CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
PSoC® Programmable System-on-Chip™
Cypress Semiconductor Corporation 198 Champion Court San Jose,CA 95134-1709 408-943-2600
Document Number: 001-48111 Rev. *I Revised July 8, 2011
Features
Varied resource options within one PSoC ® de vice group
Powerful Harvard-architecture processor
M8C processor speeds up to 24 MHz
8 × 8 Multiply, 32-bit accumulate
Low power at high speed
Operatin g vo ltage: 3.0 V to 5.25 V
Operating voltages down to 1.5 V Using on-chi p switched
mode pump (SMP)
Industrial temperature range: –40 °C to +85 °C
Advanced reconfigurable peri pherals (PSoC Blocks)
Up to 12 rail-to-rail analog PSoC blocks provide:
Up to 14-bit ADCs
Up to 9-bit DACs
Programmable gain amplifiers
Programmable filters and comparators
Multiple ADC configurations
Dedicated SAR ADC, up to 142 ksps with sample and hold
Up to 4 synchronized or independent delta-sigma ADCs for
advanced applications
Up to 4 limited type E analog blocks provide:
Dual channel capacitive sensing capability
Comparators with programmable DAC reference
Up to 10-bit single-sl ope ADCs
Up to 12 digital PSoC blocks provide:
8 to 32-bit timers, counters, and PWMs
Shift register, CRC, and PRS modules
Up to 3 full-duplex UARTs
Up to 6 half-dupl ex UARTs
Multiple variable data length SPI masters or slaves
Connectable to all GPIOs
Complex peripherals by combining blocks
Precision, programmable clocking
Internal ±2.5% 24/48 MHz main oscillator
Optional 32.768 kHz crystal for precise on-chip clocks
Optional external oscillator, up to 24 MHz
Internal low speed, low power oscillator for watchdog and
sleep functionality
Flexible on-chip memory
16 KB flash program storage 50,000 erase/write cycles
1-KB SRAM data storage
In-system serial programming (ISSP)
Partial flash updates
Flexible protection modes
EEPROM emulation in flash
Programmable Pin configurations
25 mA sink, 10 mA drive on all GPIOs
Pull-up, pull-down, high Z, strong, or open-drain drive modes
on all GPIOs
Analog input on all GPIOs
30 mA analog outputs on GPIOs
Configurable interrupt on all GPIOs
Additional system resources
Up to two hardware I2C resources
Each resource implements slave, master, or multi-master
modes
Operation between 0 and 400 kHz
Watchdog and Sleep timers
User-configurable low voltage detection
Flexible internal voltage references
Integrated supervisory circuit
On-chip precision voltage reference
Complete development tools
Free development software (PSoC Designer™)
Full featured in-circuit emulator, and programmer
Full speed emulation
Flexible and functional breakpoint structure
128 KB trace memory
DIGITAL SYSTEM
SRAM
1K
Interrupt
Controller
Sleep and
Watchdog
Multiple Clock Sources
(Includes IMO, ILO, PLL, and ECO)
Global Digital Interconnect Global Analog Interconnect
PSoC
CORE
CPU Core (M8C)
SROM Flash 16K
Digital
Block
Array
2
MACs
Switch
Mode
Pump
Internal
Voltage
Ref.
Digital
Clocks
POR and LVD
System Resets
4 Type 2
Decimators
SYSTEM RESOURCES
ANALOG SYSTEM
Analog
Ref.
Analog
Input
Muxing
2 I2C
Blocks
Port 4 Port 3 Port 2 Port 1 Port 0 Analog
Drivers
System Bus
Analog
Block
Array
Port 5
Logic Block Diagram
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 2 of 78
Contents
PSoC Functional Overview ............ ... .............. ... .. ............3
The PSoC Core ...........................................................3
The Digital System ......................................................3
The Analog System .....................................................4
System Resources .................... ... .............. ... .. ............7
PSoC Device Characteristics ......................................7
Getting Started ..................... .............. ... .............. .. ............8
Application Notes ........................................................8
Development Kits ............................ .. .............. ... ... ......8
Training .......................................................................8
CYPros Consultants ....................................................8
Solutions Library ..........................................................8
Technical Support .......................................................8
Development Tools ............. ... .............. .. .............. ... ... ......9
PSoC Designer Software Subsystems ........................9
Designing with PSoC Designer ......................... ............10
Select User Modules .................... .............. ... .. ..........10
Configure User Modules ............................. ... .. ... .......10
Organize and Connect ..............................................10
Generate, Verify, and Debug .....................................10
Pinouts ............................................................................11
20-Pin Part Pinout ....................................................11
28-Pin Part Pinout .....................................................12
44-Pin Part Pinout ....................................................13
48-Pin Part Pinout .....................................................14
56-Pin Part Pinout .....................................................15
Register Reference ....................................... ... .............. .17
Register Conventions ................................................17
Register Mapping Tables ..........................................17
Electrical Specifications ................................................32
Absolute Maximum Ratings ......................................33
Operating Temperature ............................................33
DC Electrical Characteristics .....................................34
AC Electrical Characteristics .....................................52
Packaging Information ................................ .. ... ..............62
Packaging Dimensions ..............................................62
Thermal Impedances .................... ... .........................66
Capacitance on Crystal Pins ....................................66
Solder Reflow Pea k Te mp era ture .............................66
Development Tool Selection .........................................67
Software ....................................................................67
Development Kits ......................................................67
Evaluation Tools ........................................................67
Device Programmers .................................................68
Accessories (Emulation and Programming) ..............68
Ordering Information ......................................................69
Ordering Code Definitions .........................................70
Acronyms ........................................................................ 71
Acronyms Used .........................................................71
Reference Documents ........................ ... ... .............. ... .. ...71
Document Conventions .................. ... ... .............. ... ........72
Units of Measure ....... .............. ... .............. ... ... ...........72
Numeric Conventions ................................................72
Glossary .......................................................................... 72
Document History Page ................................... ... ...........77
Sales, Solutions, and Legal Information ......................78
Worldwide Sales and Design Support .......................78
Products .................................................................... 78
PSoC Solutions .... ... .. ............................. .. ... ..............78
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 3 of 78
PSoC Functional Overview
The PSoC family consists of many devices with On-Chip
Controllers. These devices are designed to replace multiple
traditional MCU based system components with one low cost
single chip programmable component. A PSo C device includes
configurable analog blocks, digital blocks, and interconnections.
This architecture enables the user to create customized
peripheral configurations to match the requirements of each
individual application. In addition, a fast CPU, Flash program
memory, SRAM data memory, and configurable I/O are included
in a range of convenient pinouts and packages.
The CY8C28xxx group of PSoC devices described in this
datasheet have multiple resource configuration options
available. Therefore, not every resource mentioned in this
datasheet is available for each CY8C28xxx subgroup. The
CY8C28x45 subgroup has a full feature set of all resources
described. There are six more s egmented subgroups that al low
designers to use a device with only the resources and function-
ality necessary for a specific application. See Table 2 on page 8
to determine the resources available for each CY8C28xxx
subgroup. The same information is also presented in more detail
in the Ordering Information section.
The architecture for this specific PSoC device family, as shown
in the Logic Block Diagram on page 1, consists of four main
areas: PSoC Core, Digital System, Analog System, and System
Resources. The configurable global bus system allows all the
device resources to be combined into a complete custom
system. PSoC CY8C28xxx family devices have up to six I/O
ports that connect to the global digital and analog interconnects,
providing access to up to 12 digital blocks and up to 16 analog
blocks.
The PSoC Core
The PSoC Core is a powerful engine that supports a rich feature
set. The core includes a CPU, memory, clocks, and configurable
general Purpose I/O (GPIO). The M8C CPU core is a powerful
processor with speeds up to 24 MHz, providing a four MIPS 8-bit
Harvard architecture microcontroller.
Memory encompasses 16K bytes of Flash fo r program storag e,
1K bytes of SRAM for data storage. The PSoC device incorpo-
rates flexible internal clock generators, including a 24 MHz
internal main oscillator (IMO) accurate to 2.5% over temperature
and voltage. A low power 32 kHz internal low speed oscillator
(ILO) is provided for the sleep timer and watch dog timer (WDT).
The 32.768 kHz external crystal oscillator (ECO) is available for
use as a real time clock (RTC) and can optionally generate a
crystal-accurate 24 MHz system clock using a PLL.
PSoC GPIOs provide connections to the CPU, and digital and
analog resources. Each p in’s drive mode may be selected from
8 options, which allows great flexibility in external interfacing.
Every pin also has the capability to generate a system interrupt
on high level, low level, and change from last read.
The Digital System
The Digital System is comp osed of up to 12 con figurable d igital
PSoC blocks. Each bl ock is an 8-bit resource that can be used
alone or combined with other blocks to create 8, 16, 24, and
32-bit peripherals, which are called user modules. The digital
blocks can be connected to any GPIO through a series of global
buses that can route any signal to any pin.
Figure 1. Digital System Block Diagram[1]
Digital peripheral configurations include:
PWMs (8 to 16 bit, One-shot and Multi-shot capability)
PWMs with Dead band/Kill (8 to 16 bit)
Counters (8 to 32 bit)
Timers (8 to 32 bit)
Full-duplex 8-bit UARTs (up to 3) with selectable parity
Half-duplex 8-bit UARTs (up to 6) with selectable parity
Variab le length SPI slave and master
Up to 6 total slaves and masters (8-bit)
Supports 8 to 16 bit operation
I2C slave, master , or multi-master (up to 2 available as System
Resources)
IrDA (up to 3)
Pseudo Random Sequence Generators (8 to 32 bit)
Cyclical Redundancy Checker/Generator (16 bit)
Shift Register (2 to 32 bit)
DIGITAL SYSTEM
To System Bus
Digital Clocks
From Core
Digital PSoC Block Array
To Analog
System
8
88
8
GIE[7:0]
GIO[7:0] Global Digital
Interconnect
Port 4 Port 3 Port 2
Port 1 Port 0
Port 5
GOO[7:0]
GOE[7:0]
Row Input
Configuration
Row 0
DBC00 DBC01 DCC02 DCC03
4
4
Row Output
Configuration
Row 1
DBC10 DBC11 DCC12 DCC13
Row Input
Configuration
4
4
Row Output
Configuration
Row 2
DBC20 DBC21 DCC22 DCC23
Row Input
Configuration
4
4
Row Output
Configuration
Note
1. CY8C28x52 devices do not have digital block row 2. They have two digital rows with eight t otal digital blocks.
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 4 of 78
The Analog System
The Analog System is composed of up to 16 configurable analog
blocks, each containing an op amp circuit that allows the creation
of complex analog signal flows. Some devices in this PSoC
family have an analog multiplex bus that can connect to every
GPIO pin. This bus can also connect to the analog system for
analysis with comparators and analog-to-digital converters. It
can be split into two sections for simultaneous dual-channel
processing.
Some of the more common PSoC analog functions (most
available as user modules) are:
Analog-to-digital converters (6 to 14-bit resolution, up to 4,
selectable as Incremental or Delta Sigma)
Dedicated 10-bit SAR ADC with sample rates up to 142 ksps
Synchronized, simultaneous Delta Sigma ADCs (up to 4)
Filters (2 to 8 pole band-pass, low pass, and notch)
Amplifiers (up to 4, with selectable gain to 48x)
Instrumentation amplifiers (up to 2, with selectable gain to 93x)
Comparators (up to 6, with 16 selectable thresholds)
DACs (up to 4, with 6 to 9-bit resolution)
Multiplying DACs (up to 4, with 6 to 9-bit resolution )
High current output drivers (up to 4 with 30 mA drive)
1.3 V reference (as a System Resource)
DTMF Dialer
Modulators
Correlators
Peak detectors
Many other topologies po ssible
Figure 2. Analog System Block Diagram for CY8C28x45 and
CY8C28x52 Devices
ACC00 ACC01
Block Array
Array Input Co nfiguration
ACI1[1:0] ACI2[1:0]
ACC02 ACC03
ASC12 ASD13
ASD22 ASC23ASD20
ACI0[1:0] ACI3[1:0]
P0[6]
P0[4]
P0[2]
P0[0]
P2[2]
P2[0]
P2[6]
P2[4]
RefIn
AGNDIn
P0[7]
P0[5]
P0[3]
P0[1]
P2[3]
P2[1]
Reference
Generators AGNDIn
RefIn
Bandgap
RefHi
RefLo
AGND
ASD11
ASC21
ASC10
Interface to
Digital System
M8C Interface (Address Bus, Data Bus, Etc.)
Analog Reference
ACE00 ACE01
ASE10 ASE11
Analog Mux
Bus
All GPIO
ACI4[1:0] ACI5[1:0]
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 5 of 78
Figure 3. Analog System Block Diagram for CY8C28x43
Devices Figure 4. Analog System Block Diagram for CY8C28x33
Devices
ACC00 ACC01
Block Array
Array Input Configuration
ACI1[1:0] ACI2[1:0]
ACC02 ACC03
ASC12 ASD13
ASD22 ASC23ASD20
ACI0[1:0] ACI3[1:0]
P0[6]
P0[4]
P0[2]
P0[0]
P2[2]
P2[0]
P2[6]
P2[4]
RefIn
AGNDIn
P0[7]
P0[5]
P0[3]
P0[1]
P2[3]
P2[1]
Reference
Generators AGNDIn
RefIn
Bandgap
RefHi
RefLo
AGND
ASD11
ASC21
ASC10
Interface to
Digital Syst em
M8C Interface (Address Bus, Data Bus, Etc.)
Analog Refere nce
Analog Mux
Bus
All GPIO
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 6 of 78
Figure 5. Analog System Block Diagram for CY8C28x23
Devices Figure 6. Analog System Block Diagram for CY8C28x13
Devices
ACC00 ACC01
Block Array
Array Input
Configuration
ACI1[1:0]
ASD20
ACI0[1:0]
P0[6]
P0[4]
P0[2]
P0[0]
P2[6]
P2[4]
RefIn
AGNDIn
P0[7]
P0[5]
P0[3]
P0[1]
P2[3]
P2[1]
Reference
Generators AGNDIn
RefIn
Bandgap
RefHi
RefLo
AGND
ASD11
ASC21
ASC10
Interface to
Digital System
M8C Interface (Address Bus, Data Bus, Etc.)
Analog Refere nce
Block Array
Array Input
Configuration
ACI1[1:0]ACI0[1:0]
P0[6]
P0[4]
P0[2]
P0[0]
P0[7]
P0[5]
P0[3]
P0[1]
Reference
Generators AGNDIn
RefIn
Bandgap
RefHi
RefLo
AGND
Interface to
Digital System
M8C Interface (Addr ess Bus, Data Bus, Etc.)
Analog Reference
ACE00 ACE01
ASE10 ASE11
Analog Mux
Bus
All GPIO
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 7 of 78
System Resources
System Resources, some of which are listed in the previous
sections, provide additional capability useful to complete
systems. Additional resources include a multiplier, multiple
decimators, switch mode pump, low voltage detection, and
power on reset. S tatements describing the merits of each system
resource follow:
Digital clock dividers provide three customizable clock
frequencies for use in appli c ations. The clocks can be routed
to both the digital and analog systems. Additional clocks can
be generated using digital PSoC blocks as clock dividers.
Multiply accumulate (MAC) provides fast 8-bit multiplier with
32-bit accumulate, to assist in general math and digital filters.
Up to four decimators provide custom hardware filters for digital
signal processing applications such as Delta-Sigma ADCs and
CapSense capacitive sensor measurement.
Up to two I2C resources provide 0 to 400 kHz communication
over two wires. Slave, master , and multi-master modes are all
supported. I2C resources have hardware address detection
capability.
Low Voltage Detection (LVD) interrupts can signal the appli-
cation of falling voltage levels, while the advanced POR (Power
On Reset) circuit eliminates the need for a system supervisor.
An internal 1.3 V reference provides an absolute reference for
the analog system, including ADCs and DACs.
An integrated switch mode pump (SMP) generates normal
operating voltages from a single 1.5 V battery cell, providing a
low cost boost converter.
PSoC Device Characteristics
Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks, and 12, 6, or 4
analog blocks. Table 1 on page 7 lists the resources available for specific PSoC device groups. The PSoC device covered by this
datasheet is highlighted in this table.
Table 1. PSoC Device Characteristics
PSoC Part
Number Digital
I/O Digital
Rows Digital
Blocks Analog
Inputs Analog
Outputs Analog
Columns Analog
Blocks SRAM
Size Flash
Size
CY8C29x66 up to 64 4 16 up to 12 4 4 12 2 K 32 K
CY8C28xxx up to 44 up to 3 up to 12 up to 44 up to 4 up to 6 up to
12 + 4[2] 1 K 16 K
CY8C27x43 up to 44 2 8 up to 12 4 4 12 256 16 K
CY8C24x94 up to 56 1 4 up to 48 2 2 6 1 K 16 K
CY8C24x23A up to 24 1 4 up to 12 2 2 6 256 4 K
CY8C23x33 up to 26 1 4 up to 12 2 2 4 256 8 K
CY8C22x45 up to 38 2 8 up to 38 0 4 6[2] 1 K 16 K
CY8C21x45 up to 24 1 4 up to 24 0 4 6[2] 512 8 K
CY8C21x34 up to 28 1 4 up to 28 0 2 4[2] 512 8 K
CY8C21x23 up to 16 1 4 up to 8 0 2 4[2] 256 4 K
CY8C20x34 up to 28 0 0 up to 28 0 0 3[2,3] 512 8 K
CY8C20xx6 up to 36 0 0 up to 36 0 0 3[2,3] up to
2 K up to
32 K
Notes
2. Limited analog functionality.
3. Two analog blocks and one CapSense®.
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 8 of 78
The devices covered by this datasheet all have the same architecture, specifications, and ratings. However, the amount of some
hardware resources varies from device to device within the group. The following table lists resources available for the specific device
subgroups covered by this datasheet.
Getting Started
For in depth information, along with detailed programming
details, see the PSoC® Technical Reference Manual.
For up-to-date ordering, packaging, and electrical specification
information, see the latest PSoC device datasheets on the web.
Application Notes
Cypress application notes are an excellent introducti on to the
wide variety of possible PSoC desig ns.
Development Kits
PSoC Development Kits are available online from and through a
growing number of regional and global distributors, which
include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and
Newark.
Training
Free PSoC technical training (on demand, webinars, and
workshops), which is available online via www.cypress.com,
covers a wide variety of topics and skill levels to assist you in
your designs.
CYPros Consultants
Certified PSoC consultants offer everything from technical assis-
tance to completed PSoC designs. T o contact or become a PSoC
consultant go to the CYPros Consultants web site.
Solutions Library
Visit our gro w i ng library of solution focused designs. Here you
can find various appli ca tion designs that include firmware and
hardware design files that enable you to complete your designs
quickly.
Technical Support
Technical support – including a searchable Knowledge Base
articles and technical forums – is also available online. If you
cannot find an answer to your question, call our Technical
Support hotline at 1-800-541-4736.
Table 2. CY8C28xxx Device Characteristics
PSoC Part
Number CapSense Digital
Blocks Regular
Analog
Blocks
Limited
Analog
Blocks HW I2CDecima-
tors Digital
I/O Analog
Inputs Analog
Outputs
CY8C28x03N120020up to 24up to 8 0
CY8C28x13Y120412up to 40up to 40 0
CY8C28x23N126022up to 44up to 10 2
CY8C28x33 Y126414up to 40up to 40 2
CY8C28x43 N 12 12 0 2 4 up to 44 up to 44 4
CY8C28x45 Y 12 12 4 2 4 up to 44 up to 44 4
CY8C28x52 Y 8 12 4 1 4 up to 24 up to 24 4
Notes
4. Has 12 regular analog blocks and four limited Type-E analog blocks.
5. Limited analog functionality.
6. Two analog blocks and one CapSense.
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 9 of 78
Development Tools
PSoC Designer™ is the revolutionary integrated design
environment (IDE) that yo u can use to customize PSoC to meet
your specific application requirements. PSoC Designer software
accelerates system design and time to market. Develop your
applications using a library of precharacterized analog and digital
peripherals (called user modul es) in a drag-and-drop design
environment. Then, customize your design by leveraging the
dynamically generated application programming interface (API)
libraries of code. Finally, debug and test your designs with the
integrated debug environment, including in-circuit emulation and
standard software debug features. PSoC Designer includes:
Application editor graphical user interface (GUI) for device and
user module configuration and dynamic reconfiguration
Extensive user module catalog
Integrated source-code editor (C and assembly)
Free C compiler with no size restrictions or time limits
Built-in debugger
In-circuit emulation
Built-in support for communication interfaces:
Hardware and software I2C slaves and masters
Full-speed USB 2.0
Up to four full-duplex universal asynchronous receiver/trans-
mitters (UARTs), SPI master and slave, and wireless
PSoC Designer supports the entire library of PSoC 1 devices and
runs on Windows XP, Windows Vista, and Windows 7.
PSoC Designer Software Subsystems
Design Entry
In the chip-level view, choose a base device to work with. Then
select different onboard analog and digital components that use
the PSoC blocks, which are called user modules. Examples of
user modules are ana l og -t o-digit a l co nve r t ers (AD C s),
digital-to-analog converters (DACs), amplifiers, and filters.
Configure the user modules for your chosen application and
connect them to each other and to the proper pins. Then
generate your project. This prepopulates your project with APIs
and libraries that you can use to program your application.
The tool also supports easy development of multiple config ura-
tions and dynamic reconfiguration. Dynamic reconfiguration
makes it possible to change configurations at run time. In
essence, this lets you to use more than 100 percent of PSoC's
resources for an application.
Code Generati on Tools
The code generation tools work seamlessly within the
PSoC Designer interface and have been tested with a full range
of debugging tools. Y ou can develop your design in C, assembly ,
or a combinatio n of the two.
Assemblers. The assemblers allow you to merge assembly
code seamlessly with C code. Link libraries automatically use
absolute addressing or are compiled in relative mode, and linked
with other software modules to get absolute addressing.
C Language Co mpilers. C language compilers are available
that support the PSoC family of devices. The products allow you
to create complete C programs for the PSoC family devices. The
optimizing C compilers provide all of the features of C, tailored
to the PSoC architecture. They come complete with embedded
libraries providing port and bus operations, standard keypad and
display support, and extende d math functionality.
Debugger
PSoC Designer has a debug environment that provides
hardware in-circuit emulation, allowing you to test the program in
a physical system while providing an internal view of the PSoC
device. Debugger commands allow you to read and program and
read and write data memory, and read and write I/O registers.
Y ou can read and write CPU registers, set and clear breakpoints,
and provide program run, halt, and step control. The debugger
also lets you to create a trace buffer of registers and memory
locations of interest.
Online Help System
The online help system displays online, context-sensitive help.
Designed for procedural and quick reference, each functional
subsystem has its own context-sensitive help. This system also
provides tutorials and links to FAQs and an Online Support
Forum to aid the designer.
In-Circuit Emulator
A low-cost, high-functionality in-circuit emulator (ICE) is
available for development support. This hardware can program
single devices.
The emulator consists of a base unit that connects to the PC
using a USB port. The base unit is universal and operates wi th
all PSoC devices. Emulation pods for each device family are
available separately. The emulation pod takes the place of the
PSoC device in the target board and performs full-speed
(24 MHz) operation.
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 10 of 78
Designing with PSoC Designer
The development process for the PSoC device differs from that
of a traditional fixed-function microprocessor. The configurable
analog and digital hardware blocks give the PSoC architecture a
unique flexibility that pays dividends in managing specification
change during development and lowering inventory costs. These
configurable resources, called PSoC blocks, have the ability to
implement a wide variety of user-selectable functions. The PSoC
development process is:
1. Select user modul e s.
2. Configure user module s.
3. Organize and connect.
4. Generate, verify, and debug.
Select User Modules
PSoC Designer provides a library of prebuilt, pretested hardware
peripheral components called “user modules.” User modules
make selecting and implementing peripheral devices, both
analog and digital, simple.
Configure User Modules
Each user module that you select establishes the basic register
settings that implement the selected function. They also provide
parameters and properties that allow you to tailor their precise
configuration to your particular application. For example, a PWM
User Module configures one or more digital PSoC blocks, one
for each eight bits of resolution. Using these parameters, you can
establish the pulse width and duty cycle. Configure the param-
eters and properties to correspond to your chosen application.
Enter values directly or by selecting values from drop-down
menus. All of the user modules are documented in datasheets
that may be viewed directly in PSoC Designer or on the Cypress
website. These user module dat as he ets explain the internal
operation of the user module and provide performance specifi-
cations. Each datasheet describes the use of each user module
parameter, and other information that you may need to success-
fully implement your design.
Organize and Connect
Build signal chains at the chip level by interconnecting user
modules to each other and the I/O pins. Perform the selection,
configuration, and routing so that you have complete control over
all on-chip resources.
Generate, Verify, and Debug
When you are ready to test the hardware configuration or move
on to developing code for the project, perform the “Generate
Configuration Files” step. This causes PSoC Designer to
generate source code that automatically configures the device to
your specification and provides the software for the system. The
generated code provides APIs with high-level functions to control
and respond to hardware events at run time, and interrupt
service routines that you can adapt as needed.
A complete code development environment lets you to develop
and customize your applications in C, assembly language, or
both.
The last step in the development process takes place inside
PSoC Designer's Debugge r (accessed by clicking the Connect
icon). PSoC Designer downloads the HEX image to the ICE
where it runs at full-speed. PSoC Designer debugg ing capabil-
ities rival those of systems costing many times more. In addition
to traditional single-step, run-to-breakpoint, and watch-variable
features, the debug interface provides a large trace buffer. It lets
you to define complex breakpoint events that include monitoring
address and data bus values, memory locations, and external
signals.
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 11 of 78
Pinouts
This section describes, lists, and illustrates the CY8C28xxx PSoC device pins and pinout configurations.
The CY8C28xxx PSoC devices are available in a variety of packages which are listed and illustrated in the following tables. Every
port pin (labeled with a “P”) is capable of Digital I/O. However, VSS, VDD, SMP, and XRES are not capable of Digital I/O.
20-Pin Part Pinout
Table 3. 20-Pin Part Pinout (SSOP)
Pin
No. Type Pin
Name Description CY8C28243 20-Pin PSoC Device
Digital Analog
1I/O I, M, S P0[7] Analog column mux and SAR ADC
input.[8]
2I/O I/O, M, S P0[5] Analog column mux and SAR ADC input.
Analog column output.[8, 9]
3I/O I/O, M, S P0[3] Analog column mux and SAR ADC input.
Analog column output.[8, 9]
4I/O I, M, S P0[1] Analog column mux and SAR ADC
input.[8]
5Output SMP Switch Mode Pump (SMP) connection to
external components.
6I/O M P1[7] I2C0 Serial Clock (SCL).
7I/O M P1[5] I2C0 Serial Data (SDA).
8I/O M P1[3]
9I/O M P1[1] Crystal Input (XT ALin), I2C0 Serial Clock
(SCL), ISSP-SCLK[7].
10 Power VSS Ground connection.
11 I/O M P1[0] Crystal Output (XTALout), I2C0 Serial
Data (SDA), ISSP-SDATA[7].
12 I/O M P1[2] I2C1 Serial Data (SDA).[10]
13 I/O M P1[4] Optional External Clock Input (EXTCLK).
14 I/O M P1[6] I2C1 Serial Clock (SCL).[10]
15 Input XRES Active high external reset with internal
pull-down.
16 I/O I, M, S P0[0] Analog column mux and SAR ADC
input.[8]
17 I/O I/O, M, S P0[2] Analog column mux and SAR ADC input.
Analog column output.[8, 11]
18 I/O I/O, M, S P0[4] Analog column mux and SAR ADC input.
Analog column output.[8, 11]
19 I/O I, M, S P0[6] Analog column mux and SAR ADC
input.[8]
20 Power VDD Supply voltage.
LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, and M = Analog Mux Bus Input.
SSOP
2
1
3
4
5
6
7
8
9
10
20
19
18
17
16
15
14
13
12
11
Vdd
P0[6], M, AI, S
P0[4], M, AIO, S
P0[2], M, AIO, S
P0[0], M, AI, S
XRES
P1[6], M, I2C1 SCL
P1[4], M, EXTCLK
P1[2], M, I2C1 SDA
P1[0], M, XTALout, I2C0 SDA
S, AI, M, P0[7]
S, AIO, M, P0[5]
S, AIO, M, P0[3]
S, AI, M, P0[1]
SMP
I2C0 SCL, M, P1[7 ]
I2C0 SDA, M, P1[5]
M, P1[3]
I2C0 SCL, XTALin, M, P1[1]
Vss
Notes
7. These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Technical Reference Manual for CY8C28xxx PSoC devices for details.
8. CY8C28x52 and CY8C28x23 devices do not have a SAR ADC. Therefore, this pin does not function as a SAR ADC input for these devices.
