 Headset plug-in and push-button detector . . . . . . . . . . . . . . . . . . . . . . . . 64
10.5 Microphone bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.6 Pow er supply rejection ra tio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.7 LS and EAR gain limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
11 Analog input/output operative ranges . . . . . . . . . . . . . . . . . . . . . . . . . 66
11.1 Analog levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
11.2 Microphone inpu t lev els . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
11.3 Line output levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
11.4 Power output levels HP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Contents STw5098
4/85
11.5 Pow er output levels LS and EAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
12 Stereo audio ADC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
13 Stereo audio DAC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
14 AD to DA mixing (sidetone) specifications . . . . . . . . . . . . . . . . . . . . . . 71
15 Stereo analog-only path specifications . . . . . . . . . . . . . . . . . . . . . . . . 72
16 ADC (TX) & DAC (RX) specifications with voice filters selected . . . . . 73
17 Typical performance plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
18 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
18.1 LFBGA 6x6x1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
18.2 VFBGA 5x5x1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
19 Application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
20 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
21 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
STw5098 List of tables
5/85
List of tables
Table 1. STw5098 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 2. Control register summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 3. CR0 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 4. CR1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 5. CR2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 6. CR3 and CR4 description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 7. CR5 and CR6 description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 8. CR7 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 9. CR8 and CR9 description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 10. CR10 and CR11 description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 11. CR12 and CR13 description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 12. CR14 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 13. CR15 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 14. CR16 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 15. CR17 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 16. CR18 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 17. CR19 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 18. CR21-20 and CR24-23 description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 19. CR22 and CR25 description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 20. CR26 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 21. CR27 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 22. CR28 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 23. CR29 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 24. CR30 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 25. CR31 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 26. CR32 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 27. CR33 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 28. CR 34 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 29. CR 35 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 30. Control interface timing with I²C format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 31. Control interface signal timing with SPI format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 32. AMCK timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 33. Audio interface signal timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 34. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 35. Operative supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 36. Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 37. Typical power dissipation, no master clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 38. Typical power dissipation with master clock AMCK = 13 MHz . . . . . . . . . . . . . . . . . . . . . . 61
Table 39. Digital interfaces specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 40. AMCK with sinusoid input specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 41. Analog interface specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 42. Headset plug-in and push-button detector specifications. . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 43. Microphone bias specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 44. Power supply rejection ratio specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 45. LS and EAR gain limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 46. Reference full scale analog levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 47. Microphone input levels, absolute levels at pins connected to preamplifiers . . . . . . . . . . . 66
Table 48. Microphone input levels, absolute levels at pins connected to the line-in amplifiers . . . . . 66
List of tables STw5098
6/85
Table 49. Absolute levels at OLP/OLN, ORP/ORN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 50. Absolute levels at HPL - HPR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 51. Absolute levels at 1EARP-1EARN and 2LSP - 2LSN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 52. Stereo audio ADC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 53. Stereo audio DAC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 54. AD to DA mixing (sidetone) specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 55. Stereo analog-only path specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 56. ADC (TX) & DAC (RX) specifications with voice filters selected. . . . . . . . . . . . . . . . . . . . . 73
Table 57. Dimensions of LFBGA 6x6x1.4 112 4R11x11. 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 58. Dimensions of VFBGA 5x5x1.0 112 balls 0.4 mm pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 59. Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 60. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
STw5098 List of figures
7/85
List of figures
Figure 1. Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 2. STw5098 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 3. Power up block diagram: example shown for one entity . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 4. Plug-in and push-button detection application note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 5. Control interface I2C format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 6. Control interface: I2C format timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 7. Control interface SPI format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 8. Control interface: SPI format timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 9. Audio interfaces formats: delayed, left and right justified . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 10. Audio interfaces formats: DSP, SPI and PCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 11. Audio interface timings: master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 12. Audio interface timing: slave mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 13. A.C. testing input-output waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 14. Bass treble control, de-emphasis filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 15. Dynamic compressor transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 16. ADC audio path measured filter response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 17. ADC in band audio path measured filter response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 18. DAC digital audio filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 19. DAC in band digital audio filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 20. ADC 96 kHz audio path measured filter response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 21. ADC 96 kHz audio in-band measured filter response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 22. ADC voice TX path measured filter response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 23. ADC voice TX path measured in-band filter response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 24. DAC voice (RX) digital filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 25. DAC voice (RX) in-band digital filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 26. ADC path FFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 27. ADC S/N versus input-level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 28. DAC path FFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 29. DAC S/N versus input-level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 30. Analog path FFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 31. Analog path S/N versus input-level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 32. LFBGA 6x6x1.4 112 4R11x11 0.5 drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 33. VFBGA 5x5x1.0 112 0.4 drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 34. STw5098 application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Overview STw5098
8/85
1 Overview
Dual 20 bit audio resolution, 8kHz to 96kHz independent rate ADC and DAC
Dual I2S/PCM digital interfaces for dual master
Sustain complex voice and audio flow with or without mixing
Two I2C/SPI compatible independent control interfaces
Asynchronous sampling ADC and DAC that do not require oversampled clock and
information on the audio data sampling frequency (fs). Jitter tolerant fs
Wide master clock range from 4MHz to 32MHz
Two stereo headphones drivers, hand free loudspeaker driver, line out drivers
Mixable analog line inputs
Voice filters: 8/16kHz with voice channel filters
Automatic gain control for microphone and line-in inputs
Four programmable master/slave serial audio data interfaces: I2S, SPI, PCM
compatible and other formats
Frequency programmable clock outputs
Multibit Σ∆ modulators with data weighted averaging ADC and DAC
Four DSP functions for bass-treble-v olume control, mute, mono/stereo selection, voice
channel filters, de-emphasis filter and dynamic compression
93 dB dynamic range ADC, 0.001% THD with full scale with full scale output @ 2.7V
95 dB dynamic range DAC, 0.02% THD performance @ 2.7V over 16 load
Analog inputs
Selectable stereo differential or single-ended microphone amplifier inputs with 51dB
range programmable gain
2 microphone biasing output
Microphone plug-in and push-button detection input
Selectable stereo differential or single-ended line inputs with 38dB range
programm able gain
Analog output drivers
2 Stereo headphones outputs. driving capability: 40mW (0.1% THD) over 16 with
40dB range programmable gain
Common mode voltage headphones driver (phantom ground)
1 Balanced loudspeaker output with driving capability up to 500mW (VCCLS>3.5V; 1%
THD) over 8 with 30dB range programmable gain
1 Balanced earphone output with driving capability up to 125mW
Transient suppression filter during power up and power down
Balanced/unbalanced stereo line outputs with 1 k driving capability
STw5098 Pinout
9/85
2 Pinout
Figure 1. Pin assignment
GND
2SCLK
1HDET
1MICLN1AUX1L2AUX1L
1MICLP
2CAPMIC
1LINEINL
1AUX2LP 2AUX2LP
1OLP
GNDCM
VCCP
1HPL
2HPL
1EARPS
2VCMHP
1VCMHP
GNDP
1CAPEAR
2CAPLS
GNDP
1EARP
1EARNS
2LSNS
1HPR
2ORP
1DA_DATA
1IRQ
2MBIAS
VCCA 2AUX1R
1MICRN 2MICRN
1CAPLINEIN 2MICRP
2AUX2RN1AUX2RN
2AUX2RP
1LINEINR
2ORN
GNDP
VCCA
2AD_OCK
1AD_OCK
1CMOD
VCCIO
2DA_OCK
1DA_OCK
1DA_CK
2DA_CK
1AD_DATA
AMCK
1AS/CSB
2AD_SYNC
1AD_SYNC
2DA_DATA2HDET
2MICLN1AUX3L2AUX3L
1CAPMIC GNDA
1AUX2LN 2LINEINL2AUX2LN
2OLN
1OLN
GNDCM VCCP
2OLP
VCC
1SCLK
2CMOD
2SDA/SDIN
1SDA/SDIN 2AD_CK
1AD_CK 2AS/CSB 2AD_DATA
VCC 2DA_SYNC
2IRQ
GND
1DA_SYNC
1MBIAS
1AUX1R
2CAPLINEIN 2AUX3R
1MICRP 1AUX3R
1AUX2RPGNDA
2LINEINR
1ORN
1ORP
GNDP 1VCMHPS
2VCMHPS VCCLS
2LSPS 2LSP
VCCP
1EARN
2LSN
VCCLS
VCCLS
VCCP 2HPR
2MICLP
VCCA
1234567891011
A
B
C
D
E
F
G
H
J
K
L
Pinout STw5098
10/85
Table 1. STw5098 pin description
Position Type Pin name Description
A1 P GND Ground pin for the digital section
A2 DI 1SCLK Control interface serial clock input
A3 DO 1AD_OCK Oversampled clock out from AD clock generator
A4 DIOD 2SDA/SDIN Control interface serial data input-output in I2C mode (SDA), control
interface serial data input in SPI mode (SDIN).
A5 DO 1DA_OCK Oversampled clock out from DA clock generator
A6 DIO 1AD_CK Serial data clock for stereo A/D converter
A7 DI 2AS/CSB Control interface address select in I2C mode (AS).
Interface enable signal in SPI mo de (CSB).
A8 DO 2AD_DATA Serial data out for stereo A/ D converter
A9 DIO 2AD_SYNC Frame sync for stereo A/D converter
A10 DIO 1DA_SYNC Frame sync for stereo D/A converter
A11 DI 1DA_DATA Serial data In for stereo D/A converter
B1 AI 2HDET Headset detection input
(microphone plug-in and push-button detection)
B2 DI 2SCLK Control interface serial clock input
B3 DO 2AD_OCK Oversampled clock out from AD clock generator
B4 DI 1CMOD Control interface type selector I2C-bus mode or SPI mode
B5 DO 2DA_OCK Oversampled clock out from DA clock generator
B6 DIO 2DA_CK Serial data clock for stereo D/A converter
B7 DI
AI AMCK Master clock input. Accepted range 4 MHz to 32 MHz.
AMCK is a digital square wave
AMCK is an analog sinewave (
Section 10.2 on page 62
)
B8 P VCC Power supply pin for the digital section.
Operating range: from 1.71 V to 2.7 V
B9 DIO 2DA_SYNC Frame sync for stereo D/A converter
B10 DI 2DA_DATA Serial data in for stereo D/A converter
B11 P GND Ground pin for the digital section
C1 P VCCA Power supply pin for the analog section.
Standard operating range: from 2.7V to 3.3V
Low voltage (LV) range: from 2.4V to 2.7V
C2 AI 1HDET Headset detection input
(microphone plug-in and push-button detection)
C3 P VCCA Power supply pin for the analog section.
Standard operating range: from 2.7V to 3.3V
Low voltage (LV) range: from 2.4V to 2.7V
C4 DI 2CMOD Control interface ty pe sele ctor I2C-bus mode or SPI mode.
STw5098 Pinout
11/85
C5 DIOD 1SDA/SDIN Control i nte rface s erial da ta i npu t-output in I 2C m od e (SDA). Control
interface serial data input in SPI mode (SDIN).
C6 DIO 2AD_CK Serial data clock for stereo A/D converter
C7 DO 1AD_DATA Serial data out for stereo A/D converter
C8 DIO 1AD_SYNC Frame sync for stereo A/D converter
C9 DO 2IRQ Programmable interrupt output. Active low signal.
C10 AO 2MBIAS Microphone biasing pin. Fixed vo ltage reference
C11 AO 1MBIAS Microphone biasing pin. Fixed vo ltage reference
D1 AI 2AUX1L Left and right channel single ended pins for microphone or line input
D2 AI 1AUX1L Left and right channel single ended pins for microphone or line input
D3 AI 1MICLN Left and right channel differential pins for microphone input
D4 P VCC Power supply pin for the digital section.
Operating range: from 1.71V to 2.7V
D5 P VCCIO Power supply pin for the digital I O buffers.
Operating ranges: from 1.2V to 1.8V and from 1.71V to VCC
D6 DIO 1DA_CK Serial data clock for stereo D/A conver ter
D7 DI 1AS/CSB Control interface address select in I2C mode (AS)
Interface enable signal in SPI mo de (CSB)
D8 DO 1IRQ Programmable interrupt output. Active low signal.
D9 P VCCA Power supply pin for the analog section.
Standard operating range: from 2.7V to 3.3V
Low voltage (LV) range: from 2.4V to 2.7V
D10 AI 1AUX1R Left and right channel single ended pins for microphone or line input
D11 AI 2AUX1R Left and right channel single ended pins for microphone or line input
E1 AI 2AUX3L Left and right channel single ended pins for microphone or line input
E2 AI 1AUX3L Left and right channel single ended pins for microphone or line input
E3 AI 1MICLP Left and right channel differential pins for microphone input
E4 AI 2MICLN Left and right channel differential pins for microphone input
E8 AI 2CAPLINEIN A capacitor must be connected between CAPLINEIN and ground
E9 AI 1MICRN Left and right channel differential pins for microphone input
E10 AI 2AUX3R Left and right channel single ended pins for microphone or line input
E11 AI 2MICRN Left and right channel differential pins for microphone input
F1 AI 2CAPMIC A capacitor must be connected between CAPMIC and ground.
F2 AI 1CAPMIC A capacitor must be connected between CAPMIC and ground
F3 P GNDA Ground pin for the analog section
F4 AI 2MICLP Left and right channel differential pins for microphone input
Table 1. STw5098 pin description
Position Type Pin name Description
Pinout STw5098
12/85
F8 AI 1CAPLINEIN A capacitor must be connected between CAPLINEIN and ground
F9 AI 1MICRP Left and right channel differential pins for microphone input
F10 AI 1AUX3R Left and right channel single ended pins for microphone or line input
F11 AI 2MICRP Left and right channel differential pins for microphone input
G1 AI 1AUX2LN Left and right channel differential pins for microphone or line input
G2 AI 2AUX2LN Left and right channel differential pins for microphone or line input
G3 AI 1LINEINL Left and right channel single ended pins for line input
G4 AI 2LINEINL Left and right channel single ended pins for line input
G8 P GNDA Ground pin for the analog section
G9 AI 1AUX2RP Left and right channel differential pins for microphone or line input.
G10 AI 1AUX2RN Left and right channel differential pins for microphone or line input
G11 AI 2AUX2RN Left and right channel differential pins for microphone or line input
H1 AI 1AUX2LP Left and right channel differential pins for microphone or line input
H2 AI 2AUX2LP Left and right channel differential pins for microphone or line input
H3 AO 2OLN Audio differential line out amplifier for left and right channels. This
outputs can drive up to 1k resistive load. Can be used as single
ended out put.
H4 P GNDCM Ground pin fo r analog reference.
GNDCM can be conne cted to GNDA
H5 AO 1EARPS EARPS, EARNS (sense) pins must be connected on the application
board to EARP, EARN pins respectively. The connection must be as
close as possible to the pins.
H6 AO 1EARP
Analog differential loudspea ker amplif ier outp ut for left chann el or
right channel or the sum of both. This output can drive 50nF (with
serie s resistor) or directly an earpiece transductor fr om 8. to 32.
Can deliver from 500mW to 125mW.
H7 P VCCP Power supply pin for the left and right output drivers (headphones
and line-out). Operating range: from VCCA to 3.3V
H8 AO 1HPR Audio single ended headphones amplifier outputs for left and right
channels. The outputs can drive 50nF (with series resistor) or
directly an earpiece transductor of 16.
H9 AO 2ORN Audio differential line out amplifier for left and right channels. This
outputs can drive up to 1k resistive load. Can be used as single
ended out put.
H10 AI 2LINEINR Left and right channel single ended pins for line input
H11 AI 2AUX2RP Left and right channel differential pins for microphone or line input
J1 AO 1OLN Audio differential line out amplifier for left and right channels. This
outputs can drive up to 1k resistive load. Can be used as single
ended out put.
Table 1. STw5098 pin description
Position Type Pin name Description
STw5098 Pinout
13/85
J2 AO 1OLP Audio differential line out amplifier for left and right channels. This
outputs can drive up to 1k resistive load. Can be used as single
ended out put.
J3 AO 2OLP Audio differential line out amplifier for left and right channels. This
outputs can drive up to 1k resistive load. Can be used as single
ended out put.
J4 AO 2HPL Audio single ended headphones amplifier outputs for left and right
channels. The outputs can drive 50nF (with series resistor) or
directly an earpiece transductor of 16.
J5 AO 1VCMHP Common mode voltage headphones output. The negative pins of
headphones left and right speakers can be connected to this pin to
avoid decoupling capacitors.
J6 AI 1CAPEAR A capacitor can be connected between this node and ground
J7 AO 1EARN
Analog differential loudspea ker amplif ier outp ut for Left chann el or
Right channel or the sum of both. This output can drive 50nF (with
serie s resistor) or directly an earpiece transductor fr om 8 to 32.;
It can deliver from 500mW to 125mW.
J8 P VCCLS Power supply pin for the mono differential output driver. Operating
range: from VCCA to 5.5V
J9 AO 2ORP Audio differential line out amplifier for left and right channels. This
outputs can drive up to 1k resistive load. Can be used as single
ended out put.
J10 AO 1ORN Audio differential line out amplifier for left and right channels. This
outputs can drive up to 1k resistive load. Can be used as single
ended out put.
J11 AI 1LINEINR Left and right channel single ended pins for line input
K1 P GNDCM Ground pin for analog reference.
GNDCM can be conne cted to GNDA
K2 P VCCP Power supply pins for the left and right output drivers (headphones
and line-out).
Operating range: from VCCA to 3.3V
K3 AO 1HPL Audio single ended headphones amplifier outputs for left and right
channels. The outputs can drive 50nF (with series resistor) or
directly an earpiece transductor of 16.
K4 AO 2VCMHPS VCMHPS (sense) p in m ust b e con necte d on t he app licat ion bo ard to
VCMHP pin. The connection must be as close as possible to the
pins.
K5 P VCCLS Power supply pin for the mono differential output driver. Operating
range: from VCCA to 5.5V
K6 P GNDP Ground pin for the left, right and mono-differential output drivers.
GNDP and GNDA must be connected together.
K7 P GNDP Ground pin for the left, right and mono-differential output drivers.
GNDP and GNDA must be connected together.
