INSULATED GATE BIPOLAR TRANSISTOR
TO-247AC
IRGP4640PbF
TO-247AD
IRGP4640-EP
GCE
C
GCE
C
IRGP4640PbF
IRGP4640-EPbF
www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 29, 2013
1
GC E
Gate Collector Emitter
VCES = 600V
IC = 40A, TC = 100°C
tSC 5µs, TJ(max) = 175°C
VCE(on) typ. = 1.60V @ IC = 24A
Features Benefits
Low VCE(ON) and Switching Losses High efficiency in a wide range of applications and switching
frequencies
Square RBSOA and Maximum Junction Temperature 175°C Improved reliability due to rugged hard switching performance
and higher power capability
Positive VCE (ON) Temperature Coefficient Excellent current sharing in parallel operation
5µs short circuit SOA Enables short circuit protection scheme
Lead-Free, RoHS compliant Environmentally friendly
Applications
Inverters
UPS
Welding
Absolute Maximum Ratings
Parameter Max. Units
VCES Collector-to-Emitter Voltage 600 V
IC @ TC = 25°C Continuous Collector Current 65
IC @ TC = 100°C Continuous Collector Current 40
ICM Pulse Collector Current, VGE = 15V
c
72
ILM Clamped Inductive Load Current, VGE = 20V
d
96 A
VGE Continuous Gate-to-Emitter Voltage ±20 V
Transient Gate-to-Emitter Voltage ±30
PD @ TC = 25°C Maximum Power Dissipation 250 W
PD @ TC = 100°C Maximum Power Dissipation 125
TJOperating Junction and -40 to +175
TSTG Storage Temperature Range °C
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter Min. Typ. Max. Units
RθJC Junction-to-Case
e
––– ––– 0.60 °C/W
RθCS Case-to-Sink (flat, greased surface) ––– 0.24 –––
RθJA Junction-to-Ambient (typical socket mount) ––– ––– 40
E
C
G
n-channel
Form Quantit
y
IRGP4640PbF TO-247AC Tube 25 IRGP4640PbF
IRGP4640-EPbF TO-247AD Tube 25 IRGP4640-EPbF
Base part number Package Type Standard Pack Orderable part number
IRGP4640PbF/IRGP4640-EPbF
www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 29, 2013
2
Notes:
Pulse width limited by max. junction temperature.
VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 10Ω.
Rθ is measured at TJ of approximately 90°C.
Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
Maximum limits are based on statistical sample size characterization.
Values are influenced by parasitic L and C in measurement.
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)CES
Collector-to-Emitter Breakdown Voltage 600 V V
GE
= 0V, I
C
= 100µA
f
V
(BR)CES
/T
J
Temperature Coeff. of Breakdown Voltage 0.30 V/°C V
GE
= 0V, I
C
= 1mA (25°C-175°C)
V
CE(on)
Collector-to-Emitter Saturation Voltage 1.60 1.90 I
C
= 24A, V
GE
= 15V, T
J
= 25°C
—2.00— I
C
= 24A, V
GE
= 15V, T
J
= 175°C
V
GE(th)
Gate Threshold Voltage 4.0 6.5 V V
CE
= V
GE
, I
C
= 700µA
V
GE ( t h)
/TJ
Threshold Voltage temp. coefficient -18 mV/°C V
CE
= V
GE
, I
C
= 1.0mA (25°C - 175°C)
gfe Forward Transconductance 17 S V
CE
= 50V, I
C
= 24A, PW = 80µs
I
CES
Collector-to-Emitter Leakage Current 1.0 20 µA V
GE
= 0V, V
CE
= 600V
—600 V
GE
= 0V, V
CE
= 600V, T
J
= 175°C
I
GE S
Gate-to-Emitter Leakage Current ±100 nA V
GE
= ±20V
Switching Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter Min. Typ. Max.