9. CY8C28x13 and CY8C28x03 devices do not have any analog ou tput buffers. Therefore, this pin does not fu nction as an analog column output for these devices.
10.CY8C28x52, CY8C28x13, and CY8C28x33 devices only have one I2C block. Therefore, this GPIO does not function as an I2C pin for these devices.
11. CY8C28x33, CY8C28x23, CY8C28x13, and CY8C28x03 devices do not have an analog output buffer for this pin. Therefore, this pin does not function as an analog
column output for these devices.
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 12 of 78
28-Pin Part Pinout
Table 4. 28-Pin Part Pinout (SSOP)
Pin
No.
Type Pin
Name
Description CY8C28403, CY8C28413, CY8C28433, CY8C28445, and
CY8C28452 28-Pin PSoC Devices
Digital Analog
1I/O I, M, S P0[7] Analog column mux and SAR ADC
input.[8]
2I/O I/O, M, S P0[5] Analog column mux and SAR ADC input.
Analog column output.[8, 9]
3I/O I/O, M, S P0[3] Analog column mux and SAR ADC input.
Analog column output.[8, 9]
4I/O I, M, S P0[1] Analog column mux and SAR ADC
input.[8]
5I/O M P2[7]
6I/O M P2[5]
7I/O I, M P2[3] Direct switched capacitor block input.[12]
8I/O I, M P2[1] Direct switched capacitor block input.[12]
9Output SMP Switch Mode Pump (SMP) connection to
external components.
10 I/O M P1[7] I2C0 Serial Clock (SCL).
11 I/O M P1[5] I2C0 Serial Data (SDA).
12 I/O M P1[3]
13 I/O M P1[1] Crystal Input (XT ALin), I2C0 Serial Clock
(SCL), ISSP-SCLK[7].
14 Power VSS Ground connection.
15 I/O M P1[0] Crystal Output (XTALout), I2C0 Serial
Data (SDA), ISSP-SDATA[7].
16 I/O M P1[2] I2C1 Serial Data (SDA).[10]
17 I/O M P1[4] Optional External Clock Input (EXTCLK).
18 I/O M P1[6] I2C1 Serial Clock (SCL).[10]
19 Input XRES Active high external reset with internal
pull-down.
20 I/O I, M P2[0] Direct switched capacitor block input.[13]
21 I/O I, M P2[2] Direct switched capacitor block input.[13]
22 I/O M P2[4] External Analog Ground (AGND).
23 I/O M P2[6] External Voltage Reference (VRef).
24 I/O I, M, S P0[0] Analog column mux and SAR ADC
input.[8]
25 I/O I/O, M, S P0[2] Analog column mux and SAR ADC input.
Analog column output.[8, 11]
26 I/O I/O, M, S P0[4] Analog column mux and SAR ADC input.
Analog column output.[8, 11]
27 I/O I, M, S P0[6] Analog column mux and SAR ADC
input.[8]
28 Power VDD Supply voltage.
LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, and M = Analog Mux Bus Input
SSOP
28
27
26
25
24
23
22
21
20
19
18
17
16
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Vdd
P0[6], M, AI, S
P0[4], M, AIO, S
P0[2], M, AIO, S
P0[0], M, AI, S
P2[6], M, External VRef
P2[4], M, External AGND
P2[2], M, AI
P2[0], M, AI
XRES
P1[6], M, I2C1 SCL
P1[4], M, EXTCLK
P1[2], M, I2C1 SDA
P1[0], M, XTALout, I2C0 SDA
S, AI, M, P0[7]
S, AIO, M, P0[5]
S, AIO, M, P0[3]
S, AI, M, P0[1]
M, P2[7]
M, P2[5]
AI, M, P2[3]
AI, M, P2[1]
SMP
I2C0 SCL, M, P1[7]
I2C0 SDA, M, P1[5]
M, P1[3]
I2C0 SCL, XTALin, M, P1[ 1 ]
Vss
Notes
12.This pin is not a direct switched capacitor block analog input for CY8C28x03 and CY8C28x13 devices.
13.This pin is not a direct switched capacitor block analog input fo r CY8C28x03, CY8C28x13, CY8C28x23, and CY8C28x33 devices.
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 13 of 78
44-Pin Part Pinout
Table 5. 44-Pin Part Pinout (TQFP)
Pin
No. Type Pin
Name Description CY8C28513, CY8C28533, and CY8C28545
44-Pin PSoC Devices
Digital Analog
1I/O M P2[5]
2I/O I, M P2[3] Direct switched capacitor block input.[12]
3I/O I, M P2[1] Direct switched capacitor block input.[12]
4I/O M P4[7]
5I/O M P4[5]
6I/O M P4[3]
7I/O M P4[1]
8Output SMP Switch Mode Pump (SMP) connection to
external components.
9I/O M P3[7]
10 I/O M P3[5]
11 I/O M P3[3]
12 I/O M P3[1]
13 I/O M P1[7] I2C0 Serial Clock (SCL).
14 I/O M P1[5] I2C0 Serial Data (SDA).
15 I/O M P1[3]
16 I/O M P1[1] Crystal Input (XTALin), I2C0 Serial Clock
(SCL), ISSP-SCLK[7].
17 Power VSS Ground connection.
18 I/O M P1[0] Crystal Output (XT ALout), I2C0 Serial Data
(SDA), ISSP-SDATA[7].
19 I/O M P1[2] I2C1 Serial Data (SDA).[10]
20 I/O M P1[4] Optional External Clock Input (EXTCLK).
21 I/O M P1[6] I2C1 Serial Clock (SCL).[10]
22 I/O M P3[0] I2C1 Serial Data (SDA).[10]
23 I/O M P3[2] I2C1 Serial Clock (SCL).[10]
24 I/O M P3[4]
25 I/O M P3[6]
26 Input XRES Active high external reset with internal
pull-down.
27 I/O M P4[0]
28 I/O M P4[2]
29 I/O M P4[4]
30 I/O M P4[6]
31 I/O I, M P2[0] Direct switched capacitor block input.[13]
32 I/O I, M P2[2] Direct switched capacitor block input.[13]
33 I/O M P2[4] External Analog Ground (AGND).
34 I/O M P2[6] External Voltage Reference (VRef).
35 I/O I, M, S P0[0] Analog column mux and SAR ADC input.[8]
36 I/O I/O, M S P0[2] Analog column mux and SAR ADC input.
Analog column output.[8, 11]
37 I/O I/O, M, S P0[4] Analog column mux and SAR ADC input.
Analog column output.[8, 11]
38 I/O I, M, S P0[6] Analog column mux and SAR ADC input.[8]
39 Power VDD Supply voltage.
40 I/O I, M, S P0[7] Analog column mux and SAR ADC input.[8]
41 I/O I/O, M, S P0[5] Analog column mux and SAR ADC input.
Analog column output.[8, 9]
42 I/O I/O, M, S P0[3] Analog column mux and SAR ADC input.
Analog column output.[8, 9]
43 I/O I, M, S P0[1] Analog column mux and SAR ADC input.[8]
44 I/O P2[7]
LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, and M = Analog Mux Bus Input.
TQFP
44
43
42
41
40
39
38
37
36
35
34
13
14
15
16
17
18
19
20
21
22
12
1
2
3
4
5
6
7
8
9
10
11
M, P2[5]
AI, M, P2[3]
AI, M, P2[1]
M, P4[7]
M, P4[5]
M, P4[3]
M, P4[1]
SMP
M, P3[7]
M, P3[5]
M, P3[3]
M, P3[1]
I2C0 SCL, M, P1[7]
I2C0 SDA, M, P1[5]
M, P1[3]
I2C0 SCL, XTALin, M, P1[1]
Vss
I2C0 SDA, XT ALout, M, P1[0]
I2C1 SDA, M, P1[2]
EXTCLK, M, P1[4]
I2C1 SCL, M, P1[6]
I2C1 SDA, M, P3[0]
P2[4], M, External AGND
P2[2], M, AI
P2[0], M, AI
P4[6], M
P4[4], M
P4[2], M
P4[0], M
XRES
P3[6], M
P3[4], M
P3[2], M, I2C1 SCL
P2[7], M
P0[1], M, AI, S
P0[3], M, AIO, S
P0[5], M, AIO, S
P0[7], M, AI, S
Vdd
P0[6], M, AI, S
P0[4], M, AIO, S
P0[2], M, AIO, S
P0[0], M, AI, S
P2[6], M, External VRef
33
32
31
30
29
28
27
26
25
24
23
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 14 of 78
48-Pin Part Pinout
Table 6. 48-Pin Part Pinout (QFN[14])
Pin
No. Type Pin
Name Description CY8C28623, CY8C28643, and CY8C28645
48-Pin PSoC Devices
Digital Analog
1I/O I, M P2[3] Direct switched capacitor block input.[12]
2I/O I, M P2[1] Direct switched capacitor block input.[12]
3I/O M P4[7]
4I/O M P4[5]
5I/O M P4[3]
6I/O M P4[1]
7Output SMP Switch Mode Pump (SMP) connection to
external components.
8I/O M P3[7]
9I/O M P3[5]
10 I/O M P3[3]
11 I/O M P3[1]
12 I/O M P5[3]
13 I/O M P5[1]
14 I/O M P1[7] I2C0 Serial Clock (SCL).
15 I/O M P1[5] I2C0 Serial Data (SDA).
16 I/O M P1[3]
17 I/O M P1[1] Crystal Input (XTALin), I2C0 Serial Clock
(SCL), ISSP-SCLK[7].
18 Power VSS Ground connection.
19 I/O M P1[0] Crystal Output (XTALout), I2C0 Serial
Data (SDA), ISSP-SDATA[7].
20 I/O M P1[2] I2C1 Serial Data (SDA).[10]
21 I/O M P1[4] Optional External Clock Input
(EXTCLK).
22 I/O M P1[6] I2C1 Serial Clock (SCL).[10]
23 I/O M P5[0]
24 I/O M P5[2]
25 I/O M P3[0] I2C1 Serial Data (SDA).[10]
26 I/O M P3[2] I2C1 Serial Clock (SCL).[10]
27 I/O M P3[4]
28 I/O M P3[6]
29 Input XRES Active high external reset with internal
pull-down.
30 I/O M P4[0]
31 I/O M P4[2] Pin
No. Type Pin
Nam
eDescription
32 I/O M P4[4] Digital Analog
33 I/O M P4[6] 41 I/O I, M, S P0[6] Analog column mux and SAR ADC
input.[8]
34 I/O I, M P2[0] Direct switched capacitor block input.[13] 42 Power VDD Supply voltage.
35 I/O I, M P2[2] Direct switched capacitor block input.[13] 43 I/O I, M, S P0[7] Analog column mux and SAR ADC
input.[8]
36 I/O M P2[4] External Analog Ground (AGND). 44 I/O I/O, M, S P0[5] Analog column mux and SAR ADC
input. Analog column output.[8, 9]
37 I/O M P2[6] External Voltage Reference (VRef). 45 I/O I/O, M, S P0[3] Analog column mux and SAR ADC
input. Analog column output.[8, 9]
38 I/O I, M, S P0[0] Analog column mux and SAR ADC
input.[8] 46 I/O I, M, S P0[1] Analog column mux and SAR ADC
input.[8]
39 I/O I/O, M, S P0[2] Analog column mux and SAR ADC input.
Analog column output.[8, 11] 47 I/O M P2[7]
40 I/O I/O, M, S P0[4] Analog column mux and SAR ADC input.
Analog column output.[8, 11] 48 I/O M P2[5]
LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, and M = Analog Mux Bus Input.
13
14
15
16
17
18
19
20
21
22
23
24
P2[5], M
P2[7], M
P0[1], M, AI, S
P0[3], M, AIO, S
P0[5], M, AIO, S
P0[7], M, AI, S
Vdd
P0[6], M, AI, S
P0[4], M, AIO, S
P0[2], M, AIO, S
P0[0], M, AI, S
P2[6], M, External VRef
M, P5[1]
I2C0 SCL, M, P1[7]
I2C0 SDA, M, P1[5]
M, P1[3]
I2C0 SCL, XTALin, M, P1[1]
Vss
I2C0 SDA, XTALout, M, P1[0]
I2C1 SDA, M, P1[2]
EXTCLK, M, P1[4]
I2C1 SCL, M, P1[6]
M, P5[0]
M, P5[2]
AI, M, P2[3]
AI, M, P2[1]
M, P4[7]
M, P4[5]
M, P4[3]
M, P4[1]
SMP
M, P3[7]
M, P3[5]
M, P3[3]
M, P3[1]
M, P5[3]
35
34
33
32
31
30
29
28
27
26
25
36
48
47
46
45
44
43
42
41
40
39
38
37
10
11
12
1
2
3
4
5
6
7
8
9
QFN
(Top View)
P2[2], M, AI
P2[0], M, AI
P4[6], M
P4[4], M
P4[2], M
P4[0], M
XRES
P3[6], M
P3[4], M
P3[2], M, I2C1 SCL
P3[0], M, I2C1 SDA
P2[4], M, External AGND
Note
14.The QFN package has a center pad that must be conne cted to ground (VSS)
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 15 of 78
56-Pin Part Pinout
The 56-pin SSOP part is for the CY8C28000 On-Chip Debug (OCD) PSoC device.
Note This part is only used for in-circuit debugging. It is NOT available for productio n.
Table 7. 56-Pin Part Pinout (SSOP)
Pin
No. Type Pin
Name Description CY8C28000 56-Pin PSoC Device
Not for Production
Digital Analog
1NC No connection.
2I/O I, M, S P0[7] Analog column mux and SAR ADC input.
3I/O I/O, M, S P0[5] Analog column mux and SAR ADC input.
Analog column output.
4I/O I/O, M, S P0[3] Analog column mux and SAR ADC input.
Analog column output.
5I/O I, M, S P0[1] Analog column mux and SAR ADC input.
6I/O MP2[7]
7I/O MP2[5]
8I/O I P2[3] Direct switched capacitor block input.
9I/O I P2[1] Direct switched capacitor block input.
10 I/O MP4[7]
11 I/O MP4[5]
12 I/O I, M P4[3]
13 I/O I, M P4[1]
14 OCD M OCDE OCD even data I/O.
15 OCD M OCDO OCD odd data output.
16 Output SMP Switch Mode P ump (SMP) connection to
required external components.
17 I/O MP3[7]
18 I/O MP3[5]
19 I/O MP3[3]
20 I/O MP3[1]
21 I/O MP5[3]
22 I/O MP5[1]
23 I/O M P1[7] I2C0 Serial Clock (SCL).
24 I/O M P1[5] I2C0 Serial Data (SDA).
25 NC No connection.
26 I/O MP1[3]
27 I/O M P1[1] Crystal Input (XT ALin), I2C0 Serial Clock
(SCL), ISSP-SCLK[7].
28 Power VSS Ground connection.
29 NC No connection.
30 NC No connection.
31 I/O M P1[0] Crystal Output (XTALout), I2C0 Serial
Data (SDA), ISSP-SDATA[7].
32 I/O M P1[2] I2C1 Serial Data (SDA).
33 I/O M P1[4] Optional External Clock Input (EXTCLK).
34 I/O MP1[6]I2C1 Serial Clock (SCL).
35 I/O MP5[0]
36 I/O MP5[2]
37 I/O M P3[0] I2C1 Serial Data (SDA).
38 I/O M P3[2] I2C1 Serial Clock (SCL).
39 I/O MP3[4]
40 I/O MP3[6]
SSOP
8
1
2
3
4
5
6
7
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
NC
OCDE
OCDO
SMP
I2C0 SCL, M, P1[7]
NC
Vss
S, AI, M, P0[7]
S, AIO, M, P0[5]
S, AIO, M, P0[3]
AI, M, P2[3]
S, AI, M, P0[1]
M, P2[5 ]
M, P2[7 ]
AI, M, P2[1]
M, P4[7 ]
M, P4[5 ]
M, P4[3 ]
M, P4[1 ]
M, P3[7 ]
M, P5[1 ]
M, P5[3 ]
M, P3[1 ]
M, P3[3 ]
M, P3[5 ]
I2C0 SDA, M, P1[5]
M, P1[3 ]
SCLK, I2C0 SCL, XTALIn, M, P1[1]
Vdd
CCLK
HCLK
XRES
NC
NC
P1[6], M, I2C1 SCL
P1[2], M, I2C1 SDA
P0[6], M, AI, S
P0[4], M, AIO, S
P0[2], M, AIO, S
P2[2], M, AI
P0[0], M, AI, S
P2[4], M, External AGND
P2[6], M, External VRef
P2[0], M, AI
P4[6], M
P4[4], M
P4[2], M
P4[0], M
P3[6], M
P5[0], M
P5[2], M
P3[0], M, I2C1 SDA
P3[2], M, I2C1 SCL
P3[4], M
P1[4], M, EXTCLK
P1[0], M, XTALOut, I2C0 SDA, SDATA
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 16 of 78
Pin
No. Type Pin
Name Description
Digital Analog
41 Input XRES Active high external reset with internal
pull-down.
42 OCD M HCLK OCD high speed clock output.
43 OCD M CCLK OCD CPU clock output.
44 I/O MP4[0]
45 I/O MP4[2]
46 I/O MP4[4]
47 I/O MP4[6]
48 I/O I, M P2[0] Direct switched capacitor block input.
49 I/O I, M P2[2] Direct switched capacitor block input.
50 I/O M P2[4] External Analog Ground (AGND).
51 I/O M P2[6] External Voltage Reference (VRef).
52 I/O I, M, S P0[0] Analog column mux and SAR ADC input.
53 I/O I/O, M, S P0[2] Analog column mux and SAR ADC input.
Analog column output.
54 I/O I/O, M, S P0[4] Analog column mux and SAR ADC input.
Analog column output.
55 I/O I, M, S P0[6] Analog column mux and SAR ADC input.
56 Power VDD Supply voltage.
LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, M = Analog Mux Bus Input, and OCD = On-Chip Debug.
Table 7. 56-Pin Part Pinout (SSOP) (continued)
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 17 of 78
Register Reference
This section lists the registers of the CY8C28xxx PSoC devices. For detailed register information, reference the
PSoC Technical Reference Manual for CY8C28xxx PSoC devices.
Register Conventions
The register conventions specific to this section are listed in the
following table.
Register Mapping Tables
CY8C28xxx PSoC devices have a total register address space
of 512 bytes. The register space is referred to as I/O space and
is divided into two banks. The XIO bit in the Flag register
(CPU_F) determines which bank of registers CPU instructions
access. When the XIO bit is set the registers in Bank 1 are
accessed by CPU instructions. When the XIO bit is cleared the
registers in Bank 0 are accessed by CPU instructions.
Note In the following register mapping tables, blank fields are
reserved and should not be accessed.
Convention Description
R Read register or bit(s)
W Write register or bit(s)
L Logical register or bit(s)
C Clearable register or bit(s)
# Access is bit specific
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 18 of 78
Table 8. CY8C28x03 Register Map Bank 0 Table: User Space
Name Addr (0,Hex) Access Name Addr (0,Hex) Access Name Addr (0,Hex) Access Name Addr (0,Hex) Access
PRT0DR 00 RW DBC20DR0 40 # 80 RDI2RI C0 RW
PRT0IE 01 RW DBC20DR1 41 W 81 RDI2SYN C1 RW
PRT0GS 02 RW DBC20DR2 42 RW 82 RDI2IS C2 RW
PRT0DM2 03 RW DBC20CR0 43 # 83 RDI2LT0 C3 RW
PRT1DR 04 RW DBC21DR0 44 # 84 RDI2LT1 C4 RW
PRT1IE 05 RW DBC21DR1 45 W 85 RDI2RO0 C5 RW
PRT1GS 06 RW DBC21DR2 46 RW 86 RDI2RO1 C6 RW
PRT1DM2 07 RW DBC21CR0 47 # 87 RDI2DSM C7 RW
PRT2DR 08 RW DCC22DR0 48 # 88 C8
PRT2IE 09 RW DCC22DR1 49 W 89 C9
PRT2GS 0A RW DCC22DR2 4A RW 8A CA
PRT2DM2 0B RW DCC22CR0 4B # 8B CB
PRT3DR 0C RW DCC23DR0 4C # 8C CC
PRT3IE 0D RW DCC23DR1 4D W 8D CD
PRT3GS 0E RW DCC23DR2 4E RW 8E CE
PRT3DM2 0F RW DCC23CR0 4F # 8F CF
PRT4DR 10 RW 50 90 CUR_PP D0 RW
PRT4IE 11 RW 51 91 STK_PP D1 RW
PRT4GS 12 RW 52 92 D2
PRT4DM2 13 RW 53 93 IDX_PP D3 RW
PRT5DR 14 RW 54 94 MVR_PP D4 RW
PRT5IE 15 RW 55 95 MVW_PP D5 RW
PRT5GS 16 RW 56 96 I2C0_CFG D6 RW
PRT5DM2 17 RW 57 97 I2C0_SCR D7 #
18 58 98 I2C0_DR D8 RW
19 59 99 I2C0_MSCR D9 #
1A 5A 9A INT_CLR0 DA RW
1B 5B 9B INT_CLR1 DB RW
1C 5C 9C INT_CLR2 DC RW
1D 5D 9D INT_CLR3 DD RW
1E 5E 9E INT_MSK3 DE RW
1F 5F 9F INT_MSK2 DF RW
DBC00DR0 20 # 60 A0 INT_MSK0 E0 RW
DBC00DR1 21 W 61 A1 INT_MSK1 E1 RW
DBC00DR2 22 RW 62 A2 INT_VC E2 RC
DBC00CR0 23 # 63 A3 RES_WDT E3 W
DBC01DR0 24 # 64 A4 I2C1_SCR E4 #
DBC01DR1 25 W 65 A5 I2C1_MSCR E5 #
DBC01DR2 26 RW 66 A6 E6
DBC01CR0 27 # I2C1_DR 67 RW A7 E7
DCC02DR0 28 # 68 MUL1_X A8 WMUL0_X E8 W
DCC02DR1 29 W 69 MUL1_Y A9 WMUL0_Y E9 W
DCC02DR2 2A RW SADC_DH 6A RW MUL1_DH AA RMUL0_DH EA R
DCC02CR0 2B # SADC_DL 6B RW MUL1_DL AB RMUL0_DL EB R
DCC03DR0 2C # TMP_DR0 6C RW ACC1_DR1 AC RW ACC0_DR1 EC RW
DCC03DR1 2D W TMP_DR1 6D RW ACC1_DR0 AD RW ACC0_DR0 ED RW
DCC03DR2 2E RW TMP_DR2 6E RW ACC1_DR3 AE RW ACC0_DR3 EE RW
DCC03CR0 2F # TMP_DR3 6F RW ACC1_DR2 AF RW ACC0_DR2 EF RW
DBC10DR0 30 # 70 RDI0RI B0 RW F0
DBC10DR1 31 W 71 RDI0SYN B1 RW F1
DBC10DR2 32 RW 72 RDI0IS B2 RW F2
DBC10CR0 33 # 73 RDI0LT0 B3 RW F3
DBC11DR0 34 # 74 RDI0LT1 B4 RW F4
DBC11DR1 35 W 75 RDI0RO0 B5 RW F5
DBC11DR2 36 RW 76 RDI0RO1 B6 RW F6
DBC11CR0 37 # 77 RDI0DSM B7 RW CPU_F F7 RL
DCC12DR0 38 # 78 RDI1RI B8 RW F8
DCC12DR1 39 W 79 RDI1SYN B9 RW F9
DCC12DR2 3A RW 7A RDI1IS BA RW FA
DCC12CR0 3B # 7B RDI1LT0 BB RW FB
DCC13DR0 3C # 7C RDI1LT1 BC RW FC
DCC13DR1 3D W 7D RDI1RO0 BD RW FD
DCC13DR2 3E RW 7E RDI1RO1 BE RW CPU_SCR1 FE #
DCC13CR0 3F # 7F RDI1DSM BF RW CPU_SCR0 FF #
Blank fields are Reserved and should not be accessed. # Access is bit specific. *Address has a dual purpose, see “Mapping Exc eptions” on page 251
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 19 of 78
Table 9. CY8C28x03 Register Map Bank 1 Table: Configuration Space
Name Addr (1,Hex) Access Name Addr (1,Hex) Access Name Addr (1,Hex) Access Name Addr (1,Hex) Access
PRT0DM0 00 RW DBC20FN 40 RW 80 RDI2RI C0 RW
PRT0DM1 01 RW DBC20IN 41 RW SADC_TSCMPL 81 RW RDI2SYN C1 RW
PRT0IC0 02 RW DBC20OU 42 RW SADC_TSCMPH 82 RW RDI2IS C2 RW
PRT0IC1 03 RW DBC20CR1 43 RW 83 RDI2LT0 C3 RW
PRT1DM0 04 RW DBC21FN 44 RW 84 RDI2LT1 C4 RW
PRT1DM1 05 RW DBC21IN 45 RW 85 RDI2RO0 C5 RW
PRT1IC0 06 RW DBC21OU 46 RW 86 RDI2RO1 C6 RW
PRT1IC1 07 RW DBC21CR1 47 RW 87 RDI2DSM C7 RW