Table 1. STw5098 pin description
Position Type Pin name Description
Pinout STw5098
14/85
K8 AO 1EARNS EARPS, EARNS (sense) pins must be connected on the application
board to EARP, EARN pins respectively. The connection must be as
close as possible to the pins.
K9 P VCCLS Power supply pins for the mono differential output driver. Operating
range: from VCCA to 5.5V
K10 AO 1ORP Audio differential line out amplifier fo r left and right channels. This
outputs can drive up to 1k resistive load. Can be used as single
ended out put.
K11 P GNDP Ground pin for the left, right and mono-differential output drivers.
GNDP and GNDA must be connected together.
L1 P VCCP Power supply pin for the left and right output drivers (headphones
and line-out).
Operating range: from VCCA to 3.3V
L2 P GNDP Ground pin for the left, right and mono-differe ntial output drivers.
GNDP and GNDA must be connected together.
L3 AO 1VCMHPS VCMHPS (se nse) p in m ust b e con nected o n t he app licat ion bo ard to
VCMHP pin. The connection must be as close as possible to the
pins.
L4 AO 2VCMHP Common mode voltage headphones output. The negative pins of
headphones left and right speakers can be connected to this pin to
avoid decoupling capacitors.
L5 AO 2LSPS LSPS, LSNS (sense) pins must be connected on the application
board to LSP, LSN pins respectively. The connection must be as
close as possible to the pins.
L6 AO 2LSP
Analog differential loudspea ker amplif ier outp ut for Left chann el or
Right channel or the sum of both. This output can drive 50nF (with
serie s resistor) or directly an earpiec e transductor of 8.; It can
deliver up to 500mW.
L7 AI 2CAPLS A capacitor can be connected between this node and ground
L8 AO 2LSN
Analog differential loudspea ker amplif ier outp ut for Left chann el or
Right channel or the sum of both. This output can drive 50nF (with
series resis tor) o r di rectly an e arpiece transdu ct or of 8. C an d eli ver
up to 500mW.
L9 AO 2LSNS LSPS, LSNS (sense) pins must be connected on the application
board to LSP, LSN pins respectively. The connection must be as
close as possible to the pins.
L10 P VCCP Power supply pin for the left and right output drivers (headphones
and line-out). Operating range: from VCCA to 3.3V
L11 AO 2HPR Audio single ended headphones amplifier outputs for left and right
channels. The outputs can drive 50nF (with series resistor) or
directly an earpiece transductor of 16.
Table 1. STw5098 pin description
Position Type Pin name Description
STw5098 Pinout
15/85
Type definitions
AI - Analog input
A O - Analog output
AIO - Analog input output
DI - Digital input
DO - Digital output
DIO - Digital input output
DIOD - Digital input output open drain
P - Power supply or ground
Block diagram STw5098
16/85
3 Block diagram
Figure 2. STw5098 block diagram
Transient
Suppr.
Filter
Transient
Suppr.
Filter
Transient
Suppr.
Filter
Left
LineOut
-40:0 dB Step 2
-40:0 dB Step 2
Right
Driver
LOG: -18:0 dB Step 3
Right
LineOut
L
(L+R)/2
R
Stereo
Diff.
Stereo
Sing.E.
Stereo
Sing.E.
Stereo
Diff.
Stereo
Sing.E.
Comm.
Mode
Left
Driver
CM
Driver
Voltage
Reference
-20
:
+18 dB Step 2
-24
:
6 dB Step 2
Mono
Driver
MICLO1
LSSEL1
MIXLIN1
MIXMIC1
ADMIC1
ADLIN1
1CAPLINEIN
1CAPMIC
1LINEINL
1LINEINR
1AUX3R
1AUX3L
AUX2NR
1AUX2PR
1AUX2NL
1AUX2PL
1AUX1R
1AUX1L
1MICRN
1MICRP
1MICLN
1MICLP
1MBIAS
1VCMHP
1VCMHPS
1OLP
1OLN
1HPL
1EARPS
1EARP
1CAPEAR
1EARN
1EARNS
1HPR
1ORP
1ORN
Mic.
Bias
LINEIN
AUX1
AUX2
AUX3
MUTE
LIN L-R
Amps
LINSEL1 LINLG1
LINRG1
Stereo Path
2.1V
Reference
AGC
(fro m DSP)
AGC
(fro m DSP)
RL
LSG1
HPLG1
HPRG1
0
÷
39 dB
Step 1.5
MIC
AUX1
AUX2
AUX3
MUTE
MIC L-R
PreAmps
MICSEL1 MICLG1
MICRG1
-12
÷
0 dB
Step 1.5
MICLA1
MICRA1
L
R
L
R
Transient
Suppr.
Filter
Transient
Suppr.
Filter
Transient
Suppr.
Filter
Left
LineOut
-40:0 dB Step 2
-40:0 dB Step 2
Right
Driver
LOG: -18:0 dB S tep 3
Right
LineOut
L
(L+R)/2
R
Stereo
Diff.
Stereo
Sing.E.
Stereo
Sing.E.
Stereo
Diff.
Stereo
Sing.E.
Comm.
Mode
Left
Driver
CM
Driver
Voltage
Reference
-20
:
+18 dB Step 2
-24
:
6 dB Step 2
Mono
Driver
MICLO2
LSSEL2
MIXLIN2
MIXMIC2
ADMIC2ADLIN2
2CAPLINEIN
2CAPMIC
2LINEINL
2LINEINR
2AUX3R
2AUX3L
2AUX2NR
2AUX2PR
2AUX2NL
2AUX2PL
2AUX1R
2AUX1L
2MICRN
2MICRP
2MICLN
2MICLP
2MBIAS
2VCMHP
2VCMHPS
2OLP
2OLN
2HPL
2LSPS
2LSP
2CAPLS
2LSN
2LSNS
2HPR
2ORP
2ORN
Mic.
Bias
LINEIN
AUX1
AUX2
AUX3
MUTE
LIN L-R
Amps
LINSEL2
LINLG2
LINRG2
Stereo Path
2.1V
Reference
AGC
(from DSP)
AGC
(from DSP)
RL
LSG2
HPLG2
HPRG2
0
÷
39 dB
Step 1.5 MIC
AUX1
AUX2
AUX3
MUTE
MIC L-R
PreAmps
MICSEL2MICLG2
MICRG2
-12
÷
0 dB
Step 1.5
MICLA2
MICRA2
L
R
L
R
MCK1
DA Sample
Rate
Converter
CK Gen/
Master
Mode
Digital
DA-PLL
PLL
Audio
AD-I/F
Stereo DAC
1AD_SYNC
1AD_CK
1AD_DATA
1AD_OCK
AMCK
1DA_OCK
1DA_SYNC
1DA_CK
1DA_DATA
DSP1
AD to DA
Mixing
Gain
AGC
(Mic&Lin)
DACHSW
ADMONO
DAMONO
(sidetone)
DAC
Digital
Gain
ADC
Digital
Gain
Dyn.Comp.
Bass
Treble
(Audio only)
DA to AD
Mixing
Gain
(Audio Only)
ADCHSW
Filter
Audio/Voice
Filter
Audio/Voice
Σ∆
Modulator
Σ∆
ADC
Audio
DA-I/F
DA_SYNC1
CK Gen/
Master
Mode
MCK2
CK Gen/
Master
Mode
PLL
Audio
AD-I/F
2AD_SYNC
2AD_CK
2AD_DATA
2AD_OCK
AMCK
2DA_OCK
2DA_SYNC
2DA_CK
2DA_DATA
DSP2
AD to DA
Mixing
Gain
AGC
(Mic&Lin)
DACHSW
ADMONO
DAMONO
(sidetone)
DAC
Digital
Gain
ADC
Digital
Gain
Dyn.Comp.
Bass
Treble
(Audio only)
DA to AD
Mixing
Gain
(Audio Only)
ADCHSW
Filter
Audio/Voice
Filter
Audio/Voice
Audio
DA-I/F
CK Gen/
Master
Mode
Bandgap
Control
Logic
Power-On
Reset Registers
Control I/F
Headset
Detection
VCCIO GNDVCC
GNDCMGNDPVCCLSVCCP GNDA
CurrentBias
STw5098
IRQ
Gen
2CMOD2AS/CSB1SCLK 2SDA/SDIN1HDET
Oscillator
Stereo ADC
DAC
MIXDAC1
Analog
Filter
AD Sample
Rate
Converter Digital
AD-PLL
AD_SYNC1
Stereo DAC
Σ∆
ADC
Stereo ADC
AD Sample
Rate
Converter
Digital
AD-PLL
AD_SYNC2
DA Sample
Rate
Converter
Digital
DA-PLL
Σ∆
Modulator
DA_SYNC2
DAC
MIXDAC2
Analog
Filter
1IRQ 2HDET
AMCK
VCCA 1SDA/SDIN 2SCLK
1CMOD 1AS/CSB
2IRQ
STw5098 Functional description
17/85
4 Functional description
4.1 Naming convention
The STw5098 is composed of two identical entities, with their respective set of control
registers.
Regarding the pin labelling, a pin name preceded by 1 refers to entity 1 and a pin name
preceded by 2 refers to entity 2 (ie.g. 1SCLK, 2SCLK). In the following sections, no
distinction is made between the two entities when it is not relev ant. Consequently, the 1 and
2 prefix es for entities 1 and 2 respectively are omitted. The same naming convention applies
to the control registers (CRxxx).
4.2 Power supply
STw5098 can have different supply voltages for different blocks, to optimize performance,
power consumption and connectivity. See
Section 9.2 on page 59
for voltage definition.
The correct sequence to apply supply voltage is to set first (and unset last) the digital I/O
suppl y (V CCIO). The other supply voltages can be set in any order and can be disconnected
individually, if needed. Disconnection does not cause any harm to the device and no extra
current is pulled from any supply during this operation. Moreover if a voltage conflict is
detected, like VCCA < VCC (not allow ed), simply all blocks connected to VCCA are set to
power down and no extra current is pulled from supply.
When VCCIO is set and VCC (digital supply) is not set, all the d igital output pins are in h igh
impedance state, while the digital inputs are disconnected to avoid power consumption for
any input voltage value between GND and VCCIO. Before VCC is disconnected the device
has to be reset (SWRES bit in CR30).
When the analog supply (VCCA) is set and VCC is not set, all the analog inputs are in high
impedance state.
The two sets of control registers are powered by VCC pins (digital supply) so if these pins
are disconnected all the information stored in control registers is lost. When the digital
supply voltage is set, a power-on-reset (POR) circuit sets all the registers content to the
default value and then generates IRQ signals writing 1 in bits PORMSK end POREV in
CR31 and CR32 respectively for both entities.
All supplies must be on during operation.
Functional description STw5098
18/85
4.3 Device programming
STw5098 can be programmed by writing Control Registers with SPI or I2C compatible
control interface (both slave). The interface is always active, there is no need to have the
master clock running to program the device registers. The control interfaces of each entity
can be operated independently either in SPI or I2C modes.
The choice between the two interfaces for each entity is done via their input pins 1CMOD
and 2CMOD (CMOD):
1. CMOD connected to GND: I2C compatible mode selected
The device address is selected with AS pin:
When this mode is selected control registers are accessed through pins:
SCLK (clock)
SDA (serial data out/in, open drain)
2. CMOD connected to VCCIO: SPI compatible mode selected
When this mode is selected control registers are accessed through:
AS/CSB (chip select, active low)
SCLK (clock)
SDIN (serial data in)
AD_OCK or DA_OCK or IRQ (serial data out, if selected)
Device Programming: I2C. The I2C Control Interface timing is shown in
Section 6.1 on
page 50
. The interface has an internal counter that keeps the current address of the control
register to be read or written. At each write access of the interface the address counter is
loaded with the data of the
register address
field. The value in the address counter is
increased after each data byte read or write. It is possible to access the interface in 2
modes: single-byte mode in which the address and data of a single register are specified,
and multi-byte mode in which the address of the first register to be written or read is
specified and all the following bytes e xchanged are the data of successive registers starting
from the one specified (in multi-byte mode the internal address counter restart from register
0 after the last register 36). Using the multi-byte mode it is possible to write or read all the
registers with a single access to the device on the I2C bus. This applies to both entities of
the device.
Device Programming: SPI. The SPI Control Interface timing is shown in section
Section 6.2 on page 51
. Bits SPIOSEL (SPI Output Select) in CR33 control the out pin
selection fo r serial data out (none, AD_OCK, DA_OCK or IRQ), while bit SPIOHIZ=1 in
CR33 selects the high impedance state of serial data out pin when idle. The first bit sent on
SDIN, after AS/CSB falling edge, sets the interface for writing (SDIN=1) or reading
(SDIN=0), then a 7-bit Control Register address follows.
If the interface is set f or writing then the last 8 bits on SDIN are written in the control register.
If the interface is set for reading then after the 7 bit address STw5098 sends out 8 bits data
on the pin selected with bits SPIOSEL in CR33, while bits present at SDIN pin are ignored.
If SPIOSEL=00 (no out pin selected) the reading access on SPI interface can still be useful
to clear the IRQ event bits in CR32.
AS/CSB connected to GND: chip address 00110101(35hex) for reading, 00110100 (34hex) for writing
AS/CSB connected to VCCIO: chip address 00110111(37hex) for reading, 00110110 (36hex) for writing
STw5098 Functional description
19/85
4.4 Power up
STw5098 internal blocks can individually be switched on and off according to the user
needs. A general power-up bit is present at bit 7 of CR0. The output drivers should always
be powered up after the general power up. See the following drawing to select the needed
block for the desired function. A fast-settling function is activated to quickly charge external
capacitors when the device is switched on (CAPLS, CAPLINEIN and CAPMIC).
Figure 3. Power up block diagram: example shown for one entity
4.5 Master clock
Master clock is applied to both entities. The master clock pin (AMCK) accepts any frequency
from 4 MHz to 32 MHz. The 4-32 MHz range is divided in sub-ranges that have to be
programmed in bits CKRANGE in CR30. The jitter and spectral properties of this clock have
a direct impact on the DA C and ADC performance because it is used to directly or by integer
division drive the continuous-time to sampled-time interfaces.
POWERUP
ENANA
STw5098
ENMIXL
ENMIXL
ENHPVCM
ENHPL
ENLS
ENHPR
ENMICR
ENMICL
ENLINR
ENLINL
ENOSC
ENADCR
ENADCL
ENDACR
ENDACL
AUDIO I/F
ENLOL
ENLOR
ENHSD
ENPLL
DAMAST ENDAOCK
ADMAST ENADOCK
MBIAS
ENAMCK
ENDACKGEN
ENADCKGEN
ENOSC=1
ENOSC=0
Functional description STw5098
20/85
Note that AMCK clock does not need to have an y relation to any other digital or analog input
or outpu t.
AMCK can be either a square wav e or a sinewa ve , bit AMCKSIN in CR30 selects the proper
input mode. When a sinewave is used as input, AMCK pin must be decoupled with a
capacitor. Specification for sinusoid input can be found in
Section 10.2 on page 62
.
The AMCK clock is not needed when only analog functions are used. For this purpose an
internal oscillator with no external components can be used to operate the device (see
Section 4.14 on page 25
).
4.6 Data rates
STw5098 supports any data rate in 2 ranges: 8 kHz to 48 kHz and 88 kHz to 96 kHz. The
range is selected with bits DA96K and AD96K in CR29 for AD and DA paths respectively.
Note: When AD96K=1 it is required to have DA96K=1.
The rates are fully independent in A/D and D/A paths. Moreover the rates do not have to be
specified to the device and they can change on the fly, within one range, while data is
flowing.
The 2 audio data interfaces (for A/D and D/A) can independently operate in master or slave
modes.
4.7 Clock generators and master mode function
STw5098 provides 4 internal clock generators that can drive, if needed, the audio interfaces
(master mode), and/or two independent master clocks.
The AMCK clock input frequency is internally raised via a PLL on each entity to obtain a
clock (MCK) in the range 32 MHz to 48 MHz. The ratio MCK/AMCK is defined in CR30 (see
MCKCOEFF in
Section 4.7 on page 20
).
MCK is used to obtain, by fractional division, the oversampled clock (OCK), word clock
(SYNC) and bit clock (CK), that will therefore hav e edges aligned with MCK (the OCK period
can have jitter of 1 MCK period).
The frequency of OCK, SYNC and CK is set with D A OCKF in CR21/20 for D A interface , and
ADOCKF in CR24/23 for AD interface.
The ratio between OCK and SYNC clocks is selected with bit DAOCK512 in CR22 for DA
interface and bit ADOCK512 in CR25 for AD interface. The ratio between CK and SYNC
clocks depends on the selected interface format (see
Audio digital interfaces
paragraph
below). Note that SPI format can only be slave.
The ADOCK and DAOCK output clocks are activated by bits ENADOCK and ENDAOCK
respectively, while master mode generation is activated with two bits: first ADMAST
(DAMAST) sets ADSYNC and ADCK (DASYNC and DACK) pins as outputs, then
ADMASTGEN (DAMASTGEN) generates the SYNC and CK clocks. The logical value at
SYNC and CK pins before data generation depends on the interface selected format.
See description of CR20 to CR25 for further details.
STw5098 Functional description
21/85
4.8 Audio digital interfaces
Four separate audio data interfaces are provided for AD and DA paths to have maximum
flexibility in communicating with other devices. The 4 interfaces can have diff erent rates and
can work in diff erent formats and modes (i.e an AD interf ace can be 8 kHz PCM slave while
a DA is 44.1 kHz I2S master).
The pins used by the interfaces are:
AD_SYNC, AD_CK and AD_DATA for AD paths word clock, bit clock and data, respectively,
and
DA_SYNC, DA_CK and DA_DATA for DA paths word clock, bit clock and data, respectively.
Data is exchanged with MSB first and left channel data first in all formats. Data word-length
is selected with bits DAWL in CR26 and ADWL in CR27. AD_D ATA pin, outside the selected
time slot, is in the impedance condition selected by bit ADHIZ in CR28 in all data formats
except right aligned format.
In the following paragraphs SYNC, CK and DATA will be used when the distinction between
AD and DA is not relevant. When Master Mode is selected (bits DAMAST and ADMAST in
CR22 and CR25 respectiv ely) the SYNC and CK clocks are generated internally. In addition,
an oversampled clock can be generated for each interface (AD_OCK and DA_OCK). The
clock is available in Slave Mode also, if needed.