g
Units
Q
g
Total Gate Charge (turn-on) 50 75 I
C
= 24A
Q
ge
Gate-to-Emitter Charge (turn-on) 15 20 nC V
GE
= 15V
Q
gc
Gate-to-Collector Charge (turn-on) 20 30 V
CC
= 400V
E
on
Turn-On Switching Loss 0.1 0.2
E
off
Turn-Off Switching Loss 0.6 0.7 mJ
E
total
Total Switching Loss 0.7 0.9 I
C
= 24A, V
CC
= 400V, V
GE
= 15V
h
t
d(on)
Turn-On delay time 40 55 R
G
= 10, T
J
= 25°C
t
r
Rise time —2030ns
E nergy los s es include tail & diode revers e recovery
t
d(off)
Turn-Off delay time 105 115
t
f
Fall time 30 40
E
on
Turn-On Switching Loss 0.4
E
off
Turn-Off Switching Loss 0.85 mJ
E
total
Total Switching Loss 1.25 I
C
= 24A, V
CC
= 400V, V
GE
=15V
h
t
d(on)
Turn-On delay time 40 R
G
=10, T
J
= 175°C
t
r
Rise time 25 ns
E nergy los s es include tail & diode revers e recovery
t
d(off)
Turn-Off delay time 125
t
f
Fall time 40
C
ies
Input Capacitance 1490 pF V
GE
= 0V
C
oes
Output Capacitance 130 V
CC
= 30V
C
res
Reverse Transfer Capacitance 45 f = 1.0Mhz
T
J
= 175°C, I
C
= 96A
RBSOA Reverse Bias Safe Operating Area FULL SQUARE V
CC
= 480V, Vp =600V
Rg = 10, V
GE
= +20V to 0V
SCSOA Short Circuit Safe Operating Area 5 µs V
CC
= 400V, Vp =600V
Rg = 10, V
GE
= +15V to 0V
Conditions
V
IRGP4640PbF/IRGP4640-EPbF
www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 29, 20133
Fig. 2 - Maximum DC Collector Current vs.
Case Temperature
Fig. 3 - Power Dissipation vs. Case
Temperature
Fig. 4 - Forward SOA
TC = 25°C, TJ 175°C; VGE =15V
Fig. 5 - Reverse Bias SOA
TJ = 175°C; VGE =20V
10 100 1000
VCE (V)
1
10
100
1000
IC (A)
1 10 100 1000 10000
VCE (V)
0.1
1
10
100
1000
IC (A)
1msec
10µsec
100µsec
Tc = 25°C
Tj = 175°C
Single Pulse
DC
25 50 75 100 125 150 175
TC (°C)
0
10
20
30
40
50
60
70
IC (A)
25 50 75 100 125 150 175
TC (°C)
0
50
100
150
200
250
300
Ptot (W)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
0.1 110 100
f , Frequency ( kHz )
0
10
20
30
40
50
60
70
80
Load Current ( A )
For both:
Duty cycle : 50%
Tj = 175°C
Tsink = 100°C
Gate drive as specified
Power Dissipation = 125W
I
Square Wave:
VCC
Dio de as specified
IRGP4640PbF/IRGP4640-EPbF
www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 29, 2013
4
Fig. 8 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 80µs
0 1 2 3 4 5 6 7 8
VCE (V)
0
10
20
30
40
50
60
70
80
90
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
5 101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 12A
ICE = 24A
ICE = 48A
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
5 101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 12A
ICE = 24A
ICE = 48A
Fig. 11 - Typical VCE vs. VGE
TJ = 175°C
5 101520
VGE (V)
0
2
4
6
8
10
12
14
16
18
20
VCE (V)
ICE = 12A
ICE = 24A
ICE = 48A
Fig. 6 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
012345678
VCE (V)
0
10
20
30
40
50
60
70
80
90
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
0 1 2 3 4 5 6 7 8
VCE (V)
0
10
20
30
40
50
60
70
80
90
ICE (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
IRGP4640PbF/IRGP4640-EPbF
www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 29, 20135
Fig. 16 - Typ. Switching Time vs. RG
TJ = 175°C; L = 200µH; VCE = 400V, ICE = 24A; VGE = 15V
025 50 75 100 125
RG ()
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
Fig. 14 - Typ. Switching Time vs. IC
TJ = 175°C; L = 200µH; VCE = 400V, RG = 10; VGE = 15V
10 20 30 40 50
IC (A)
1
10
100
1000
Swiching Time (ns)
tR
tdOFF
tF
tdON
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 200µH; VCE = 400V, ICE = 24A; VGE = 15V
0 25 50 75 100 125
Rg ()
0
200
400
600
800
1000
1200
1400
1600
Energy (µJ)
E
OFF
EON
Fig. 17 - VGE vs. Short Circuit Time
VCC = 400V; TC = 25°C
8 1012141618
VGE (V)
4
6
8
10
12
14
16
Time (µs)
40
80
120
160
200
240
280