PRT2DM0 08 RW DCC22FN 48 RW 88 C8
PRT2DM1 09 RW DCC22IN 49 RW 89 C9
PRT2IC0 0A RW DCC22OU 4A RW 8A CA
PRT2IC1 0B RW DCC22CR1 4B RW 8B CB
PRT3DM0 0C RW DCC23FN 4C RW 8C CC
PRT3DM1 0D RW DCC23IN 4D RW 8D CD
PRT3IC0 0E RW DCC23OU 4E RW 8E CE
PRT3IC1 0F RW DCC23CR1 4F RW 8F CF
PRT4DM0 10 RW 50 90 GDI_O_IN D0 RW
PRT4DM1 11 RW 51 91 GDI_E_IN D1 RW
PRT4IC0 12 RW 52 92 GDI_O_OU D2 RW
PRT4IC1 13 RW 53 93 GDI_E_OU D3 RW
PRT5DM0 14 RW 54 94 D4
PRT5DM1 15 RW 55 95 D5
PRT5IC0 16 RW 56 96 D6
PRT5IC1 17 RW 57 97 D7
18 58 98 D8
19 59 99 D9
1A 5A 9A DA
1B 5B 9B DB
1C 5C 9C DC
1D 5D 9D OSC_GO_EN DD RW
1E 5E 9E OSC_CR4 DE RW
1F 5F 9F OSC_CR3 DF RW
DBC00FN 20 RW 60 GDI_O_IN_CR A0 RW OSC_CR0 E0 RW
DBC00IN 21 RW 61 GDI_E_IN_CR A1 RW OSC_CR1 E1 RW
DBC00OU 22 RW 62 GDI_O_OU_CR A2 RW OSC_CR2 E2 RW
DBC00CR1 23 RW 63 GDI_E_OU_CR A3 RW VLT_CR E3 RW
DBC01FN 24 RW 64 RTC_H A4 RW VLT_CMP E4 RW
DBC01IN 25 RW 65 RTC_M A5 RW E5
DBC01OU 26 RW 66 RTC_S A6 RW E6
DBC01CR1 27 RW 67 RTC_CR A7 RW E7
DCC02FN 28 RW 68 SADC_CR0 A8 RW IMO_TR E8 RW
DCC02IN 29 RW 69 SADC_CR1 A9 RW ILO_TR E9 RW
DCC02OU 2A RW 6A SADC_CR2 AA RW BDG_TR EA RW
DCC02CR1 2B RW I2C1_CFG 6B RW SADC_CR3 AB RW ECO_TR EB RW
DCC03FN 2C RW TMP_DR0 6C RW SADC_CR4 AC RW EC
DCC03IN 2D RW TMP_DR1 6D RW I2C0_ADDR AD RW ED
DCC03OU 2E RW TMP_DR2 6E RW I2C1_ADDR AE RW EE
DCC03CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EF
DBC10FN 30 RW 70 RDI0RI B0 RW F0
DBC10IN 31 RW SADC_TSCR0 71 RW RDI0SYN B1 RW F1
DBC10OU 32 RW SADC_TSCR1 72 RW RDI0IS B2 RW F2
DBC10CR1 33 RW 73 RDI0LT0 B3 RW F3
DBC11FN 34 RW 74 RDI0LT1 B4 RW F4
DBC11IN 35 RW 75 RDI0RO0 B5 RW F5
DBC11OU 36 RW 76 RDI0RO1 B6 RW F6
DBC11CR1 37 RW 77 RDIODSM B7 RW CPU_F F7 RL
DCC12FN 38 RW 78 RDI1RI B8 RW F8
DCC12IN 39 RW 79 RDI1SYN B9 RW F9
DCC12OU 3A RW 7A RDI1IS BA RW FLS_PR1 FA RW
DCC12CR1 3B RW 7B RDI1LT0 BB RW FB
DCC13FN 3C RW 7C RDI1LT1 BC RW FC
DCC13IN 3D RW 7D RDI1RO0 BD RW FD
DCC13OU 3E RW 7E RDI1RO1 BE RW CPU_SCR1 FE #
DCC13CR1 3F RW 7F RDI1DSM BF RW CPU_SCR0 FF #
Blank fields are Reserved and should not be accessed. # Access is bit specific. *Address has a dual purpo se, see “Mapping Exceptions ” on page 251
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 20 of 78
Table 10. CY8C28x13 Register Map Bank 0 Table: User Sp ace
Name Addr (0,Hex) Access Name Addr (0,Hex) Access Name Addr (0,Hex) Access Name Addr (0,Hex) Access
PRT0DR 00 RW DBC20DR0 40 # 80 RDI2RI C0 RW
PRT0IE 01 RW DBC20DR1 41 W 81 RDI2SYN C1 RW
PRT0GS 02 RW DBC20DR2 42 RW 82 RDI2IS C2 RW
PRT0DM2 03 RW DBC20CR0 43 # 83 RDI2LT0 C3 RW
PRT1DR 04 RW DBC21DR0 44 # 84 RDI2LT1 C4 RW
PRT1IE 05 RW DBC21DR1 45 W 85 RDI2RO0 C5 RW
PRT1GS 06 RW DBC21DR2 46 RW 86 RDI2RO1 C6 RW
PRT1DM2 07 RW DBC21CR0 47 # 87 RDI2DSM C7 RW
PRT2DR 08 RW DCC22DR0 48 # 88 C8
PRT2IE 09 RW DCC22DR1 49 W 89 C9
PRT2GS 0A RW DCC22DR2 4A RW 8A CA
PRT2DM2 0B RW DCC22CR0 4B # 8B CB
PRT3DR 0C RW DCC23DR0 4C # 8C CC
PRT3IE 0D RW DCC23DR1 4D W 8D CD
PRT3GS 0E RW DCC23DR2 4E RW 8E CE
PRT3DM2 0F RW DCC23CR0 4F # 8F CF
PRT4DR 10 RW 50 90 CUR_PP D0 RW
PRT4IE 11 RW 51 91 STK_PP D1 RW
PRT4GS 12 RW 52 92 D2
PRT4DM2 13 RW 53 93 IDX_PP D3 RW
PRT5DR 14 RW 54 94 MVR_PP D4 RW
PRT5IE 15 RW 55 95 MVW_PP D5 RW
PRT5GS 16 RW 56 96 I2C0_CFG D6 RW
PRT5DM2 17 RW 57 97 I2C0_SCR D7 #
18 58 98 I2C0_DR D8 RW
19 59 99 I2C0_MSCR D9 #
1A 5A 9A INT_CLR0 DA RW
1B 5B 9B INT_CLR1 DB RW
1C 5C 9C INT_CLR2 DC RW
1D 5D 9D INT_CLR3 DD RW
1E 5E 9E INT_MSK3 DE RW
1F 5F 9F INT_MSK2 DF RW
DBC00DR0 20 # 60 DEC0_DH A0 RC INT_MSK0 E0 RW
DBC00DR1 21 W AMUX_CFG 61 RW DEC0_DL A1 RC INT_MSK1 E1 RW
DBC00DR2 22 RW 62 DEC1_DH A2 RC INT_VC E2 RC
DBC00CR0 23 # 63 DEC1_DL A3 RC RES_WDT E3 W
DBC01DR0 24 # 64 A4 E4
DBC01DR1 25 W 65 A5 E5
DBC01DR2 26 RW 66 A6 DEC_CR0* E6 RW
DBC01CR0 27 # 67 A7 DEC_CR1* E7 RW
DCC02DR0 28 # 68 MUL1_X A8 WMUL0_X E8 W
DCC02DR1 29 W 69 MUL1_Y A9 WMUL0_Y E9 W
DCC02DR2 2A RW SADC_DH 6A RW MUL1_DH AA RMUL0_DH EA R
DCC02CR0 2B # SADC_DL 6B RW MUL1_DL AB RMUL0_DL EB R
DCC03DR0 2C # TMP_DR0 6C RW ACC1_DR1 AC RW ACC0_DR1 EC RW
DCC03DR1 2D W TMP_DR1 6D RW ACC1_DR0 AD RW ACC0_DR0 ED RW
DCC03DR2 2E RW TMP_DR2 6E RW ACC1_DR3 AE RW ACC0_DR3 EE RW
DCC03CR0 2F # TMP_DR3 6F RW ACC1_DR2 AF RW ACC0_DR2 EF RW
DBC10DR0 30 # 70 RDI0RI B0 RW F0
DBC10DR1 31 W 71 RDI0SYN B1 RW F1
DBC10DR2 32 RW 72 RDI0IS B2 RW F2
DBC10CR0 33 # 73 RDI0LT0 B3 RW F3
DBC11DR0 34 # 74 RDI0LT1 B4 RW F4
DBC11DR1 35 W 75 RDI0RO0 B5 RW F5
DBC11DR2 36 RW 76 RDI0RO1 B6 RW F6
DBC11CR0 37 # 77 RDI0DSM B7 RW CPU_F F7 RL
DCC12DR0 38 # 78 RDI1RI B8 RW F8
DCC12DR1 39 W 79 RDI1SYN B9 RW F9
DCC12DR2 3A RW 7A RDI1IS BA RW FA
DCC12CR0 3B # 7B RDI1LT0 BB RW FB
DCC13DR0 3C # 7C RDI1LT1 BC RW DAC1_D FC RW
DCC13DR1 3D W 7D RDI1RO0 BD RW DAC0_D FD RW
DCC13DR2 3E RW 7E RDI1RO1 BE RW CPU_SCR1 FE #
DCC13CR0 3F # 7F RDI1DSM BF RW CPU_SCR0 FF #
Blank fields are Reserved and should not be accessed. # Access is bit specific. *Address has a dual purpose , see “Mapping Exceptions” on page 251
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 21 of 78
Table 11. CY8C28x13 Register Map Bank 1 Table: Config uration Spac e
Name Addr (1,Hex) Access Name Addr (1,Hex) Access Name Addr (1,Hex) Access Name Addr (1,Hex) Access
PRT0DM0 00 RW DBC20FN 40 RW 80 RDI2RI C0 RW
PRT0DM1 01 RW DBC20IN 41 RW SADC_TSCMPL 81 RW RDI2SYN C1 RW
PRT0IC0 02 RW DBC20OU 42 RW SADC_TSCMPH 82 RW RDI2IS C2 RW
PRT0IC1 03 RW DBC20CR1 43 RW ACE_AMD_CR1 83 RW RDI2LT0 C3 RW
PRT1DM0 04 RW DBC21FN 44 RW 84 RDI2LT1 C4 RW
PRT1DM1 05 RW DBC21IN 45 RW ACE_PWM_CR 85 RW RDI2RO0 C5 RW
PRT1IC0 06 RW DBC21OU 46 RW ACE_ADC0_CR 86 RW RDI2RO1 C6 RW
PRT1IC1 07 RW DBC21CR1 47 RW ACE_ADC1_CR 87 RW RDI2DSM C7 RW
PRT2DM0 08 RW DCC22FN 48 RW 88 C8
PRT2DM1 09 RW DCC22IN 49 RW ACE_CLK_CR0 89 RW C9
PRT2IC0 0A RW DCC22OU 4A RW ACE_CLK_CR1 8A RW CA
PRT2IC1 0B RW DCC22CR1 4B RW ACE_CLK_CR3 8B RW CB
PRT3DM0 0C RW DCC23FN 4C RW 8C RW CC
PRT3DM1 0D RW DCC23IN 4D RW ACE01CR1 8D RW CD
PRT3IC0 0E RW DCC23OU 4E RW ACE01CR2 8E RW CE
PRT3IC1 0F RW DCC23CR1 4F RW ASE11CR0 8F RW CF
PRT4DM0 10 RW 50 90 GDI_O_IN D0 RW
PRT4DM1 11 RW 51 DEC0_CR0 91 RW GDI_E_IN D1 RW
PRT4IC0 12 RW 52 DEC_CR3 92 RW GDI_O_OU D2 RW
PRT4IC1 13 RW 53 93 GDI_E_OU D3 RW
PRT5DM0 14 RW 54 94 DEC0_CR D4 RW
PRT5DM1 15 RW 55 DEC1_CR0 95 RW DEC1_CR D5 RW
PRT5IC0 16 RW 56 96 D6
PRT5IC1 17 RW 57 97 D7
18 58 98 MUX_CR0 D8 RW
19 59 99 MUX_CR1 D9 RW
1A 5A DEC_CR5 9A RW MUX_CR2 DA RW
1B 5B 9B MUX_CR3 DB RW
1C 5C 9C IDAC_CR1 DC RW
1D 5D 9D OSC_GO_EN DD RW
1E 5E 9E OSC_CR4 DE RW
1F 5F 9F OSC_CR3 DF RW
DBC00FN 20 RW 60 GDI_O_IN_CR A0 RW OSC_CR0 E0 RW
DBC00IN 21 RW 61 GDI_E_IN_CR A1 RW OSC_CR1 E1 RW
DBC00OU 22 RW 62 GDI_O_OU_CR A2 RW OSC_CR2 E2 RW
DBC00CR1 23 RW 63 GDI_E_OU_CR A3 RW VLT_CR E3 RW
DBC01FN 24 RW 64 RTC_H A4 RW VLT_CMP E4 RW
DBC01IN 25 RW 65 RTC_M A5 RW ADC0_TR E5 RW
DBC01OU 26 RW 66 RTC_S A6 RW ADC1_TR E6 RW
DBC01CR1 27 RW 67 RTC_CR A7 RW IDAC_CR2 E7 RW
DCC02FN 28 RW 68 SADC_CR0 A8 RW IMO_TR E8 RW
DCC02IN 29 RW 69 SADC_CR1 A9 RW ILO_TR E9 RW
DCC02OU 2A RW AMUX_CFG1 6A RW SADC_CR2 AA RW BDG_TR EA RW
DCC02CR1 2B RW 6B SADC_CR3 AB RW ECO_TR EB RW
DCC03FN 2C RW TMP_DR0 6C RW SADC_CR4 AC RW MUX_CR4 EC RW
DCC03IN 2D RW TMP_DR1 6D RW I2C0_ADDR AD RW MUX_CR5 ED RW
DCC03OU 2E RW TMP_DR2 6E RW AE EE
DCC03CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EF
DBC10FN 30 RW 70 RDI0RI B0 RW F0
DBC10IN 31 RW SADC_TSCR0 71 RW RDI0SYN B1 RW F1
DBC10OU 32 RW SADC_TSCR1 72 RW RDI0IS B2 RW F2
DBC10CR1 33 RW ACE_AMD_CR0 73 RW RDI0LT0 B3 RW F3
DBC11FN 34 RW 74 RW RDI0LT1 B4 RW F4
DBC11IN 35 RW ACE_AMX_IN 75 RW RDI0RO0 B5 RW F5
DBC11OU 36 RW ACE_CMP_CR0 76 RW RDI0RO1 B6 RW F6
DBC11CR1 37 RW ACE_CMP_CR1 77 RW RDIODSM B7 RW CPU_F F7 RL
DCC12FN 38 RW 78 RDI1RI B8 RW F8
DCC12IN 39 RW ACE_CMP_GI_EN 79 RW RDI1SYN B9 RW F9
DCC12OU 3A RW ACE_ALT_CR0 7A RW RDI1IS BA RW FLS_PR1 FA RW
DCC12CR1 3B RW ACE_ABF_CR0 7B RW RDI1LT0 BB RW FB
DCC13FN 3C RW 7C RDI1LT1 BC RW FC
DCC13IN 3D RW ACE0_CR1 7D RW RDI1RO0 BD RW IDAC_CR0 FD RW
DCC13OU 3E RW ACE0_CR2 7E RW RDI1RO1 BE RW CPU_SCR1 FE #
DCC13CR1 3F RW ACE0_CR3 7F RW RDI1DSM BF RW CPU_SCR0 FF #
Blank fields are Reserved and should not be accessed. # Access is bit specific. *Address has a dual purpo se, see “Mapping Exceptions ” on page 251
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 22 of 78
Table 12. CY8C28x23 Register Map Bank 0 Table: User Space
Name Addr (0,Hex) Access Name Addr (0,Hex) Access Name Addr (0,Hex) Access Name Addr (0,Hex) Access
PRT0DR 00 RW DBC20DR0 40 # ASC10CR0 80 RW RDI2RI C0 RW
PRT0IE 01 RW DBC20DR1 41 W ASC10CR1 81 RW RDI2SYN C1 RW
PRT0GS 02 RW DBC20DR2 42 RW ASC10CR2 82 RW RDI2IS C2 RW
PRT0DM2 03 RW DBC20CR0 43 # ASC10CR3 83 RW RDI2LT0 C3 RW
PRT1DR 04 RW DBC21DR0 44 # ASD11CR0 84 RW RDI2LT1 C4 RW
PRT1IE 05 RW DBC21DR1 45 W ASD11CR1 85 RW RDI2RO0 C5 RW
PRT1GS 06 RW DBC21DR2 46 RW ASD11CR2 86 RW RDI2RO1 C6 RW
PRT1DM2 07 RW DBC21CR0 47 # ASD11CR3 87 RW RDI2DSM C7 RW
PRT2DR 08 RW DCC22DR0 48 # 88 C8
PRT2IE 09 RW DCC22DR1 49 W 89 C9
PRT2GS 0A RW DCC22DR2 4A RW 8A CA
PRT2DM2 0B RW DCC22CR0 4B # 8B CB
PRT3DR 0C RW DCC23DR0 4C # 8C CC
PRT3IE 0D RW DCC23DR1 4D W 8D CD
PRT3GS 0E RW DCC23DR2 4E RW 8E CE
PRT3DM2 0F RW DCC23CR0 4F # 8F CF
PRT4DR 10 RW 50 ASD20CR0 90 RW CUR_PP D0 RW
PRT4IE 11 RW 51 ASD20CR1 91 RW STK_PP D1 RW
PRT4GS 12 RW 52 ASD20CR2 92 RW D2
PRT4DM2 13 RW 53 ASD20CR3 93 RW IDX_PP D3 RW
PRT5DR 14 RW 54 ASC21CR0 94 RW MVR_PP D4 RW
PRT5IE 15 RW 55 ASC21CR1 95 RW MVW_PP D5 RW
PRT5GS 16 RW 56 ASC21CR2 96 RW I2C0_CFG D6 RW
PRT5DM2 17 RW 57 ASC21CR3 97 RW I2C0_SCR D7 #
18 58 98 I2C0_DR D8 RW
19 59 99 I2C0_MSCR D9 #
1A 5A 9A INT_CLR0 DA RW
1B 5B 9B INT_CLR1 DB RW
1C 5C 9C INT_CLR2 DC RW
1D 5D 9D INT_CLR3 DD RW
1E 5E 9E INT_MSK3 DE RW
1F 5F 9F INT_MSK2 DF RW
DBC00DR0 20 # AMX_IN 60 RW DEC0_DH A0 RC INT_MSK0 E0 RW
DBC00DR1 21 W AMUX_CFG 61 RW DEC0_DL A1 RC INT_MSK1 E1 RW
DBC00DR2 22 RW CLK_CR3 62 RW DEC1_DH A2 RC INT_VC E2 RC
DBC00CR0 23 # ARF_CR 63 RW DEC1_DL A3 RC RES_WDT E3 W
DBC01DR0 24 # CMP_CR0 64 # A4 I2C1_SCR E4 #
DBC01DR1 25 W ASY_CR 65 # A5 I2C1_MSCR E5 #
DBC01DR2 26 RW CMP_CR1 66 RW A6 DEC_CR0* E6 RW
DBC01CR0 27 # I2C1_DR 67 RW A7 DEC_CR1* E7 RW
DCC02DR0 28 # 68 MUL1_X A8 WMUL0_X E8 W
DCC02DR1 29 W 69 MUL1_Y A9 WMUL0_Y E9 W
DCC02DR2 2A RW 6A MUL1_DH AA RMUL0_DH EA R
DCC02CR0 2B # 6B MUL1_DL AB RMUL0_DL EB R
DCC03DR0 2C # TMP_DR0 6C RW ACC1_DR1 AC RW ACC0_DR1 EC RW
DCC03DR1 2D W TMP_DR1 6D RW ACC1_DR0 AD RW ACC0_DR0 ED RW
DCC03DR2 2E RW TMP_DR2 6E RW ACC1_DR3 AE RW ACC0_DR3 EE RW
DCC03CR0 2F # TMP_DR3 6F RW ACC1_DR2 AF RW ACC0_DR2 EF RW
DBC10DR0 30 # ACB00CR3 70 RW RDI0RI B0 RW F0
DBC10DR1 31 W ACB00CR0 71 RW RDI0SYN B1 RW F1
DBC10DR2 32 RW ACB00CR1 72 RW RDI0IS B2 RW F2
DBC10CR0 33 # ACB00CR2 73 RW RDI0LT0 B3 RW F3
DBC11DR0 34 # ACB01CR3 74 RW RDI0LT1 B4 RW F4
DBC11DR1 35 W ACB01CR0 75 RW RDI0RO0 B5 RW F5
DBC11DR2 36 RW ACB01CR1 76 RW RDI0RO1 B6 RW F6
DBC11CR0 37 # ACB01CR2 77 RW RDI0DSM B7 RW CPU_F F7 RL
DCC12DR0 38 # 78 RDI1RI B8 RW F8
DCC12DR1 39 W 79 RDI1SYN B9 RW F9
DCC12DR2 3A RW 7A RDI1IS BA RW FA
DCC12CR0 3B # 7B RDI1LT0 BB RW FB
DCC13DR0 3C # 7C RDI1LT1 BC RW FC
DCC13DR1 3D W 7D RDI1RO0 BD RW FD
DCC13DR2 3E RW 7E RDI1RO1 BE RW CPU_SCR1 FE #
DCC13CR0 3F # 7F RDI1DSM BF RW CPU_SCR0 FF #
Blank fields are Reserved and should not be accessed. # Access is bit specific. *Address has a dual purpose , see “Mapping Exceptions” on page 251
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 23 of 78
Table 13. CY8C28x23 Register Map Bank 1 Table: Configuration Space
Name Addr (1,Hex) Access Name Addr (1,Hex) Access Name Addr (1,Hex) Access Name Addr (1,Hex) Access
PRT0DM0 00 RW DBC20FN 40 RW 80 RDI2RI C0 RW
PRT0DM1 01 RW DBC20IN 41 RW 81 RDI2SYN C1 RW
PRT0IC0 02 RW DBC20OU 42 RW 82 RDI2IS C2 RW
PRT0IC1 03 RW DBC20CR1 43 RW 83 RDI2LT0 C3 RW
PRT1DM0 04 RW DBC21FN 44 RW 84 RDI2LT1 C4 RW
PRT1DM1 05 RW DBC21IN 45 RW 85 RDI2RO0 C5 RW
PRT1IC0 06 RW DBC21OU 46 RW 86 RDI2RO1 C6 RW
PRT1IC1 07 RW DBC21CR1 47 RW 87 RDI2DSM C7 RW
PRT2DM0 08 RW DCC22FN 48 RW 88 C8
PRT2DM1 09 RW DCC22IN 49 RW 89 C9
PRT2IC0 0A RW DCC22OU 4A RW 8A CA
PRT2IC1 0B RW DCC22CR1 4B RW 8B CB
PRT3DM0 0C RW DCC23FN 4C RW 8C CC
PRT3DM1 0D RW DCC23IN 4D RW 8D CD
PRT3IC0 0E RW DCC23OU 4E RW 8E CE
PRT3IC1 0F RW DCC23CR1 4F RW 8F CF
PRT4DM0 10 RW 50 90 GDI_O_IN D0 RW
PRT4DM1 11 RW 51 DEC0_CR0 91 RW GDI_E_IN D1 RW
PRT4IC0 12 RW 52 DEC_CR3 92 RW GDI_O_OU D2 RW
PRT4IC1 13 RW 53 93 RW GDI_E_OU D3 RW
PRT5DM0 14 RW 54 94 RW DEC0_CR D4 RW
PRT5DM1 15 RW 55 DEC1_CR0 95 RW DEC1_CR D5 RW
PRT5IC0 16 RW 56 96 D6
PRT5IC1 17 RW 57 97 D7
18 58 98 D8
19 59 99 D9
1A 5A DEC_CR5 9A RW DA
1B 5B 9B DB
1C 5C 9C DC
1D 5D 9D OSC_GO_EN DD RW
1E 5E 9E OSC_CR4 DE RW
1F 5F 9F OSC_CR3 DF RW
DBC00FN 20 RW CLK_CR0 60 RW GDI_O_IN_CR A0 RW OSC_CR0 E0 RW
DBC00IN 21 RW CLK_CR1 61 RW GDI_E_IN_CR A1 RW OSC_CR1 E1 RW
DBC00OU 22 RW ABF_CR0 62 RW GDI_O_OU_CR A2 RW OSC_CR2 E2 RW
DBC00CR1 23 RW AMD_CR0 63 RW GDI_E_OU_CR A3 RW VLT_CR E3 RW
DBC01FN 24 RW CMP_GO_EN 64 RW RTC_H A4 RW VLT_CMP E4 RW
DBC01IN 25 RW 65 RTC_M A5 RW E5
DBC01OU 26 RW AMD_CR1 66 RW RTC_S A6 RW E6
DBC01CR1 27 RW ALT_CR0 67 RW RTC_CR A7 RW E7
DCC02FN 28 RW 68 A8 IMO_TR E8 RW
DCC02IN 29 RW CLK_CR2 69 RW A9 ILO_TR E9 RW
DCC02OU 2A RW 6A AA BDG_TR EA RW
DCC02CR1 2B RW I2C1_CFG 6B RW AB ECO_TR EB RW
DCC03FN 2C RW TMP_DR0 6C RW AC EC
DCC03IN 2D RW TMP_DR1 6D RW I2C0_ADDR AD RW ED
DCC03OU 2E RW TMP_DR2 6E RW I2C1_ADDR AE RW EE
DCC03CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EF
DBC10FN 30 RW 70 RDI0RI B0 RW F0
DBC10IN 31 RW 71 RDI0SYN B1 RW F1
DBC10OU 32 RW 72 RDI0IS B2 RW F2
DBC10CR1 33 RW 73 RDI0LT0 B3 RW F3
DBC11FN 34 RW 74 RDI0LT1 B4 RW F4
DBC11IN 35 RW 75 RDI0RO0 B5 RW F5
DBC11OU 36 RW 76 RDI0RO1 B6 RW F6
DBC11CR1 37 RW 77 RDIODSM B7 RW CPU_F F7 RL
DCC12FN 38 RW 78 RDI1RI B8 RW F8
DCC12IN 39 RW 79 RDI1SYN B9 RW F9
DCC12OU 3A RW 7A RDI1IS BA RW FLS_PR1 FA RW
DCC12CR1 3B RW 7B RDI1LT0 BB RW FB
DCC13FN 3C RW 7C RDI1LT1 BC RW FC
DCC13IN 3D RW 7D RDI1RO0 BD RW FD
DCC13OU 3E RW 7E RDI1RO1 BE RW CPU_SCR1 FE #
DCC13CR1 3F RW 7F RDI1DSM BF RW CPU_SCR0 FF #
Blank fields are Reserved and should not be accessed. # Access is bit specific. *Address has a dual purpo se, see “Mapping Exceptions ” on page 251
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 24 of 78
Table 14. CY8C28x33 Register Map Bank 0 Table: User Space
Name Addr (0,Hex) Access Name Addr (0,Hex) Access Name Addr (0,Hex) Access Name Addr (0,Hex) Access
PRT0DR 00 RW DBC20DR0 40 # ASC10CR0 80 RW RDI2RI C0 RW
PRT0IE 01 RW DBC20DR1 41 W ASC10CR1 81 RW RDI2SYN C1 RW
PRT0GS 02 RW DBC20DR2 42 RW ASC10CR2 82 RW RDI2IS C2 RW
PRT0DM2 03 RW DBC20CR0 43 # ASC10CR3 83 RW RDI2LT0 C3 RW
PRT1DR 04 RW DBC21DR0 44 # ASD11CR0 84 RW RDI2LT1 C4 RW
PRT1IE 05 RW DBC21DR1 45 W ASD11CR1 85 RW RDI2RO0 C5 RW
PRT1GS 06 RW DBC21DR2 46 RW ASD11CR2 86 RW RDI2RO1 C6 RW
PRT1DM2 07 RW DBC21CR0 47 # ASD11CR3 87 RW RDI2DSM C7 RW
PRT2DR 08 RW DCC22DR0 48 # 88 C8
PRT2IE 09 RW DCC22DR1 49 W 89 C9
PRT2GS 0A RW DCC22DR2 4A RW 8A CA
PRT2DM2 0B RW DCC22CR0 4B # 8B CB
PRT3DR 0C RW DCC23DR0 4C # 8C CC
PRT3IE 0D RW DCC23DR1 4D W 8D CD
PRT3GS 0E RW DCC23DR2 4E RW 8E CE
PRT3DM2 0F RW DCC23CR0 4F # 8F CF
PRT4DR 10 RW 50 ASD20CR0 90 RW CUR_PP D0 RW
PRT4IE 11 RW 51 ASD20CR1 91 RW STK_PP D1 RW
PRT4GS 12 RW 52 ASD20CR2 92 RW D2
PRT4DM2 13 RW 53 ASD20CR3 93 RW IDX_PP D3 RW
PRT5DR 14 RW 54 ASC21CR0 94 RW MVR_PP D4 RW
PRT5IE 15 RW 55 ASC21CR1 95 RW MVW_PP D5 RW
PRT5GS 16 RW 56 ASC21CR2 96 RW I2C0_CFG D6 RW
PRT5DM2 17 RW 57 ASC21CR3 97 RW I2C0_SCR D7 #
18 58 98 I2C0_DR D8 RW
19 59 99 I2C0_MSCR D9 #
1A 5A 9A INT_CLR0 DA RW
1B 5B 9B INT_CLR1 DB RW
1C 5C 9C INT_CLR2 DC RW
1D 5D 9D INT_CLR3 DD RW
1E 5E 9E INT_MSK3 DE RW
1F 5F 9F INT_MSK2 DF RW
DBC00DR0 20 # AMX_IN 60 RW DEC0_DH A0 RC INT_MSK0 E0 RW
DBC00DR1 21 W AMUX_CFG 61 RW DEC0_DL A1 RC INT_MSK1 E1 RW
DBC00DR2 22 RW CLK_CR3 62 RW DEC1_DH A2 RC INT_VC E2 RC
DBC00CR0 23 # ARF_CR 63 RW DEC1_DL A3 RC RES_WDT E3 W
DBC01DR0 24 # CMP_CR0 64 # DEC2_DH A4 RC E4
DBC01DR1 25 W ASY_CR 65 # DEC2_DL A5 RC E5
DBC01DR2 26 RW CMP_CR1 66 RW DEC3_DH A6 RC DEC_CR0* E6 RW
DBC01CR0 27 # 67 DEC3_DL A7 RC DEC_CR1* E7 RW
DCC02DR0 28 # 68 MUL1_X A8 WMUL0_X E8 W
DCC02DR1 29 W 69 MUL1_Y A9 WMUL0_Y E9 W
DCC02DR2 2A RW SADC_DH 6A RW MUL1_DH AA RMUL0_DH EA R
DCC02CR0 2B # SADC_DL 6B RW MUL1_DL AB RMUL0_DL EB R
DCC03DR0 2C # TMP_DR0 6C RW ACC1_DR1 AC RW ACC0_DR1 EC RW
DCC03DR1 2D W TMP_DR1 6D RW ACC1_DR0 AD RW ACC0_DR0 ED RW
DCC03DR2 2E RW TMP_DR2 6E RW ACC1_DR3 AE RW ACC0_DR3 EE RW
DCC03CR0 2F # TMP_DR3 6F RW ACC1_DR2 AF RW ACC0_DR2 EF RW
DBC10DR0 30 # ACB00CR3 70 RW RDI0RI B0 RW F0
DBC10DR1 31 W ACB00CR0 71 RW RDI0SYN B1 RW F1
DBC10DR2 32 RW ACB00CR1 72 RW RDI0IS B2 RW F2
DBC10CR0 33 # ACB00CR2 73 RW RDI0LT0 B3 RW F3
DBC11DR0 34 # ACB01CR3 74 RW RDI0LT1 B4 RW F4
DBC11DR1 35 W ACB01CR0 75 RW RDI0RO0 B5 RW F5
DBC11DR2 36 RW ACB01CR1 76 RW RDI0RO1 B6 RW F6
DBC11CR0 37 # ACB01CR2 77 RW RDI0DSM B7 RW CPU_F F7 RL
DCC12DR0 38 # 78 RDI1RI B8 RW F8
DCC12DR1 39 W 79 RDI1SYN B9 RW F9
DCC12DR2 3A RW 7A RDI1IS BA RW FA
DCC12CR0 3B # 7B RDI1LT0 BB RW FB
DCC13DR0 3C # 7C RDI1LT1 BC RW DAC1_D FC RW
DCC13DR1 3D W 7D RDI1RO0 BD RW DAC0_D FD RW