The AD and DA interf aces can also be used as a single bidirectional interface when they are
configured with the same format (Delay ed, DSP, etc.) and AD_SYNC is connected to
DA_SYNC and DA_CK to AD_CK. Master Mode is still available selecting ADMAST or
DAMAST (not both).
The interfaces features are controlled with control registers CR26, CR27 and CR28.
Supported operating formats:
Delayed format (I2S compatible) (DAFORM or AD FORM =0 00): the A u dio I nterface is
I2S compatible (
Figure 9 on page 54
). The number of CK periods within one SYNC
period is not relevant, as long as enough CK periods are used to transfer the data and
the maximum frequency limit specified for bit clock is not e xceeded. CK can be either a
continuous clock or a sequence of bursts. In master mode there are 32 CK periods per
SYNC period (that means 16 CK periods per channel) when the word length is 16 bit,
while there are 64 CK periods per SYNC period (or 32 CK periods per channel) when
word length is 18bit or higher. Bits ADSYNCP, DASYNCP and ADCKP, DACKP affect
the interface format inverting the polarity of SYNC and CK pins respectively.
Left aligned format (D AFORM or ADFORM =001): this f ormat is equivalent to delayed
format without the 1 bit clock delay at the beginning of each frame (
Figure 9 on
page 54
).
Right aligned format (DAFORM or ADFORM =010): this format is equivalent to
delayed format, except that the audio data is right aligned and that the number of CK
periods i s fixed to 64 for each SYNC period (
Figure 9 on page 54
).
DSP format (DAFORM or ADFORM =011) in this format the audio interface starting
from a frame sync pulse on SYNC receives (DA) or sends (AD) the left and right data
one after the other (
Figure 10 on page 55
). The number of CK periods within one
SYNC period is not relevant, as long as enough CK periods are used to transfer the
data and the maximum frequency limit specified for bit clock is not exceeded. CK can
be either a continuous clock or a sequence of bursts. In Master Mode there are 32 CK
periods per SYNC period when the word length is 16 bit, while there are 64 CK periods
per SYNC period when word length is 18bit or higher. Bit CKP (ADCKP and DACKP)
Functional description STw5098
22/85
affects the interf ace format inv erting the polarity of CK pin. Bit SYNCP (ADSYNCP and
DASYNCP) switches between delayed (SYNCP=0) and non delayed (SYNCP=1)
formats.
DSP format is suited to interface with a multi-channel serial port.
SPI format (DAFORM or ADFORM =100) in this format left and right data is received
with separate data burst. Every burst is identified with a low level on SYNC signal
(
Figure 10 on page 55
). There is no timing difference between the left and right data
burst: the two channels are identified by the startup order: the first burst after AD path
or DA path power-up identifies the left channel data, the second one is the Right
channel data, then left and right data repeat one after the other. CK must have 16
periods per channel in case of 16 bit data word and 32 periods per channel in case of
18 bit to 32 bit data word.
The SPI interface can be configured as a single-channel (mono) interface with bit SPIM
(ADSPIM and DASPIM). The mono interf ace always exchanges the left channel
sample.
SPI-format can only be slav e: if Master Mode is selected the CK and SYNC pins are set
to 0. Bi t C KP ( A DCK P and DAC K P) af fects th e in t e rface format inve rting th e po l arit y of
CK pin.
PCM format (DAFORM or ADFORM =111): this format is monophonic, as it can only
receive (D A) and transmit (AD) single channel data (
Figure 10 on page 55
). It is mainly
used when voice filters are selected. If audio filters are used then the same sample is
sent from DA-PCM interface to both channel of DA path, and the left channel sample
from AD path is sent to AD-PCM interface. If in the AD path the right channel has to be
sent to the PCM interface then the following must be set: ADRTOL=1 (CR27) and
ENADCR=0 (CR1). In Master Mode the number of CK periods per SYNC period is
between 16 and 512 (see DAPCMF in CR22 and ADPCMF in CR25
Section 4.7 on
page 20
for details). Bit CKP (ADCKP and DACKP) affects the interface format
inverting the polarity of CK pin. Bit SYNCP (ADSYNCP and DASYNCP) switches
between delayed (SYNCP=0) and non delayed (SYNCP=1) formats.
4.9 Analog inputs
Each entity of the STw5098 has a stereo Microphone preamplifier and a stereo Line In
amplifier, with inputs selectable among 5: MIC (for Microphone preamplifiers only), LINEIN
(for Line In amplifiers only) and 3 different AUX inputs (for Microphone and Line In
amplifiers). The AUX inputs can be used simultaneously for Line In amplifiers and
Micropho ne pr eam pli fi ers.
The following description is for one entity, it is similar for the other entity.
Microphone preamplifier: it has a very low noise input, specifically designed for low
amplitude signals. For this reason the preamplifier has a high input gain (up to 39 dB)
keeping a constant 50 k input impedance for the whole gain range. Howe ver it can
also be used as line in preamplifier because it can accept a high dynamic input signal
(up to 4 Vpp). There are two separate gain and attenuation stages in order to improve
the S/N ratio when the preamplifier output range is below full scale (volume
control).The gain and attenuation controls are separate for left and right channel (CR3
and CR4 respectively). The Preamplifier input is selected with bits MICSEL in CR18,
and it is disconnected when MICMUTE=1. If a single ended input is selected then the
preamplifier uses the selected pin as the positive input and connects the negative input
(for both left and right channels) to CAPMIC pin, which has to be connected through a
capacitor to a low noise ground (typically the same reference ground of the input).
STw5098 Functional description
23/85
Each stereo Microphone preamplifier is powered up with bits ENMICL and ENMICR in
CR1.
Line In amplifier: each line in amplifier is designed for high lev el input signal. The input
gain is in the range -20 dB up to 18 dB. The Line In amplifier input is selected with bits
LINSEL in CR18, and it is disconnected when LINMUTE=1. If a single ended input is
selected then the amplifier uses the selected pin as the positive input and connects the
negative input (for both left and right channels) to CAPLINEIN pin, which has to be
connected through a capacitor to a low noise ground (typically the same reference
ground of the input).
The stereo Line In amplifier is powered up with bits ENLINL and ENLINR in CR1.
4.10 Analog output drivers
Each entity of the STw5098 provides 3 different analog signal outputs and 1 common mode
reference output. The description here below is for one entity. VCCP and VCCL are common
for both entities.
Line out drivers: it is a stereo differential output, it can be used as single-ended output
just by using the positive or negative pin. It can drive 1 k resistive load. The load can
be connected between the positive and negative pins or between one pin and ground
through a decoupling capacitor. The output gain is regulated with LOG bits in CR7, in
the range 0 to -18 dB, simultaneously for left and right channels. When used as a single
ended output the eff ective gain is 6 dB lower . It is muted with bit MUTELO in CR19. The
input signal of this stereo output can come from the analog mixer or directly from MIC
preamplifiers. The output Common Mode Voltage level is controlled with bits VCML in
CR19. T he su pply voltage of line ou t dr ivers is VCCP.
The line out drivers are powered up with bits ENLOL and ENLOR in CR1. The output
pins are in high impedance state with a 180k pull-down resistor when the line out
dr ivers are powered down.
Headphones drivers: it is a stereo single ended output. It can drive 16 ohm resistive
load and deliver up to 40 mW. The output gain is regulated with HPLG and HPRG bits
in CR8 and CR9 respectively, with a range of -40 to 6 dB. It is muted with bit MUTEHP
in CR19. The input signal of this stereo output comes from the analog mixer.The output
common mode voltage is controlled with bits VCML in CR19. The supply voltage of
headpho nes drivers is VCCP.
The headphones drivers are powered up with bits ENHPL and ENHPR in CR2.The
output pins are in high impedance state when the headphones driv ers are powered
down.
Common mode voltage driver: it is a single ended output with output voltage value
selectable with bits VCML in CR19, from 1.2 V to 1.65 V in steps of 150 mV. The output
voltage should be set to the value closest to VCCP/2 to optimize output drivers
performance. The common mode voltage driver is designed to be connected to the
common pin of stereo headphones, so that decoupling capacitors are not needed at
HPL and HPR outputs. The supply voltage of the common mode voltage driver is
VCCP.
The common mode voltage driver is powered up with bit ENHPVCM in CR2.The output
pin is in high impedance state when the common mode v oltage driver is powered down.
Functional description STw5098
24/85
Loudspeaker driver (one entity only): it is a monophonic differential output. It can
drive 8 resistive load and deliver up to 500 mW to the load. The output gain is
regulated with LSG bits in CR7, in the range -24 to +6 dB. The input signal of the
loudspeaker driver comes from the analog mixers: bits LSSEL in CR29 select left
channel, right channel, (L+R)/2 (mono) or mute. The output common mode voltage is
obtained with an internal v oltage divider from VCCLS and it is connected to CAPLS pin.
The supply voltage of the loudspeaker driver is VCCLS.
The loudspeaker driver is powered up with bit ENLS in CR2.The output pin is in high
impedance state when the loudspeaker driver is powered down.
Note: 1 Together with the LS driver, only a second power output is allowed among:
Ear (1EARP - 1EARN)
Headphones 1 (1HPL and 1HPR)
Headphones 2 (2HPL and 2HPR)
Earphone driver (one entity only): it is a monophonic diff erential output. It can drive
32 resistive load and deliver up to 125 mW to the load. The output gain is regulated
with EARG bits in CR7, in the range -24 to +6 dB. The input signal of the loudspeaker
driver comes from the analog mixers: bits EARSEL in CR29 select left channel, right
channel, (L+R)/2 (mono) or mute. The output Common Mode Voltage is obtained with
an internal voltage divider from VCCLS and it is connected to CAPEAR pin. The supply
voltage of the loudspeaker driver is VCCLS.
The loudspeaker driver is powered up with bit ENEAR in CR2.The output pin is in high
impedance state when the loudspeaker driver is powered down.
Note: Note on direct connection of VCCLS to the battery:
The voltage of batteries of handheld devices during charging is usually below 5.5 V, making
VCCLS supply pin suitable for a direct connection to the battery. In this case if STw5098 is
delivering the maximum power to the load and the ambient temperature is abov e 70 °C then
the simultaneous charging of the battery can ov erheat the device. A basic protection
scheme is implemented in STw5098 (activated with bit LSLIM in CR19): it limits the
maximum gain of the loudspeaker to -6 dB when VCCLS is above 4.2 V, and it removes the
limi t for VCCLS below 4.0 V. The loudspeaker gain is left unchanged if it is set below -6 dB
with bits LSG. This event (VCCLS > 4.2 V) can generate, if enabled (bit VLSMSK in CR31),
an IRQ signal.
4.11 Analog mixers
STw5098 can send to the output drivers the sum of stereo audio signals from 3 different
sources of each entity: DA path (bit MIXDAC in CR17), Microphone Preamplifiers (bit
MIXMIC in CR17) and Line In Amplifiers (bit MIXLIN in CR17). The analog mixers do not
have a gain control on the inputs, therefore the user should reduce the levels of the input
signals within the analog signal range.
The stereo analog mixers are powered up with bits ENMIXL and ENMIXR in CR2.
4.12 AD paths
In each entity the AD path converts audio signals from Microphone Preamplifiers (selected
with bit ADMIC in CR17) and Line In Amplifiers (bit ADLIN in CR17) inputs to digital domain.
If both inputs are selected then the sum of the two is converted. After AD conversion the
audio data is resampled with a sample rate converter and then processed with the internal
DSP. Two different filters are selectable in the DSP (bit ADVOICE in CR29): stereo Audio
STw5098 Functional description
25/85
Filter, with DC offset removal and FIR image filtering; and a standard mono voice-channel
filter (uses left channel input and feeds both channel output). The AD path includes a digital
gain control (ADCLG, ADCRG in CR12 and CR13 respectively) in the range -57 to +8 dB.
The maximum gain from Mic Preamplifier to AD interface is then 47 dB. When A udio filter is
selected in both AD and D A paths then D A audio data can be summed to AD data and sent
to the AD Audio Interface (see DA2ADG in CR15). Left and right channels can be
independently switched on and off to save power, if needed (bits ENADCL and ENADCR in
CR1)
4.13 DA paths
In each entity the DA path converts digital data from the digital audio interface to analog
domain and feeds it to the analog mixer. Incoming audio data is processed with a DSP
where different filters are selectable (bit DAVOICE in CR29): Audio filter, stereo, with FIR
image filtering, bass and treble controls (bits BASS and TREBLE in CR14), de-emphasis
filter; and a standard voice channel filter, mono (uses left channel input and feeds both
channel output). A dynamic compression function is available f or both audio and voice filters
(bit DYNC in CR14). The DA path includes a digital gain control (DACLG, DACRG in CR10
and CR11 respectively) in the range -65 to 0 dB. AD to DA mixing (sidetone) can be
enabled: see CR16 f or details. Left and right channel can be independently switched on and
off to save power, if needed (bits END ACL and ENDACR in CR1).
4.14 Analog-only operations
Each entity from the STw5098 can operate without AMCK master clock if analog-only
functions are used. It is possible to mix Microphone and Line In preamplifiers signals and
listen through headphones, loudspeaker or send them to line-out. The analog-only operation
is enabled with bit ENOSC in CR0. When ENOSC=1 the AD and DA paths cannot be used.
In Analog Mode, each of the two entities can handle two different stereo audio signals, so it
can be used as a front end for an external voice codec that does not include microphone
preamplifiers and power drivers: mic signal is sent through Microphone preamplifiers directly
to line out drivers (Transmit path), while Receive signal is sent through Line In amplifiers to
the selected power drivers.
4.15 Automatic Gain Control (AGC)
STw5098 provides a digital Automatic Gain Control in AD path for each entity. The circuit
can control the input gain at MIC preamplifier , Line In amplifier or both (bits ENAGCMIC and
ENAGCLIN in CR35). When one input is selected, the center gain value used for the input is
fixed with bits MICLG, MICRG, LINLG and LINRG in CR3 to CR6 (like in normal operation),
then the AGC circuit adds to all the gains a value in the range -10.5 dB to +10.5 dB (or,
extended with bit A GCRANGE in CR35, -21 dB to 21 dB), in order to obtain an average lev el
at the digital interface output in the range -6 dB to -30 dB (selected with bits AGCLEV in
CR35). The AGC added gain acts directly in the input gain, to avoid input saturation and
improve S/N ratio, so it cannot exceed the input gain range. When MIC and Line-In inputs
are selected simultaneously the control is performed on the sum of the two, preserving the
balance fixed with input gains. Different values for Attack and Decay constants can be
selected, depending on the kind of signal the AGC has to control (i.e. voice, music). The
Functional description STw5098
26/85
Attack and Decay time constants are related to the AD data rate (see bits A GCATT and
AGCDEL in CR34).
4.16 Interrupt request: IRQ pins
On each entity of the STw5098, the interrupt request feature can signal to a control device
the occurrence of particular e vents on each entity. Two control registers are used to choose
the behavior of IRQ pin: the first is a Status/Event Register (CR32), where bits can
represent the status of an internal function (i.e. a voltage is above or below a threshold) or
an event (i.e. a voltage changed crossing a threshold); the second is a Mask Register
(CR31) where if a bit in the mask is set to 1 then the corresponding bit in the Status/Event
Register can affect IRQ pin status.
On each entity, the IRQ pin is always active low. At VCC power up an interrupt request is
generated b y the Power-On-Reset circuit that sets to 1 bits PORMSK in CR31 and POREV
in CR32. After this event the PORMSK bit should be cleared by the user and bit IRQCMOS
in CR33 should be set according to the application (open drain or CMOS).
When an IRQ e v ent occurs a nd SPI co ntrol interface is selecte d with no serial ou tput pin it i s
still possible to identify the event (and relative status) that generated the interrupt request.
This can be done by setting the IRQ mask/enable bits (in CR31) one at the time (with
successive writings) and reading the IRQ pin status. A simple example of this is the headset
plug-in detection: at first we set bit HSDETMSK=1 in CR31 (with all the other bits set to 0). If
there is an interrupt request then we set HSDETMSK=0 and HSDETEN=1, so we can read
the HSDET status at IRQ pin. Then we read CR32 to clear its content (even if no data is
sent out).
4.17 Headset plug-in and push-button detection
Each entity of the STw5098 can detect the plug-in of a microphone connector and the
press/release event of a call/answer push-button. An application example can be found
below, while specifications can be found in
Section 10.4 on page 64
.
Figure 4. Plug-in and push-button detection application note
Call/Answer Button 10µF
1.5k
VCCA
3k
200nF AUX1L
AUX1R
CAPMIC
HDET
200nF STw5095
Generic Connector
From driver
STw5098 Functional description
27/85
4.18 Microphone biasing circuits
The Microphone Biasing Circuits can drive mono or stereo microphones and can switch
them off when not needed in order to save the current used by the microphone biasing
network on each entity. Two bits control the behavior of the microphone bias circuit: MBIAS
in CR17 enab les the circuit (fixed v oltage at MBIAS pin), while bit MBIASPD in CR17 affects
the behavior of MBIAS pin when the function is not enabled. In particular when MBIASPD=1
the MBIAS pin is pulled down, otherwise it is left in tristate mode. The specification for the
microphone biasing circuits can be found in
Section 10.6 on page 64
.
Control registers STw5098
28/85
5 Control registers
5.1 Summary
Table 2. Control register summary
CR#
(hex) DescriptionD7D6D5 D4 D3D2D1D0Def.