Current (A)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
0 5 10 15
VGE (V)
0
20
40
60
80
100
120
ICE (A)
TJ = 25°C
TJ = 175°C
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 200µH; VCE = 400V, RG = 10; VGE = 15V
0 102030405060
IC (A)
0
200
400
600
800
1000
1200
1400
1600
1800
Energy (µJ)
EOFF
EON
IRGP4640PbF/IRGP4640-EPbF
www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 29, 2013
6
Fig 20. Maximum Transient Thermal Impedance, Junction-to-Case
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
Thermal Response ( Z thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.2568 0.000311
0.3429 0.006347
τJ
τJ
τ1
τ1
τ2
τ2
R1
R1R2
R2
τ
τC
Ci i/Ri
Ci= τi/Ri
Fig. 18 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Fig. 19 - Typical Gate Charge vs. VGE
ICE = 24A; L = 600µH
020 40 60 80 100
VCE (V)
10
100
1000
10000
Capacitance (pF)
Cies
Coes
Cres
0 5 10 15 20 25 30 35 40 45 50 55
Q G, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
16
VGE, Gate-to-Emitter Voltage (V)
VCES
= 300V
VCES
= 400V
IRGP4640PbF/IRGP4640-EPbF
www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 29, 20137
Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit
0
1K
VCCDUT
L
L
Rg
80 V
DUT VCC
+
-
Fig.C.T.5 - Resistive Load Circuit
Rg
VCC
DUT
R =
VCC
ICM
G force
C sens
e
100K
DUT
0.0075µF
D1 22K
E force
C force
E sense
Fig.C.T.6 - BVCES Filter Circuit
Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit
L
Rg
VCC
DUT /
DRIVER
diode clamp /
DUT
-5V
DC
4X
DUT
VCC
RSH
IRGP4640PbF/IRGP4640-EPbF
www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 29, 2013
8
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
-100
0
100
200
300
400
500
600
-0.40 0.10 0.60
Time(µs)
V
CE
(V)
-5
0
5
1
0
1
5
2
0
2
5
3
0
EOFF Loss
5% VCE
5% ICE
90% ICE
tf
VCE
C
ICE
-100
0
100
200
300
400
500
600
11.70 11.90 12.10 12.30
Time (µs)
V
CE
(V)
-10
0
10
20
30
40
50
60
EON
ICE
C
90% test
10% ICE
5% VCE
tr
VCE
C
Fig. WF4 - Typ. S.C. Waveform
@ TJ = 25°C using Fig. CT.3
-100
0
100
200
300
400
500
600
-5.00 0.00 5.00 10.00
time (µS)
V
CE
(V)
-50
0
50
100
150
200
250
300
I
CE
(A)
V
CE
I
CE
IRGP4640PbF/IRGP4640-EPbF
www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 29, 20139
TO-247AC Part Marking Information
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC package is not recommended for Surface Mount Application.
<($5 
'$7(&2'(
3$57180%(5
,17(51$7,21$/
/2*2
5(&7,),(5
$66(0%/<

,5)3(
+
/,1(+
LQGLFDWHV/HDG)UHH :((./27&2'(
,17+($66(0%/</,1(+
$66(0%/('21::
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
(;$03/( :,7+$66(0%/<
7+,6,6$1,5)3(
/27&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
IRGP4640PbF/IRGP4640-EPbF
www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 29, 2013
10
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
TO-247AD Part Marking Information
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD package is not recommended for Surface Mount Application.
$66(0%/< <($5 
$66(0%/('21::
,17+($66(0%/</,1(+
(;$03/( 7+,6,6$1,5*3%.'(
/27&2'(
:,7+$66(0%/< 3$57180%(5
'$7(&2'(
,17(51$7,21$/
5(&7,),(5
/2*2
+

:((.
/,1(+
/27&2'(
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
IRGP4640PbF/IRGP4640-EPbF
www.irf.com © 2013 International Rectifier Submit Datasheet Feedback October 29, 201311
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability
†† Highest passing voltage.
Qualification Information
Moisture Sensitivity Level TO-247AC N/A
TO-247AD N/A
ESD
Qualification Level Industrial
(per International Rectifier’s internal
guidelines)
RoHS Compliant Yes
Human Body Model
Class H1C (+/- 2000V)
††
(per JEDEC JESD22-A114)
Charged Device Model
Class C5 (+/- 1000V)
††
(per JEDEC JESD22-C101)
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/