DCC13DR2 3E RW 7E RDI1RO1 BE RW CPU_SCR1 FE #
DCC13CR0 3F # 7F RDI1DSM BF RW CPU_SCR0 FF #
Blank fields are Reserved and should not be accessed. # Access is bit specific. *Address has a dual purpose , see “Mapping Exceptions” on page 251
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 25 of 78
Table 15. CY8C28x33 Register Map Bank 1 Table: Configuration Space
Name Addr (1,Hex) Access Name Addr (1,Hex) Access Name Addr (1,Hex) Access Name Addr (1,Hex) Access
PRT0DM0 00 RW DBC20FN 40 RW 80 RDI2RI C0 RW
PRT0DM1 01 RW DBC20IN 41 RW SADC_TSCMPL 81 RW RDI2SYN C1 RW
PRT0IC0 02 RW DBC20OU 42 RW SADC_TSCMPH 82 RW RDI2IS C2 RW
PRT0IC1 03 RW DBC20CR1 43 RW ACE_AMD_CR1 83 RW RDI2LT0 C3 RW
PRT1DM0 04 RW DBC21FN 44 RW 84 RDI2LT1 C4 RW
PRT1DM1 05 RW DBC21IN 45 RW ACE_PWM_CR 85 RW RDI2RO0 C5 RW
PRT1IC0 06 RW DBC21OU 46 RW ACE_ADC0_CR 86 RW RDI2RO1 C6 RW
PRT1IC1 07 RW DBC21CR1 47 RW ACE_ADC1_CR 87 RW RDI2DSM C7 RW
PRT2DM0 08 RW DCC22FN 48 RW 88 RW C8
PRT2DM1 09 RW DCC22IN 49 RW ACE_CLK_CR0 89 RW C9
PRT2IC0 0A RW DCC22OU 4A RW ACE_CLK_CR1 8A RW CA
PRT2IC1 0B RW DCC22CR1 4B RW ACE_CLK_CR3 8B RW CB
PRT3DM0 0C RW DCC23FN 4C RW 8C CC
PRT3DM1 0D RW DCC23IN 4D RW ACE01CR1 8D RW CD
PRT3IC0 0E RW DCC23OU 4E RW ACE01CR2 8E RW CE
PRT3IC1 0F RW DCC23CR1 4F RW ASE11CR0 8F RW CF
PRT4DM0 10 RW 50 90 GDI_O_IN D0 RW
PRT4DM1 11 RW 51 DEC0_CR0 91 RW GDI_E_IN D1 RW
PRT4IC0 12 RW 52 DEC_CR3 92 RW GDI_O_OU D2 RW
PRT4IC1 13 RW 53 93 GDI_E_OU D3 RW
PRT5DM0 14 RW 54 94 DEC0_CR D4 RW
PRT5DM1 15 RW 55 DEC1_CR0 95 RW DEC1_CR D5 RW
PRT5IC0 16 RW 56 DEC_CR4 96 RW DEC2_CR D6 RW
PRT5IC1 17 RW 57 97 DEC3_CR D7 RW
18 58 98 MUX_CR0 D8 RW
19 59 DEC2_CR0 99 RW MUX_CR1 D9 RW
1A 5A DEC_CR5 9A RW MUX_CR2 DA RW
1B 5B 9B MUX_CR3 DB RW
1C 5C 9C IDAC_CR1 DC RW
1D 5D DEC3_CR0 9D RW OSC_GO_EN DD RW
1E 5E 9E OSC_CR4 DE RW
1F 5F 9F OSC_CR3 DF RW
DBC00FN 20 RW CLK_CR0 60 RW GDI_O_IN_CR A0 RW OSC_CR0 E0 RW
DBC00IN 21 RW CLK_CR1 61 RW GDI_E_IN_CR A1 RW OSC_CR1 E1 RW
DBC00OU 22 RW ABF_CR0 62 RW GDI_O_OU_CR A2 RW OSC_CR2 E2 RW
DBC00CR1 23 RW AMD_CR0 63 RW GDI_E_OU_CR A3 RW VLT_CR E3 RW
DBC01FN 24 RW CMP_GO_EN 64 RW RTC_H A4 RW VLT_CMP E4 RW
DBC01IN 25 RW 65 RTC_M A5 RW ADC0_TR E5 RW
DBC01OU 26 RW AMD_CR1 66 RW RTC_S A6 RW ADC1_TR E6 RW
DBC01CR1 27 RW ALT_CR0 67 RW RTC_CR A7 RW IDAC_CR2 E7 RW
DCC02FN 28 RW 68 SADC_CR0 A8 RW IMO_TR E8 RW
DCC02IN 29 RW CLK_CR2 69 RW SADC_CR1 A9 RW ILO_TR E9 RW
DCC02OU 2A RW AMUX_CFG1 6A RW SADC_CR2 AA RW BDG_TR EA RW
DCC02CR1 2B RW 6B SADC_CR3 AB RW ECO_TR EB RW
DCC03FN 2C RW TMP_DR0 6C RW SADC_CR4 AC RW MUX_CR4 EC RW
DCC03IN 2D RW TMP_DR1 6D RW I2C0_ADDR AD RW MUX_CR5 ED RW
DCC03OU 2E RW TMP_DR2 6E RW AE EE
DCC03CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EF
DBC10FN 30 RW 70 RDI0RI B0 RW F0
DBC10IN 31 RW SADC_TSCR0 71 RW RDI0SYN B1 RW F1
DBC10OU 32 RW SADC_TSCR1 72 RW RDI0IS B2 RW F2
DBC10CR1 33 RW ACE_AMD_CR0 73 RW RDI0LT0 B3 RW F3
DBC11FN 34 RW 74 RDI0LT1 B4 RW F4
DBC11IN 35 RW ACE_AMX_IN 75 RW RDI0RO0 B5 RW F5
DBC11OU 36 RW ACE_CMP_CR0 76 RW RDI0RO1 B6 RW F6
DBC11CR1 37 RW ACE_CMP_CR1 77 RW RDIODSM B7 RW CPU_F F7 RL
DCC12FN 38 RW 78 RDI1RI B8 RW F8
DCC12IN 39 RW ACE_CMP_GI_EN 79 RW RDI1SYN B9 RW F9
DCC12OU 3A RW ACE_ALT_CR0 7A RW RDI1IS BA RW FLS_PR1 FA RW
DCC12CR1 3B RW ACE_ABF_CR0 7B RW RDI1LT0 BB RW FB
DCC13FN 3C RW 7C RDI1LT1 BC RW FC
DCC13IN 3D RW ACE0_CR1 7D RW RDI1RO0 BD RW IDAC_CR0 FD RW
DCC13OU 3E RW ACE0_CR2 7E RW RDI1RO1 BE RW CPU_SCR1 FE #
DCC13CR1 3F RW ACE0_CR3 7F RW RDI1DSM BF RW CPU_SCR0 FF #
Blank fields are Reserved and should not be accessed. # Access is bit specific. *Address has a dual purpo se, see “Mapping Exceptions ” on page 251
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 26 of 78
Table 16. CY8C28x43 Register Map Bank 0 Table: User Space
Name Addr (0,Hex) Access Name Addr (0,Hex) Access Name Addr (0,Hex) Access Name Addr (0,Hex) Access
PRT0DR 00 RW DBC20DR0 40 # ASC10CR0 80 RW RDI2RI C0 RW
PRT0IE 01 RW DBC20DR1 41 W ASC10CR1 81 RW RDI2SYN C1 RW
PRT0GS 02 RW DBC20DR2 42 RW ASC10CR2 82 RW RDI2IS C2 RW
PRT0DM2 03 RW DBC20CR0 43 # ASC10CR3 83 RW RDI2LT0 C3 RW
PRT1DR 04 RW DBC21DR0 44 # ASD11CR0 84 RW RDI2LT1 C4 RW
PRT1IE 05 RW DBC21DR1 45 W ASD11CR1 85 RW RDI2RO0 C5 RW
PRT1GS 06 RW DBC21DR2 46 RW ASD11CR2 86 RW RDI2RO1 C6 RW
PRT1DM2 07 RW DBC21CR0 47 # ASD11CR3 87 RW RDI2DSM C7 RW
PRT2DR 08 RW DCC22DR0 48 # ASC12CR0 88 RW C8
PRT2IE 09 RW DCC22DR1 49 W ASC12CR1 89 RW C9
PRT2GS 0A RW DCC22DR2 4A RW ASC12CR2 8A RW CA
PRT2DM2 0B RW DCC22CR0 4B # ASC12CR3 8B RW CB
PRT3DR 0C RW DCC23DR0 4C # ASD13CR0 8C RW CC
PRT3IE 0D RW DCC23DR1 4D W ASD13CR1 8D RW CD
PRT3GS 0E RW DCC23DR2 4E RW ASD13CR2 8E RW CE
PRT3DM2 0F RW DCC23CR0 4F # ASD13CR3 8F RW CF
PRT4DR 10 RW 50 ASD20CR0 90 RW CUR_PP D0 RW
PRT4IE 11 RW 51 ASD20CR1 91 RW STK_PP D1 RW
PRT4GS 12 RW 52 ASD20CR2 92 RW D2
PRT4DM2 13 RW 53 ASD20CR3 93 RW IDX_PP D3 RW
PRT5DR 14 RW 54 ASC21CR0 94 RW MVR_PP D4 RW
PRT5IE 15 RW 55 ASC21CR1 95 RW MVW_PP D5 RW
PRT5GS 16 RW 56 ASC21CR2 96 RW I2C0_CFG D6 RW
PRT5DM2 17 RW 57 ASC21CR3 97 RW I2C0_SCR D7 #
18 58 ASD22CR0 98 RW I2C0_DR D8 RW
19 59 ASD22CR1 99 RW I2C0_MSCR D9 #
1A 5A ASD22CR2 9A RW INT_CLR0 DA RW
1B 5B ASD22CR3 9B RW INT_CLR1 DB RW
1C 5C ASC23CR0 9C RW INT_CLR2 DC RW
1D 5D ASC23CR1 9D RW INT_CLR3 DD RW
1E 5E ASC23CR2 9E RW INT_MSK3 DE RW
1F 5F ASC23CR3 9F RW INT_MSK2 DF RW
DBC00DR0 20 # AMX_IN 60 RW DEC0_DH A0 RC INT_MSK0 E0 RW
DBC00DR1 21 W AMUX_CFG 61 RW DEC0_DL A1 RC INT_MSK1 E1 RW
DBC00DR2 22 RW CLK_CR3 62 RW DEC1_DH A2 RC INT_VC E2 RC
DBC00CR0 23 # ARF_CR 63 RW DEC1_DL A3 RC RES_WDT E3 W
DBC01DR0 24 # CMP_CR0 64 # DEC2_DH A4 RC I2C1_SCR E4 #
DBC01DR1 25 W ASY_CR 65 # DEC2_DL A5 RC I2C1_MSCR E5 #
DBC01DR2 26 RW CMP_CR1 66 RW DEC3_DH A6 RC DEC_CR0* E6 RW
DBC01CR0 27 # I2C1_DR 67 RW DEC3_DL A7 RC DEC_CR1* E7 RW
DCC02DR0 28 # 68 MUL1_X A8 WMUL0_X E8 W
DCC02DR1 29 W 69 MUL1_Y A9 WMUL0_Y E9 W
DCC02DR2 2A RW SADC_DH 6A RW MUL1_DH AA RMUL0_DH EA R
DCC02CR0 2B # SADC_DL 6B RW MUL1_DL AB RMUL0_DL EB R
DCC03DR0 2C # TMP_DR0 6C RW ACC1_DR1 AC RW ACC0_DR1 EC RW
DCC03DR1 2D W TMP_DR1 6D RW ACC1_DR0 AD RW ACC0_DR0 ED RW
DCC03DR2 2E RW TMP_DR2 6E RW ACC1_DR3 AE RW ACC0_DR3 EE RW
DCC03CR0 2F # TMP_DR3 6F RW ACC1_DR2 AF RW ACC0_DR2 EF RW
DBC10DR0 30 # ACB00CR3 70 RW RDI0RI B0 RW F0
DBC10DR1 31 W ACB00CR0 71 RW RDI0SYN B1 RW F1
DBC10DR2 32 RW ACB00CR1 72 RW RDI0IS B2 RW F2
DBC10CR0 33 # ACB00CR2 73 RW RDI0LT0 B3 RW F3
DBC11DR0 34 # ACB01CR3 74 RW RDI0LT1 B4 RW F4
DBC11DR1 35 W ACB01CR0 75 RW RDI0RO0 B5 RW F5
DBC11DR2 36 RW ACB01CR1 76 RW RDI0RO1 B6 RW F6
DBC11CR0 37 # ACB01CR2 77 RW RDI0DSM B7 RW CPU_F F7 RL
DCC12DR0 38 # ACB02CR3 78 RW RDI1RI B8 RW F8
DCC12DR1 39 W ACB02CR0 79 RW RDI1SYN B9 RW F9
DCC12DR2 3A RW ACB02CR1 7A RW RDI1IS BA RW FA
DCC12CR0 3B # ACB02CR2 7B RW RDI1LT0 BB RW FB
DCC13DR0 3C # ACB03CR3 7C RW RDI1LT1 BC RW FC
DCC13DR1 3D W ACB03CR0 7D RW RDI1RO0 BD RW FD
DCC13DR2 3E RW ACB03CR1 7E RW RDI1RO1 BE RW CPU_SCR1 FE #
DCC13CR0 3F # ACB03CR2 7F RW RDI1DSM BF RW CPU_SCR0 FF #
Blank fields are Reserved and should not be accessed. # Access is bit specific. *Address has a dual purpose , see “Mapping Exceptions” on page 251
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 27 of 78
Table 17. CY8C28x43 Register Map Bank 1 Table: Configuration Space
Name Addr (1,Hex) Access Name Addr (1,Hex) Access Name Addr (1,Hex) Access Name Addr (1,Hex) Access
PRT0DM0 00 RW DBC20FN 40 RW 80 RDI2RI C0 RW
PRT0DM1 01 RW DBC20IN 41 RW SADC_TSCMPL 81 RW RDI2SYN C1 RW
PRT0IC0 02 RW DBC20OU 42 RW SADC_TSCMPH 82 RW RDI2IS C2 RW
PRT0IC1 03 RW DBC20CR1 43 RW 83 RDI2LT0 C3 RW
PRT1DM0 04 RW DBC21FN 44 RW 84 RDI2LT1 C4 RW
PRT1DM1 05 RW DBC21IN 45 RW 85 RDI2RO0 C5 RW
PRT1IC0 06 RW DBC21OU 46 RW 86 RDI2RO1 C6 RW
PRT1IC1 07 RW DBC21CR1 47 RW 87 RDI2DSM C7 RW
PRT2DM0 08 RW DCC22FN 48 RW 88 C8
PRT2DM1 09 RW DCC22IN 49 RW 89 C9
PRT2IC0 0A RW DCC22OU 4A RW 8A CA
PRT2IC1 0B RW DCC22CR1 4B RW 8B CB
PRT3DM0 0C RW DCC23FN 4C RW 8C CC
PRT3DM1 0D RW DCC23IN 4D RW 8D CD
PRT3IC0 0E RW DCC23OU 4E RW 8E CE
PRT3IC1 0F RW DCC23CR1 4F RW 8F CF
PRT4DM0 10 RW 50 90 GDI_O_IN D0 RW
PRT4DM1 11 RW 51 DEC0_CR0 91 RW GDI_E_IN D1 RW
PRT4IC0 12 RW 52 DEC_CR3 92 RW GDI_O_OU D2 RW
PRT4IC1 13 RW 53 93 GDI_E_OU D3 RW
PRT5DM0 14 RW 54 94 DEC0_CR D4 RW
PRT5DM1 15 RW 55 DEC1_CR0 95 RW DEC1_CR D5 RW
PRT5IC0 16 RW 56 DEC_CR4 96 RW DEC2_CR D6 RW
PRT5IC1 17 RW 57 97 DEC3_CR D7 RW
18 58 98 MUX_CR0 D8 RW
19 59 DEC2_CR0 99 RW MUX_CR1 D9 RW
1A 5A DEC_CR5 9A RW MUX_CR2 DA RW
1B 5B 9B MUX_CR3 DB RW
1C 5C 9C DC
1D 5D DEC3_CR0 9D RW OSC_GO_EN DD RW
1E 5E 9E OSC_CR4 DE RW
1F 5F 9F OSC_CR3 DF RW
DBC00FN 20 RW CLK_CR0 60 RW GDI_O_IN_CR A0 RW OSC_CR0 E0 RW
DBC00IN 21 RW CLK_CR1 61 RW GDI_E_IN_CR A1 RW OSC_CR1 E1 RW
DBC00OU 22 RW ABF_CR0 62 RW GDI_O_OU_CR A2 RW OSC_CR2 E2 RW
DBC00CR1 23 RW AMD_CR0 63 RW GDI_E_OU_CR A3 RW VLT_CR E3 RW
DBC01FN 24 RW CMP_GO_EN 64 RW RTC_H A4 RW VLT_CMP E4 RW
DBC01IN 25 RW CMP_GO_EN1 65 RW RTC_M A5 RW E5
DBC01OU 26 RW AMD_CR1 66 RW RTC_S A6 RW E6
DBC01CR1 27 RW ALT_CR0 67 RW RTC_CR A7 RW E7
DCC02FN 28 RW ALT_CR1 68 RW SADC_CR0 A8 RW IMO_TR E8 RW
DCC02IN 29 RW CLK_CR2 69 RW SADC_CR1 A9 RW ILO_TR E9 RW
DCC02OU 2A RW AMUX_CFG1 6A RW SADC_CR2 AA RW BDG_TR EA RW
DCC02CR1 2B RW I2C1_CFG 6B RW SADC_CR3 AB RW ECO_TR EB RW
DCC03FN 2C RW TMP_DR0 6C RW SADC_CR4 AC RW MUX_CR4 EC RW
DCC03IN 2D RW TMP_DR1 6D RW I2C0_ADDR AD RW MUX_CR5 ED RW
DCC03OU 2E RW TMP_DR2 6E RW I2C1_ADDR AE RW EE
DCC03CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EF
DBC10FN 30 RW 70 RDI0RI B0 RW F0
DBC10IN 31 RW SADC_TSCR0 71 RW RDI0SYN B1 RW F1
DBC10OU 32 RW SADC_TSCR1 72 RW RDI0IS B2 RW F2
DBC10CR1 33 RW 73 RDI0LT0 B3 RW F3
DBC11FN 34 RW 74 RDI0LT1 B4 RW F4
DBC11IN 35 RW 75 RDI0RO0 B5 RW F5
DBC11OU 36 RW 76 RDI0RO1 B6 RW F6
DBC11CR1 37 RW 77 RDIODSM B7 RW CPU_F F7 RL
DCC12FN 38 RW 78 RDI1RI B8 RW F8
DCC12IN 39 RW 79 RDI1SYN B9 RW F9
DCC12OU 3A RW 7A RDI1IS BA RW FLS_PR1 FA RW
DCC12CR1 3B RW 7B RDI1LT0 BB RW FB
DCC13FN 3C RW 7C RDI1LT1 BC RW FC
DCC13IN 3D RW 7D RDI1RO0 BD RW FD
DCC13OU 3E RW 7E RDI1RO1 BE RW CPU_SCR1 FE #
DCC13CR1 3F RW 7F RDI1DSM BF RW CPU_SCR0 FF #
Blank fields are Reserved and should not be accessed. # Access is bit specific. *Address has a dual purpo se, see “Mapping Exceptions ” on page 251
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 28 of 78
Table 18. CY8C28x45 Register Map Bank 0 Table: User Sp ace
Name Addr (0,Hex) Access Name Addr (0,Hex) Access Name Addr (0,Hex) Access Name Addr (0,Hex) Access
PRT0DR 00 RW DBC20DR0 40 # ASC10CR0 80 RW RDI2RI C0 RW
PRT0IE 01 RW DBC20DR1 41 W ASC10CR1 81 RW RDI2SYN C1 RW
PRT0GS 02 RW DBC20DR2 42 RW ASC10CR2 82 RW RDI2IS C2 RW
PRT0DM2 03 RW DBC20CR0 43 # ASC10CR3 83 RW RDI2LT0 C3 RW
PRT1DR 04 RW DBC21DR0 44 # ASD11CR0 84 RW RDI2LT1 C4 RW
PRT1IE 05 RW DBC21DR1 45 W ASD11CR1 85 RW RDI2RO0 C5 RW
PRT1GS 06 RW DBC21DR2 46 RW ASD11CR2 86 RW RDI2RO1 C6 RW
PRT1DM2 07 RW DBC21CR0 47 # ASD11CR3 87 RW RDI2DSM C7 RW
PRT2DR 08 RW DCC22DR0 48 # ASC12CR0 88 RW C8
PRT2IE 09 RW DCC22DR1 49 W ASC12CR1 89 RW C9
PRT2GS 0A RW DCC22DR2 4A RW ASC12CR2 8A RW CA
PRT2DM2 0B RW DCC22CR0 4B # ASC12CR3 8B RW CB
PRT3DR 0C RW DCC23DR0 4C # ASD13CR0 8C RW CC
PRT3IE 0D RW DCC23DR1 4D W ASD13CR1 8D RW CD
PRT3GS 0E RW DCC23DR2 4E RW ASD13CR2 8E RW CE
PRT3DM2 0F RW DCC23CR0 4F # ASD13CR3 8F RW CF
PRT4DR 10 RW 50 ASD20CR0 90 RW CUR_PP D0 RW
PRT4IE 11 RW 51 ASD20CR1 91 RW STK_PP D1 RW
PRT4GS 12 RW 52 ASD20CR2 92 RW D2
PRT4DM2 13 RW 53 ASD20CR3 93 RW IDX_PP D3 RW
PRT5DR 14 RW 54 ASC21CR0 94 RW MVR_PP D4 RW
PRT5IE 15 RW 55 ASC21CR1 95 RW MVW_PP D5 RW
PRT5GS 16 RW 56 ASC21CR2 96 RW I2C0_CFG D6 RW
PRT5DM2 17 RW 57 ASC21CR3 97 RW I2C0_SCR D7 #
18 58 ASD22CR0 98 RW I2C0_DR D8 RW
19 59 ASD22CR1 99 RW I2C0_MSCR D9 #
1A 5A ASD22CR2 9A RW INT_CLR0 DA RW
1B 5B ASD22CR3 9B RW INT_CLR1 DB RW
1C 5C ASC23CR0 9C RW INT_CLR2 DC RW
1D 5D ASC23CR1 9D RW INT_CLR3 DD RW
1E 5E ASC23CR2 9E RW INT_MSK3 DE RW
1F 5F ASC23CR3 9F RW INT_MSK2 DF RW
DBC00DR0 20 # AMX_IN 60 RW DEC0_DH A0 RC INT_MSK0 E0 RW
DBC00DR1 21 W AMUX_CFG 61 RW DEC0_DL A1 RC INT_MSK1 E1 RW
DBC00DR2 22 RW CLK_CR3 62 RW DEC1_DH A2 RC INT_VC E2 RC
DBC00CR0 23 # ARF_CR 63 RW DEC1_DL A3 RC RES_WDT E3 W
DBC01DR0 24 # CMP_CR0 64 # DEC2_DH A4 RC I2C1_SCR E4 #
DBC01DR1 25 W ASY_CR 65 # DEC2_DL A5 RC I2C1_MSCR E5 #
DBC01DR2 26 RW CMP_CR1 66 RW DEC3_DH A6 RC DEC_CR0* E6 RW
DBC01CR0 27 # I2C1_DR 67 RW DEC3_DL A7 RC DEC_CR1* E7 RW
DCC02DR0 28 # 68 MUL1_X A8 WMUL0_X E8 W
DCC02DR1 29 W 69 MUL1_Y A9 WMUL0_Y E9 W
DCC02DR2 2A RW SADC_DH 6A RW MUL1_DH AA RMUL0_DH EA R
DCC02CR0 2B # SADC_DL 6B RW MUL1_DL AB RMUL0_DL EB R
DCC03DR0 2C # TMP_DR0 6C RW ACC1_DR1 AC RW ACC0_DR1 EC RW
DCC03DR1 2D W TMP_DR1 6D RW ACC1_DR0 AD RW ACC0_DR0 ED RW
DCC03DR2 2E RW TMP_DR2 6E RW ACC1_DR3 AE RW ACC0_DR3 EE RW
DCC03CR0 2F # TMP_DR3 6F RW ACC1_DR2 AF RW ACC0_DR2 EF RW
DBC10DR0 30 # ACB00CR3 70 RW RDI0RI B0 RW F0
DBC10DR1 31 W ACB00CR0 71 RW RDI0SYN B1 RW F1
DBC10DR2 32 RW ACB00CR1 72 RW RDI0IS B2 RW F2
DBC10CR0 33 # ACB00CR2 73 RW RDI0LT0 B3 RW F3
DBC11DR0 34 # ACB01CR3 74 RW RDI0LT1 B4 RW F4
DBC11DR1 35 W ACB01CR0 75 RW RDI0RO0 B5 RW F5
DBC11DR2 36 RW ACB01CR1 76 RW RDI0RO1 B6 RW F6
DBC11CR0 37 # ACB01CR2 77 RW RDI0DSM B7 RW CPU_F F7 RL
DCC12DR0 38 # ACB02CR3 78 RW RDI1RI B8 RW F8
DCC12DR1 39 W ACB02CR0 79 RW RDI1SYN B9 RW F9
DCC12DR2 3A RW ACB02CR1 7A RW RDI1IS BA RW FA
DCC12CR0 3B # ACB02CR2 7B RW RDI1LT0 BB RW FB
DCC13DR0 3C # ACB03CR3 7C RW RDI1LT1 BC RW DAC1_D FC RW
DCC13DR1 3D W ACB03CR0 7D RW RDI1RO0 BD RW DAC0_D FD RW
DCC13DR2 3E RW ACB03CR1 7E RW RDI1RO1 BE RW CPU_SCR1 FE #
DCC13CR0 3F # ACB03CR2 7F RW RDI1DSM BF RW CPU_SCR0 FF #
Blank fields are Reserved and should not be accessed. # Access is bit specific. *Address has a dual purpose , see “Mapping Exceptions” on page 251
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 29 of 78
Table 19. CY8C28x45 Register Map Bank 1 Table: Configuration Space
Name Addr (1,Hex) Access Name Addr (1,Hex) Access Name Addr (1,Hex) Access Name Addr (1,Hex) Access
PRT0DM0 00 RW DBC20FN 40 RW 80 RW RDI2RI C0 RW
PRT0DM1 01 RW DBC20IN 41 RW SADC_TSCMPL 81 RW RDI2SYN C1 RW
PRT0IC0 02 RW DBC20OU 42 RW SADC_TSCMPH 82 RW RDI2IS C2 RW
PRT0IC1 03 RW DBC20CR1 43 RW ACE_AMD_CR1 83 RW RDI2LT0 C3 RW
PRT1DM0 04 RW DBC21FN 44 RW 84 RW RDI2LT1 C4 RW
PRT1DM1 05 RW DBC21IN 45 RW ACE_PWM_CR 85 RW RDI2RO0 C5 RW
PRT1IC0 06 RW DBC21OU 46 RW ACE_ADC0_CR 86 RW RDI2RO1 C6 RW
PRT1IC1 07 RW DBC21CR1 47 RW ACE_ADC1_CR 87 RW RDI2DSM C7 RW
PRT2DM0 08 RW DCC22FN 48 RW 88 RW C8
PRT2DM1 09 RW DCC22IN 49 RW ACE_CLK_CR0 89 RW C9
PRT2IC0 0A RW DCC22OU 4A RW ACE_CLK_CR1 8A RW CA
PRT2IC1 0B RW DCC22CR1 4B RW ACE_CLK_CR3 8B RW CB
PRT3DM0 0C RW DCC23FN 4C RW 8C RW CC
PRT3DM1 0D RW DCC23IN 4D RW ACE01CR1 8D RW CD
PRT3IC0 0E RW DCC23OU 4E RW ACE01CR2 8E RW CE
PRT3IC1 0F RW DCC23CR1 4F RW ASE11CR0 8F RW CF
PRT4DM0 10 RW 50 90 GDI_O_IN D0 RW
PRT4DM1 11 RW 51 DEC0_CR0 91 RW GDI_E_IN D1 RW
PRT4IC0 12 RW 52 DEC_CR3 92 RW GDI_O_OU D2 RW
PRT4IC1 13 RW 53 93 GDI_E_OU D3 RW
PRT5DM0 14 RW 54 94 DEC0_CR D4 RW
PRT5DM1 15 RW 55 DEC1_CR0 95 RW DEC1_CR D5 RW
PRT5IC0 16 RW 56 DEC_CR4 96 RW DEC2_CR D6 RW
PRT5IC1 17 RW 57 97 DEC3_CR D7 RW
18 58 98 MUX_CR0 D8 RW
19 59 DEC2_CR0 99 RW MUX_CR1 D9 RW
1A 5A DEC_CR5 9A RW MUX_CR2 DA RW
1B 5B 9B MUX_CR3 DB RW
1C 5C 9C IDAC_CR1 DC RW
1D 5D DEC3_CR0 9D RW OSC_GO_EN DD RW
1E 5E 9E OSC_CR4 DE RW
1F 5F 9F OSC_CR3 DF RW
DBC00FN 20 RW CLK_CR0 60 RW GDI_O_IN_CR A0 RW OSC_CR0 E0 RW
DBC00IN 21 RW CLK_CR1 61 RW GDI_E_IN_CR A1 RW OSC_CR1 E1 RW
DBC00OU 22 RW ABF_CR0 62 RW GDI_O_OU_CR A2 RW OSC_CR2 E2 RW
DBC00CR1 23 RW AMD_CR0 63 RW GDI_E_OU_CR A3 RW VLT_CR E3 RW
DBC01FN 24 RW CMP_GO_EN 64 RW RTC_H A4 RW VLT_CMP E4 RW
DBC01IN 25 RW CMP_GO_EN1 65 RW RTC_M A5 RW ADC0_TR E5 RW
DBC01OU 26 RW AMD_CR1 66 RW RTC_S A6 RW ADC1_TR E6 RW
DBC01CR1 27 RW ALT_CR0 67 RW RTC_CR A7 RW IDAC_CR2 E7 RW
DCC02FN 28 RW ALT_CR1 68 RW SADC_CR0 A8 RW IMO_TR E8 RW
DCC02IN 29 RW CLK_CR2 69 RW SADC_CR1 A9 RW ILO_TR E9 RW
DCC02OU 2A RW AMUX_CFG1 6A RW SADC_CR2 AA RW BDG_TR EA RW
DCC02CR1 2B RW I2C1_CFG 6B RW SADC_CR3 AB RW ECO_TR EB RW
DCC03FN 2C RW TMP_DR0 6C RW SADC_CR4 AC RW MUX_CR4 EC RW
DCC03IN 2D RW TMP_DR1 6D RW I2C0_ADDR AD RW MUX_CR5 ED RW
DCC03OU 2E RW TMP_DR2 6E RW I2C1_ADDR AE RW EE
DCC03CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EF
DBC10FN 30 RW 70 RDI0RI B0 RW F0
DBC10IN 31 RW SADC_TSCR0 71 RW RDI0SYN B1 RW F1
DBC10OU 32 RW SADC_TSCR1 72 RW RDI0IS B2 RW F2
DBC10CR1 33 RW ACE_AMD_CR0 73 RW RDI0LT0 B3 RW F3
DBC11FN 34 RW 74 RDI0LT1 B4 RW F4
DBC11IN 35 RW ACE_AMX_IN 75 RW RDI0RO0 B5 RW F5
DBC11OU 36 RW ACE_CMP_CR0 76 RW RDI0RO1 B6 RW F6
DBC11CR1 37 RW ACE_CMP_CR1 77 RW RDIODSM B7 RW CPU_F F7 RL
DCC12FN 38 RW 78 RDI1RI B8 RW F8
DCC12IN 39 RW ACE_CMP_GI_EN 79 RW RDI1SYN B9 RW F9
DCC12OU 3A RW ACE_ALT_CR0 7A RW RDI1IS BA RW FLS_PR1 FA RW
DCC12CR1 3B RW ACE_ABF_CR0 7B RW RDI1LT0 BB RW FB
DCC13FN 3C RW 7C RDI1LT1 BC RW FC
DCC13IN 3D RW ACE0_CR1 7D RW RDI1RO0 BD RW IDAC_CR0 FD RW
DCC13OU 3E RW ACE0_CR2 7E RW RDI1RO1 BE RW CPU_SCR1 FE #
DCC13CR1 3F RW ACE0_CR3 7F RW RDI1DSM BF RW CPU_SCR0 FF #
Blank fields are Reserved and should not be accessed. # Access is bit specific. *Address has a dual purpo se, see “Mapping Exceptions ” on page 251