CR0
(00h) Supply & power
control #1 POWER
UP ENANA ENAMCK ENOSC ENPLL ENHSD A24V D12V 0000
0000
CR1
(01h) Power control #2 ENADCL ENADCR ENDACL ENDACR ENMICL ENMICR ENLINL ENLINR 0000
0000
CR2
(02h) Power control #3 ENLOL ENLOR ENHPL ENHPR ENHPVC
M1ENEAR
2ENLS ENMIXL ENMIXR 0000
0000
CR3
(03h) Mic gain left MICLA(2:0) MICLG(4:0) 0000
0000
CR4
(04h) Mic gain right MICRA(2:0) MICRG(4:0) 0000
0000
CR5
(05h) Line in gain left X X X LINLG(4:0) 0000
1001
CR6
(06h) Line in gain right X X X LINRG(4:0) 0000
1001
CR7
(07h) LO gain & LS
gain XLOG(2:0) 1EARG(3:0)
2LSG(3:0) 0000
0011
CR8
(08h) HPL gai n XXX HPLG(4:0) 0000
0011
CR9
(09h) HPR gain XX X HPRG(4:0) 0000
0011
CR10
(0Ah) DAC digital gain
left X X DACLG(5:0) 0000
0000
CR11
(0Bh) DAC digital gain
right X X DACRG(5:0) 0000
0000
CR12
(0Ch) ADC digital gain
left X X ADCLG(5:0) 0000
1000
CR13
(0Dh) ADC digital gain
right X X ADCRG(5:0) 0000
1000
CR14
(0Eh) Bass/treble/de-
emphasis DYNC TREBLE(2:0) BASS(3:0) 0000
0000
CR15
(0Fh) DA to AD mixing
gain X X X DA2ADG(4:0) 0000
0000
CR16
(10h)
AD to DA
mix/sidetone
gain XX AD2DAG(5:0) 0000
0000
CR17
(11h) Mixer switches &
mic bias MBIAS M
BIASPD ADMIC ADLIN MIXMIC MIXLIN MIXDAC MICLO 0000
0000
STw5098 Control registers
29/85
CR18
(12h) Input switches X IN2VCM LINMUTE LINSEL(1:0) MICMUTE MICSEL(1:0) 0010
0100
CR19
(13h) Drivers control VCML(1:0) X MUTELO MUTEHP 1EARLIM
2LSLIM 1EARSEL(1:0)
2LSSEL(1:0) 0101
1000
CR20
(14h) DAOCK
frequency LSB DAOCKF(7:0) 0000
0000
CR21
(15h) DAOCK
frequency MSB DAOCKF(15:8) 0000
0000
CR22
(16h) DA clock
genera tor contro l XXDAMAST
DA
MASTGEN END
AOCK DAO
CK512 DAPCMF(1:0) 0000
0000
CR23
(17h) ADOCK
frequency LSB ADOCKF(7:0) 0000
0000
CR24
(18h) ADOCK
frequency MSB ADOCKF(15:8) 0000
0000
CR25
(19h) AD Clock
genera tor contro l XXADMAST
AD
MASTGEN ENA
DOCK ADO
CK512 ADPCMF(1:0) 0000
0000
CR26
(1Ah) DAC data IF
control X DAFORM(2:0) DASPIM DAWL(2:0) 0000
0000
CR27
(1Bh) ADC data IF
control ADRTOL ADFORM2:0) ADSPIM ADWL(2:0) 0000
0000
CR28
(1Ch) DAC&ADC data
IF control AMC
KINV DACKP DASYNCP DAMONO ADCKP AD
SYNCP ADMONO ADHIZ 0000
0000
CR29
(1Dh) Digital filters
control X DAVOICE DA96K RXNH ADVOICE AD96K ADNH TXNH 0000
0000
CR30
(1Eh) Soft reset &
AMCK range SWRES X X X AMCKSIN CKRANGE(2:0) 0000
0000
CR31
(1Fh) Interrupt mask VLSHEN PUSH
BEN HSDETEN VLSHMSK PUSH
BMSK HSDET
MSK OVFMSK PORMSK 0000
0000
CR32
(20h) Interrupt status VLSH PUSHB HSDET VLSHEV PUSHBEV HSDETEV OVFEV POREV 0000
0000
CR33
(21h) Misc. control X X SPIOHIZ SPIOSEL(1:0) IRQCMOS OVFDA OVFAD 0000
0000
CR34
(22h)
AGC
attack/decay
coeff. AGCATT(3:0) AGCDEC(3:0) 0000
0000
CR35
(23h) AGC control XENA
GCLIN ENAG
CMIC AGC
RANGE AGCLEV(3:0) 0000
0000
CR36
(24h) RESERVED XXX XXXXX
0000
0000
Note: X reserved, write zero
Table 2. Control register summary
CR#
(hex) DescriptionD7D6D5 D4 D3D2D1D0Def.
Control registers STw5098
30/85
Caution: In the following
Section 5: Control registers
, reference to each entity is omitted. Each entity
of the STw5098 has the same register set.
5.2 Supply and power control
CR#
(hex) DescriptionD7D6D5D4D3D2D1D0Def.
CR0
(00h) Supply & power
control #1 POWER
UP ENANA ENAMCK ENOSC ENPLL ENHSD A24V D12V 0000
0000
CR1
(01h) Power control #2 ENADCL ENADCR ENDACL ENDACR ENMICL ENMICR ENLINL ENLINR 0000
0000
CR2
(02h) Power control #3 ENLOL ENLOR ENHPL ENHPR ENH
PVCM ENLS ENMIXL ENMIXR 0000
0000
Table 3. CR0 description
Bits Name Val. CR0 description Def.
7POWERUP 1
0All the enabled analog and digital blocks are in power up
All the device is in power down 0
6 ENANA 1
0The analog blocks can be enabled
All the analog blocks are in power down 0
5ENAMCK 1
0AMCK clock input pin is enabled
AMCK clock input pin is disabled 0
4ENOSC 1
0
The Internal oscillator is enabled.
The analog blocks use oscillator clock
The internal oscillator is in power down 0
3ENPLL 1
0The PLL is enabled
The PLL is in power down 0
2 ENHSD 1
0The headset plug-in detector is enabled
The headset plug-in detector is disabled 0
1A24V 1
0Analog supply pins voltage range is 2.4V<VCCA<2.7V
Analog supply pins voltage range is 2.7V<VCCA<3.3V 0
0D12V 1
0Digital I/O pin voltage rang e is 1.2V<VCCIO<1.8V
Digital I/O pin voltage rang e is 1.71V<VCCIO<VCC 0
STw5098 Control registers
31/85
Table 4. CR1 description
Bits Name Value CR1 description Def.
7 ENADCL 1
0The left channel A/D converter is enabled
The left channel A/D converter is in power down 0
6 ENADCR 1
0The right ch annel A/D converter is enabled
The right ch annel A/D converter is in power dow n 0
5ENDACL 1
0The left channel D/A converter is enabled
The left channel D/A converter is in power down 0
4ENDACR 1
0The right ch annel D/A converter is enabled
The right ch annel D/A converter is in power dow n 0
3ENMICL 1
0The left channel microphone preamplifier is enabled
The left channel microphone preamplifier is in power down 0
2ENMICR 1
0The right channel microphone preamplifier is enabled
The right channel microphone preamplifier is in power down 0
1ENLINL 1
0The left channel line-in preamplifier is enabled
The left channel line-in preamplifier is in power down 0
0ENLINR 1
0The right channel line-in preamplifier is ena bled
The right channel line-in preamplifier is in p ower down 0
Table 5. CR2 description
Bit # Name Value CR2 Description Def.
7ENLOL 1
0The left channel line out driver is enabled
The left channel line out driver is in power down (default) 0
6ENLOR 1
0The right channel line out driver is enabled
The right channel line out driver is in power down (default) 0
5 ENHPL 1
0The left channel headphones driver is enabled
The left channel headphones driver is in power down (default) 0
4 ENHPR 1
0The right ch annel headphones driver is enabled
The right channel headphones driver is in power down (default) 0
3 ENHPVCM 1
0The headphones reference voltage generator is enabled
The headphones reference voltage generator is in power down (def) 0
21ENEAR 1
0The 32 earphone amplifier is enabled
The 32 earphone amplifier is in power down (default) 0
2ENLS 1
0The 8 loudspeaker amplifier is enabled
The 8 loudspeaker amplifier is in power down (default) 0
1ENMIXL 1
0The left channel analog output mixer is enabled
The left channel analog output mixer is in power down (default) 0
0ENMIXR 1
0The right channel analog output mixer is enabled
The right channel analog output mixer is in power down (default) 0
Control registers STw5098
32/85
5.3 Gains
CR#
(hex) DescriptionD7D6D5D4D3D2D1D0Def.
CR3
(03h) Mic gain left MICLA(2:0) MICLG(4:0) 0000
0000
CR4
(04h) Mic gain right MICRA(2:0) MICRG(4:0) 0000
0000
CR5
(05h) Line in gain left XXX LINLG(4:0) 0000
1001
CR6
(06h) Line in gain right X X X LINRG(4:0) 0000
1001
CR7
(07h) LO gain & LS
gain X LOG(2:0) LSG(3:0) 0000
0011
CR8
(08h) HPL gai n XXX HPLG(4:0) 0000
0011
CR9
(09h) HPR gain XXX HPRG(4:0) 0000
0011
CR10
(0Ah) DAC digital gain
left X X DACLG(5:0) 0000
0000
CR11
(0Bh) DAC digital gain
right X X DACRG(5:0) 0000
0000
CR12
(0Ch) ADC digital gain
left X X ADCLG(5:0) 0000
1000
CR13
(0Dh) ADC digital gain
right X X ADCRG(5:0) 0000
1000
Table 6. CR3 and CR4 description
Bits Name CR3
Name CR4 Value CR3 and CR4 description Def.
7-5 MICLA(2:0)
MICRA(2:0)
000
001
010
...
110
111
Left (CR3) and right (CR4) channels microphone attenuation
0.0 dB gain (default)
-1.5 dB gain
-3.0 dB gain
...step 1.5 dB
-9.0 dB gain
-12.0 dB gain
000
4-0 MICLG(4:0)
MICRG(4:0)
00000
00001
00010
...
11010
Left (CR3) and right (CR4) channels microphone gain
0.0 dB gain (default)
1.5 dB gain
3.0 dB gain
...step 1.5 dB
39.0 dB gain
00000
STw5098 Control registers
33/85
Table 7. CR5 and CR6 description
Bits Name CR5
Name CR6 Value CR5 and CR6 description Def.
4-0 LINLG(4:0)
LINRG(4:0)
00000
00001
00010
...
01001
...
10011
Left (CR5) and right (CR6) channels line in gain
18.0 dB gain
16.0 dB gain
14.0 dB gain
...step 2.0 dB
0.0 dB gain (default)
...step 2.0 dB
-20.0 dB gain
01001
Table 8. CR7 description
Bits Name Value CR7 description Def.
6-4 LOG(2:0) 000
001
010
...
110
Left and right channel line out drivers gain
Gain to differential output Equivalent single-ended gain
18.0 dB gain (default) -24.0 dB gain (default)
-15.0 dB gain -21.0 dB gain
-12.0 dB gain -18.0 dB gain
...step 3 dB ...step 3 dB
00 dB gain -6.0 dB gain
000
3-0
1EARG(3:0) 0000
0001
0010
0011
...
1111
32 earphone gain/ 8 loudspeaker gain
6.0 dB gain
4.0 dB gain
2.0 dB gain
0.0 dB gain (default)
...step 2.0 dB
-24.0 dB gain
0011
2LSG(3:0)
Table 9. CR8 and CR9 description
Bits Name CR8
Name CR9 Value CR8 and CR9 description Def.
4-0 HPLG(4:0)
HPRG(4:0)
00000
00001
00010
00011
...
10100
Left (CR8) and right (CR9) channels headphones driver gain
0.0 dB gain
-2.0 dB gain
-4.0 dB gain
-6.0 dB gain (default)
...step 2.0 dB
-40.0 dB gain
00011
Control registers STw5098
34/85
Table 10. CR10 and CR11 description
Bits Name CR10
Name CR11 Value CR10 and CR11 description Def.
5-0 DACLG(5:0)
DACRG(5:0)
000000
000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110
001111
010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111
100000
100001
100010
100011
100100
100101
Left (CR10) and right (CR11) channels DAC digital gain
0.0 dB gain (default)
-1.0 dB gain
-2.0 dB gain
-3.0 dB gain
-4.0 dB gain
-5.0 dB gain
-6.0 dB gain
-7.0 dB gain
-8.0 dB gain
-9.0 dB gain
-10.0 dB gain
-11.0 dB gain
-12.0 dB gain
-13.0 dB gain
-14.0 dB gain
-15.0 dB gain
-16.0 dB gain
-17.0 dB gain
-18.0 dB gain
-20.0 dB gain
-22.0 dB gain
-24.0 dB gain
-26.0 dB gain
-28.0 dB gain
-30.0 dB gain
-32.0 dB gain
-34.0 dB gain
-36.0 dB gain
-38.0 dB gain
-41.0 dB gain
-44.0 dB gain
-47.0 dB gain
-50.0 dB gain
-53.0 dB gain
-56.0 dB gain
-59.0 dB gain
-65.0 dB gain
- dB gain
000000
STw5098 Control registers
35/85
Table 11. CR12 and CR13 description
Bits Name CR12
Name CR13 Value CR12 and CR13 description Def.
5-0 ADCLG(5:0)
ACDRG(5:0)
000000
000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110
001111
010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111
100000
100001
100010
100011
100100
100101
100110
Left (CR12) and right (CR13) channels ADC digital gain
8.0 dB gain
7.0 dB gain
6.0 dB gain
5.0 dB gain
4.0 dB gain
3.0 dB gain
2.0 dB gain
1.0 dB gain
0.0 dB gain (default)
-1.0 dB gain
-2.0 dB gain
-3.0 dB gain
-4.0 dB gain
-5.0 dB gain
-6.0 dB gain
-7.0 dB gain
-8.0 dB gain
-9.0 dB gain
-10.0 dB gain
-11.0 dB gain
-12.0 dB gain
-14.0 dB gain
-16.0 dB gain
-18.0 dB gain
-20.0 dB gain
-22.0 dB gain
-24.0 dB gain
-26.0 dB gain
-28.0 dB gain
-30.0 dB gain
-33.0 dB gain
-36.0 dB gain
-39.0 dB gain
-42.0 dB gain
-45.0 dB gain
-48.0 dB gain
-51.0 dB gain
-57.0 dB gain
- dB gain
001000
Control registers STw5098
36/85
5.4 DSP control
CR#
(hex) DescriptionD7D6D5D4D3D2D1D0Def.
CR14
(0Eh) Bass/treble/de-
emphasis DYNC TREBLE(2:0) BASS(3:0) 0000
0000
CR15
(0Fh) DA to AD mixing
gain XXX DA2ADG(4:0) 0000
0000
CR16
(10h)
AD to DA
mix/sidetone
gain XX AD2DAG(5:0) 0000
0000
Table 12. CR14 description
Bits Name Value CR14 description Def.
7DYNC 1
0Audio dynamic compression in D/A path is enabled
Audio dynamic compression in D/A path is disabled 0
6-4 TREBLE(2:0)
011
010
001
000
111
110
101
100
Treble control in D /A path
+6.0 dB tr eble gain
+4.0 dB tr eble gain
+2.0 dB tr eble gain
0.0 dB treble gain
-2.0 dB treble gai n
-4.0 dB treble gai n
-6.0 dB treble gai n
De-emphasis filter enabled
000
3-0 BASS(3:0)
0101
0100
0011
0010
0001
0000
1111
1110
1101
1100
1011
Bass control in D/A path
+12.5 dB bass gain
+10.0 dB bass gain
+7.5 dB bass gain
+5.0 dB bass gain
+2.5 dB bass gain
0.0 dB bass gain
-2.5 dB bass gain
-5.0 dB bass gain
-7.5 dB bass gain
-10.0 dB bass gain
-12.5 dB bass gain
0000
STw5098 Control registers
37/85
Table 13. CR15 description
Bits Name Value CR15 description Def.
4-0 DA2ADG(4:0)*
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
DA to AD mixing (Audio filter in D/A and A/D path selected)
DA to AD mixing disabled (default)
+2.0 dB gain
0.0 dB gain
-2.0 dB gain
-4.0 dB gain
-6.0 dB gain
-8.0 dB gain
-10.0 dB gain
-12.0 dB gain
-14.0 dB gain
-16.0 dB gain
-18.0 dB gain
-20.0 dB gain
-22.0 dB gain
-24.0 dB gain
-26.0 dB gain
-28.0 dB gain
-30.0 dB gain
-32.0 dB gain
-34.0 dB gain
-36.0 dB gain
-38.0 dB gain
-40.0 dB gain
00000
* When Voice filter in D/A or A/D path is selected this function is disabled
Note:
D/A to A/D mixing is performed at AD data rate, so if A/D and D/A rates are different then asynchronous sampling artifacts
may occur.
Control registers STw5098
38/85
Table 14. CR16 description
Bits Name Value CR16 description Def.
5-0 AD2DAG(5:0)
000000
000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110
001111
010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111
100000
100001
100010
100011
100100
100101
100110
100111
101000
101001
101010
AD to DA mixing (sidetone)
AD to DA mixing disabled (default)
-1.0 dB gain
-2.0 dB gain
-3.0 dB gain
-4.0 dB gain
-5.0 dB gain
-6.0 dB gain
-7.0 dB gain
-8.0 dB gain
-9.0 dB gain
-10.0 dB gain
-11.0 dB gain
-12.0 dB gain
-13.0 dB gain
-14.0 dB gain
-15.0 dB gain
-16.0 dB gain
-17.0 dB gain
-18.0 dB gain
-19.0 dB gain
-20.0 dB gain
-21.0 dB gain
-22.0 dB gain
-23.0 dB gain
-24.0 dB gain
-25.0 dB gain
-26.0 dB gain
-27.0 dB gain
-28.0 dB gain
-29.0 dB gain
-30.0 dB gain
-31.0 dB gain
-32.0 dB gain
-33.0 dB gain
-34.0 dB gain
-35.0 dB gain
-36.0 dB gain
-37.0 dB gain
-38.0 dB gain
-39.0 dB gain
-40.0 dB gain
-41.0 dB gain
-42.0 dB gain
000000
STw5098 Control registers
39/85
5.5 Analog functions
CR#
(hex) DescriptionD7D6D5D4D3D2D1D0Def.
CR17
(11h) Mixer switches &
Mic Bias MBIAS MBIASPD ADMIC ADLIN MIXMIC MIXLIN MIXDAC MICLO 0000
0000
CR18
(12h) Input switches X IN2VCM LINMUTE LINSEL(1:0) MICMUTE MICSEL(1:0) 0010
0100
CR19
(13h) Drivers control VCML(1:0) X MUTELO MUTEHP LSLIM LSSEL(1:0) 0101
1000
Table 15. CR17 description
Bits Name Value CR17 description Def.