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 30 of 78
Table 20. CY8C28x52 Register Map Bank 0 Table: User Sp ace
Name Addr (0,Hex) Access Name Addr (0,Hex) Access Name Addr (0,Hex) Access Name Addr (0,Hex) Access
PRT0DR 00 RW 40 ASC10CR0 80 RW C0
PRT0IE 01 RW 41 ASC10CR1 81 RW C1
PRT0GS 02 RW 42 ASC10CR2 82 RW C2
PRT0DM2 03 RW 43 ASC10CR3 83 RW C3
PRT1DR 04 RW 44 ASD11CR0 84 RW C4
PRT1IE 05 RW 45 ASD11CR1 85 RW C5
PRT1GS 06 RW 46 ASD11CR2 86 RW C6
PRT1DM2 07 RW 47 ASD11CR3 87 RW C7
PRT2DR 08 RW 48 ASC12CR0 88 RW C8
PRT2IE 09 RW 49 ASC12CR1 89 RW C9
PRT2GS 0A RW 4A ASC12CR2 8A RW CA
PRT2DM2 0B RW 4B ASC12CR3 8B RW CB
PRT3DR 0C RW 4C ASD13CR0 8C RW CC
PRT3IE 0D RW 4D ASD13CR1 8D RW CD
PRT3GS 0E RW 4E ASD13CR2 8E RW CE
PRT3DM2 0F RW 4F ASD13CR3 8F RW CF
PRT4DR 10 RW 50 ASD20CR0 90 RW CUR_PP D0 RW
PRT4IE 11 RW 51 ASD20CR1 91 RW STK_PP D1 RW
PRT4GS 12 RW 52 ASD20CR2 92 RW D2
PRT4DM2 13 RW 53 ASD20CR3 93 RW IDX_PP D3 RW
PRT5DR 14 RW 54 ASC21CR0 94 RW MVR_PP D4 RW
PRT5IE 15 RW 55 ASC21CR1 95 RW MVW_PP D5 RW
PRT5GS 16 RW 56 ASC21CR2 96 RW I2C0_CFG D6 RW
PRT5DM2 17 RW 57 ASC21CR3 97 RW I2C0_SCR D7 #
18 58 ASD22CR0 98 RW I2C0_DR D8 RW
19 59 ASD22CR1 99 RW I2C0_MSCR D9 #
1A 5A ASD22CR2 9A RW INT_CLR0 DA RW
1B 5B ASD22CR3 9B RW INT_CLR1 DB RW
1C 5C ASC23CR0 9C RW INT_CLR2 DC RW
1D 5D ASC23CR1 9D RW INT_CLR3 DD RW
1E 5E ASC23CR2 9E RW INT_MSK3 DE RW
1F 5F ASC23CR3 9F RW INT_MSK2 DF RW
DBC00DR0 20 # AMX_IN 60 RW DEC0_DH A0 RC INT_MSK0 E0 RW
DBC00DR1 21 W AMUX_CFG 61 RW DEC0_DL A1 RC INT_MSK1 E1 RW
DBC00DR2 22 RW CLK_CR3 62 RW DEC1_DH A2 RC INT_VC E2 RC
DBC00CR0 23 # ARF_CR 63 RW DEC1_DL A3 RC RES_WDT E3 W
DBC01DR0 24 # CMP_CR0 64 # DEC2_DH A4 RC E4
DBC01DR1 25 W ASY_CR 65 # DEC2_DL A5 RC E5
DBC01DR2 26 RW CMP_CR1 66 RW DEC3_DH A6 RC DEC_CR0* E6 RW
DBC01CR0 27 # 67 DEC3_DL A7 RC DEC_CR1* E7 RW
DCC02DR0 28 # 68 MUL1_X A8 WMUL0_X E8 W
DCC02DR1 29 W 69 MUL1_Y A9 WMUL0_Y E9 W
DCC02DR2 2A RW 6A MUL1_DH AA RMUL0_DH EA R
DCC02CR0 2B # 6B MUL1_DL AB RMUL0_DL EB R
DCC03DR0 2C # TMP_DR0 6C RW ACC1_DR1 AC RW ACC0_DR1 EC RW
DCC03DR1 2D W TMP_DR1 6D RW ACC1_DR0 AD RW ACC0_DR0 ED RW
DCC03DR2 2E RW TMP_DR2 6E RW ACC1_DR3 AE RW ACC0_DR3 EE RW
DCC03CR0 2F # TMP_DR3 6F RW ACC1_DR2 AF RW ACC0_DR2 EF RW
DBC10DR0 30 # ACB00CR3 70 RW RDI0RI B0 RW F0
DBC10DR1 31 W ACB00CR0 71 RW RDI0SYN B1 RW F1
DBC10DR2 32 RW ACB00CR1 72 RW RDI0IS B2 RW F2
DBC10CR0 33 # ACB00CR2 73 RW RDI0LT0 B3 RW F3
DBC11DR0 34 # ACB01CR3 74 RW RDI0LT1 B4 RW F4
DBC11DR1 35 W ACB01CR0 75 RW RDI0RO0 B5 RW F5
DBC11DR2 36 RW ACB01CR1 76 RW RDI0RO1 B6 RW F6
DBC11CR0 37 # ACB01CR2 77 RW RDI0DSM B7 RW CPU_F F7 RL
DCC12DR0 38 # ACB02CR3 78 RW RDI1RI B8 RW F8
DCC12DR1 39 W ACB02CR0 79 RW RDI1SYN B9 RW F9
DCC12DR2 3A RW ACB02CR1 7A RW RDI1IS BA RW FA
DCC12CR0 3B # ACB02CR2 7B RW RDI1LT0 BB RW FB
DCC13DR0 3C # ACB03CR3 7C RW RDI1LT1 BC RW DAC1_D FC RW
DCC13DR1 3D W ACB03CR0 7D RW RDI1RO0 BD RW DAC0_D FD RW
DCC13DR2 3E RW ACB03CR1 7E RW RDI1RO1 BE RW CPU_SCR1 FE #
DCC13CR0 3F # ACB03CR2 7F RW RDI1DSM BF RW CPU_SCR0 FF #
Blank fields are Reserved and should not be accessed. # Access is bit specific. *Address has a dual purpose , see “Mapping Exceptions” on page 251
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 31 of 78
Table 21. CY8C28x52 Register Map Bank 1 Table: Configuration Space
Name Addr (1,Hex) Access Name Addr (1,Hex) Access Name Addr (1,Hex) Access Name Addr (1,Hex) Access
PRT0DM0 00 RW 40 80 C0
PRT0DM1 01 RW 41 81 C1
PRT0IC0 02 RW 42 82 C2
PRT0IC1 03 RW 43 ACE_AMD_CR1 83 RW C3
PRT1DM0 04 RW 44 84 C4
PRT1DM1 05 RW 45 ACE_PWM_CR 85 RW C5
PRT1IC0 06 RW 46 ACE_ADC0_CR 86 RW C6
PRT1IC1 07 RW 47 ACE_ADC1_CR 87 RW C7
PRT2DM0 08 RW 48 88 C8
PRT2DM1 09 RW 49 ACE_CLK_CR0 89 RW C9
PRT2IC0 0A RW 4A ACE_CLK_CR1 8A RW CA
PRT2IC1 0B RW 4B ACE_CLK_CR3 8B RW CB
PRT3DM0 0C RW 4C 8C CC
PRT3DM1 0D RW 4D ACE01CR1 8D RW CD
PRT3IC0 0E RW 4E ACE01CR2 8E RW CE
PRT3IC1 0F RW 4F ASE11CR0 8F RW CF
PRT4DM0 10 RW 50 90 GDI_O_IN D0 RW
PRT4DM1 11 RW 51 DEC0_CR0 91 RW GDI_E_IN D1 RW
PRT4IC0 12 RW 52 DEC_CR3 92 RW GDI_O_OU D2 RW
PRT4IC1 13 RW 53 93 GDI_E_OU D3 RW
PRT5DM0 14 RW 54 94 DEC0_CR D4 RW
PRT5DM1 15 RW 55 DEC1_CR0 95 RW DEC1_CR D5 RW
PRT5IC0 16 RW 56 DEC_CR4 96 RW DEC2_CR D6 RW
PRT5IC1 17 RW 57 97 DEC3_CR D7 RW
18 58 98 MUX_CR0 D8 RW
19 59 DEC2_CR0 99 RW MUX_CR1 D9 RW
1A 5A DEC_CR5 9A RW MUX_CR2 DA RW
1B 5B 9B MUX_CR3 DB RW
1C 5C 9C IDAC_CR1 DC RW
1D 5D DEC3_CR0 9D RW OSC_GO_EN DD RW
1E 5E 9E OSC_CR4 DE RW
1F 5F 9F OSC_CR3 DF RW
DBC00FN 20 RW CLK_CR0 60 RW GDI_O_IN_CR A0 RW OSC_CR0 E0 RW
DBC00IN 21 RW CLK_CR1 61 RW GDI_E_IN_CR A1 RW OSC_CR1 E1 RW
DBC00OU 22 RW ABF_CR0 62 RW GDI_O_OU_CR A2 RW OSC_CR2 E2 RW
DBC00CR1 23 RW AMD_CR0 63 RW GDI_E_OU_CR A3 RW VLT_CR E3 RW
DBC01FN 24 RW CMP_GO_EN 64 RW RTC_H A4 RW VLT_CMP E4 RW
DBC01IN 25 RW CMP_GO_EN1 65 RW RTC_M A5 RW ADC0_TR E5 RW
DBC01OU 26 RW AMD_CR1 66 RW RTC_S A6 RW ADC1_TR E6 RW
DBC01CR1 27 RW ALT_CR0 67 RW RTC_CR A7 RW IDAC_CR2 E7 RW
DCC02FN 28 RW ALT_CR1 68 RW A8 IMO_TR E8 RW
DCC02IN 29 RW CLK_CR2 69 RW A9 ILO_TR E9 RW
DCC02OU 2A RW AMUX_CFG1 6A RW AA BDG_TR EA RW
DCC02CR1 2B RW 6B AB ECO_TR EB RW
DCC03FN 2C RW TMP_DR0 6C RW AC MUX_CR4 EC RW
DCC03IN 2D RW TMP_DR1 6D RW I2C0_ADDR AD RW MUX_CR5 ED RW
DCC03OU 2E RW TMP_DR2 6E RW AE EE
DCC03CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EF
DBC10FN 30 RW 70 RDI0RI B0 RW F0
DBC10IN 31 RW 71 RDI0SYN B1 RW F1
DBC10OU 32 RW 72 RDI0IS B2 RW F2
DBC10CR1 33 RW ACE_AMD_CR0 73 RW RDI0LT0 B3 RW F3
DBC11FN 34 RW 74 RDI0LT1 B4 RW F4
DBC11IN 35 RW ACE_AMX_IN 75 RW RDI0RO0 B5 RW F5
DBC11OU 36 RW ACE_CMP_CR0 76 RW RDI0RO1 B6 RW F6
DBC11CR1 37 RW ACE_CMP_CR1 77 RW RDIODSM B7 RW CPU_F F7 RL
DCC12FN 38 RW 78 RDI1RI B8 RW F8
DCC12IN 39 RW ACE_CMP_GI_EN 79 RW RDI1SYN B9 RW F9
DCC12OU 3A RW ACE_ALT_CR0 7A RW RDI1IS BA RW FLS_PR1 FA RW
DCC12CR1 3B RW ACE_ABF_CR0 7B RW RDI1LT0 BB RW FB
DCC13FN 3C RW 7C RDI1LT1 BC RW FC
DCC13IN 3D RW ACE0_CR1 7D RW RDI1RO0 BD RW IDAC_CR0 FD RW
DCC13OU 3E RW ACE0_CR2 7E RW RDI1RO1 BE RW CPU_SCR1 FE #
DCC13CR1 3F RW ACE0_CR3 7F RW RDI1DSM BF RW CPU_SCR0 FF #
Blank fields are Reserved and should not be accessed. # Access is bit specific. *Address has a dual purpo se, see “Mapping Exceptions ” on page 251
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 32 of 78
Electrical Specifications
This section presents the DC and AC electrical specifications of the CY8C28xxx PSoC devices. For the most up to date electrical
specifications, confirm that you have the most recent datasheet by going to the web at http//www.cypress.com.
S pecifications are valid for -40oC T A 85°C and TJ 100°C, except where noted. S pecifications for devices running at greater than
12 MHz are valid for -40°C TA 70°C and TJ 82°C.
Figure 7. Vo ltage versus CPU Frequency
5.25
4.75
3.00
93 kHz 12 MHz 24 MHz
CPU Frequency
Vdd Voltage
Valid
Operating
Region
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 33 of 78
Absolute Maximum Ratings
Operating Temperature
Table 22. Absolute Maximum Ratings
Symbol Description Min Typ Max Units Notes
TSTG Storage temperature -55 25 +100 °CHigher storage temperatures
reduce data retention time.
Recommended storage temper-
ature is +25°C ± 25°C. Extended
duration storage temperatures
above 65°C degrade reliability.
TBAKETEMP Bake temperature -125 See
Package
label
oC
tBAKETIME Bake time See
package
label
-72 Hours
TAAmbient temperature with power applied -40 +85 °C
VDD Supply voltage on VDD relative to VSS -0.5 +6.0 V
VIO DC input voltage VSS- 0.5 VDD + 0.5 V
VIOZ DC voltage applied to tri-state VSS – 0.5 VDD + 0.5 V
IMIO Maximum current into any port pin -25 +50 mA
IMAIO Maximum current into any port pin
configured as analog driver -50 +50 mA
ESD Electro static discharge voltage 2000 V Human Body Model ESD.
LU Latch up current 200 mA
Table 23. Operating Temperature
Symbol Description Min Typ Max Units Notes
TAAmbient temperature -40 +85 °C
TJJunction temperature -40 +100 °CThe temperature rise from
ambient to junction is package
specific. See Thermal Imped-
ances on page 66. The user must
limit the power consumption to
comply with this requirement.
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 34 of 78
DC Electrical Characteristics
DC Chip Level Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40°C T A 85°C, or 3.0 V to 3.6 V and –40°C T A 85°C, respectively. T ypical parameters apply to 5 V and 3.3 V at 25°C and
are for design guidance only.
Table 24. DC Chip Level Specifications
Symbol Description Min Typ Max Units Notes
VDD Supply voltage 3.00 5.25 V
IDD Supply current 8 14 mA Conditions are VDD = 5.0 V, TA = 25
°C, CPU = 3 MHz, SYSCLK doubler
disabled. VC1 = 1.5 MHz, VC2 = 93.75
kHz, VC3 = 93.75 kHz.
IDD3 Supply current 5 9 mA Conditions ar e V DD = 3.3 V, TA = 25
°C, CPU = 3 MHz, SYSCLK doubler
disabled. VC1 = 1.5 MHz, VC2 = 93.75
kHz, VC3 = 93.75 kHz.
IDDP Supply current when IMO = 6 MHz using
SLIMO mode=1 2 3 mA Conditio ns are VDD = 3.3 V, TA = 25
°C, CPU = 0.75 M H z, SYSCL K
doubler disab l ed, VC1 = 0.375 MHz,
VC2 = 23.44 kHz, VC3 = 0.09 kHz.
ISB Sleep (Mode) current with POR, LVD, sleep
timer, and WDT.[15] 3 10 μAConditions are with internal slow
speed oscillator, VDD = 3.3 V, –40 °C
TA 55 °C.
ISBH Sleep (Mode) current with POR, LVD, sleep
timer, and WDT at high temperature.[15] 4 25 μAConditions are with internal sl ow
speed oscillator , VDD = 3.3 V, 55 °C <
TA 85 °C.
ISBXTL Sleep (Mode) Current with POR, LVD, sleep
timer, WDT, and external crystal.[15] 4 13 μAConditions are with properly loaded, 1
μW max, 32.768 kHz crystal. VDD =
3.3 V, –40 °C TA 55 °C.
ISBXTLH Sleep (Mode) current with POR, LVD, sleep
timer, WDT, and external crystal at high
temperature.[15]
5 26 μAConditions are with properly loaded, 1
μW max, 32.768 kHz crystal. VDD =
3.3 V, 55 °C < TA 85 °C.
ISBRTC Current consumed by RTC during sleep 0.5 1µA Extra current consumed by the RTC
during sleep. This number is typical at
25 °C and 5 V.
VREF Reference voltage (Bandgap) 1.280 1.300 1.320 VTr immed for approp riate VDD.
ISXRES Supply current with XRES asserted 5 V 0.65 3mA Max is peak current after XRES;
Typical value is the steady state
current value. TA = 25 °C.
Supply current with XRES asserted 3.3 V -0.4 1.5 mA
Note
15.S tandby (sleep) current includes all function s (POR, LVD, WDT, Sleep Timer) needed for reliable system operation. This should be compared with devices that have
similar functions enabled.
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 35 of 78
DC GPIO Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C T A 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. T y pical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
Table 25. DC GPIO Specifications
Symbol Description Min Typ Max Units Notes
RPU Pull-up resistor 4 5.6 8 kΩ
RPD Pull-down resistor 4 5.6 8 kΩ
VOH High output level VDD – 1.0 V IOH = 10 mA, VDD = 4.75 to 5.25 V
(8 total loads, 4 on even port pins
(for example, P0[2], P1[4]), 4 on odd
port pins (for example, P0[3],
P1[5])). 80 mA maximum combined
IOH budget.
VOL Low output level 0.75 V IOL = 25 mA, VDD = 4.75 to 5.25 V
(8 total loads, 4 on even port pins
(for example, P0[2], P1[4]), 4 on odd
port pins (for example, P0[3],
P1[5])). 150 mA maximum
combined IOL budget.
IOH High level source current 10 mA VOH = VDD – 1.0 V, see the limita-
tions of the total cur rent in the not e
for VOH.
IOL Low level sink current 25 mA VOL = 0.75 V, see the limitations of
the total current in the note for VOL.
VIL Input low level 0.8 V VDD = 3.0 to 5.25.
VIH Input high level 2.1 V VDD = 3.0 to 5.25.
VHInput hysteresis 60 mV
IIL Input leakage (absolute value) 1 nA Gross tested to 1 μA.
CIN Capacitive load on pins as input 3.5 10 pF Package and pin dependent. Temp
= 25 °C.
COUT Capacitive load on pins as output 3.5 10 pF Package and pin dependent. Temp
= 25 °C.
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 36 of 78
DC Operational Amplifier Specifications
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C T A 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. T y pical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only. The Operational Amplifiers covered by these specifications are components of both the Analog
Continuous Time PSoC blocks and the Analog Switched Cap PSoC blocks. The guaranteed specifications are measured in the Analog
Continuous Time PSoC block.
Table 26. 5 V DC Operational Amplifier Specifications
Symbol Description Min Typ Max Units Notes
VOSOACT Input Offset Voltage CT Block (absolute value)
Power = Low, Opamp bias = High
Power = Medium, Opamp bias = High
Power = High, Opamp bias = High
1.6
1.3
1.2
8
8
8
mV
mV
mV
VOSOA Input Offset Voltage SC and AGND Opamps
(absolute value) 1 6 mV Applies to High and Low Opamp
bias.
TCVOSOA Average Input Offset Voltage Drift 7.0 35.0 μV/°C
IEBOA Input Leakage Current (Port 0 Analog Pins) 200 pA Gross tested to 1 μA.
CINOA Input Capacitance (Port 0 Analog Pins) 4.5 9.5 pF Package and pin dependent.
Temp = 25 °C.
VCMOA Common Mode Voltage Range
Common Mode Voltage Range (high power or
high Opamp bias)
0.0 VDD
VDD
0.5
V
VThe common-mode input
voltage range is measured
through an analog output buffer .
The specificati on includes the
limitations imposed by the
characteristics of the analog
output buffer.
0.5
CMRROA Common Mode Rejectio n Ratio
Power = Low
Power = Medium
Power = High
60
60
60
dB
dB
dB
GOLOA Open Loop Gain
Power = Low
Power = Medium
Power = High
60
60
80
dB
dB
dB
VOHIGHOA High Output Voltage Swing (internal signals)
Power = Low
Power = Medium
Power = High VDD – 0.2
VDD – 0.2
VDD – 0.5
V
V
V
VOLOWOA Low Output Voltage Swing (internal signal s)
Power = Low
Power = Medium
Power = High
0.2
0.2
0.5
V
V
V
ISOA Supply Current (including associated AGND
buffer)
Power = Low, Opamp bias = Low
Power = Low, Opamp bias = High
Power = Medium, Opamp bias = Low
Power = Medium, Opamp bias = High
Power = High, Opamp bias = Low
Power = High, Opamp bias = High
200
400
700
1400
2400
4600
300
600
1100
2000
3600
7700
μA
μA
μA
μA
μA
μA
PSRROA Supply Voltage Rejection Ratio 60 dB VSS VIN (VDD – 2.25) or
(VDD – 1.25 V) VIN VDD.
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 37 of 78
Table 27. 3.3 V DC Operational Amplifier Specifications
Symbol Description Min Typ Max Units Notes
VOSOACT Input Offset Voltage CT Blocks (absolute value)
Power = Low, Opamp bias = High
Power = Medium, Opamp bias = High
Power = High, Opamp bias = High
1.65
1.32
8
8
mV
mV
mV
VOSOA Input Offset Voltage SC and AGND (absolute
value) 1 6 mV Applies to High and Low Opamp
bias.
TCVOSOA Average Input Offset Voltage Drift 7.0 35.0 μV/°C
IEBOA Input Leakage Current (Port 0 Analog Pins) 200 pA Gross tested to 1 μA.
CINOA Input Capacitance (Port 0 Analog Pins) 4.5 9.5 pF Package and pin dependent.
Temp = 25 °C.
VCMOA Common Mode Voltage Range 0.2 VDD
0.2 V The common-mode input
voltage range is measured
through an analog output buffer.
The specification includes the
limitations imposed by the
characteristics of the analog
output buffer.
CMRROA Common Mode Rejection Ratio
Power = Low
Power = Medium
Power = High
50
50
50
dB
dB
dB
GOLOA Open Loop Gain
Power = Low
Power = Medium
Power = High
60
60
80
dB
dB
dB
VOHIGHOA High Output Voltage Swing (internal signals)
Power = Low
Power = Medium
Power = High is 5 V only
VDD
0.2
VDD
0.2
VDD
0.2
V
V
V
VOLOWOA Low Output Voltage Swing (internal signals)
Power = Low
Power = Medium
Power = High
0.2
0.2
0.2
V
V
V
ISOA Supply Current (including associated AGND
buffer)
Power = Low, Opamp bias = Low
Power = Low, Opamp bias = High
Power = Medium, Opamp bias = Low
Power = Medium, Opamp bias = High
Power = High, Opamp bias = Low
Power = High, Opamp bias = High
200
400
700
1400
2400
4600
300
600
1000
2000
3600
7500
μA
μA
μA
μA
μA
μA
PSRROA Supply Voltage Rejection Ratio 50 80 dB VSS VIN (VDD – 2.25 V) or
(VDD – 1.25 V) VIN VDD.
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 38 of 78
DC Type-E Operational Amplifier Specifications
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C T A 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. T y pical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only. The Operational Amplifiers covered by these specifications are components of the Limited Type E
Analog PSoC blocks.
DC Low Power Comparator Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C TA 85 °C, 3.0 V to 3.6 V and –40 °C TA 85 °C, or 2.4 V to 3.0 V and –40 °C TA 85 °C, respectively. Typical
parameters apply to 5 V at 25 °C and are for design guidance only.
Table 28. 5 V DC Type-E Operational Ampl ifier Specifications
Symbol Description Min Typ Max Units Notes
VOSOA Input offset voltage (absolute value) 2.5 15 mV For 0.2 V < VIN < VDD – 1.2 V.
–2.5 20mV For V
IN = 0 to 0.2 V and VIN > VDD
– 1.2 V.
TCVOSOA Average input offset voltage drift 10 μV/°C
IEBOA[16] Input leakage current (Port 0 Analog Pins) 200 nA Gross tested to 1 μA.
CINOA Input capacitance (Port 0 Analog Pins) 4.5 9.5 pF Package and pin depend ent. Temp
= 25 °C.