7 MBIAS 1
0Microphone Bias enabled (2.1V typ at MBIAS pin)
Microphone Bias disabled 0
6 MBIASPD 1
0MBIAS pin is pulled down when microphone bias is disabled
MBIAS pin is in high impedance state when microphone Bias is
disabled 0
5ADMIC 1
0Microphone preamplifiers are connected to AD path
Microphone preamplifiers are not connected to AD path 0
4ADLIN 1
0Line in preamp lifiers are conn ec ted to AD path
Line in preamplifiers are not connected to AD path 0
3MIXMIC 1
0Microphone preamplifiers are connected to mixers
Microphone preamplifiers are not connected to mixers 0
2MIXLIN 1
0Line in preamp lifiers are conn ec ted to mixers
Line in preamplifiers are not connected to mixers 0
1MIXDAC 1
0Stereo DAC path is connected to mixers
Stereo DAC path is not connected to mixers 0
0MICLO 1
0Microphone preamplifiers are connected to line out drivers
Mixers are connected to line out drivers 0
Table 16. CR18 description
Bits Name Value CR18 description Def.
6IN2VCM 1
0Unused analog input pins are biased to common mode voltage
Unused analog input pins are in high impedance state 0
5LINMUTE 1
0Line in preamp lifiers are mu ted
Line in preamplifiers are not muted 1
4-3 LINSEL(1:0) 00
01
10
11
Input pins connected to line in preamplifiers (if LINMUTE=0)
LINEIN (LINEINL, LINEINR)
AUX1 (AUX1L, AUX1R)
AUX2 (AUX2LP-AUX2LN, A UX2 RP-AUX2RN)
AUX3 (AUX3L, AUX3R)
00
Control registers STw5098
40/85
2MICMUTE 1
0Microphone preamplifiers are muted
Microphone preamplifiers are not muted 1
1-0 MICSEL(1:0) 00
01
10
11
Input pins connected to microphone preamplifiers (if MICMUTE=0)
MIC (MICLP-MICLN, MICRP-MICRN)
AUX1 (AUX1L, AUX1R)
AUX2 (AUX2LP-AUX2LN, A UX2 RP-AUX2RN)
AUX3 (AUX3L, AUX3R)
00
Table 17. CR19 description
Bits Name Value CR19 Description Def.
7-6 VCML(1:0) 00
01
10
11
Common mode voltage level for line out and headphones drivers
1.20 V
1.35 V (default)
1.50 V
1.65 V
01
4MUTELO 1
0Line out drivers are muted
Line out drivers are not muted 1
3MUTEHP 1
0Headphones drivers (HP) are muted
Headphones drivers (HP) are not muted 1
21EARLIM 1
0EAR/LS driver gain is limited when VCCLS is above 4.2V typ
EAR/LS driver (LS) gain is not limited 0
2LSLIM
1-0
1EARSEL(1:0) 00
01
10
11
Mute Loudspeaker driver (LS) is muted
Right Right channel mixer only co nnected to loudspeaker driver
Left Left channel mixer only connected to loudspeaker driver
Mono (Left + Right)/2 channel mixers connected to loudspeaker
driver
00
2LSSEL(1:0)
Table 16. CR18 description
Bits Name Value CR18 description Def.
STw5098 Control registers
41/85
5.6 Digital audio interfaces master mode and clock generators
CR#
(hex) DescriptionD7D6D5 D4 D3D2D1D0Def.
CR20
(14h) DAOCK
frequency LSB DAOCKF(7:0) 0000
0000
CR21
(15h) DAOCK
frequency MSB DAOCKF(15:8) 0000
0000
CR22
(16h) DA c lock
genera tor contro l X X DAMAST DA
MASTGEN END
OCK DAO
CK512 DAPCMF(1:0) 0000
0000
CR23
(17h) ADOCK
frequency LSB ADOCKF(7:0) 0000
0000
CR24
(18h) ADOCK
frequency MSB ADOCKF(15:8) 0000
0000
CR25
(19h)
AD clock
generator
control X X ADMAST AD
MASTGEN ENA
DOCK ADO
CK512 ADPCMF(1:0) 0000
0000
Table 18. CR21-20 and CR24-23 description
Bits Name CR21-20
Name CR24-23 Value CR21-20 and CR24-23 Description Def.
15-0 DAOCKF(15:0)
ADOCKF(15:0) K
The follo w in g formulas can be used to obta in the value of K for the
desired FS or OCK respectively in the clock generator
FS: Data rate (DA_SYNC or AD_SYNC frequency in master mode)
OCK: Oversampled clock frequency (DA_OCK or AD_OCK)
AMCK: Input master clock frequency
MCKCOEFF: See CR30 for definition
OSR: See bit 2 in CR22 and CR25
0000h
Note: CR21-20 and CR24-23 are meaningful in master mode only.
KFS()round 225 FS
AMCK MCKCOEFF
--------------------------------------------------------------
⎝⎠
⎛⎞
=
KOCK()round 225 OCK
AMCK MCKCOEFF OSR
------------------------------------------------------------------------------------
⎝⎠
⎛⎞
=
Table 19. CR22 and CR25 description
Bits Name CR22
(Name CR25) Value CR22 and CR25 description Def.
5DAMAST
(ADMAST) 1
0DA (AD) Audio interface is in master mode (low impedance output)
DA (AD) Audio interface is in slave mode (high impedance input) 0
4DAMASTGEN
(ADMASTGEN) 1
0DA (AD) Master generator is enabled
DA (AD) Master generator is disabled 0
3ENDAOCK
(ENADOCK) 1
0DA_O CK (AD_ OCK) output clock is enabled
DA_O CK (AD_ OCK) output clock is disabl ed 0
Control registers STw5098
42/85
2DAOCK512
(ADOCK512) 1
0
Definition of DA_OSR (AD_OSR)
DA_OCK/DA_SYNC (AD_OCK/AD_SYNC) ratio in maste r mode is
512
da_ock/da_sync (ad_ock/ad_sync) ratio in master mode is 256
0
1-0 DAPCMF(1:0)
(ADPCMF(1:0))
00
00
01
10
11
11
DA_CK/DA_SYNC (AD_CK/AD_SYNC) Ratio in PCM master mode
- 16 when CR26 DAWL=000 (CR27 ADWL=000)
- 32 when CR26 DAWL000 (CR27 ADWL000)
- 64
- 128
- 256 when CR22 DAOCK512=0 (CR25 ADOCK512=0)
- 512 when CR22 DAOCK512=1 (CR25 ADOCK512=1)
00
Table 19. CR22 and CR25 description
Bits Name CR22
(Name CR25) Value CR22 and CR25 description Def.
STw5098 Control registers
43/85
5.7 Digital audio interfaces
CR#
(hex) DescriptionD7D6D5D4D3D2D1D0Def.
CR26
(1Ah) DAC data IF
control X DAFORM(2:0) DASPIM DAWL(2:0) 0000
0000
CR27
(1Bh) ADC data IF
control ADRTOL ADFORM2:0) ADSPIM ADWL(2:0) 0000
0000
CR28
(1Ch) DAC&ADC data
IF control AMCKINV DACKP DASYNCP DAMONO ADCKP AD
SYNCP ADMONO ADHIZ 0000
0000
Table 20. CR26 description
Bits Name Value CR26 Description Def.
6-4 DAFORM(2:0)
000
001
010
011
100
111
DA audio interface format selection
Delayed format (I2S compatible )
Left aligned format
Right aligned format
DSP format
SPI format
PCM format (uses left channel)
000
3 DASPIM 1
0DA interface in SPI mode receives one word for both channels
DA interface in SPI mode receives two words
(alternated, left chann el firs t) 0
2-0 DAWL(2:0)
000
001
010
011
100
DA interface word length
16 bit
18 bit
20 bit
24 bit
32 bit
000
Table 21. CR27 description
Bits Name Value CR27 description Def.
7ADRTOL 1
0AD right channel sent to PCM I/F (must set ENADCR=0 in CR1)
Normal operation 0
6-4 ADFORM(2:0)
000
001
010
011
100
111
AD audio interface format selection
Delayed format (I2S compatible )
Left aligned format
Right aligned format
DSP format
SPI format
PCM format (sends out left channel)
000
Control registers STw5098
44/85
3 ADSPIM 1
0AD interface in SPI mode sends one channel (left)
AD interface in SPI mode sends two channels (alternated, left first) 0
2-0 ADWL(2:0)
000
001
010
011
100
AD interface word length
16 bit
18 bit
20 bit
24 bit
32 bit
000
Table 22. CR28 description
Bits Name Value CR28 description Def.
7AMCKINV 1
0AMCK is inverted
AMCK is not inverted 0
6DACKP 1
0DA Bit clock pin (DA_CK) polarity is inverted
DA Bit clock pin (DA_CK) polarity is not inverted 0
5 DASYNCP
1
0
DSP and PCM formats in DA interface
Non delayed format
Delayed format 0
1
0
Delayed, left-aligned, right-aligned and SPI formats in DA interface
DA sync pin (DA_SYNC) polarity is inverted
DA sync pin (DA_SYNC) polarity is not inverted
4DAMONO 1
0
Mono mode: (L+R)/2 from Audio Interface is used on both DAC
channels
Stereo mo de 0
3 ADCKP 1
0AD Bit clock pin (AD_CK) polarity is inverted
AD Bit clock pin (AD_CK) polarity is not inverted 0
2 ADSYNCP
1
0
DSP and PCM formats in AD interface
Non delayed format
Delayed format 0
1
0
Delayed, left-aligned, right-aligned and SPI formats in AD interface
DA sync pin (DA_SYNC) polarity is inverted
DA sync pin (DA_SYNC) polarity is not inverted
1ADMONO 1
0
Mono m ode : (L +R )/2 fro m ADC is s en t to both ch ann els i n the A udio
interface
Stereo mo de 0
0 ADHIZ 1
0
AD data pin (AD_DATA) is in high impedance state when no data is
available
AD data pin (AD_DATA) is forced to 0 when no data is available 0
Table 21. CR27 description (continued)
Bits Name Value CR27 description Def.
STw5098 Control registers
45/85
5.8 Digital filters, software reset and master clock control
CR#
(hex) DescriptionD7D6D5D4D3D2D1D0Def.
CR29
(1Dh) Digital filters
control X DAVOICE DA96K RXNH ADVOICE AD96K ADNH TXNH 0000
0000
CR30
(1Eh) Soft reset &
AMCK range SWRES X X X AMCKSIN CKRANGE(2:0) 0000
0000
Table 23. CR29 description
Bits Name Value CR29 description Def.
6DAVOICE 1
0DA path voice RX filter is enabled (single channel, left used)
DA path voice filters are enabled 0
5DA96K 1
0DA path data rate is in the range 88 kHz to 96 kHz
DA path data rate is in the range 8 kHz to 48 kHz 0
4RXNH 1
0DA path high pass voice RX filter is disabled
DA path high pass voice RX filter is enabled (300Hz @ 8kHz rate) 0
3ADVOICE 1
0AD path voice TX filter is enabled (single channel, left used)
AD path audio filters are enabled 0
2AD96K 1
0AD path data rate is in the range 88 kHz to 96 kHz
AD path data rate is in the range 8 kHz to 48 kHz 0
1 ADNH 1
0AD path audio DC filter is disab led
AD path audio DC filter is enabled 0
0TXNH 1
0AD path high pass voice TX filter is disabled
AD path high pass voice TX filter is enabled (300Hz @ 8kHz rate) 0
Table 24. CR30 description
Bits Name Value CR30 description Def.
7SWRES 1
0Software reset: All registers content is reset to the default value
Control Register content is left unchanged 0
3 AMCKSIN 1
0Signal at AMCK pin is a sinusoid
Signal at AMCK pin is a square wave 0
2-0 CKRANGE(2:0)
000
001
010
011
100
101
AMCK range MCKCOEFF
4.0 MHz to 6.0 MHz 8.0
6.0 MHz to 8.0 MHz 6.0
8.0 MHz to 12.0 MHz 4.0
12.0 MHz to 16.0 MHz 3.0
16.0 MHz to 24.0 MHz 2.0
24.0 MHz to 32.0 MHz 1.5
000
Control registers STw5098
46/85
5.9 Interrupt control and control interface SPI out mode
Note: Value at IRQ pin is:
CR#
(hex) DescriptionD7D6D5D4D3D2D1D0Def.
CR31
(1Fh) Interrupt mask VLSHEN PUSH
BEN HSDETEN VLSHMSK PUSH
BMSK HSDET
MSK OVFMSK PORMSK 0000
0000
CR32
(20h) Interrupt status VLSH PUSHB HSDET VLSHEV PUSHBEV HSDETEV OVFEV POREV 0000
0000
CR33
(21h) Misc. control x X SPIOHIZ SPIOSEL(1:0) IRQCMOS OVFDA OVFAD 0000
0000
Table 25. CR31 description
Bits Name Value CR31description Def.
7VLSHEN 1
0VLSH status can be seen at IRQ output
VLSH status is masked 0
6 PUSHBEN 1
0PUSHB status can be seen at IRQ output
PUSHB status is masked 0
5 HSDETEN 1
0HSDET status can be seen at IRQ output
HSDET status is masked 0
4VLSHMSK 1
0VLSH event can be seen at IRQ output
VLSH event is masked 0
3 PUSHBMSK 1
0PUSH B event can be seen at IRQ output
PUSHB event is masked 0
2 HSDETMSK 1
0HSDET event can be seen at IRQ output
HSDET event is masked 0
1OVFMSK 1
0OVF event can be seen at IRQ output
OVF event is masked 0
0PORMSK 1
0POR event can be seen at IRQ output
POR event is masked 0
Table 26. CR32 description
Bits Name Read
only CR32 description Def.
7VLSH* 1
0VCCLS is above 4.2 V
VCCLS is below 4.0 V 0
6 PUSHB* 1
0Headset Button is pressed
Headset Button is released 0
5 HSDET* 1
0Headset Connector is inserted
Headset Connector is not inserted 0
IRQ (1 or Z) when (CR31 & CR32) = 00 hex
0 when (CR31 & CR32) 00 hex
=
STw5098 Control registers
47/85
4VLSHEV 1
0VLSH bit has changed
VLSH bit has not changed 0
3 PUSHBEV 1
0Headset Button S tatus has changed
Headset Button S tatus has no t changed 0
2 HSDETEV 1
0Headset Connector Status has changed
Headset Connector Status has not changed 0
1 OVFEV 1
0An Audio Data overflow has occurred in DSP
No Audio Data overflow has occurred in DSP 0
0POREV 1
0Device was reset by power-on-reset
Device was not reset by power-on-reset 0
Note: content of bits 4 to 0 in CR32 is cleared after reading, while it is left unchanged if accessed for writing.
*Bits 7 to 5 represent the status when the Control register is read, not when the event occurred.
Table 26. CR32 description (continued)
Bits Name Read
only CR32 description Def.
Table 27. CR33 description
Bits Name Val. CR33 description Def.
5 SPIOHIZ 1
0
SPI control interface out pin is set to high impedance state when
inactive
SPI control interface out pin is set to zero when inactive 0
4-3 SPIOSEL(1:0) 00
01
10
11
Out pin selection for SPI control interface
No output. Control registers cannot be read in SPI mode
SPI output sent to IRQ pin
SPI output sent to DA_OCK pin
SPI output sent to AD_OCK pin
00
2 IRQCMOS 1
0IRQ interrupt request pin is set to CMOS (active low)
IRQ interrupt request pin is set to pull down 0
1OVFDA 1
0An overflow (saturation) occurred in DA path
No overflow occurred in DA channel 0
0 OVFAD 1
0An overflow (saturation) occurred in AD path
No overflow occurred in AD channel 0
Note: content of bits 1 to 0 in CR33 is cleared after reading, while it is left unchanged if accessed for writing.
Control registers STw5098
48/85
5.10 AGC
CR#
(hex) DescriptionD7D6D5D4D3D2D1D0Def.
CR34
(22h)
AGC
attack/decay
coeff. AGCATT(3:0) AGCDEC(3:0) 0000
0000
CR35
(23h) AGC control XENAG
CLIN ENAG
CMIC AGC
RANGE AGCLEV(3:0) 0000
0000
Table 28. CR 34 description
Bits Name Value CR 34 description Def.
7-4 AGCATT(3:0)
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
AGC attack time constant; FS=AD data rate
0000
A u dio filter in AD path
4096 / FS
2048 / FS
1365 / FS
1024 / FS
683 / FS
512 / FS
341 / FS
256 / FS
171 / FS
128 / FS
85 / FS
64 / FS
43 / FS
32 / FS
Voice filter in AD path
8192 / FS
4096 / FS
2731 / FS
2048 / FS
1365 / FS
1024 / FS
683 / FS
512 / FS
341 / FS
256 / FS
171 / FS
128 / FS
85 / FS
64 / FS
3-0 AGCDEC(3:0)
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
AGC decay time constant; FS=AD data rate
0000
A u dio filter in AD path
65536 / FS
32768 / FS
21845 / FS
16384 / FS
10923 / FS
8192 / FS
5461 / FS
4096 / FS
2731 / FS
2048 / FS
1365 / FS
1024 / FS
683 / FS
512 / FS
341 / FS
256 / FS
Voice filter in AD path
131072 / FS
65536 / FS
43691 / FS
32768 / FS
21845 / FS
16384 / FS
10923 / FS
8192 / FS
5461 / FS
4096 / FS
2731 / FS
2048 / FS
1365 / FS
1024 / FS
683 / FS
512 / FS
STw5098 Control registers
49/85
Table 29. CR 35 description
Bits Name Value CR35 description Def.
6ENAGCLIN 1
0AGC control on AD path acts on Line In Gain
AGC control on AD path does not act on Line In Gain 0
5ENAGCMIC 1
0AGC control on AD path acts on Mic Gain
AGC control on AD path does not act on Mic Gain 0
4 AGCRANGE 1
0AGC action range is -21.0 dB to +21.0 dB
AGC action range is -10.5 dB to +10.5 dB 0
3-0 AGCLEV(3:0)
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
AGC requested output level
-30.0 dB gain
-30.0 dB gain
-27.0 dB gain
-24.0 dB gain
-21.0 dB gain
-18.0 dB gain
-15.0 dB gain
-12.0 dB gain
-9.0 dB gain
-6.0 dB gain
0000
Control interface and master clock STw5098
50/85
6 Control interface and master clock
Unless specified, the following description applies to both entities.