VCMOA Common mode voltage range 0.0 VDD V
ISOA Amplifier supply current 10 30 μA
Table 29. 3.3 V DC Type-E Operational Amplifier Specifications
Symbol Description Min Typ Max Units Notes
VOSOA Input offset voltage (absolute value) 2.5 15 mV For 0.2 V < VIN < VDD – 1.2 V.
2.5 20 mV For VIN = 0 to 0.2 V and VIN > VDD
1.2 V.
TCVOSOA Average input offset voltage drift 10 μV/°C
IEBOA[16] Input leakage current (Port 0 Analog Pins) 200 nA Gross tested to 1 μA.
CINOA Input capacitance (Port 0 Analog Pins) 4.5 9.5 pF Package and pin dependent. T emp =
25 °C.
VCMOA Common mode voltage range 0 VDD V
ISOA Amplifier supply current 10 30 μA
Note
16.Atypical behavior: IEBOA of Port 0 Pin 0 is below 1 nA at 25 °C; 50 nA over temperature. Use Port 0 Pins 1-7 for the lowest leakage of 200 nA.
Table 30. DC Low Power Comparator Specifications
Symbol Description Min Typ Max Units Notes
VREFLPC Low power comparator (LPC) reference
voltage range 0.2 VDD – 1 V
VOSLPC LPC voltage offset 2.5 30 mV
ISLPC LPC supply current 10 40 μA
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 39 of 78
DC Analog Output Buffer Specifications
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C T A 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. T y pical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
Table 31. 5 V DC Analog Output Buffer Specifications
Symbol Description Min Typ Max Units Notes
CLLoad capacitance 200 pF This specification applies
to the external circuit that is
being driven by th e analog
output buf fer.
VOSOB Input offset voltage (Absolute Value) 3 12 mV
TCVOSOB Average input offset voltage drift +6 20 μV/°C
VCMOB Common-mode input voltage range 0.5 VDD – 1.0 V
ROUTOB Output resistance
Power = Low
Power = High
1
1
Ω
Ω
VOHIGHOB High output voltage swing (Load = 32
Ω to VDD/2)
Power = Low
Power = High 0.5 × VDD + 1.3
0.5 × VDD + 1.3
V
V
VOLOWOB Low output voltage swing (Load = 32
Ω to VDD/2)
Power = Low
Power = High
0.5 × VDD – 1.3
0.5 × VDD – 1.3 V
V
ISOB Supply current including bias cell
(No Load)
Power = Low
Power = High
1.1
2.6 5.1
8.8 mA
mA
PSRROB Supply voltage rejection ratio 53 64 dB (0.5 × VDD – 1.0) VOUT
(0.5 × VDD + 0.9).
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 40 of 78
Table 32. 3.3 V DC Analog Output Buffer Specifications
Symbol Description Min Typ Max Units Notes
CLLoad Capacitance 200 pF This specification applies to
the external circuit that is
being driven by the analog
output buffer.
VOSOB Input Offset Voltage (Absolute Value) 3 12 mV
TCVOSOB Average Input Offset Voltage Drift +6 20 μV/°C
VCMOB Common-Mode Input Voltage Range 0.5 VDD – 1.0 V
ROUTOB Output Resistance
Power = Low
Power = High
1
1
Ω
Ω
VOHIGHOB High Output Voltage Swing (Load = 1
kΩ to VDD/2)
Power = Low
Power = High 0.5 × VDD + 1.0
0.5 × VDD + 1.0
V
V
VOLOWOB Low Output Voltage Swing (Load = 1
kΩ to VDD/2)
Power = Low
Power = High
0.5 × VDD – 1.0
0.5 × VDD – 1.0 V
V
ISOB Supply curr en t i n clu d ing bias cell (N o
Load)
Power = Low
Power = High
0.8
2.0 2.0
4.3 mA
mA
PSRROB Supply voltage rejection ratio 47 64 dB (0.5 × VDD – 1.0) VOUT
(0.5 × VDD + 0.9).
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 41 of 78
DC Switch Mode Pump Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C T A 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. T y pical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
Figure 8. Basic Switch Mode Pump Circu it
Table 33. DC Switch Mode Pump (SMP) Specifications
Symbol Description Min Typ Max Units Notes
VPUMP 5 V 5 V output voltage 4.75 5.0 5.25 V Configuration of footnote.[17] Average,
neglecting ripple. SMP trip voltage is set
to 5.0 V.
VPUMP 3 V 3 V output voltage 3.00 3.25 3.6 0 V Configuration of footnote.[17] Average,
neglecting ripple. SMP trip voltage is set
to 3.25 V.
IPUMP Available output current
VBAT = 1.5 V, VPUMP = 3.25 V
VBAT = 1.8 V, VPUMP = 5.0 V 8
5
mA
mA
Configuration of footnote.[17]
SMP trip voltage is set to 3.25 V.
SMP trip voltage is set to 5.0 V.
VBAT5 V Input voltage range from battery 1.8 5.0 V Configuration of footnote.[17] SMP trip
voltage is set to 5.0 V.
VBAT3 V Input voltage range from battery 1.5 3.3 V Configuration of footnote.[17] SMP trip
voltage is set to 3.25 V.
VBATSTART Minimum input voltage from battery to
start pump 2.6 V Configuration of footnote.[17]
ΔVPUMP_Line Line regulation (over VBAT range) 5 %V OConfiguration of footnote.[17] VO is the
“VDD Value for PUMP T rip” specified by
the VM[2:0] setting in the DC POR and
LVD Specification, Table 40 on page 50.
ΔVPUMP_Load Load regulation 5 %VOConfiguration of footnote.[17] VO is the
“VDD Value for PUMP T rip” specified by
the VM[2:0] setting in the DC POR and
LVD Specification, Table 40 on page 50.
ΔVPUMP_Ripple Output voltage ripple (depends on
capacitor/load) 100 mVpp Configuration of footnote.[17] Load is 5mA.
E3Efficiency 35 50 % Configuration of footnote.[17] Load is
5 mA. SMP trip voltage is set to 3.25 V.
FPUMP Switching frequency 1.3 MHz
DCPUMP Switching duty cycle 50 %
Note
17.L1 = 2 uH inductor, C1 = 10 uF capacitor, D1 = Schottky diode. See Figure 8.
Battery
C1
D1
+PSoCTM
Vdd
Vss
SMP
VBAT
VPUMP
L1
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 42 of 78
DC Analog Reference Specifications
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C T A 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. T y pical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
The guaranteed specifications for RefHI and RefLo are measured through the Analog Continuous Time PSoC blocks. The power
levels for RefHi and RefLo refer to the Analog Reference Control register . AGND is measured at P2[4] in AGND bypass mode. Each
Analog Continuous Time PSoC block adds a maximum of 10mV additio nal offset error to guaran teed AGND specifica tions from the
local AGND buffer. Reference control power can be set to medium or high unless otherwise noted.
Note Avoid using P2[4] for digital signaling when using an analog resource that depends on the Analog Reference. Some coupling
of the digital signal may appear on the AGND.
Table 34. 5-V DC Analog Reference Specifications
Reference
ARF_CR
[5:3]
Reference Power
Settings Symbol Reference Description Min Typ Max Units
0b000 RefPower = High
Opamp bias = High VREFHI Ref high VDD/2 + Bandgap VDD/2 +
1.214 VDD/2 +
1.279 VDD/2 +
1.341 V
VAGND AGND VDD/2 VDD/2 –
0.018 VDD/2 –
0.004 VDD/2 + 0.01 V
VREFLO Ref low VDD/2 – Bandgap VDD/2 –
1.328 VDD/2 –
1.301 VDD/2 –
1.273 V
RefPower = High
Opamp bias = Low VREFHI Ref high VDD/2 + Bandgap VDD/2 +
0.228 VDD/2 +
1.284 VDD/2 +
1.344 V
VAGND AGND VDD/2 VDD/2 –
0.015 VDD/2 –
0.002 VDD/2 +
0.011 V
VREFLO Ref low VDD/2 – Bandgap VDD/2 –
1.329 VDD/2 –
1.303 VDD/2 –
1.275 V
RefPower =
Medium
Opamp bias = High
VREFHI Ref high VDD/2 + Bandgap VDD/2 +
1.224 VDD/2 +
1.287 VDD/2 +
1.345 V
VAGND AGND VDD/2 VDD/2 –
0.014 VDD/2 –
0.001 VDD/2 +
0.012 V
VREFLO Ref low VDD/2 – Bandgap VDD/2 –
1.328 VDD/2 –
1.304 VDD/2 –
1.275 V
RefPower =
Medium
Opamp bias = Low
VREFHI Ref high VDD/2 + Bandgap VDD/2 +
1.226 VDD/2 +
1.288 VDD/2 +
1.346 V
VAGND AGND VDD/2 VDD/2 –
0.014 VDD/2 –
0.001 VDD/2 +
0.012 V
VREFLO Ref low VDD/2 – Bandgap VDD/2 –
1.328 VDD/2 –
1.304 VDD/2 –
1.276 V
Note
18.AGND tolerance includes the offsets of the local buffer in the PSoC block.
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 43 of 78
0b001 RefPower = High
Opamp bias = High VREFHI Ref high P2[4]+P2[6] (P2[4] =
VDD/2, P2[6] = 1.3 V) P2[4] + P2[6]
– 0.055 P2[4] + P2[6]
– 0.019 P2[4] + P2[6]
+ 0.019 V
VAGND AGND P2[4] P2[4] P2[4] P2[4]
VREFLO Ref low P2[4]–P2[6] (P2[4] =
VDD/2, P2[6] = 1.3 V) P2[4] – P2[6]
– 0.030 P2[4] – P2[6]
+ 0.005 P2[4] – P2[6]
+ 0.035 V
RefPower = High
Opamp bias = Low VREFHI Ref high P2[4]+P2[6] (P2[4] =
VDD/2, P2[6] = 1.3 V) P2[4] + P2[6]
– 0.05 P2[4] + P2[6]
– 0.015 P2[4] + P2[6]
+ 0.021 V
VAGND AGND P2[4] P2[4] P2[4] P2[4]
VREFLO Ref low P2[4]–P2[6] (P2[4] =
VDD/2, P2[6] = 1.3 V) P2[4] – P2[6]
– 0.033 P2[4] – P2[6]
+ 0.001 P2[4] – P2[6]
+ 0.031 V
RefPower =
Medium
Opamp bias = High
VREFHI Ref high P2[4]+P2[6] (P2[4] =
VDD/2, P2[6] = 1.3 V) P2[4] + P2[6]
– 0.048 P2[4] + P2[6]
– 0.013 P2[4] + P2[6]
+ 0.022 V
VAGND AGND P2[4] P2[4] P2[4] P2[4]
VREFLO Ref low P2[4]–P2[6] (P2[4] =
VDD/2, P2[6] = 1.3 V) P2[4] – P2[6]
– 0.034 P2[4] – P2[6]
– 0.001 P2[4] – P2[6]
+ 0.031 V
RefPower =
Medium
Opamp bias = Low
VREFHI Ref high P2[4]+P2[6] (P2[4] =
VDD/2, P2[6] = 1.3 V) P2[4] + P2[6]
– 0.047 P2[4] + P2[6]
– 0.012 P2[4] + P2[6]
+ 0.023 V
VAGND AGND P2[4] P2[4] P2[4] P2[4]
VREFLO Ref low P2[4]–P2[6] (P2[4] =
VDD/2, P2[6] = 1.3 V) P2[4] – P2[6]
– 0.036 P2[4] – P2[6]
– 0.002 P2[4] – P2[6]
+ 0.030 V
0b010 RefPower = High
Opamp bias = High VREFHI Ref high VDD VDD – 0.028 VDD0.010 VDD V
VAGND AGND VDD/2 VDD/2 –
0.014 VDD/2 –
0.002 VDD/2 +
0.012 V
VREFLO Ref low VSS VSS VSS + 0.004 VSS + 0.008 V
RefPower = High
Opamp bias = Low VREFHI Ref high VDD VDD – 0.021 VDD0.007 VDD V
VAGND AGND VDD/2 VDD/2 –
0.014 VDD/2 –
0.001 VDD/2 +
0.012 V
VREFLO Ref low VSS VSS VSS + 0.002 VSS + 0.005 V
RefPower =
Medium
Opamp bias = High
VREFHI Ref high VDD VDD – 0.019 VDD0.006 VDD V
VAGND AGND VDD/2 VDD/2 –
0.014 VDD/2 –
0.001 VDD/2 +
0.012 V
VREFLO Ref low VSS VSS VSS + 0.002 VSS + 0.004 V
RefPower =
Medium
Opamp bias = Low
VREFHI Ref high VDD VDD – 0.017 VDD0.005 VDD V
VAGND AGND VDD/2 VDD/2 –
0.014 VDD/2 –
0.001 VDD/2 +
0.013 V
VREFLO Ref low VSS VSS VSS + 0.001 VSS + 0.003 V
Table 34. 5-V DC Analog Reference Specifications (continued)
Reference
ARF_CR
[5:3]
Reference Power
Settings Symbol Reference Description Min Typ Max Units
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 44 of 78
0b011 RefPower = High
Opamp bias = High VREFHI Ref high 3 × Bandgap 3.736 3.887 4 .030 V
VAGND AGND 2 × Bandgap 2.525 2.5 98 2.667 V
VREFLO Ref low Bandgap 1.265 1.302 1.335 V
RefPower = High
Opamp bias = Low VREFHI Ref high 3 × Bandgap 3.747 3.894 4 .034 V
VAGND AGND 2 × Bandgap 2.528 2.6 01 2.668 V
VREFLO Ref low Bandgap 1.264 1.302 1.335 V
RefPower =
Medium
Opamp bias = High
VREFHI Ref high 3 × Bandgap 3.749 3.897 4 .035 V
VAGND AGND 2 × Bandgap 2.529 2.6 02 2.668 V
VREFLO Ref low Bandgap 1.264 1.302 1.335 V
RefPower =
Medium
Opamp bias = Low
VREFHI Ref high 3 × Bandgap 3.751 3.899 4 .037 V
VAGND AGND 2 × Bandgap 2.530 2.6 03 2.669 V
VREFLO Ref low Bandgap 1.264 1.302 1.335 V
0b100 RefPower = High
Opamp bias = High VREFHI Ref high 2 × Bandgap + P2[6]
(P2[6] = 1.3 V) 2.483 P2[6] 2.578 – P2[6] 2.669 – P2[6] V
VAGND AGND 2 × Bandgap 2.525 2.5 98 2.666 V
VREFLO Ref low 2 × Bandgap – P2[6]
(P2[6] = 1.3 V) 2.512 P2[6] 2.602 – P2[6] 2.684 – P2[6] V
RefPower = High
Opamp bias = Low VREFHI Ref high 2 × Bandgap + P2[6]
(P2[6] = 1.3 V) 2.495 P2[6] 2.586 – P2[6] 2.673 – P2[6] V
VAGND AGND 2 × Bandgap 2.528 2.6 01 2.668 V
VREFLO Ref low 2 × Bandgap – P2[6]
(P2[6] = 1.3 V) 2.510 P2[6] 2.602 – P2[6] 2.685 – P2[6] V
RefPower =
Medium
Opamp bias = High
VREFHI Ref high 2 × Bandgap + P2[6]
(P2[6] = 1.3 V) 2.498 P2[6] 2.589 – P2[6] 2.674 – P2[6] V
VAGND AGND 2 × Bandgap 2.529 2.6 01 2.668 V
VREFLO Ref low 2 × Bandgap – P2[6]
(P2[6] = 1.3 V) 2.509 P2[6] 2.601 – P2[6] 2.685 – P2[6] V
RefPower =
Medium
Opamp bias = Low
VREFHI Ref high 2 × Bandgap + P2[6]
(P2[6] = 1.3 V) 2.500 P2[6] 2.591 – P2[6] 2.675 – P2[6] V
VAGND AGND 2 × Bandgap 2.530 2.6 03 2.669 V
VREFLO Ref low 2 × Bandgap – P2[6]
(P2[6] = 1.3 V) 2.508 P2[6] 2.601 – P2[6] 2.686 – P2[6] V
Table 34. 5-V DC Analog Reference Specifications (continued)
Reference
ARF_CR
[5:3]
Reference Power
Settings Symbol Reference Description Min Typ Max Units
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 45 of 78
0b101 RefPower = High
Opamp bias = High VREFHI Ref high P2[4] + Bandgap
(P2[4] = VDD/2) P2[4] + 1.218 P2[4] + 1.283 P 2[4] + 1.344 V
VAGND AGND P2[4] P2[4] P2[4] P2[4]
VREFLO Ref low P2[4] – Bandgap
(P2[4] = VDD/2) P2[4] 1.329 P2[4] – 1.297 P2[4] – 1.265 V
RefPower = High
Opamp bias = Low VREFHI Ref high P2[4] + Bandgap
(P2[4] = VDD/2) P2[4] + 1.225 P2[4] + 1.287 P 2[4] + 1.346 V
VAGND AGND P2[4] P2[4] P2[4] P2[4]
VREFLO Ref low P2[4] – Bandgap
(P2[4] = VDD/2) P2[4] 1.330 P2[4] – 1.301 P2[4] – 1.271 V
RefPower =
Medium
Opamp bias = High
VREFHI Ref high P2[4] + Bandgap
(P2[4] = VDD/2) P2[4] + 1.226 P2[4] + 1.288 P 2[4] + 1.346 V
VAGND AGND P2[4] P2[4] P2[4] P2[4]
VREFLO Ref low P2[4] – Bandgap
(P2[4] = VDD/2) P2[4] 1.330 P2[4] – 1.302 P2[4] – 1.272 V
RefPower =
Medium
Opamp bias = Low
VREFHI Ref high P2[4] + Bandgap
(P2[4] = VDD/2) P2[4] + 1.227 P2[4] + 1.289 P 2[4] + 1.347 V
VAGND AGND P2[4] P2[4] P2[4] P2[4]
VREFLO Ref low P2[4] – Bandgap
(P2[4] = VDD/2) P2[4] 1.331 P2[4] – 1.303 P2[4] – 1.273 V
0b110 RefPower = High
Opamp bias = High VREFHI Ref high 2 × Bandgap 2.506 2.597 2 .674 V
VAGND AGND Bandgap 1.263 1.302 1.336 V
VREFLO Ref low VSS VSS VSS + 0.006 VSS + 0.014 V
RefPower = High
Opamp bias = Low VREFHI Ref high 2 × Bandgap 2.508 2.595 2 .675 V
VAGND AGND Bandgap 1.263 1.302 1.336 V
VREFLO Ref low VSS VSS VSS + 0.003 VSS + 0.008 V
RefPower =
Medium
Opamp bias = High
VREFHI Ref high 2 × Bandgap 2.508 2.595 2 .676 V
VAGND AGND Bandgap 1.263 1.302 1.336 V
VREFLO Ref low VSS VSS VSS + 0.002 VSS + 0.005 V
RefPower =
Medium
Opamp bias = Low
VREFHI Ref high 2 × Bandgap 2.508 2.596 2 .677 V
VAGND AGND Bandgap 1.263 1.302 1.336 V
VREFLO Ref low VSS VSS VSS + 0.001 VSS + 0.003 V
Table 34. 5-V DC Analog Reference Specifications (continued)
Reference
ARF_CR
[5:3]
Reference Power
Settings Symbol Reference Description Min Typ Max Units
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 46 of 78
0b111 RefPower = High
Opamp bias = High VREFHI Ref high 3.2 × Bandgap 4.056 4.155 4.222 V
VAGND AGND 1.6 × Bandgap 2.012 2.083 2.168 V
VREFLO Ref low VSS VSS VSS + 0.01 VSS + 0.035 V
RefPower = High
Opamp bias = Low VREFHI Ref high 3.2 × Bandgap 4.061 4.153 4.223 V
VAGND AGND 1.6 × Bandgap 2.023 2.082 2.145 V
VREFLO Ref low VSS VSS VSS + 0.006 VSS + 0.022 V
RefPower =
Medium
Opamp bias = High
VREFHI Ref high 3.2 × Bandgap 4.063 4.154 4.224 V
VAGND AGND 1.6 × Bandgap 2.020 2.083 2.152 V
VREFLO Ref low VSS VSS VSS + 0.006 VSS + 0.024 V
RefPower =
Medium
Opamp bias = Low
VREFHI Ref high 3.2 × Bandgap 4.061 4.154 4.225 V
VAGND AGND 1.6 × Bandgap 2.026 2.081 2.140 V
VREFLO Ref low VSS VSS VSS + 0.004 VSS + 0.017 V
Table 35. 3.3-V DC Analog Reference Specifications
Reference
ARF_CR
[5:3]
Reference Power
Settings Symbol Reference Description Min Typ Max Units
0b000 RefPower = High
Opamp bias = High VREFHI Ref high VDD/2 + Bandgap VDD/2 + 1.223 VDD/2 + 1.283 VDD/2 + 1.343 V
VAGND AGND VDD/2 VDD/2 – 0.013 VDD/2 – 0.003 VDD/2 + 0.005 V
VREFLO Ref low VDD/2 – Bandgap VDD/2 – 1.322 VDD/2 – 1.297 VDD/2 – 1.270 V
RefPower = High
Opamp bias = Low VREFHI Ref high VDD/2 + Bandgap VDD/2 + 1.228 VDD/2 + 1.288 VDD/2 + 1.345 V
VAGND AGND VDD/2 VDD/2 – 0.008 VDD/2 – 0.002 VDD/2 + 0.005 V
VREFLO Ref low VDD/2 – Bandgap VDD/2 – 1.322 VDD/2 – 1.298 VDD/2 – 1.271 V
RefPower =
Medium
Opamp bias = High
VREFHI Ref high VDD/2 + Bandgap VDD/2 + 1.232 VDD/2 + 1.290 VDD/2 + 1.346 V
VAGND AGND VDD/2 VDD/2 – 0.008 VDD/2 – 0.001 VDD/2 + 0.006 V
VREFLO Ref low VDD/2 – Bandgap VDD/2 – 1.322 VDD/2 – 1.299 VDD/2 – 1.272 V
RefPower =
Medium
Opamp bias = Low
VREFHI Ref high VDD/2 + Bandgap VDD/2 + 1.233 VDD/2 + 1.291 VDD/2 + 1.347 V
VAGND AGND VDD/2 VDD/2 – 0.006 VDD/2 VDD/2 + 0.006 V
VREFLO Ref low VDD/2 – Bandgap VDD/2 – 1.322 VDD/2 – 1.299 VDD/2 – 1.272 V
Table 34. 5-V DC Analog Reference Specifications (continued)
Reference
ARF_CR
[5:3]
Reference Power
Settings Symbol Reference Description Min Typ Max Units
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 47 of 78
0b001 RefPower = High
Opamp bias = High VREFHI Re f hi g h P2[4 ] +P 2 [6 ] (P2 [4 ] =
VDD/2, P2[6] = 0.5 V) P2[4] + P2[6] –
0.045 P2[4] + P2[6]
0.017 P2[4] + P2[6] +
0.016 V
VAGND AGND P2[4] P2[4] P2[4] P2[4]
VREFLO Ref low P2[4]–P2[6] (P2[4] =
VDD/2, P2[6] = 0.5 V) P2[4] – P2[6] –
0.019 P2[4] – P2[6] +
0.004 P2[4] – P2[6] +
0.023 V
RefPower = High
Opamp bias = Low VREFHI Ref high P2[4]+P 2 [6 ] (P2 [4 ] =
VDD/2, P2[6] = 0.5 V) P2[4] + P2[6] –
0.036 P2[4] + P2[6]
0.012 P2[4] + P2[6] +
0.013 V
VAGND AGND P2[4] P2[4] P2[4] P2[4]
VREFLO Ref low P2[4]–P2[6] (P2[4] =
VDD/2, P2[6] = 0.5 V) P2[4] – P2[6] –
0.021 P2[4] – P2[6]
0.001 P2[4] – P2[6] +
0.021 V
RefPower =
Medium
Opamp bias = High
VREFHI Ref hi g h P2[4]+P2[6] (P2[4 ] =
VDD/2, P2[6] = 0.5 V) P2[4] + P2[6] –
0.034 P2[4] + P2[6]
0.011 P2[4] + P2[6] +
0.013 V
VAGND AGND P2[4] P2[4] P2[4] P2[4]
VREFLO Ref low P2[4]–P2[6] (P2[4] =
VDD/2, P2[6] = 0.5 V) P2[4] – P2[6] –
0.023 P2[4] – P2[6]
0.002 P2[4] – P2[6] +
0.016 V
RefPower =
Medium
Opamp bias = Low
VREFHI Ref hi g h P2[4]+P2[6] (P2[4 ] =
VDD/2, P2[6] = 0.5 V) P2[4] + P2[6] –
0.033 P2[4] + P2[6]
0.009 P2[4] + P2[6] +
0.014 V
VAGND AGND P2[4] P2[4] P2[4] P2[4]
VREFLO Ref low P2[4]–P2[6] (P2[4] =
VDD/2, P2[6] = 0.5 V) P2[4] – P2[6] –
0.024 P2[4] – P2[6]
0.003 P2[4] – P2[6] +
0.020 V
0b010 RefPower = High
Opamp bias = High VREFHI Ref high VDD VDD – 0. 0 42 VDD – 0.008 VDD V
VAGND AGND VDD/2 VDD/2 – 0.035 VDD/2 – 0.001 VDD/2 + 0.031 V
VREFLO Ref low VSS VSS VSS + 0.003 VSS + 0.0165
VV
RefPower = High
Opamp bias = Low VREFHI Ref high VDD VDD – 0.035 VDD – 0.005 VDD V
VAGND AGND VDD/2 VDD/2 – 0.031 VDD/2 – 0.001 VDD/2 + 0.028 V
VREFLO Ref low VSS VSS VSS + 0.002 VSS + 0.012 V
RefPower =
Medium
Opamp bias = High
VREFHI Ref high VDD VDD – 0.0 44 VDD – 0.005 VDD V
VAGND AGND VDD/2 VDD/2 – 0.052 VDD/2 VDD/2 + 0.046 V
VREFLO Ref low VSS VSS VSS + 0.002 VSS + 0.014 V
RefPower =
Medium
Opamp bias = Low
VREFHI Ref high VDD VDD – 0.0 36 VDD – 0.004 VDD V
VAGND AGND VDD/2 VDD/2 – 0.032 VDD/2 VDD/2 + 0.029 V
VREFLO Ref low VSS VSS VSS + 0.001 VSS + 0.012 V
0b011 All power settings.
Not allowed for
3.3 V.
––
0b100 All power settings.
Not allowed for
3.3 V.
––
Table 35. 3.3-V DC Analog Reference Specifications (continued)
Reference
ARF_CR
[5:3]
Reference Power
Settings Symbol Reference Description Min Typ Max Units
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 48 of 78
DC Analog PSoC Block Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C T A 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. T y pical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
0b101 RefPower = High
Opamp bias = High VREFHI Ref high P2[4] + Bandgap
(P2[4] = VDD/2) P2[4] + 1.226 P2[4] + 1.286 P2[4] + 1.343 V
VAGND AGND P2[4] P2[4] P2[4] P2[4]
VREFLO Ref low P2[4] – Bandgap
(P2[4] = VDD/2) P2[4] – 1.323 P2[4] – 1.293 P2[4] –1.262 V
RefPower = High
Opamp bias = Low VREFHI Ref high P2[4] + Bandgap
(P2[4] = VDD/2) P2[4] + 1.232 P2[4] + 1.29 P2[4] + 1.344 V
VAGND AGND P2[4] P2[4] P2[4] P2[4]
VREFLO Ref low P2[4] – Bandgap
(P2[4] = VDD/2) P2[4] – 1.324 P2[4] – 1.296 P2[4] – 1.267 V
RefPower =
Medium
Opamp bias = High
VREFHI Ref high P2[4] + Bandgap
(P2[4] = VDD/2) P2[4] + 1.233 P2[4] + 1.291 P2[4] + 1.345 V
VAGND AGND P2[4] P2[4] P2[4] P2[4]
VREFLO Ref low P2[4] – Bandgap
(P2[4] = VDD/2) P2[4] – 1.324 P2[4] – 1.298 P2[4] – 1.269 V
RefPower =
Medium
Opamp bias = Low
VREFHI Ref high P2[4] + Bandgap
(P2[4] = VDD/2) P2[4] + 1.234 P2[4] + 1.292 P2[4] +1.345 V
VAGND AGND P2[4] P2[4] P2[4] P2[4]
VREFLO Ref low P2[4] – Bandgap
(P2[4] = VDD/2) P2[4] – 1.324 P2[4] – 1.299 P2[4] – 1.270 V
0b110 R ef Po we r = Hi gh
Opamp bias = High VREFHI Ref high 2 × Bandgap 2.504 2.595 2.672 V
VAGND AGND Bandgap 1.262 1.301 1.336 V
VREFLO Ref low VSS VSS VSS + 0.006 VSS + 0.013 V
RefPower = High
Opamp bias = Low VREFHI Ref high 2 × Bandgap 2.506 2.593 2.674 V
VAGND AGND Bandgap 1.262 1.301 1.336 V
VREFLO Ref low VSS VSS VSS + 0.003 VSS + 0.008 V
RefPower =
Medium
Opamp bias = High
VREFHI Ref high 2 × Bandgap 2.506 2.594 2.675 V
VAGND AGND Bandgap 1.262 1.301 1.335 V
VREFLO Ref low VSS VSS VSS + 0.002 VSS + 0.007 V
RefPower =
Medium
Opamp bias = Low
VREFHI Ref high 2 × Bandgap 2.507 2.595 2.675 V
VAGND AGND Bandgap 1.262 1.301 1.335 V
VREFLO Ref low VSS VSS VSS + 0.001 VSS + 0.005 V
0b111 All power settings.