6.1 Control interface I2C mode
Figure 5. Control interface I2C format
Note: CMOD pin tied to GND
Figure 6. Control interface: I2C format timing
WRITE
SINGLE BYTE START
DEVICE ADDRESSREG n ADDRESS REG n DATA IN
ACK ACK ACK
STOP
WRITE
MULTI BYTE START
DEVICE ADDRESSREG n ADDRESS REG n DATA IN
ACK ACK ACK
STOP
REG n+m DATA IN
ACK
m+1 data bytes
CURRENT ADDR
START
DEVICE ADDRESS
Current REG DATA OUT
ACK NO ACK
STOP
READ
SINGLE BYTE
CURRENT ADDR
START
DEVICE ADDRESS
Current REG DATA OUT
ACK NO ACK
STOP
READ
MULTI BYTE Curr REG+m DATA OUT
ACK
ACK
ACK
m+1 data bytes
START
DEVICE ADDRESSREG n ADDRESS
ACK ACK
START
DEVICE ADDRESS REG n DATA OUT
ACK NO ACK
STOP
RANDOM ADDR
READ
SINGLE BYTE
RANDOM ADDR
READ
MULTI BYTE START
DEVICE ADDRESSREG n ADDRESS
ACK ACK
START
DEVICE ADDRESS NO ACK
STOP
REG n+m DATA OUT
ACK ACK
m+1 data bytes
REG n DATA OUT
ACK
001101AS
1
001101AS
1
001101AS
0
001101AS0
001101AS
1
001101AS
1
001101AS0
001101AS
0
(STO)
t
SU
(STA)
t
SU (STA)
t
HD
(DAT)
t
SU
t
HIGH
t
BUF (DAT)
t
HD
t
F
t
R
t
LOW
(STA)
t
HD
P S P
S
r
P=STOP
S = START
Sr = START repeated
SDA
SCLK
STw5098 Control interface and master clock
51/85
6.2 Control interface SPI mode
Figure 7. Control interface SPI format(a)
Table 30. Control interface timing with I²C format
Symbol Parameter Test conditions Min. Typ. Max. Unit
fSCL Clock frequency 400 kHz
tHIGH Clock pulse width high 600 ns
tLOW Clock pulse width low 1300 ns
tRSDA and SCLK rise time 1000 ns
tFSDA and SCLK fall time 300 ns
tHD:STA Start condition hold time 600 ns
tSU:STA Start condition setup time 600 ns
tHD:DAT Data input hold time 0 ns
tSU:DAT Data input setup time 250 ns
tSU:STO Stop condition setup tim e 6 00 ns
tBUF Bus free time 1300 ns
a. CMOD pin tied to VCCIO; SDO pin position selected with bits SPIOSEL in CR33.
A6 A5
8 bit Addres s
A4 A3 A2 A1 A0
W/R D7 D6 D5 D4 D3 D2 D1 D0
8 bit Data
SDIN
D7 D6 D5 D4 D3 D2 D1 D0
8 bit Data
SDO
SCLK
CSB
SPIOHIZ=1
Control interface and master clock STw5098
52/85
Figure 8. Control interface: SPI format timing
tDDO tDDOLtDDOF
SPIOHIZ=0
SPIOHIZ=1
tSCSF tHSCKtLSCK
tSDI tHDI
tSCSR
tHICS
SDIN
SDO
SCLK
CSB
1580
W/R D7
D7 D0
D0
tPSCK tHCS
Table 31. Control interface signal timing with SPI format
Symbol Parameter Test conditions Min. Typ. Max. Unit
tHICS CSB pulse width high 80 ns
tSCSR Setup time CSB rising
edge to SCLK rising edge 20 ns
tSCSF Setup time CSB fa lling
edge to SCLK rising edge 20 ns
tHCS Hold time CSB rising edge
from SCLK rising edge 20 ns
tSDI Setup time SDIN to SCLK
rising edge 20 ns
tHDI Hold time SDIN from SCLK
rising edge 20 ns
tDDOF SDO first Delay time from
SCLK f al lin g edge 30 ns
tDDO SDO Delay time from
SCLK f al lin g edge 20 ns
tDDOL SDO Dela y time fro m CSB
rising edge 30 ns
tPSCK Period of SCK 100 ns
tHSCK SCK pulse width high Measured from VIH to VIH 40 ns
tLSCK SCK pulse width low Measured from VIL to VIL 40 ns
STw5098 Control interface and master clock
53/85
6.3 Master clock timing
Table 32. AMCK timing
Symbol Parameter AMCK range Min. Typ. Max. Unit
tCKDC AMCK d
uty cyc le
4
MHz
-8
MHz
8
MHz
-32 M
Hz
45
40 55
60 %
%
Audio interfaces STw5098
54/85
7 Audio interfaces
Information included in the following section is valid f or both entities.
Figure 9. Audio interfaces formats: delayed, left and right justified
1 2 n-1 n
MSB LSB 1 2 n-1 n
MSB LSB
1 2 n-1 n
MSB LSB 1 2 n-1 n
MSB LSB
1 AD_CK/DA_CK 1 AD_CK/DA_CK
n-bit word Left data
I2S format (delayed) with default polarity settings, ADHIZ=0
Left justified format with default polarity settings, ADHIZ=0
n-bit word Left data
n-bit word Right data
n-bit word Right data
1 2 n-1 n
MSB LSB 1 2 n-1 n
MSB LSB
1 2 n-1 n
MSB LSB 1 2 n-1 n
MSB LSB
n-bit word Left data
n-bit word Left data
n-bit word Right data
n-bit word Right data
1 2 n-1 n
MSB LSB 1 2 n-1 n
MSB LSB
12n-1 n
MSB LSB 1 2 n-1 n
MSB LSB
n-bit word Left data
Right justified format with default polarity settings
n-bit word Left data
n-bit word Right data
n-bit word Right data
32 AD_CK/DA_CK 32 AD_CK/DA_CK
DA_SYNC/
AD_SYNC
DA_DATA
AD_DATA
DA_CK/
AD_CK
DA_SYNC/
AD_SYNC
DA_DATA
AD_DATA
DA_CK/
AD_CK
DA_SYNC/
AD_SYNC
DA_DATA
AD_DATA
DA_CK/
AD_CK
STw5098 Audio interfaces
55/85
Figure 10. Audio interfaces formats: DSP, SPI and PCM
DA_SYNC/
1 2 n-1 n
MSB LSB
AD_SYNC
1 2 n-1 n
MSB LSB
1 2 n-1 n
MSB LSB 1 2 n-1 n
MSB LSB
n-bit word Left data
DSP form at delayed and non-delayed (default AD_CK/DA_CK polarity, ADHIZ=0)
SPI format (slave only) (default AD_CK/DA_CK polarity, ADHIZ=1 - Stereo or Mono)
n-bit word Left data
n-bit word Right data
n-bit word Right data
1 2 n-1 n
MSB LSB 1 2
MSB
n-bit word Left/Mo no dat a n-bit word Right/Mo no data
PCM format (default AD_CK/DA_CK polarity, ADHIZ=1)
3 3
1 2 n-1 n
MSB LSB 1 2
MSB
n-bit word Left/Mono data n-bit word Right/Mono data
3 3
1 2 n-1 n
MSB LSB
n-bit word Mono data
3
1 2 n-1
MSB LSB
n-bit word Mono data
3High impeda nce
1
MSB
1
MSB
xHigh impedance x
SYNCP=0
SYNCP=1
{
DA_DATA
AD_DATA
DA_CK/
AD_CK
DA_SYNC/
AD_SYNC
DA_DATA
AD_DATA
DA_CK/
AD_CK
DA_SYNC/
AD_SYNC
SYNCP=0
SYNCP=1
{
DA_DATA
AD_DATA
DA_CK/
AD_CK
n
Audio interfaces STw5098
56/85
Figure 11. Audio interface timings: master mode
Figure 12. Audio interface timing: slave mode
ADHIZ=0
ADHIZ=0
ADHIZ=1
ADHIZ=1
ADHIZ=0
ADHIZ=1
ADHIZ=0
ADHIZ=1
tDSY
tSDDA tHDDA
tDAD
CKP=0
CKP=1
tDAD tDADZ
DA_SYNC/
AD_SYNC
DA_CK/
AD_CK
DA_DATA
{
tDAD
PCM format only
AD_DATA
AD_DATA
All other formats
ADHIZ=0
ADHIZ=0
ADHIZ=1
ADHIZ=1
ADHIZ=0
ADHIZ=1
ADHIZ=0
tDADST
tHCK tLCK
tPCK
tSSY
DA_SYNC/
tSDDA tHDDA
tHSY
AD_SYNC
tDAD
CKP=0
CKP=1
tDADZ
DA_CK/
AD_CK
DA_DATA
{
tDAD
tDAD
PCM format
AD_DATA
AD_DATA
All other formats
ADHIZ=1
STw5098 Audio interfaces
57/85
Table 33. Audio interface signal timings
Symbol Parameter Test conditions Min. Typ. Max. Unit
tDSY
Delay of
AD_SYNC/DA_SYNC
edge from AD_CK/DA_CK
active edge
Master Mode 10 ns
tSDDA Setup time DA_DATA to
DA_CK active edge 10 ns
tHDDA Hold time DA_DATA from
DA_CK active edge 10 ns
tDAD Delay of AD_DATA edge
from AD_CK active edge 30 ns
tDADST
Dela y of the first AD_ DATA
edge from AD_SYNC
active edge
AD_SYNC ac tive edge comes
after AD_CK active edge 30 ns
tDADZ
Delay of AD_DATA high
impedance from
AD_SYNC inactive edge PCM format 10 50 ns
tSSY
Setup time
AD_SYNC/DA_SYNC to
AD_CK/DA_CK active
edge
Slave Mode 20 ns
tHSY
Hold time
AD_SYNC/DA_SYNC from
AD_CK/DA_CK active
edge
Slave Mode 20 ns
tPCK Period of AD_CK/DA_CK Slave Mode 100 ns
tHCK AD_CK/DA_CK pulse
width high Measured from VIH to VIH 40 ns
tLCK AD_CK/DA_CK pulse
width low Measured from VIL to VIL 40 ns
Timing specifications STw5098
58/85
8 Timing specifications
Information included in this section is valid for both entities.
Unless otherwise specified, VCCIO = 1.71V to 2.7V, Tamb = -30°C to 85°C, max capacitive
load 20 pF; typical characteristics are specified at VCCIO = 2.4 V, Tamb = 25 °C; all signals
are referenced to GND, see Note below figure for timing definitions.
Figure 13. A.C. testing input-output waveform
Note: A signal is valid if it is above VIH or below VIL and inv alid if it is between VIL and VIH. For the
purpose of this specification the following conditions apply (see Figure 13 above):
a) All input signal are defined as: VIL =0.2
VCCIO, VIH =0.8
VCCIO, tR < 10ns, tF < 10ns.
b) Delay times are measured from the inputs signal valid to the output signal valid.
c) Setup times are measured from the data input valid to the clock input invalid.
d) Hold times are measured from the clock signal valid to the data input invalid.
Note: All timing specifications subject to change.
AC Testing: inputs are driven at 0.8
VCCIO for a logic ‘1’ and 0.2
VCCIO for a logic ‘0’.
Timing measurements are made at 0.7
VCCIO for a logic ‘1’ and 0.3
VCCIO for a logic ‘ 0’.
TEST POINTS 0.7²VCCIO
0.3²VCCIO
0.7²VCCIO
0.3²VCCIO
0.8²VCCIO
0.2²VCCIO
Input/output
STw5098 Operative ranges
59/85
9 Operative ranges
9.1 Absolute maximum ratings
9.2 Operative supply voltage
Table 34. Absolute maximum ratings
Parameter Value Unit
VCC or VCCIO to GND -0.5 to 3.6 V
VCCA or VCCP to GND -0.5 to 5 V
VCCLS to GND -0.5 to 7 V
Voltage at analog inputs (VCCA 3.3V) GND-0.5 to VCCA+0.5 V
Maxim u m po w er delivered to the load from LSP/N 500 mW
Peak current at HPR,HPL 100 mA
Current at VCCP, VCCLS, GNDP 350 mA
Current at any digital output 50 mA
Voltage at any digital input (VCCIO 2.7V); limited at ± 50mA GND-0.5 to VCCIO+0.5 V
Storage temperature range -65 to 150 °C
Operating temperature range(1) -30 to 85 °C
Electrostatic discharge voltage (Vesd) Human body model(2)
Charge device model(3) -2 to +2
-500 to +500 kV
V
1. in some operating conditions the temperature can be limited to 70 °C. See loudspeaker driver description from
Section 4.10
for details.
2. HBM tests have been perform ed in complian ce with JESD22-A114-B and ESD STM 5.1-2001.HBM
3. CDM tests have been performed in compliance with CDM ANSI-ESDSTM5.3.1-1999
Table 35. Operative supply voltage
Symbol Parameter Condition Min. Max. Unit
VCC Digital supply 1.71 2.7 V
VCCA Analog supply
Note: VCCA VCC
A24V=0 (bit 1 in CR0)
A24V=1 (bit 1 in CR0) 2.7
2.4 3.3
2.7 V
V
VCCIO Digital I/O supply D12V=0 (bit 0 in CR0)
D12V=1 (bit 0 in CR0) 1.71
1.2 VCC
1.8 V
V
VCCP Stereo po w er drivers suppl y VCCA 3.3 V
VCCLS Mono power driver supply VCCA 5.5 V
VGSingle supply voltage range VCC
=
VCCA
=
VCCIO
=
VCCP
=
VCCLS
A24V=1 (bit 1 in CR0) 2.4 2.7 V
Operative ranges STw5098
60/85
9.3 Power dissipation
Unless otherwise specified, VCCP =V
CCLS =V
CCA = 2.7V to 3.3V, VCCIO =V
CC = 1.71V to
2.7V, Tamb = -30°C to 85°C, all analog outputs not loaded; typical characteristics are
specified at VCCIO =V
CC = 1.8V, VCCP =V
CCLS =V
CCA =2.7V, T
amb =25°C.
9.4 Typical power dissipation by entity
Tamb = 25°C; Analog Supply: VCCP =V
CCLS =V
CCA =2.7V;
digital supply: VCCIO =V
CC =1.8V.
Full scale signal in every path, 20k load at analog outputs.
No master clock
Table 36. Power dissipation
Symbol Parameter Test conditions Min. Typ. Max. Unit
POFF Power Down Dissipation No Master Clock
AMCK=13MHz 0.8
5.8 µW
µW
PAD Stereo ADC power 52.6 mW
PDA Stereo DAC power 46.6 mW
PDAAD Stereo ADC+DAC power 93.8 mW
PAA Stereo Analog Path power 27.6 mW
Table 37. Typical power dissipation, no master clock
N. Function CR0-CR2
setting Other settings Supply Current Power
1 Power Down CR0=0x00
CR1=0x00
CR2=0x00
Analog:
Digital:
Total:
0.02 µA
0.20 µA0.05 µW
0.36 µW
0.41 µW
2Stereo analog path
(Mic-LO)
CR0=0xD0
CR1=0x0C
CR2=0xC0
MICLO=1
MICSEL=2
Analog:
Digital:
Total:
4.3 mA
2.0 µA11.6 mW
0.0 mW
11.6 mW
3Stereo analog path
(Mic-Mixer-LO)
CR0=0xD0;
CR1=0x0C;
CR2=0xC3
MIXMIC=1
MICSEL=2
Analog:
Digital:
Total:
5.4 mA
2.0 µA14.6 mW
0.0 mW
14.6 mW
STw5098 Operative ranges
61/85
Master clock AMCK = 13 MHz
Table 38. Typical power dissipation with master clock AMCK = 13 MHz
N. Function CR0-CR2
setting Other settings Supply Current Power
4 Power Down CR0=0x00
CR1=0x00
CR2=0x00
Analog:
Digital:
Total:
0.02 µA
2.20 µA0.05 µW
3.96 µW
4.01 µW
5Stereo ADC CR0=0xE8
CR1=0xCC
CR2=0x00
MICSEL=1
ADMIC=1
Analog:
Digital:
Total:
7.9 mA
2.8 mA 21.3 mW
5.0 mW
26.3 mW
6Stereo DAC CR0=0xE8
CR1=0x30
CR2=0x33 MIXDAC=1 Analog:
Digital:
Total:
6.1 mA
3.8 mA 16.5 mW
6.8 mW
23.3 mW
7Stereo analog path
(Mic-LO)
CR0=0xE8
CR1=0x0C
CR2=0xC0
MICLO=1
MICSEL=2
Analog:
Digital:
Total:
4.8 mA
0.8 mA 13.0 mW
1.4 mW
13.8 mW
8Stereo ADC
Stereo DAC
CR0=0xE8
CR1=0xFC
CR2=0x33
MICSEL=2
ADMIC=1
MIXDAC=1
Analog:
Digital:
Total:
13.5 mA
5.8 mA 36.5 mW
10.4 mW
46.9 mW
9Stereo ADC
Stereo DAC
Stereo analog path
CR0=0xE8
CR1=0xFF
CR2=0xF3
LINSEL=2; MICSEL=2
ADLIN=1;MIXDAC=1
MICLO=1
Analog:
Digital:
Total:
15.2 mA
5.8 mA 41.0 mW
10.4 mW
51.4 mW
10 Voice TX+RX CR0=0xE8
CR1=0xA8
CR2=0x06
MICSEL=2;
LSMODE=2
ADMIC=1 MIXDAC=1
ADVOICE=1
DAVOICE=1
VCCA,VCCP:
VCCLS:
Digital
Total:
6.8 mA
1.3 mA
2.5 mA
18.4 mW
5.5 mW
4.5 mW
28.4 mW
Electrical characteristics STw5098
62/85
10 Electrical characteristics
Unless otherwise specified, VCCIO = 1.71V to 2.7V, Tamb = -30°C to 85°C; typical
characteristic are specified at VCCIO = 2.0V, Tamb = 25°C; all signals are referenced to GND.
10.1 Digital interfaces
Note: See Figure 13: A.C. testing input-output waveform on page 58.