Not allowed for
3.3 V.
––
Table 35. 3.3-V DC Analog Reference Specifications (continued)
Reference
ARF_CR
[5:3]
Reference Power
Settings Symbol Reference Description Min Typ Max Units
Table 36. DC Analog PSoC Block Specifications
Symbol Description Min Typ Max Units Notes
RCT Resistor Unit Value (Continuous Time) 12.24 kΩ
CSC Capacitor Unit Value (Switch Cap) 80 fF
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 49 of 78
DC Analog Mux Bus Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C T A 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. T y pical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
DC SAR10 ADC Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C T A 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. T y pical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
Table 37. DC Analog Mux Bus Specifications
Symbol Description Min Typ Max Units Notes
RSW Switch Resistance to Common Analog Bus 400 ΩVDD 3.0 V
RVSS Resistance of Initialization Switch to VSS 800 Ω
Table 38. DC SAR10 ADC Specifications
Symbol Description Min Typ Max Units Notes
INLSAR10 Integral nonlinearity for VREF 3 V –2.5 2.5 LSB 10-bit resolution
Integral nonlinearity for VREF < 3 V –5 5 LSB 10-bit resolution
DNLSAR10 Differential nonlinearity for VREF 3 V –1.5 1.5 LSB 10-bit resolution
Differential nonlinearity for VREF > 3 V –4 4 LSB 10-bit resolution
ISAR10 Active current consumption 0.08 0.5 0.497 mA
IVREFSAR10 Input current into P2[5] when configured as
the SAR10 ADC's VREF input. 0.5 mA The internal voltage reference buffer is
disabled in this configuration.
VVREFSAR10 Input reference voltage at P2[5] when
configured as the SAR10 ADC's external
voltage reference.
2.7 VDD
0.3 V VWhen VREF is buffered inside the
SAR10 ADC, the voltage level at P2[5]
(when configured as the external
reference voltage) must always be at
least 300 mV less than the chip supply
voltage level on the VDD pin.
(VVREFSAR10 < (VDD – 300 mV)).
VOSSAR10 Offset voltage 57.7 10 mV
SARIMP SAR input impedence 1.64 MΩFrequency dependant = 1/ Fs °C.
142.9 kHz (maximum) and Cin = 4.28 pF
(typical)
Table 39. DC IDAC Specifications
Symbol Description Min Typ Max Units Notes
IDAC_DNL Differential nonlinearity –5.0 2.0 5.0 LSB Valid for all 3 current ranges
IDAC_INL Integral nonlinearity –5.0 2.0 5.0 LSB Valid for all 3 current ranges
IDAC_Gain Gain per bit – Range 1 (91 µA) 283 357 447 nA Measured at full scale
Gain per bit – Range 2 (318 µA) 985 1250 1532 nA
Gain per bit – Range 3 (637 µA) 1959 2500 3056 nA
IDACOffset Of fset at Code 0 vs LSB Ideal – Range 1
(91 µA) 2.0% 20% % Measured as a % of LSB (Current @
Code 0)/(LSB Ideal Current)
Offset at Code 0 vs LSB Ideal – Range 2
(318 µA) 1.0% 10% %
Offset at Code 0 vs LSB Ideal – Range 3
(637 µA) 1.0% 10% %
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 50 of 78
DC POR and LVD Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C T A 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. T y pical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
Note The bits PORLEV and VM in the table below refer to bits in the VLT_CR register. Se e the PSoC Technical Reference Ma nual
for CY8C28xxx PSoC devices, for more information on the VLT_CR register.
Table 40. DC POR and LVD Specifications
Symbol Description Min Typ Max Units Notes
VPPOR0R
VPPOR1R
VPPOR2R
VDD Value for PPOR Trip (positive ramp)
PORLEV[1:0] = 00b
PORLEV[1:0] = 01b
PORLEV[1:0] = 10b
2.91
4.39
4.55
2.985
4.49
4.65
V
V
V
VDD must be greater than or equal
to 2.5 V during startup, reset from
the XRES pin, or reset from
Watchdog.
VPPOR0
VPPOR1
VPPOR2
VDD Value for PPOR Trip (negative ramp)
PORLEV[1:0] = 00b
PORLEV[1:0] = 01b
PORLEV[1:0] = 10b
2.82
4.39
4.55
2.90
4.49
4.64
V
V
V
VDD must be greater than or equal
to 2.5 V during startup, reset from
the XRES pin, or reset from
Watchdog.
VPH0
VPH1
VPH2
PPOR Hysteresis
PORLEV[1:0] = 00b
PORLEV[1:0] = 01b
PORLEV[1:0] = 10b
92
0
0
mV
mV
mV
VLVD0
VLVD1
VLVD2
VLVD3
VLVD4
VLVD5
VLVD6
VLVD7
VDD Value for LVD Trip
VM[2:0] = 000b
VM[2:0] = 001b
VM[2:0] = 010b
VM[2:0] = 011b
VM[2:0] = 100b
VM[2:0] = 101b
VM[2:0] = 110b
VM[2:0] = 111b
2.83
2.93
3.04
3.90
4.38
4.54
4.62
4.71
2.91
3.01
3.12
3.99
4.47
4.63
4.71
4.80
3.00[19]
3.10
3.21
4.09
4.58
4.74[20]
4.83
4.92
V
V
V
V
V
V
V
V
VPUMP0
VPUMP1
VPUMP2
VPUMP3
VPUMP4
VPUMP5
VPUMP6
VPUMP7
VDD Value for PUMP Trip
VM[2:0] = 000b
VM[2:0] = 001b
VM[2:0] = 010b
VM[2:0] = 011b
VM[2:0] = 100b
VM[2:0] = 101b
VM[2:0] = 110b
VM[2:0] = 111b
2.93
3.00
3.16
4.09
4.53
4.61
4.70
4.88
3.01
3.08
3.24
4.17
4.62
4.71
4.80
4.98
3.10
3.17
3.33
4.28
4.74
4.82
4.91
5.10
V
V
V
V
V
V
V
V
Notes
19.Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply.
20.Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply.
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 51 of 78
DC Programming Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C T A 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. T y pical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
Table 41. DC Programmin g Specifications
Symbol Description Min Typ Max Units Notes
VDDPVDD for programming and erase 4.5 5 5.5 V This specification applies
to the functional
requirements of external
programmer tools.
VDDLV Low VDD for verify 3 3.1 3.2 V This specification applies
to the functional
requirements of external
programmer tools.
VDDHV High VDD for verify 5.1 5.2 5.3 V This specification applies
to the functional
requirements of external
programmer tools.
VDDIWRITE Supply Voltage for Flash write operation 3 5.25 V This specification applies
to this device when it is
executing internal flash
writes.
IDDP Supply Current During Programming or Verify 5 25 mA
VILP Input Low Voltage During Programming or
Verify 0.8 V
VIHP Input High Voltage During Programming or
Verify 2.2 V
IILP Input Current when Applying Vilp to P1[0] or
P1[1] During Programming or Verify 0.21 mA D ri ving internal pull-down
resistor.
IIHP Input Current when Applying Vihp to P1[0] or
P1[1] During Programming or Verify 1.5 mA D ri ving internal pull-down
resistor.
VOLV Output Low Voltage During Programming or
Verify 0.75 V
VOHV Output High Voltage During Programming or
Verify VDD – 1.0 VDD V
FlashENPB Flash Enduran ce (per block) 50,000[21] –––Erase/write cycles per block.
FlashENT Flash Endurance (total)[22] 1,800,000 –––Erase/write cycles. Must be
programmed and read at the
same voltage to meet this.
FlashDR Flash Data Retention 10 Years
Notes
21.The 50,000 cycle Flash endurance per block will only be guara nt eed if th e Flash is operat ing withi n one voltage range. Vo lt age range s are 3. 0 V to 3.6 V and 4.75 V
to 5.25 V.
22.A maximum of 36 × 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2
blocks of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 an d that no single block e ver
sees more than 50,000 cycles).
For the full industrial range, the user must employ a temperature sensor user modu le (FlashTemp) and feed the result to the temperature argument befo re writing.
Refer to the Flash APIs Application Note AN2015 at ht tp://www.cypress.com under Application Notes for more informat ion.
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 52 of 78
DC I2C Specifications
Table 42 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and
–40 °C T A 85 °C, or 3.0 V to 3.6 V and –40 °C T A 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and
are for design guidance only.
AC Electrical Characteristics
AC Chip-Level Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C T A 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. T y pical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
Table 42. DC I2C Specifications[23]
Symbol Description Min Typ Max Units Notes
VILI2C Input low level 0.3 × VDD V 3.0 V VDD 3.6 V
0.25 × VDD V 4.75 V VDD 5.25 V
VIHI2C Input high level 0.7 × VDD V 3.0 V VDD 5.25 V
Note
23.All GPIOs meet the DC GPIO VIL and VIH specifications found in the DC GPIO Specifications sections. The I2C GPIO pins also meet the above specs.
Table 43. AC Chip-Level Specifications
Symbol Description Min Typ Max Units Notes
FIMO Internal Main Oscillator Frequency 23.4 24 24.6[24] MHz Trimmed. Utilizing factory trim
values. SLIMO Mode = 0.
FIMO6 Internal Main Oscillator Frequency for
6MHz 5.5 66.5[24] MHz Trimmed for 5 V or 3.3 V operation
using factory trim values. SLIMO
Mode = 1.
FCPU1 CPU Frequency (5 V Nominal) 0.091 24 24.6[24] MHz Trimmed. Utilizing factory trim
values. SLIMO mode = 0.
FCPU2 CPU Frequency (3.3 V Nominal) 0.091 12 12.3[25] MHz Trimmed. Utilizing factory trim
values. SLIMO mode = 0.
FBLK5 Digital PSoC Block Frequency 0 49.2[24, 26] MHz 4.75 V< VDD <5.25 V
FBLK33 Digital PSoC Blo c k Frequency 024 24.6[26] MHz 3.0 V<VDD<3.6 V
F32K1 Internal Low Speed Oscillator
Frequency 15 32 64 kHz Trimmed. Utilizing factory trim
values.
F32K2 External Crystal Oscillator 32.768 kHz Accuracy is capacitor and crystal
dependent. 50% duty cycle.
F32K_U Internal Low Speed Oscillator
Untrimmed Frequency 5 100 kHz After a reset and before the m8c
starts to run, the ILO is not trimmed.
See the System Resets section of the
PSoC Technical Reference manual
for detail s on timing thi s .
FPLL PLL Frequency 23.986 MHz Multiple (x732) of crystal frequency.
tPLLSLEW PLL Lock Time 0.5 10 ms
tPLLSLEWSLO
WPLL Lock Time for Low Gain Setting 0.5 50 ms
TOS External Crystal Oscillator Startup to
1% 1700 2620 ms
TOSACC External Crystal Oscillator Startup to
100 ppm 2800 3800 ms The crystal oscilla to r frequency is
within 100 ppm of its final value by the
end of the Tosacc period. Correct
operation assumes a properly loaded
1 µW maximum drive level 32.768
kHz crystal. 3.0 V VDD 5.5 V, –40
°C TA 85 °C.
tXRST External Reset Pulse Width 10 μs
DC24M 24 MHz Duty Cycle 40 50 60 %
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 53 of 78
Figure 9. PLL Lock Timing Diagram
Figure 10. PLL Lock for Low Gain Setting Timing Diagram
DCILO Internal Low Speed Oscillator Duty
Cycle 20 50 80 %
Fout48M 48 MHz Output Fr equency 46.8 48.0 49.2[24,25] MHz Trimmed. Utilizing factory trim
values.
FMAX Maximum Frequency of Signal on Row
Input or Row Output. 12.3 MHz
SRPOWERUP Supply Ramp Time 0 μs
tPOWERUP Time for POR Release to Code
Execution 16 100 ms
tjit_IMO [27] 24 MHz IMO cycle-to-cycle jitter (RMS) 200 1300 ps
24 MHz IMO long term N cycle-to-cycle
jitter (RMS) 300 1300 ps N = 32
24 MHz IMO period jitter (RMS) 200 800 ps
tjit_PLL [27] 24 MHz IMO cycle-to-cycle jitter (RMS) 200 1100 ps
24 MHz IMO long term N cycle-to-cycle
jitter (RMS) 400 2800 ps N = 32
24 MHz IMO period jitter (RMS) 200 1400 ps
Table 43. AC Chip-Level Specifications (continued)
Symbol Description Min Typ Max Units Notes
Notes
24.4.75 V < VDD < 5.25 V.
25.3.0 V < VDD < 3.6 V. See application note Adjusting PSoC® Trims for 3.3 V and 2.7 V Operation – AN2012 for information on trimming for opera tion at 3.3 V.
26.See the individual user module datasheets fo r information on maximum frequencies for user modules.
27.Refer to Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information.
24 MHz
FPLL
PLL
Enable TPLLSLEW
PLL
Gain 0
24 MHz
FPLL
PLL
Enable TPLLSLEWLOW
PLL
Gain 1
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 54 of 78
Figure 11. External Crystal Oscillator Startu p Timing Diagram
AC GPIO Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C T A 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. T y pical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
Figure 12. GPIO Timing Diagram
AC Operational Amplifier Specifications
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C T A 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. T y pical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only. The Operational Amplifiers covered by these specifications are components of both the Analog
Continuous Time PSoC blocks and the Analog Switched Cap PSoC blocks. Settling times, slew rates, and gain bandwidth are based
on the Analog Continuous T ime PSoC block.
Power = High and Opamp bias = High is not supported at 3.3 V.
32 kHz
F32K2
32K
Select TOS
Table 44. AC GPIO Specifications
Symbol Description Min Typ Max Units Notes
FGPIO GPIO Operating Frequency 0 12.3 MHz Normal Strong Mode
tRiseF Rise Time, Normal Strong Mode, Cload = 50 pF 3 18 ns VDD = 4.5 to 5.25 V, 10% – 90%
tFallF Fall Time, Normal S trong Mode, Cload = 50 pF 2 18 ns VDD = 4.5 to 5.25 V, 10% – 90%
tRiseS Rise T ime, Slow Strong Mode, Cload = 50 pF 10 27 ns VDD = 3 to 5.25 V, 10% – 90%
tFallS Fall Time, Slow Strong Mode, Cload = 50 pF 10 22 ns VDD = 3 to 5.25 V, 10% – 90%
TFallF
TFallS
TRiseF
TRiseS
90%
10%
GPIO
Pin
Output
Voltage
Table 45. 5 V AC Operational Amplifier Specifications
Symbol Description Min Typ Max Units Notes
tROA Rising Settling Time from 80% of ΔV to 0.1% of
ΔV (Active Probe Loading, Unity Gain)
Power = Low, Opamp bias = Low
Power = Medium , Opamp bias = High
Power = High, Opamp bias = High
3.9
0.72
0.62
μs
μs
μs
tSOA Falling Settling Time from 20% of ΔV to 0.1%
of ΔV (Active Probe Loading, Unity Gain)
Power = Low, Opamp bias = Low
Power = Medium , Opamp bias = High
Power = High, Opamp bias = High
5.9
0.92
0.72
μs
μs
μs
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 55 of 78
SRROA Rising Slew Rate (20% to 80%)(Active Probe
Loading, Unity Gain)
Power = Low, Opamp bias = Low
Power = Medium , Opamp bias = High
Power = High, Opamp bias = High
0.15
1.7
6.5
V/μs
V/μs
V/μs
SRFOA Falling Slew Rate (80% to 20%)(Active Probe
Loading, Unity Gain)
Power = Low, Opamp bias = Low
Power = Medium , Opamp bias = High
Power = High, Opamp bias = High
0.01
0.5
4.0
V/μs
V/μs
V/μs
BWOA Gain Bandwidth Product
Power = Low, Opamp bias = Low
Power = Medium , Opamp bias = High
Power = High, Opamp bias = High
0.75
3.1
5.4
MHz
MHz
MHz
ENOA Noise at 1 kHz
Power = Medium , Opamp bias = High 100 nV/rt-Hz
Table 45. 5 V AC Operational Amplifier Specifications (continued)
Symbol Description Min Typ Max Units Notes
Table 46. 3.3 V AC Operational Amplifier Specifications
Symbol Description Min Typ Max Units Notes
tROA Rising Settling Time from 80% of ΔV to 0.1% of
ΔV (Active Probe Loading, Unity Gain)
Power = Low, Opamp bias = Low
Power = Low, Opamp bias = High
3.92
0.72 μs
μs
tSOA Falling Settling Time from 20% of ΔV to 0.1%
of ΔV (Active Probe Loading, Unity Gain)
Power = Low, Opamp bias = Low
Power = Medium , Opamp bias = High
5.41
0.72 μs
μs
SRROA Rising Slew Rate (20% to 80%)(Active Probe
Loading, Unity Gain)
Power = Low, Opamp bias = Low
Power = Medium , Opamp bias = High 0.31
2.7
V/μs
V/μs
SRFOA Falling Slew Rate (80% to 20%)(Active Probe
Loading, Unity Gain)
Power = Low, Opamp bias = Low
Power = Medium , Opamp bias = High 0.24
1.8
V/μs
V/μs
BWOA Gain Bandwidth Product
Power = Low, Opamp bias = Low
Power = Medium , Opamp bias = High 0.67
2.8
MHz
MHz
ENOA Noise at 1 kHz
Power = Mediu m, Opamp bias = High 100 nV/rt-Hz
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 56 of 78
When bypassed by a capacitor on P2[4], the noise of the anal og ground signal distributed to each bl ock is reduced by a factor of up
to 5 (14 dB). This is at frequencies above the corner frequency defined by the on-chip 8.1k re sistance and the external capacitor.
Figure 13. Typical AGND Noise with P2[4] Bypass
At low frequencies, the opamp noise is proportional to 1/f, power independent, and determined by device geometry. At high
frequencies, increased power level reduces the noise spectrum level.
Figure 14. Typical Opamp Noise
VnAGND Em erald = 2*Vbg
-150
-140
-130
-120
-110
-100
-90
0.001 0.01 0.1 1 10 100
E0.0
E0.01
E0.1
E1.0
E10.0
10
100
1000
10000
0.001 0.01 0.1 1 10 100
Freq (kHz)
nV/rtHz
PH_BH
PH_BL
PM_BL
PL_BL
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 57 of 78
AC Type-E Operational Amplifier Specifications
Table 47 lists the guaranteed maximum and minimum specificatio ns for the voltage and temperature ranges: 4.75 V to 5.25 V and
–40 °C TA 85 °C, 3.0 V to 3.6 V and –40 °C TA 85 °C, or 2.4 V to 3.0 V and –40 °C TA 85 °C, respectively . T ypical parameters
apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for desi gn guidance only. The Operati onal Amplifiers covere d by these specifications
are components of the Limited Type E Analog PSoC blocks.
AC Low Power Comparator Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C TA 85 °C, 3.0 V to 3.6 V and –40 °C TA 85 °C, or 2.4 V to 3.0 V and –40 °C TA 85 °C, respectively. Typical
parameters apply to 5 V at 25 °C and are for design guidance only.
Table 47. AC Type-E Operational Amplifier Specifications
Symbol Description Min Typ Max Units Notes
tCOMP Comparator Mode Response Time 75 100 ns 50 mV overdrive.
Table 48. AC Low Power Comparator Specifications
Symbol Description Min Typ Max Units Notes
tRLPC LPC Response T ime 50 μs 50 mV overdrive.
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 58 of 78
AC Digital Block Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C T A 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. T y pical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
Table 49. AC Digital Block Specifications
Function Description Min Typ Max Units Notes
All
functions Block Input Clock Frequenc y
VDD 4.75 V 49 MHz
VDD < 4.75 V 25 MH z
Timer Input Clock Frequency
No Capture, VDD 4.75 V 49 MHz
No Capture, VDD < 4.75 V 25 MHz
With Capture 25 MHz
Capture Pulse Width 50[28] ––ns
Counter Input Clock Frequency
No Enable Input, VDD 4.75 V 49 MHz
No Enable Input, VDD < 4. 75 V 25 MHz
With Enable Input 25 MHz
Enable Input Pulse Width 50[28] ––ns
Dead
Band Kill Pulse Width
Asynchronous Restart Mode 20 ns
Synchronous Restart Mode 50[28] ––ns
Disable Mode 50[28] ––ns
Input Clock Frequency
VDD 4.75 V 49 MHz
VDD < 4.75 V 25 MH z
CRCPRS
(PRS
Mode)
Input Clock Frequency
VDD 4.75 V 49 MHz
VDD < 4.75 V 25 MH z
CRCPRS
(CRC
Mode)
Input Clock Frequency 25 MHz
SPIM Input Clock Frequency 8.2 MHz The SPI serial clock (SCLK)
frequency is e qual to the input clo ck
frequency divided by 2.
SPIS Input Clock (SCLK) Frequency 4.1 MHz The input clock is the SPI SCLK in
SPIS mode.
Width of SS_Negated Between Transmission s 50[13] ns
Tranmitter Input Clock Frequency The baud rate is equal to the input
clock frequency divided by 8.
VDD 4.75 V, 2 Stop Bits 49 MHz
VDD 4.75 V, 1 Stop Bit 25 MHz
VDD < 4.75 V 25 MH z
Receiver Input Clock Frequency The baud rate is equal to the input
clock frequency divided by 8.
VDD 4.75 V, 2 Stop Bits 49 MHz
VDD 4.75 V, 1 Stop Bit 25 MHz
VDD < 4.75 V 25 MH z
Note
28.50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 59 of 78
AC Analog Output Buffer Specifications
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C T A 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. T y pical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
Table 50. 5 V AC Analog Output Buffer Specifications
Symbol Description Min Typ Max Units Notes
tROB Rising Settling Time to 0.1%, 1 V Step, 100 pF Load
Power = Low
Power = High
2.5
2.9 μs
μs
tSOB Falling Settling Time to 0.1%, 1 V Step, 100 pF Load
Power = Low
Power = High
2.3
2.3 μs
μs
SRROB Rising Slew Rate (20% to 80%), 1 V Step, 100 pF Load
Power = Low
Power = High 0.65
0.65
V/μs
V/μs
SRFOB Falling Slew Rate (80% to 20%), 1 V Step, 100 pF Load
Power = Low
Power = High 0.65
0.65
V/μs
V/μs
BWOB Small Signal Bandwidth, 20mVpp, 3dB BW, 100 pF Load
Power = Low
Power = High 0.8
0.8
MHz
MHz
BWOB Large Signal Bandwidth, 1 Vpp, 3dB BW, 100 pF Load
Power = Low
Power = High 300
300
kHz
kHz
Table 51. 3.3 V AC Analog Output Buffer Specifications
Symbol Description Min Typ Max Units Notes
tROB Rising Settli ng Time to 0.1%, 1 V Step, 100 pF Load
Power = Low
Power = High
3.8
3.8 μs
μs
tSOB Falling Settling Time to 0.1%, 1 V Step, 100 pF Load
Power = Low
Power = High
3.2
2.9 μs
μs
SRROB Rising Slew Rate (20% to 80%), 1 V Step, 100 pF Load
Power = Low
Power = High 0.5
0.5
V/μs
V/μs
SRFOB Falling Slew Rate (80% to 20%), 1 V Step, 100 pF Load
Power = Low
Power = High 0.5
0.5
V/μs
V/μs
BWOB Small Signal Bandwidth, 20mVpp, 3dB BW, 100 pF Load
Power = Low
Power = High 0.64
0.64
MHz
MHz
BWOB Large Signal Bandwidth, 1 Vpp, 3dB BW, 100 pF Load
Power = Low
Power = High 200
200
kHz
kHz
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 60 of 78
AC SAR10 ADC Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C T A 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. T y pical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
AC External Clock Specifications
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C T A 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. T y pical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
AC Programming Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C T A 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. T y pical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
Table 52. AC SAR10 ADC Specifications
Symbol Description Min Typ Max Units Notes
FINSAR10 Input clock frequency for SAR10 ADC 2.0 MHz
FSSAR10 Sample rate for SAR10 ADC
SAR10 ADC Resolution = 10 bits 142.9 ksps For 10-bit reso lution, the
sample rate is the ADC's input
clock divided by 14.
Table 53. 5 V AC External Clock Specifications
Symbol Description Min Typ Max Units Notes
FOSCEXT Frequency 0.093 24.6 MHz
High Period 20.6 5300 ns
Low Period 20.6 –ns
Power-up IMO to Switch 150 μs
Table 54. 3.3 V AC External Clock Specifications
Symbol Description Min Typ Max Units Notes
FOSCEXT Frequency with CPU Clock divide by 1[29] 0.093 –12.3MHz
FOSCEXT Frequency with CPU Clock divide by 2 or greater[30] 0.186 –24.6MHz
High Period with CPU Clock divide by 1 41.7 5300 ns
Low Period with CPU Clock divide by 1 41.7 –ns
Power-up IMO to Switch 150 μs
Table 55. AC Programmin g Specifications
Symbol Description Min Typ Max Units Notes
tRSCLK Rise Time of SCLK 1 20 ns
tFSCLK Fall Time of SCLK 1 20 ns
tSSCLK Data Setup T ime to Falling Edge of SCLK 40 ns
tHSCLK Data Hold Time from Falling Edge of SCLK 40 ns
FSCLK Frequency of SCLK 0 8 MHz
tERASEB Flash Erase Time (Block) 10 ms
tWRITE Flash Block W ri te Time 40 ms
tDSCLK Data Out Delay from Falling Edge of SCLK 55 ns VDD > 3.6
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 61 of 78
AC I2C Specifications
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V
and –40 °C T A 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. T y pical parameters apply to 5 V and 3.3 V at 25 °C
and are for design guidance only.
Figure 15. Definition for Timing for Fast/Standard Mode on the I2C Bus
tDSCLK3 Data Out Delay from Falling Edge of SCLK 75 ns 3.0 VDD 3.6
tERASEALL Flash Erase Time (Bulk) 40 ms Erase all blocks and protection
fields at onc e.
tPROGRAM_HOT Flash Blo ck Era se + Fl a s h Bl ock Write Time 100[31] ms 0 °C Tj 100 °C
tPROGRAM_COLD Flash Block Erase + Flash Block Write Time 200[31] ms –40 °C Tj 0 °C
Table 55. AC Programmin g Specifications
Symbol Description Min Typ Max Units Notes
Notes
29.Maximum CPU frequency is 12 MHz at 3.3 V . With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.
30.If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent
duty cycle requirement is met.
31.For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing.
Refer to the Flash APIs Application Note, AN2015 at http://ww.cypress.com under Application Notes for more information.
32.A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement TSUDATI2C 250 ns must th e n be me t. Th is is automatically the
case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit
to the SDA line trmax + TSUDATI2C = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.
Table 56. AC Characteristics of the I2C SDA and SCL Pins
Symbol Description Standard Mode Fast Mode Units Notes
Min Max Min Max
FSCLI2C SCL clock frequency 0 100 0 400 kHz
tHDSTAI2C Hold time (repeated) START condition. After this
period, the first clock pulse is generated. 4.0 –0.6μs
tLOWI2C LOW period of the SCL clock 4.7 –1.3μs
tHIGHI2C HIGH period of the SCL clock 4.0 –0.6μs
tSUSTAI2C Setup time for a repeated START condition 4.7 –0.6μs
tHDDATI2C Data hold time 0 –0μs
tSUDATI2C Data setup time 250 –100
[32] –ns
tSUSTOI2C Setup time for STOP condition 4.0 –0.6μs
tBUFI2C Bus free time between a STOP and START
condition 4.7 –1.3μs
tSPI2C Pulse width of spikes are suppressed by the
input filter. –050ns
I2C_SDA
I2C_SCL
SSr SP
TBUFI2C
TSPI2C
TSUSTOI2C
TSUSTAI2C
TLOWI2C
THIGHI2C
THDDATI2C
THDSTAI2C
TSUDATI2C
START Condition Repeated START Condition STOP Condition
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 62 of 78
Packaging Information
This section illustrates the packaging specifications for the CY8C28xxx PSoC devices, along with the thermal impedances for each
package and the typical package capacitance on crystal pins.