10.2 AMCK with sinusoid input
Table 39. Digital interfaces specifications
Symbol Parameter Test conditions Min. Typ. Max. Unit
VIL Input low voltag e All digital inputs DC
AC 0.3VCCIO
0.2VCCIO
V
V
VIH Input high volt age All digital inputs, DC
AC 0.7VCCIO
0.8VCCIO
V
V
VOL Output low voltage All digital outputs IL= 10µA
IL=2µA0.1
0.4 V
V
VOH Output high voltage All digital outputs IL= 10µA
IL=2µAVCCIO-0.1
VCCIO-0.4 V
V
IIL Input low cur r ent Any digital input,
GND < VIN < VIL -1 1 µA
IIH Input high curre nt Any digital input,
VIH < VIN < VCCIO -1 1 µA
IOZ
Output current in
high imped anc e
(Tristate) Tristate outputs -1 1 µA
Table 40. AMCK with sinusoid input specifications
Symbol Parameter Test conditions Min. Typ. Max. Unit
CAMCK Minimum External
Capacitance AMCKSIN=1, see CR30 100 pF
VAMCK AMCK sinusoidal voltage
swing AMCKSIN=1, see CR30 0.5 VCCIO VPP
STw5098 Electrical characteristics
63/85
10.3 Analog interfaces
Information below is for each entity.
Table 41. Analog interface specifications
Symbol Parameter Test conditions Min. Typ. Max. Unit
IMIC MIC input leakage GND< VMIC< VCCA -100 +100 µA
RMIC MIC input resistance 30 50 k
RLIN Line in input resi sta nc e 30 k
RLHP Headphones (HP) drivers
load resistance HPL, HPR to GNDP or
VCMHP 14.4 16/32
RLEAR Earphone (EAR) drivers
load resistance 1 EARP to 1EARN 30 32
RLLS Loudspe aker (LS) driv e rs
load resistance 2LSP to 2LSN 6.4 8
CLHP Headphones (HP) drivers
load capac itance HPL, HPR to GNDP or
VCMHP 50
50* pF
nF
CLEAR Earphone (EAR) drivers
load capac itance 1 EARP to 1EARN 50
50* pF
nF
CLLS Loudspe aker (LS) driv e rs
load capac itance 2LSP to 2LSN 50
50* pF
nF
VOFFLS Differential offset voltage
at 2LSP, 2LSN RL=50-50 +50 mV
VOFFEAR Differential offset voltage
at 1EARP, 1EARN RL=50-50 +50 mV
RLOL
Line out (OL) diff./single-
ended driver load
resistance
OLP/ORP to OLN/ORN or
OLP/ORP to GND
(decoupled) 1k
* with series resistor
Electrical characteristics STw5098
64/85
10.4 Headset plug-in and push-button detector
Information below is for each entity.
10.5 Microphone bias
Information below is for each entity.
10.6 Power supply rejection ratio
Table 42. Headset plug-in and push-button detector specifications
Symbol Parameter Test conditions Min. Typ. Max. Unit
HDVL Plug-in detected Voltage at HDET VCCA-1 V
HDVH Plug-in undetected Voltage at HDET VCCA-0.5 V
HDHPlug-in detector hysteresis 100 mV
PBVL Push-button pressed Voltage at HDET 0.5 V
PBVH Push-button released Voltage at HDET 1 V
PBDPush-button de-bounce
time 15 50 ms
Table 43. Microphone bias specifications
Symbol Parameter Test conditions Min. Typ. Max. Unit
VMBIAS MBIAS output
voltage 1.95 2.1 2.25 V
IMBIAS MBIAS output
current From MBIAS to ground 1.1 mA
RMBIAS MBIAS output load 3.5 k
CMBIAS MBIAS output
capacitance 150 pF
PSRMB4
PSRMB20
MBIAS power
supply rejection f<4kHz
f<20kHz 60
50 dB
dB
Table 44. Power supply rejection ratio specifications
Symbol Parameter Test conditions Min. Typ. Max. Unit
PSRL20
PSRL200 PSRR VCCLS
Each output (LSP, LSN)
f<20kHz
f<200kHz 65
47 dB
dB
PSRPH
PSRPOS
PSRPOD
PSRR VCCP
Headphones f<20kHz
Line out single ended f<20kHz
Line out differential f<20kHz
65
65
65
dB
dB
dB
PSRAM
PSRAL PSRR VCCA Mic input f<20kHz
Line In f<20kH z 50
50 dB
dB
STw5098 Electrical characteristics
65/85
10.7 LS and EAR gain limiter
Information below is for each entity.
Table 45. LS and EAR gain limiter
Symbol Parameter Test conditions Min. Typ. Max. Unit
VLSLIMH High voltage at VCCLS
(VLSH=1) VCCLS rais ing 4.2 V
VLSLIML Low voltage at VCCLS
(VLSH=0) VCCLS fallin g 4.0 V
VLSLIMD VCCLS Hysteresis 200 mV
Note: See CR32 for VLSH definition. See Loudspeaker driver description in
Section 4.10
for details.
Analog input/output operative ranges STw5098
66/85
11 Analog input/output operative ranges
Information included in this section applies to both entities.
11.1 Analog levels
11.2 Microphone input levels
Analog supply range: 2.7 V < VCCA <3.3V
Table 46. Reference full scale analog levels
Symbol Parameter Test conditions Min. Typ. Max. Unit
0dBFS level 2.7V < VCCA < 3.3V 12
4dBVpp
Vpp
0dBFS level low voltage
mode 2.4V < VCCA < 2.7V 10
3.18 dBVpp
Vpp
Table 47. Microphone input levels, absolute levels at pins connected to preamplifiers
Symbol Parameter Test conditions Min. Typ. Max. Unit
Overload level, single
ended MIC gain = 0 to 6dB 707
2
-6
mVRMS
Vpp
dBFS
Overload level, single
ended, versus MIC gain MIC gain > 6dB (MIC_Gain) dBFS
Overload level, differential MIC gain = 0dB 1.41
4
0
mVRMS
Vpp
dBFS
Overload level, differential,
versus MIC gain MIC gain > 0dB (MIC_Gain) dBFS
Note: When 2.4 V < VCCA < 2.7 V, voltage values are reduced by 2dB.
Table 48. Microphone input levels, absolute levels at pins connected to the line-in amplifiers
Symbol Parameter Test conditions Min. Typ. Max. Unit
Overload level, single
ended
Line in
gain from 20dB to 6dB 707
2
-6
mVRMS
Vpp
dBFS
Overload level (single
ended) versus line in gain
Line in
gain > 6dB (Line_In_Gain) dBFS
Overload level (differential)
Line in
gain from 20dB to 0dB 1.41
4
0
mVRMS
Vpp
dBFS
STw5098 Analog input/output operative ranges
67/85
11.3 Line output levels
Analog supply range: 2.7 V < VCCA <3.3V
11.4 Power output levels HP
Analog supply range: 2.7 V < VCCA <3.3V
11.5 Power output levels LS and EAR
Analog supply range: 2.7 V < VCCA <3.3V
Overload level (differential)
versus line in gain
Line in
gain > 0dB (Line_In_Gain) dBFS
Note: When 2.4 V < VCCA < 2.7 V, the values are reduced by 2dB
Table 48. Microphone input levels, absolute levels at pins connected to the line-in amplifiers
Symbol Parameter Test conditions Min. Typ. Max. Unit
Table 49. Absolute levels at OLP/OLN, ORP/ORN
Symbol Parameter Test conditions Min. Typ. Max. Unit
Output level, single ended 0 dB gain
Full scale digital input
707
2
-6
mVRMS
Vpp
dBFS
Output level, differential 0 dB gain
Full scale digital input
1.41
4
0
mVRMS
Vpp
dBFS
Note: When 2.4 V < VCCA < 2.7 V, the values are reduced by 2dB
Table 50. Absolute levels at HPL - HPR
Symbol Parameter Test conditions Min. Typ. Max. Unit
Output level -6dB gain
Full scale digital input
707
2
-6
mVRMS
Vpp
dBFS
Max output power(1) 16 load
VCCP > 3.2 V 40 mW
1. In some operating conditions the maximum output power can be limited. See “
Section 9.1: Absolute maximum ratings
” and
“loudspeaker driver” description from
Section 4.10: Analog output drivers
for details.
Note: When 2.4 V < VCCA < 2.7 V, the values are reduced by 2dB
Analog input/output operative ranges STw5098
68/85
Table 51. Absolute levels at 1EARP-1EARN and 2LSP - 2LSN
Symbol Parameter Test conditions Min. Typ. Max. Unit
Output level 0dB gain
Full scale digital input
1.41
4
0
VRMS
Vpp
dBFS
Max EAR output power 32 load
VCCLS > 4V 125 mW
Max LS output power(1) 8 load
VCCLS > 4V 500 mW
1. In some operating conditions the maximum output power can be limited. See “
Section 9.1: Absolute maximum ratings
” and
“loudspeaker driver” description from
Section 4.10: Analog output drivers
for details.
Note: When 2.4 V < VCCA < 2.7 V, the values are reduced by 2dB
STw5098 Stereo audio ADC specifications
69/85
12 Stereo audio ADC specifications
Information included in this section applies to both entities. Typical measures at
VCCA=VCCP=VCCLS=2.7V; VCCIO=VCC=1.8 V; Tamb=25°C;13 MHz AMCK
Table 52. Stereo audio ADC specifications
Symbol Parameter Test conditions Min. Typ. Max. Unit
ADN Resolution 20 Bits
ADDRM
ADDRLI Dynamic range
20Hz to 20 kHz , A-weig hte d
Meas ured at -60dBFS
MIC input, 21dB gain
Line-In, 0dB gai n 87
89 91
93 dB
dB
ADSNA
ADSN Signal to noise ratio Max level at MIC input, 21dB gain
A-weighted
Unweighted (20 Hz to 20 kHz) 90
86 dB
dB
Input ref e rred ADC
noise
A-weighted Mic input 0dB gai n
Mic input 21dB gain
Mic input 39dB gain
Line in input 0dB gain
Line in input 18dB gai n
37
3.3
1.9
30
7.5
µV
µV
µV
µV
µV
ADTHD Total harmonic
distortion Max level at MIC input, 21dB gain 0.001 0.003 %
Deviation from
linear phase
Measurement bandwidth 20Hz to
20kHz, Fs= 48kHz. Combined digital
and analog filter characteristic s 1Deg
ADfPB Passband Combined digital and analog filter
characteristics AD96K=0 00.45FskHz
Passband ripple Combined digital and analog filter
characteristics AD96K=0 0.2 dB
ADfSB Stopband Combined digital and analog filter
characteristics AD96K=0 0.55Fs kHz
Stopband
Attenuation
Measurement bandwidth up to
3.45Fs. Combined digital and analog
filter characteristics, AD96K=0 60 dB
ADtgd Group delay Audio filters, 96kHz FS
Audio filters, 48kHz FS
Audio filters, 8kHz FS
0.11
0.4
2.6
ms
ms
ms
Interchannel
isolation 90 dB
Interchannel gain
mismatch 0.2 dB
Gain error 0.5 dB
Note: When 2.4 V < VCCA < 2.7 V, the values are reduced by 2dB
Stereo audio DAC specifications STw5098
70/85
13 Stereo audio DAC specifications
Information included in this section applies to both entities.
Typical measures at VCCA=VCCP=VCCLS=2 .7V; VCCIO=VCC=1.8V; Tamb=25°C;13MHz
AMCK
Table 53. Stereo audio DAC specifications
Symbol Parameter Test conditions Min. Typ. Max. Unit
DAN Resolution 20 Bits
DADR Dynamic range
20Hz to 20 kHz , A-weig hte d.
Meas ured at -60dBFS
Differenti al line out
Single- end ed lin e out
HPL/HPR to GND or VCMHP
LSP-LSN
90 95
93
94
94
dB
dB
dB
dB
DASNA
DASN Signal to noise ratio
2Vpp outp ut
HPL, HPR gain set to -6dB, 16 load
A-weighted
Unweighted (20 Hz to 20 kHz) 94
90 dB
dB
DATHDL Total harmonic
distortion
Worst case load
2Vpp output
HPL, HPR gain set to -6dB, 16 load 0.02 0.04 %
DATHD Total harmonic
distortion 2Vpp output,
HPL, HPR gain set to -6dB, 1k lo ad 0.004 %
Deviation from
linear phase
Measurement bandwidth 20Hz to
20kH z, Fs= 48kHz.
Combined digital and analog filter
characteristics
1Deg
DAfPB Passband Combined digital and analog filter
character istics, DA96K= 0 00.45FskHz
Passband ripple Combined digital and analog filter
character istics, DA96K= 0 0.2 dB
DAfSB Stopband Combined digital and analog filter
character istics, DA96K= 0 0.55Fs kHz
Stopband
attenuation
Measurement bandwidth up to
3.45Fs.
Combined digital and analog filter
character istics, DA96K= 0
50 dB
TSF Transient
suppression filter
cut-off frequency 15 23 Hz
Out of band noise Measur ement bandwid th 20 kHz to
100 kHz. Zero input signal -85 dBr
STw5098 AD to DA mixing (sidetone) specifications
71/85
14 AD to DA mixing (sidetone) specifications
Information included in this section applies to both entities.
Typical measures at VCCA=VCCP=VCCLS=2 .7V; VCCIO=VCC=1.8V; Tamb=25°C;13MHz
AMCK.
DAtgd Group delay Audio filters, 96kHz FS
Audio filters, 48kHz FS
Audio filters, 8kHz FS
0.09
0.4
2.6
ms
ms
ms
Interchannel
isolation 2Vpp output HPR, HPL unloaded
HPR, HPL with 16 to VCMHP 100
60 dB
dB
Interchannel gain
mismatch 0.2 dB
Gain error 0.5 dB
SUT Startup time from
power up FS=48 kHz Line out
HPL/R out 1
10 ms
ms
Note: When 2.4 V < VCCA < 2.7 V, values are reduced by 2 dB
Table 53. Stereo audio DAC specifications (continued)
Symbol Parameter Test conditions Min. Typ. Max. Unit
Table 54. AD to DA mixing (sidetone) specifications
Symbol Parameter Test conditions Min. Typ. Max. Unit
STDEL AD to DA mixing
(sidetone) delay Valid for audio and voice filters 5 10 µs
Stereo analog-only path specifications STw5098
72/85
15 Stereo analog-only path specifications
Information included in this section applies to both entities.
Measured at differential line-out, ENOSC=1, No master clock.
Typical measures at VCCA=VCCP=VCCLS=2 .7V; VCCIO=VCC=1.8V; Tamb=25°C
Table 55. Stereo analog-only path specifications
Symbol Parameter Test conditions Min. Typ. Max. Unit
AADRM
AADRLI Dynamic range
20Hz to 20 kHz , A-weig hte d.
Meas ured at -60dBFS
MIC input, 21dB gain
Line-In, 0dB gai n 90
90 95
97 dB
dB
AASNA
AASN Signal to noise ratio Max level at line-in input, 0dB gain,
A-weighted
Unweighted (20 Hz to 20 kHz) 97
94 dB
dB
AATHD Total harmonic
distortion
1kHz @ 0dBFS MIC input, 21dB gain
Line-in input, 0dB gai n 0.003
0.004 0.01
0.02 %
%
Note: When 2.4V<VCCA<2.7V, the values are reduced by 2dB.
STw5098 ADC (TX) & DAC (RX) specifications with voice filters selected
73/85
16 ADC (TX) & DAC (RX) specifications with voice filters
selected
Information included in this section applies to both entities.
Typical measures at VCCA=VCCP=VCCLS=2 .7V; VCCIO=VCC=1.8V; Tamb=25°C;13MHz
AMCK
Table 56. ADC (TX) & DAC (RX) specifications with voice filters selected
Symbol Parameter Test conditions Min. Typ. Max. Unit
TXDR
RXDR Dynamic range 300Hz to 3.4kHz; 1kHz @ -60dBFS
TX Path, MIC input, 21dB gain
RX Path, LS Output, 0dB gain 86
83 89
86 dB
dB
TXSN
RXSN Signal to noise ratio 300Hz to 3.4kHz; 1kHz @ 0dBFS
TX Path, MIC input, 21dB gain
RX Path, LS and EAR outputs, 0dB gain 88
86 dB
dB
THD THD 1kHz @ 0dBFS
TX Path, MIC input, 21dB gain
RX Path, LS and EAR outputs, 0dB gain <0.001
0.005 %
%
TXG TX gain mask
f=60Hz
f=100Hz
f=200Hz
f=300Hz
f=400Hz-3000Hz
f=3400Hz
f=4000H
f=4600Hzz
f=8000Hz
-1.5
-0.5
-1.5
-30
-24
-6
0.5
0.5
0.0
-14
-35
-47
dB
dB
dB
dB
dB
dB
dB
dB
dB
RXG RX gain mask
f=60Hz
f=100Hz
f=200Hz
f=300Hz
f=400Hz-3000Hz
f=3400Hz
f=4000Hz
f=5000Hz
-1.5
-0.5
-1.5
-20
-12
-2
0.5
0.5
0.0
-14
-50
dB
dB
dB
dB
dB
dB
dB
dB
RX out of band
noise Measurement bandwidth 4kHz to
100kHz. Zero input signal -85 dBr
Group delay TX path
RX path 0.32
0.28 ms
ms
Note: When 2.4V<VCCA<2.7V, the values are reduced by 2dB
Typical performance plots STw5098
74/85
17 Typical performance plots
Figure 14. Bass treble control, de-emphasis
filter
Figure 15. Dynamic compressor transfer
function
Figure 16. ADC audio path measured filter
response
Figure 17. ADC in band audio path measured
filter response
Figure 18. DAC digital audio filter
characteristics
Figure 19. DAC in band digital audio filter
characteristics
Bass and treble gains are independently selectable in any combination.
The de-emphasis filter (thick line, alternative to treble control)
compensates for pre-emphasis used on some audio CDs.
Gain error < 0.1dB. Filter characteristics at Fs=44.1kHz are plotted
-15
-10
-5
0
5
10
15
100 1k 10k
Gain @ Fs=44.1 kHz [dB]
Frequency [Hz]
Audio signal transfer function when the Dynamic Compressor is active.
-1
-0.75
-0.5
-0.25
0
0.25
0.5
0.75
1
-1 -0.75-0.5-0.25 0 0.25 0.5 0.75 1
Output Amplit u de [FS]
Input Amplitude [FS]
48 kHz sample rate.
Full ADC path Frequency response up to 100 kHz.
-80
-70
-60
-50
-40
-30
-20
-10
0
100 1k 10k 100k
Gain [dB]
Frequency [Hz]
48 kHz Sample Rate.
In band Frequency response
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
0 5k 10k 15k 20k
Gain [dB]
Frequency [Hz]
DA96K=0; 48 kHz Sample Rate
Frequency response up to 166kHz (3.45 Fs @ 48kHz sampling rate)
-80
-60
-40
-20
0
100 1k 10k 100k
Gain [dB]
Frequency [Hz]
48 kHz Sample Rate
In band Frequency response
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
0 5k 10k 15k 20k
Gain [dB]
Fr equency [Hz]
STw5098 Typical performance plots
75/85
Figure 20. ADC 96 kHz audio path measured
filter response
Figure 21. ADC 96 kHz audio in-band
measured filter response
Figure 22. ADC voice TX path measured filter
response
Figure 23. ADC voice TX path measured in-
band filter response
Figure 24. DAC voice (RX) digital filter
characteristics
Figure 25. DAC voice (RX) in-band digital filter
characteristics
The plot is extended down to 5 Hz to show the high pass filter
implemented in the ADC 96 kHz sample rate,
96 kHz audio filter selected signal from Mic input
-80
-70
-60
-50
-40
-30
-20
-10
0
10 100 1k 10k 100k
Gain [dB]
Frequency [Hz]
96 kHz sample rate,
96 kHz audio filter selected signal from Mic input.
-5
-4
-3
-2
-1
0
1
0 5k 10k 15k 20k 25k 30k 35k 40k 45k
Gain [dB]
Frequency [Hz]
8 kHz Sample rate, tx voice filter selected.
Signal from Mic input
-70
-60
-50
-40
-30
-20
-10
0
100 1k 10k
Gain [dB]
Frequency [Hz]
8 kHz sample rate, tx voice filter selected signal from Mic input.
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
500 1k 1500 2k 2500 3k 3500 4k
Gain [dB]
Frequency [Hz]
8 kHz sample rate, rx voice filter
-70
-60
-50
-40
-30
-20
-10
0
100 1k 10k
Gain [dB]
Frequency [Hz]
8 kHz sample rate, rx voice filter
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
500 1k 1500 2k 2500 3k 3500 4k
Gain [dB]
Fr equency [Hz]
Typical performance plots STw5098
76/85
Figure 26. ADC path FFT Figure 27. ADC S/N versus input-level
Figure 28. DAC path FFT Figure 29. DAC S/N versus input-level
Figure 30. Analog path FFT Figure 31. Analog path S/N versus input-level
-120
-100
-80
-60
-40
-20
0
0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
Amplitu de [dBF S ]
Fr equency [Hz]
12 MHz master clock.
Differential input at Mic preamplifier, 21 dB gain.
48 kHz sampling rate.
Both channels active
20
30
40
50
60
70
80
90
100
-60 -50 -40 -30 -20 -10 0
S/N [dB]
Input Level [dBFS]
12 MHz master clock
Differential input at Line-In Amplifier, 0 dB gain.
48 kHz Sampling Rate
A-Weighted, Both channels active
12 MHz master clock.
48 kHz sampling rate
Differential output at line-out, 1k load.
Both channels active
-120
-100
-80
-60
-40
-20
0
0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
Amplitude [dBFS]
Frequency [Hz] 20
30
40
50
60
70
80
90
100
-60 -50 -40 -30 -20 -10 0
S/N [dB]
Input Level [dBFS]
12 MHz master clock.
48 kHz Sampling Rate
Differential output at Line-Out, 1k load.
A-Weighted, Both channels active
-120
-100
-80
-60
-40
-20
0
0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
Amplitude [dBFS]
Frequency [Hz]
Differential input at Mic Preamplifier, 2 1 dB gain.
Direct Mic to Line-Out connection (MICLO=1)
Differential output at Line-Out, 20k load. Both channels active
20
30
40
50
60
70
80
90
100
-60 -50 -40 -30 -20 -10 0
S/N [dB]
Input Level [dBFS]
Differential input at Line-In Amplifier, 0 dB gain.
Line-In to DA-Mixer to Line-Out connection.
Differential output at Line-Out, 20k load. A-weighted, both channels
active
STw5098 Package mechanical data
77/85
18 Package mechanical data
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages. These packages have a Lead-free second level interconnect. The category of
second Level Interconnect is marked on the package and on the inner box label, in
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an ST tradem ark.
ECOPACK specifications are available at: www.st.com.
Package mechanical data STw5098
78/85
18.1 LFBGA 6x6x1.4
Note: 1 LFBGA stands for Low Profile Fine Pitch Ball Grid Array.
- Low profile: the total profile height (DIm A) is measured from the seating plane to the top of
the component. The maximum total package height is calculated as follows:
. Fine pitch: e<1.0 mm pitch
2 The typical ball diameter before mounting is 0.30 mm
3 The tolerance of position that controls the location of the pattern of balls with respect to
datum A and B. For each ball there is a cylindrical tolerance zone eee perpendicular to
datum C and located on true position with respect to datum A and B as defined by e. The
axis perpendicular to datum C of each ball must lie within this tolerance zone.
4 The tolerance of position that controls the location of the balls within the matrix with respect
to each other. F or each ball there is a cylindrical tolerance zone fff perpendicular to datum C
and located on true position as defined by e. The axis perpendicular to datum C of each ball
must lie within this tolerance zone. Each tolerance zone in the array is contained entirely
in the respective zone eee above.
The axis of each ball must lie simultaneously in both tolerance zones.
5 The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink
or metallized markings, or other feature of package body or integral heatslug. A
distinguishing feature is allowable on the bottom surface of the package to identify the
terminal A1 corner. Exact shape of each corner is optional.
Table 57. Dimensions of LFBGA 6x6x1.4 112 4R11x11. 0.5
Reference
Databook (mm) Drawing (mm)
Notes
Min. Typ. Max. Min. Typ. Max.
A 1.40 1.26
Note 1
A1 0.15 0.16 0.21 0.26
A2 0.985 0.93 0.985 1.04
A3 0.20 0.16 0.20 0.24
A4 0.80 0.77 0.785 0.80
b 0.25 0.30 0.35 0.25 0.30 0.35
Note 2
D 5.85 6.00 6.15 5.90 6.00 6.10
D1 5.00 5.00
E 5.85 6.00 6.15 5.90 6.00 6.10
E1 5.00 5.00
e0.50 0.50
F0.50 0.50
ddd 0.08 0.08
eee 0.15 0.15
Note 4
fff 0.05 0.05
Note 5
A2Typ A1Typ A(12A32A42
+ + tolerancevalues)++
STw5098 Package mechanical data
79/85
Figure 32. LFBGA 6x6x1.4 112 4R11x11 0.5 drawing
f
ef
D1
E1
E
e
D
C
B
A
12345678
A1 C ORNER INDEX AREA
(SEE NOTE 3) Øb (112 BALLS) BOTTOM VIE W
K
J
I
E
D
G
F
H
91011
C
A2
PLANE
SEATING
ddd C
A1
A
Package mechanical data STw5098
80/85
18.2 VFBGA 5x5x1.0
Note: 1 VFBGA stands for Very thin Profile Fine Pitch Ball Grid Array.
The maximum total package height is calculated by the following methodology:
.
Very thin profile: Max/Fine pitch: e<1.0 mm
2 The typical ball diameter before mounting is 0.25 mm
3 VFBGA with 0.40mm ball pitch is not yet registered into JEDEC publications.
4 The tolerance of position that controls the location of the pattern of balls with respect to
datum A and B. For each ball there is a cylindrical tolerance zone eee perpendicular to
datum C and located on true position with respect to datum A and B as defined by e. The
axis perpendicular to datum C of each ball must lie within this tolerance zone.
5 The tolerance of position that controls the location of the balls within the matrix with respect
to each other. F or each ball there is a cylindrical tolerance zone fff perpendicular to datum C
and located on true position as defined by e. The axis perpendicular to datum C of each ball
must lie within this tolerance zone. Each tolerance zone in the array is contained entirely
in the respective zone eee above.
The axis of each ball must lie simultaneously in both tolerance zones.
6 The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink
or metallized markings, or other feature of package body or integral heatslug. A
distinguishing feature is allowable on the bottom surface of the package to identify the
terminal A1 corner. Exact shape of each corner is optional.
Table 58. Dimensions of VFBGA 5x5x1.0 112 balls 0.4 mm pitch
Reference
Databook (mm) Drawing (mm)
Notes
Min. Typ. Max. Min. Typ. Max.
A 1.00 0.99
Note 1
A1 0.125 0.125 0.165 0.205
A2 0.765 0.71 0.765 0.82
A3 0.18 0.14 0.18 0.22
A4 0.60 0.57 0.585 0.60
b 0.22 0.26 0.30 0.22 0.26 0.30
Note 2
D 4.95 5.00 5.05 4.95 5.00 5.05
D1 4.00 4.00
E 4.95 5.00 5.05 4.95 5.00 5.05
E1 4.00 4.00
e0.40 0.40
Note 3
F0.50 0.50
ddd 0.08 0.08
eee 0.13 0.13
Note 4
fff 0.04 0.04
Note 5
A2Typ A1Typ A(12A32A42
+ + tolerancevalues)++ 0.80mm A 1.00mm<
STw5098 Package mechanical data
81/85
Figure 33. VFBGA 5x5x1.0 112 0.4 drawing
Application schematics STw5098
82/85
19 Application schematics
See
Figure 34: STw5098 application schematics
.
STw5098 Application schematics
83/85
Figure 34. STw5098 application schematics
1 uF / 0402
Microphone
Jack audio
A
LOUDSPEAKER 1
LOUDSPEAKER 2
Mono speaker
220 nF / 0406
220 nF / 0406
220 nF / 0406
1 uF / 0402
220 nF / 0406
2.2uF/0603
220 nF / 0406
220 nF / 0406
220 nF / 0406
?
?
22uF / 0805
22uF / 0805
1 uF / 0402
220ohm
R815
2
1
C801
1nF
C811 680nF
2
1
AUDIO_2V8
2.7kohm
R808
R812
22kohm
1uF
C839
100nF
100nF C804
C803
100nF C805
C806100nF
100nF
C826
VBAT
680nF
C820
2
1
R816
220ohm
AUDIO_1V8
1nF
C840
22kohm
R809
C842
22pF
C846
1nF
2
1
HP802
J800
JACK_CUI
ST000000144
11
32
23
44
C821 680nF
1.2kohm
R807
C813
2.2nF
100nF C831
C830100nF
10uF
C833
2
1
10kohm
R800
100nF
C832
100nF
C808
HP801
AUDIO_2V8
TP806
C827
33uF
2
1
100nF C829
680nF
C809
2
1
AUDIO_2V8
22pF
C845
C814100nF
C844
22pF
100nF
C835
C837
1uF
2
1
C818
100nF
100nF C802
C834100nF
100nF C810
VBAT
VBAT
R814
22kohm
100nF C836C812100nF
100nF C824
C823100nF
AUDIO_1V8
C828100nF
22pF
C841
22pF
C843
100nF C822
100nF
C825
HP800
C139
100nF
AUDIO_1V8
TP809
33uF
C807
2
1
R810
1.2kohm
R811
2.7kohm
470nF
C815
C3
VCC1
A5
VCC2
B6
A3
VOUT1M
VOUT1P B4
E3
VOUT2M
VOUT2P D4
C816
100nF
MN801
TS4984
ST000000133
BYPASS1
C1 BYPASS2 C5
GND1
D2 E1
GND2
IN1M
A1
IN1P
B2
IN2M
E5 IN2P
D6
STDBY
22kohm
R813
AUDIO_1V8
C800100nF
10kohm
R802
GNDP4
VCC1
B8
D4 VCC2
VCCA1
C1 VCCA2
C3
D9 VCCA3
VCCIO
D5
VCCLS1 I8
J5
VCCLS2
J9
VCCLS3
H7
VCCP1
VCCP2 J2
K1
VCCP3
VCCP4 K10
H9
I9 2ORP
B2 2SCLK
A4 2SDA_SDIN
2VCMHP
K4
J4 2VCMHPS
B7 AMCK
A1
GND1 B11
GND2
GNDA1 F3
G8
GNDA2
GNDCM1
H4
J1 GNDCM2
J6 GNDP1
GNDP2
J7
GNDP3
J11
K2
2HPL
2HPR
K11
C9
2IRQ
G4
2LINEINL
2LINEINR H10
2LSN
K8
K9 2LSNS
K6 2LSP
K5 2LSPS
C10
2MBIAS
E4
2MICLN
F4
2MICLP
E11
2MICRN
F11
2MICRP
2OLN
H3 2OLP
I3
2ORN
2AUX1R
G2
2AUX2LN
H2
2AUX2LP
G11
2AUX2RN
H11
2AUX2RP
E1
2AUX3L E10
2AUX3R
E8
2CAPLINEIN
K7 2CAPLS
F1
2CAPMIC
C4 2CMOD
B6
2DA_CK B10
2DA_DATA
B5
2DA_OCK B9
2DA_SYNC
B1
2HDET
I4
1MICRN
F9 1MICRP
1OLN I1
I2
1OLP
1ORN I10
J10
1ORP
A2 1SCLK
C5 1SDA_SDIN
1VCMHP I5
K3
1VCMHPS
C6 2AD_CK
A8 2AD_DATA
B3
2AD_OCK
A9 2AD_SYNC
A7 2AS_CSB
D1
2AUX1L D11
1DA_DATA
A5
1DA_OCK A10
1DA_SYNC
1HDET
C2
1HPL J3
H8
1HPR
D8
1IRQ
1LINEINL
G3
I11 1LINEINR
1LSN I7
1LSNS J8
H6
1LSP H5
1LSPS
C11 1MBIAS
D3 1MICLN
E3 1MICLP
E9
1AD_OCK
C8 1AD_SYNC
D7 1AS_CSB
D2 1AUX1L
D10 1AUX1R
1AUX2LN
G1 1AUX2LP
H1
1AUX2RN
G10
G9 1AUX2RP
E2 1AUX3L
1AUX3R
F10
1CAPLINEIN
F8
I6
1CAPLS
F2 1CAPMIC
B4 1CMOD
D6
1DA_CK A11
ST000000131
STW5098
MN800
A6 1AD_CK
C7 1AD_DATA
A3
100nF
C838
100nF C817
C819100nF
M800
1
2
D801
TRANSIL
ST000000145
2
GND1 GND2
5
I_O1
1
I_O2
34
I_O3
I_O5 6
AUDIO_EARKIT_RIGHT_SPEAKER
AUDIO_EARKIT_LEFT_SPEAKER
AUDIO_JACK_DETECT
AUDIO_HANDSET_MIC_N
AUDIO_HANDSET_MIC_P
AUDIO_PWR_AMPLIFIER_STANDBY
5
AUDIO_TO_TVOUT_R
AUDIO_TO_TVOUT_L
AUDIO_FM_ANTENNA
5
5
AUDIO_FROM_MODEM_N
AUDIO_FROM_MODEM_P AUDIO_FM_RIGHT
AUDIO_FM_LEFT
AUDIO_TO_MODEM_N
AUDIO_TO_MODEM_P
AUDIO_IRQ
AUDIO_APP_I2S_DA_DATA
AUDIO_FROM_BT_PCM_DATA
AUDIO_PWR_AMPLIFIER_STANDBY
AUDIO_TO_BT_PCM_DATA
AUDIO_FM_LEFT
AUDIO_FM_RIGHT
AUDIO_TO_MODEM_P
AUDIO_TO_MODEM_N
AUDIO_EARKIT_COMMON_VOLTAGE_SPEAKER
AUDIO_APP_I2S_AD_DATA
AUDIO_APP_I2S_AD_DA_SYNC
AUDIO_APP_I2S_AD_DA_CLK
AUDIO_FM_ANTENNA
AUDIO_BT_PCM_FS
AUDIO_IRQ
AUDIO_PCM_CLK
AUDIO_TO_TVOUT_L
AUDIO_TO_BT_PCM_DATA
AUDIO_PCM_CLK
5
AUDIO_1V8
5
AUDIO_APP_I2S_AD_DA_SYNC
AUDIO_APP_I2S_AD_DA_CLK
AUDIO_I2C_SCLK
AUDIO_I2C_SDA
AUDIO_CLK
AUDIO_FROM_MODEM_P
AUDIO_FROM_MODEM_N
5
VBAT
AUDIO_FROM_BT_PCM_DATA
AUDIO_BT_PCM_FS
AUDIO_APP_I2S_AD_DATA AUDIO_APP_I2S_DA_DATA
AUDIO_TO_TVOUT_R
AUDIO_I2C_SCLK
AUDIO_I2C_SDA
AUDIO_CLK
AUDIO_2V8
5
5
Ordering information STw5098
84/85
20 Ordering information
21 Revision history
Table 59. Order codes
Part Number Package Packing
STw5098 LFBGA 6x6x1.4, 0.5 mm pitch, 112 pins Tray
STw5098T LFBGA 6x6x1.4, 0.5 mm pitch, 112 pins Tape and reel
STw5098BBLR/LF VFBGA 5x5x1.0, 0.4 mm pitch, 112 pins Tray
STw5098BBLT/LF VFBGA 5x5x1.0, 0.4 mm pitch, 112 pins Tape and reel
Table 60. Document revision history
Date Revision Changes
24-Apr-2007 1Initial release.
STw5098
85/85
Please Read Carefully:
Informa tion in this do cument is prov ided solely in conn ection with ST products. STMic roelect ronics NV and its subsidiari es (“ST”) reser ve the
right to mak e chang es, c or recti ons , modif icat ions or improveme nt s, t o this documen t, and the prod ucts and s ervic es desc rib ed he rein at an y
time, without notice.
All ST produ cts are sold pursuant to ST ’s terms and conditions of sal e.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoev er relating to the choice, selection or us e of the ST products and services described herein.
No license, express or implied, by estopp el or otherwise, to any intellectua l property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST produ cts with prov isions differen t from the state ments and/or technic al features set forth in this document shall i mmediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liabili ty of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Informa tion in this document superse des and replaces all information previously sup plied.
The ST logo is a registered trademark of STMicroele ct ronics. All ot her names are the property of their respective owners .
© 2007 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Moroc co - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com