Important Note Emulation tools may re quire a larger are a on the target PCB th an th e chip’s footprint. For a de tailed descripti on of
the emulation tools' dimensions, refe r to the Emu lator Pod Dimension drawings at http://www.cypress.com..
Packaging Dimensions
Figure 16. 20-Pin (210-Mil) SSOP
51-85077 *E
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 63 of 78
Figure 17. 28-Pin (210-Mil) SSOP
Figure 18. 44-Pin TQ FP
51-85079 *E
51-85064 *E
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 64 of 78
Figure 19. 48-Pin (7 × 7 mm) QFN
Important Note For information on the preferred dimensions for mounting QFN packages, see the following application note, “Appli-
cation Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Package s" available at http://www.amkor.com.
TOP VIEW
PIN 1 DOT
1.00 MAX.
48
BOTTOM VIEW
0.23±0.05
11
0.05 MAX.
0.20 REF.
SIDE VIEW
1. HATCH AREA IS SOLDERABLE EXPOSED METAL.
2. REFERENCE JEDEC#: MO-220
4. ALL DIMENSIONS ARE IN MM [MIN/MAX]
NOTES:
PART #
5. PACKAGE CODE
DESCRIPTION
3. PACKAGE WEIGHT: 0.13g
PAD
EXPOSED
SOLDERABLE
LASER MARK
PIN 1 ID
5.55 REF
0.50±0.10
5.55 REF
5.6±0.10
5.6±0.10
24
12
25
36
48
13
37
0.40±0.10
0.08 C
LEAD FREE
LT48D
7.00±0.10
7.00±0.10
12 25
36
13 24
37
001-45616 *B
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 65 of 78
Figure 20. 56-Pin SSOP Package
51-85062 *D
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 66 of 78
Thermal Impedances
Capacitance o n Crystal Pins
Solder Reflow Specifications
Table 59 shows the solder reflow temperature limits that must not be exceeded.
Table 57. Thermal Impedances per Package
Package Typical θJA [33]
20-SSOP 80.8 °C/W
28-SSOP 45.4 °C/W
44-TQFP 24.0 °C/W
48-QFN[34] 16.7 °C/W
56-SSOP 67.5 °C/W
Table 58. Typical Package Capacitance on Crystal Pins
Package Package Capacitance
20-SSOP Pin9 = 0.0056 pF
Pin11 = 0.006048 pF
28-SSOP Pin13 = 0.006796 pF
Pin15 = 0.006755 pF
44-TQFP Pin16 = 0.009428 pF
Pin18 = 0.008635 pF
48-QFN Pin17 = 0.008493 pF
Pin19 = 0.008742 pF
56-SSOP Pin27 = 0.007916 pF
Pin31 = 0.007132 pF
Table 59. Solder Reflow Specifications
Package Maximum Peak
Te mperature (TC)Maximum Time above
TC – 5 °C
20-SSOP 260 °C 30 seconds
28-SSOP 260 °C 30 seconds
44-TQFP 260 °C 30 seconds
48-QFN 260 °C 30 seconds
56-SSOP 260 °C 30 seconds
Notes
33.TJ = TA + POWER × θJA
34.T o achieve the thermal impedance specified for the QFN package, refer to Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages
available at http://www.amkor.com for PCB requirements.
35.Higher temperatures may be required based on the solder melting po int. T ypical temperat ures for solder are 220 ± 5 °C with Sn-Pb or 24 5 ± 5 °C with Sn-Ag-Cu p aste.
Refer to the solder manufacturer specifications.
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 67 of 78
Development Tool Selection
This section presents the development tools available for all current PSoC device families including the CY8C28xxx family.
Software
PSoC Designer
At the core of the PSoC development software suite is PSoC
Designer . Utilized by thousands of PSoC developers, this robust
software has been facilitating PSoC designs for over half a
decade. PSoC Designer is available free of charge at
http://www.cypress.com.
PSoC Programmer
Flexible enough to be used on the bench in development, yet
suitable for factory programming, PSoC Programmer works
either as a standalone programming application or it can operate
directly from PSoC Designer. PSoC Programmer software is
compatible with both PSoC ICE-Cube In-Circuit Emulator and
PSoC MiniProg. PSoC Programmer is available free of charge
at http://www.cypress.com.
Development Kits
All development kits can be purchased from the Cypress Online
Store.
CY3215-DK Basic Development Kit
The CY3215-DK is for prototyp ing and deve lopment with PSoC
Designer. This kit supports in-circuit emulation and the software
interface allows users to run, halt, and single step the processor
and view the content of specific memory locations. Advanced
emulation features are supported in PSoC Designer. The kit
includes:
PSoC Designer Software CD
ICE-Cube In-Circuit Emulator
Pod kit for CY8C29x66 PSoC Family
Cat-5 Adapter
Mini-Eval Programming Board
110 ~ 240 V Power Supply, Euro-Plug Adapter
ISSP Cable
USB 2.0 Cable and Blue Cat-5 Cable
2 CY8C29466-24PXI 28-PDIP Chip Samples
Evaluation Tools
All evaluation tools can be pu rchased from the Cypress Online
Store.
CY3210-MiniProg1
The CY3210-MiniProg1 kit allows a user to program PSoC
devices via the MiniProg1 programming unit. The MiniProg is a
small, compact prototyping programmer that connects to the PC
via a provided USB 2.0 cable. The kit includes:
MiniProg Programming Unit
MiniEval Socket Programming and Evaluation Board
28-Pin CY8C29466-24PXI PDIP PSoC Device Sample
28-Pin CY8C27443-24PXI PDIP PSoC Device Sample
PSoC Designer Software CD
Getting St arted Guide
USB 2.0 Cable
CY3210-PSoCEval1
The CY3210-PSoCEval1 kit features an evaluation board and
the MiniProg1 programming unit. The evaluation board includes
an LCD module, potentiometer, LEDs, and plenty of bread-
boarding space to meet all of your evaluation needs. The kit
includes:
Evaluation Board with LCD Module
MiniProg Programming Unit
28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)
PSoC Designer Software CD
Getting St arted Guide
USB 2.0 Cable
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 68 of 78
Device Programmers
All device programmers can be purchased from the Cypress
Online Store .
CY3207ISSP In-System Serial Programmer (ISSP)
The CY3207ISSP is a production programmer. It includes
protection circuitry and an industrial case that is more robust than
the MiniProg in a production-programming environment.
Note The CY3207ISSP programmer needs the PSoC ISSP
software. It is not compatible with the PSoC Programmer
software. The latest PSoC ISSP software for this kit can be
downloaded from http://www.cypress.com. The kit includes:
CY3207 Programmer Unit
PSoC ISSP Software CD
110 ~ 240 V Power Supply, Euro-Plug Adapter
USB 2.0 Cable
Accessories (Emulation and Programming)
Table 60. Emulation and Programming Accessories
Part # Pin Package Pod Kit[36] Foot Kit[37] Adapter[38]
CY8C28243-24PVXI 20-SSOP CY3250-28XXX CY3250-20SSOP-FK
Adapters can be found at
http://www.emulation.com.
CY8C28403-24PVXI
CY8C28413-24PVXI
CY8C28433-24PVXI
CY8C28445-24PVXI
CY8C28452-24PVXI
28-SSOP CY3250-28XXX CY3250-28SSOP-FK
CY8C28513-24AXI
CY8C28533-24AXI
CY8C28545-24AXI
44-TQFP CY3250-28XXX CY3250-44TQFP-FK
CY8C28623-24LTXI
CY8C28643-24LTXI
CY8C28645-24LTXI
48-QFN CY3250-28XXXQFN CY3250-48QFN-FK
Notes
36.Pod kit contains an emulation pod, a flex-cable (connects the pod to the ICE), two feet, and device samples.
37.Foot kit includes surface mount feet that can be soldered to the target PCB.
38.Programming adapter converts non-DIP package to DIP footprint. Specific details and ord ering information for each of the adapters can be found at
http://www.emulation.com.
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 69 of 78
Ordering Information
The following table lists the CY8C28xxx PSoC devices key package features and ordering codes.
Note For Die sales information, contact a local Cypress sales office or Field Applications Engin eer (FAE).
Package
Ordering Code
Temperature Range
CapSense
Digital Blocks
Regular Analog Blocks
Limited Analog Blocks
HW I2C
Decimators
10-bit SAR ADC
Digital I/O Pins
Analog Inputs
Analog Outputs
Flash (KBytes)
RAM (KBytes)
XRES Pin
28-Pin (210-Mil) SSOP CY8C28403-24PVXI –40 °C to 85 °C N 12 0 0 2 0 Y 24 8 0 16 1 Y
28-Pin (210-Mil) SSOP
(Tape and Reel) CY8C28403-24PVXIT –40 °C to 85 °C N 12 0 0 2 0 Y 24 8 0 16 1 Y
28-Pin (210-Mil) SSOP CY8C28413-24PVXI –40 °C to 85 °C Y 12 0 4 1 2 Y 24 24 0 16 1 Y
28-Pin (210-Mil) SSOP
(Tape and Reel) CY8C28413-24PVXIT –40 °C to 85 °C Y 12 0 4 1 2 Y 24 24 0 16 1 Y
44-Pin TQFP CY8C28513-24AXI –40 °C to 85 °C Y 12 0 4 1 2 Y 40 40 0 16 1 Y
44-Pin TQFP (T ape and
Reel) CY8C28513-24AXIT –40 °C to 85 °C Y 12 0 4 1 2 Y 40 40 0 16 1 Y
48-Pin Sawn QFN CY8C28623-24LTXI –40 °C to 85 °C N 12 6 0 2 2 N 44 10 2 16 1 Y
48-Pin Sawn QFN
(Tape and Reel) CY8C28623-24LTXIT –40 °C to 85 °C N 12 6 0 2 2 N 44 10 2 16 1 Y
28-Pin (210-Mil) SSOP CY8C28433-24PVXI –40 °C to 85 °C Y 12 6 4 1 4 Y 24 24 2 16 1 Y
28-Pin (210-Mil) SSOP
(Tape and Reel) CY8C28433-24PVXIT –40 °C to 85 °C Y 12 6 4 1 4 Y 24 24 2 16 1 Y
44-Pin TQFP CY8C28533-24AXI –40 °C to 85 °C Y 12 6 4 1 4 Y 40 40 2 16 1 Y
44-Pin TQFP (T ape and
Reel) CY8C28533-24AXIT –40 °C to 85 °C Y 12 6 4 1 4 Y 40 40 2 16 1 Y
20-Pin (210-Mil) SSOP CY8C28243-24PVXI –40 °C to 85 °C N 12 12 0 2 4 Y 16 16 4 16 1 Y
20-Pin (210-Mil) SSOP
(Tape and Reel) CY8C28243-24PVXIT –40 °C to 85 °C N 12 12 0 2 4 Y 16 16 4 16 1 Y
48-Pin Sawn QFN CY8C28643-24LTXI –40 °C to 85 °C N 12 12 0 2 4 Y 44 44 4 16 1 Y
48-Pin Sawn QFN
(Tape and Reel) CY8C28643-24LTXIT –40 °C to 85 °C N 12 12 0 2 4 Y 44 44 4 16 1 Y
28-Pin (210-Mil) SSOP CY8C28445-24PVXI –40 °C to 85 °C Y 12 12 4 2 4 Y 24 24 4 16 1 Y
28-Pin (210-Mil) SSOP
(Tape and Reel) CY8C28445-24PVXIT –40 °C to 85 °C Y 12 12 4 2 4 Y 24 24 4 16 1 Y
44-Pin TQFP CY8C28545-24AXI –40 °C to 85 °C Y 12 12 4 2 4 Y 40 40 4 16 1 Y
44-Pin TQFP (T ape and
Reel) CY8C28545-24AXIT –40 °C to 85 °C Y 12 12 4 2 4 Y 40 40 4 16 1 Y
48-Pin Sawn QFN CY8C28645-24LTXI –40 °C to 85 °C Y 12 12 4 2 4 Y 44 44 4 16 1 Y
48-Pin Sawn QFN
(Tape and Reel) CY8C28645-24LTXIT –40 °C to 85 °C Y 12 12 4 2 4 Y 44 44 4 16 1 Y
28-Pin (210-Mil) SSOP CY8C28452-24PVXI –40 °C to 85 °C Y 8 12 4 1 4 N 24 24 4 16 1 Y
28-Pin (210-Mil) SSOP
(Tape and Reel) CY8C28452-24PVXIT –40 °C to 85 °C Y 8 12 4 1 4 N 24 24 4 16 1 Y
56-Pin SSOP OCD CY8C28000-24PVXI –40 °C to 85 °C Y 12 12 4 2 4 Y 44 44 4 16 1 Y
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 70 of 78
Ordering Code Definitions
CY 8 C 28 xxx - SP xxxx
Package Type: Thermal Rating:
PVX = SSOP Pb-free C = Commercial
LTX = QFN Pb-free I = Industrial
AX = TQFP Pb-free E = Extended
CPU Speed: 24 MHz
Part Number
Family Code
Technology Code: C = CMOS
Marketing Code: 8 = PSoC
Company ID: CY = Cypress
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 71 of 78
Acronyms
Acronyms Used
Table 61 lists the acronyms that are used in this document.
Reference Document s
CY8CPLC20, CY8CLED16P01, CY8C29x66, CY8C27x43, CY8C24x94, CY8C24x23, CY8C24x23A, CY8C22x13, CY8C21x34,
CY8C21x23, CY7C64215, CY7C603 xx, CY8CNP1xx, and CYWUSB6953 PSoC® Programmable System-on-C hip Technical
Reference Manual (TRM) (001-14463)
Design Aids – Reading and Writing PSoC® Flash – AN2015 (001-40459)
Adjusting PSoC® Trims for 3.3 V and 2.7 V Operation – AN2012 (001-17397)
Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 (001-14503)
Application Notes for Surface Mount Assembly of Amkor's MicroLe adFrame (MLF) Packages – available at http://www.amkor.com.
Table 61. Acronyms Used in this Datasheet
Acronym Description Acronym Description
AC alternating current MIPS million instructions per second
ADC analog-to-digital converter OCD on-chip debug
API application programming interface PCB printed circuit board
CMOS complementary metal oxide semiconductor PDIP plastic dual-in-line package
CPU central processing unit PGA programmable gain amplifier
CRC cyclic redundancy check PLL phase-locked loop
CT continuous time POR power on reset
DAC digital-to-analog converter PPOR precision power on reset
DC direct current PRS pseudo-random sequence
DTMF dual-tone multi-frequency PSo Programmable System-on-Chip
ECO external crystal oscillator PWM pulse width modulator
EEPROM electrically erasable programmable read-only
memory QFN quad flat no leads
GPIO general purpose I/O RTC real time clock
ICE in-circuit emulator SAR successive approximation
IDE integrated development environment SC switched capa citor
ILO internal low speed oscillator SLIMO slow IMO
IMO internal main osci llator SMP switch mode pump
I/O input/output SOIC small-outline integrated circui t
IrDA infrared data association SPITM serial peripheral interface
ISSP in-system serial programming SRAM static random access memory
LCD liquid crystal display S ROM supervisory read only memory
LED light-emitting diode SSOP shrink small-outline package
LPC low power comparator UART universal asynchronous receiver / transmitter
LVD low voltage detect USB universal seri al bus
MAC multiply-accumulate WDT watchdog timer
MCU microcontroller unit XRES external reset
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 72 of 78
Document Conventions
Units of Measure
Table 62 lists the unit sof measures.
Numeric Conventions
Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or ‘3Ah’).
Hexadecimal numbers may also be represented by a ‘0x’ prefix, the C coding convention. Binary numbers have an appended
lowercase ‘b’ (for example, 01010100b’ or ‘01000011b’). Numbers not indicated by an ‘h’ or ‘b’ are decimals.
Table 62. Units of Measure
Symbol Unit of Measure Symbol Unit of Measure
kB 1024 bytes µs microsecond
dB decibels ms millisecond
°C degree Celsius ns nanosecond
fF femto farad ps picosecond
pF picofarad µV microvolts
kHz kilohertz mV millivolts
MHz megahertz mVpp millivolts peak-to-peak
rt-Hz root hertz nV nanovolts
kΩkilohm V volts
Ωohm µW microwatts
µA microampere W watt
mA milliampere mm millimeter
nA nanoampere ppm parts per million
pA pikoampere % percent
mH millihenry
Glossary
active high 5. A logic signal having its asserted state as the logic 1 state.
6. A logic signal having the logic 1 state as the higher voltage of the two states.
analog blocks The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous
time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain
stages, and much more.
analog-to-digital
(ADC) A device that changes an analog signal to a digital signal of corresponding magnitude. Typically,
an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs
the reverse operation.
API (Application
Programming
Interface)
A series of software routines that comprise an interface between a computer application and
lower level services and functions (for example, user modules and libraries). APIs serve as
building blocks for programmers that create software applications.
asynchronous A signa l whose data is acknowledged or acted upon immediately, irrespective of any clock signal.
Bandgap
reference A stable voltage reference design that matches the positive temperature coefficient of VT with
the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally)
reference.
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 73 of 78
bandwidth 1. The frequency range of a message or information processing system measured in hertz.
2. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or
loss); it is sometimes represented more specifically as, for example, full width at half maximum.
bias 1. A systematic deviation of a value from a reference value.
2. The amount by which the average of a set of values departs from a reference value.
3. The electrical, mechanical, magnetic, or other fo rce (field) applied to a device to establish a
reference level to operate the device.
block 1. A functional unit th at performs a single function, such as an oscillator.
2. A functional unit that may be configured to perform one of several functions, su ch as a digital
PSoC block or an analog PSoC block.
buffer 1. A storage area for data that is used to compensate for a speed difference, when transferring
data from one device to another. Usually refers to an area reserved for IO operations, into
which data is read, or from which data is written.
2. A portion of memory set aside to store data, often before it is sent to an external device or as
it is received from an external device.
3. An amplifier used to lower the output impedance of a system.
bus 1. A named connection of ne ts. Bundling nets together in a bus makes it easier to route nets
with similar routing patterns.
2. A set of signals performing a common function and carrying similar data. Typically represented
using vector notation; for example, address[7:0].
3. One or more conductors that serve as a common connection for a group of related devices.
clock The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is
sometimes used to synchronize different logic blocks.
comparator An electronic circuit that produces an output voltage or current whenever two input levels simultaneously
satisfy predetermined amplitude requirements.
compiler A program that translates a high level language, such as C, into machine language.
configuration
space In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register,
is set to ‘1’.
crystal oscillator An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelectric
crystal is less sensitive to ambient temperature than other circuit components.
cyclic redundancy
check (CRC) A calculation used to detect errors in data communications, typically performed using a linear
feedback shift register. Similar calculations may be used for a variety of other purposes such as
data compression.
data bus A bi-directional set of signals used by a computer to convey information from a memory location
to the central processing unit and vice versa. More generally, a set of signals used to convey
data between digital functions.
debugger A hardware and software system that allows the user to analyze the operation of the system
under development. A debugger usually allows the developer to step through the firmware one
step at a time, set break points, and analyze memory.
dead band A period of time when neither of two or more signals are in their active state or in transition.
Glossary (continued)
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 74 of 78
digital blocks The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC
generator, pseudo-random number generator, or SPI.
digital-to-analog
(DAC) A device that chan ges a digital signal to an analog signal of corresponding magnitude. The analog-
to-digital (ADC) converter performs the reverse operation.
duty cycle The relationship of a clock period high time to its low time, expressed as a percent.
emulator Duplicates (provides an emulation of) the functions of one system with a different system, so that
the second system appears to behave like the first system.
external reset
(XRES) An active high signal that is driven into the PSoC device. It causes all operation of the CPU and
blocks to stop and return to a pre-defined state.
flash An electrically programmable and erasable, non-volatile technology that provides users with the
programmability and data storage of EPROMs, plus in-system erasability. Non-volatile means
that the data is retained when power is off.
Flash block The smallest amount of Flas h ROM space that may be programmed at one time and the smallest
amount of Flash space that may be protected. A Flash block holds 64 bytes.
frequency The number of cycles or events per unit of time, for a periodic function.
gain The ratio of output current, voltage, or power to input current, voltage, or power, respectively.
Gain is usually expressed in dB.
I2C A two-wire serial computer bus by Philips Semiconductors (now NXP Semicondu ctors). I2C is an
Inter-Integrated Circuit. It is used to connect low-speed periphera ls in an embedded system. The
original system was created in the early 1980s as a battery control interface, but it was later used
as a simple internal bus system for building control electronics. I2C uses only two bi-directional
pins, clock and data, both running at +5 V and pulled hi gh with resistors. The bus operates at 100
kbits/second in standard mode and 400 kbits/second in fast mode.
ICE The in-circuit emulator that allows users to test the proje ct in a ha rd ware environm en t, while
viewing the debugging device activity in a software environment (PSoC Designer).
input/output (I/O) A device that introduces data into or extracts data from a system.
interrupt A suspension of a process, such as the execution of a computer program, caused by an event
external to that process, and performed in such a way that the process can be resume d.
interrupt service
routine (ISR) A block of code that normal code execution is diverted to when the M8C receives a hardware
interrupt. Many interrupt sources may each exist with its own priority and individual ISR code
block. Each ISR code block ends with the RETI instruction, returning the device to the point in
the program where it left normal program execution.
jitter 1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on
serial data streams.
2. The abrupt and unwanted variatio ns of one or more signal characteristics, such as the interval between
successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.
low-voltage detect
(LVD) A circuit that senses VDD and provides an interrupt to the system when VDD falls lower than a
selected threshold.
Glossary (continued)
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 75 of 78
M8C An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside
a PSoC by interfacing to the Flash, SRAM, and register space.
master device A device that controls the timing for data exchanges between two devices. Or when devices are
cascaded in width, the master device is the one that controls the timing for data exchanges
between the cascaded devices and an external interface. The controlled device is called the
slave device.
microcontroller An integrated circuit chip that is designed primarily for control systems and products. In addition
to a CPU, a microcontroller typically includes memory, timing circuits, and IO circuitry. The reaso n
for this is to permit the realization of a controller with a minimal quantity of chips, thus
achieving maximal possible minia tu r ization. This in turn, reduces the volume and the cost of
the controller. The microcontroller is normally not used for general-purpose computation as is a
microprocessor.
mixed-signal The reference to a circuit containing both analog and digital techniques and components.
modulator A device that imposes a signal on a carrier.
noise 1. A disturbance that affects a signal and that may distort the information carried by the signal.
2. The random variations of one or more characteristics of any entity such as voltage, current, or data.
oscillator A circuit that may be crystal controlled and is used to generate a clock frequency.
parity A te chnique for testing transmitting data. Typi cally, a binary digit is added to the data to make the
sum of all the digits of the binary data either always even (even parity) or always odd (odd parity).
phase-locked
loop (PLL) An electronic circuit that controls an oscillator so that it maintains a constant phase angle relative
to a reference signal.
pinouts The pin number assignment: the relation between the logical inputs and outputs of the PSoC
device and their physical counterparts in the printed circuit board (PCB) package. Pinouts
involve pin numbers as a link between schematic and PCB design (both being computer generated
files) and may also involve pin names.
port A group of pins, usually eight.
power on reset
(POR) A circuit that forces the PSoC device to reset when the voltage is lower than a pre-set level. This is
one type of hardware reset.
PSoC® Cypress Semiconductor’s PSoC® is a registered trademark and Programmable System-on-
Chip™ is a trademark of Cypress.
PSoC Designer™ The software for Cypress’ Programmable System-on-Chip technology.
pulse width
modulator (PWM) An outp ut in the form of duty cycle which varies as a function of the applied measurand
RAM An acrony m for random access memory. A data-storage device from which data can be read out
and new data can be written in.
register A storage device with a specific capacity, such as a bit or byte.
reset A means of bringing a system back to a know state. See hardware reset and software reset.
Glossary (continued)
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 76 of 78
ROM An acronym for read only memory. A data-storage device from which data can be read out, but
new data cannot be written in.
serial 1. Pertaining to a process in which all events occur one after the other.
2. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or
channel.
settling time The time it takes for an output signal or value to stabilize after the input has changed from one
value to another.
shift register A memory storage device that sequentially shifts a word either left or right to output a stream of
serial data.
slave device A device that allows anothe r device to control the timing for data exchanges between two
devices. Or when devices are cascaded in width, the slave device is the one that allows another
device to control the timing of data exchanges between the cascaded devices and an external
interface. The controlling device is called the master device.
SRAM An acronym for static random access memory. A memory device allowing users to store and
retrieve data at a high rate of speed. The term static is used because, after a value has been
loaded into an SRAM cell, it remains unchanged until it is explicitly altered or until power is
removed from the device.
SROM An acronym for supervisory read only memory. The SROM holds code that is used to boot the
device, calibrate circuitry, and perform Flash operations. The functions of the SROM may be
accessed in normal user code, operating from Flash.
stop bit A signa l following a character or block that prepares the receiving device to receive the next
character or block.
synchronous 1. A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal.
2. A system whose operation is synchronized by a clock signal.
tri-state A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does
not drive any value in the Z state and, in many respects, may be considered to be disconnected
from the rest of the circuit, allowing another output to drive th e same net.
UART A UART or universal asynchronous receiver-transmitte r translates between parallel bits of data
and serial bits.
user modules Pre-build, pre-tested hardware/firmw are peripheral functions that take care of managing and
configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide hig h
level API (Application Programming Interface) for the peripheral function.
user space The bank 0 space of the register map. The registers in this bank are more likely to be modified
during normal program execution and not just during initialization. Registers in bank 1 are most
likely to be modified only during the initialization phase of the program.
VDD A name for a power net meaning "voltage drain." The most positive power supply signal. Usually
5 V or 3.3 V.
VSS A name for a power net meaning "voltage source." The most negative power supply signal.
watchdog timer A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified
period of time.
Glossary (continued)
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
Document Number: 001-48111 Rev. *I Page 77 of 78
Document History Page
Document Title: CY8C28243, CY8C28403, CY8C28413, CY8C28433, CY8C28445, CY8C28452, CY8C28513, CY8C28533,
CY8C28545, CY8C28623, CY8C28643 , CY8C28645 PSoC® Programmable System-on-Chip™
Document Number: 001-48111
Revision ECN No. Origin of
Change Submission
Date Description of Change
** 2593460 BTK/PYRS 10/20/08 New document (Revision **).
*A 2652217 BTK/PYRS 02/02/09 Extensive updates to content.
Added registers maps.
Updated Getting Started section
Updated Development Tools section
Added some SAR10 ADC specifications.
Added more analog system figures
*B 2675937 BTK 03/18/09 Updated DC Analo g Reference Specifications tables
Minor content updates
*C 2679015 HMI 03/26/2009 Post to external web.
*D 2750217 TDU 08/10/09 Updates to Electrical Specifications section
Minor content updates
*E 2768143 TDU 09/23/09 Updated DC Operational Amplifier , DC Analog Reference, DC SAR10ADC,
and DC POR specifications; Added Fig ure 15 and Figure 16; Updated AC
TypeE-Operational and AC SAR10ADC specifications
*F 2805324 ALH 11/11/09 Added Contents page. Updated Electrical Specifications.
*G 2902396 NJF 03/30/2010 Updated Cypress website links.
Added TBAKETEMP and TBAKETIME parameters in Absolute Maximum
Ratings.
Updated DC SAR 10 ADC Specifications.
Modified Note 23.
Removed AC Analog Mux Bus Specifications, Third Party Tools and Build a
PSoC Emulator into your Board.
Updated Packagin g Information and Ordering Code Definitions.
Updated links in Sales, Solutions, and Legal Information.
*H 3063584 NJF 10/20/10 Added PSoC Device Characteristics table .
Added DC I2C Specifications table.
Added F32K_U max limit.
Added Tjit_IMO specification, removed existing jitter specifications.
Updated Analog reference tables.
Updated Units of Measure, Acronyms, Glossary, and References sections.
Updated solder reflow specifications.
No specific changes were made to AC Digital Block S pecifications table and
I2C Timing Diagram. They were updated for clearer understanding.
Updated Figure 13 since the labelling for y-axis was incorrect.
Template and styles update.
*I 3148779 NJF 01/20/11 Added Footnote # 34 to Thermal Imp edances section.
Table 7. 56-Pin Part Pinout (SSOP) (page 15) - Pin#28 - Pin Name changed
to"VSS".
Table 5. 44-Pin Part Pinout (TQFP) (page 13) - Pin#17 - Pin Type changed
to"Power".
Under DC SAR10 ADC Specifications table, for parameter VVREFSAR10, Max
value changed from 4.95 V to VDD – 0.3 V.
Updated Table 59, “Solder Reflow Specifications,” on page 66 as per spec
25-00090.
Document Number: 001-48111 Rev. *I Revised July 8, 2011 Page 78 of 78
PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® and CapSense® are registered trademarks of Cypress Semiconductor Corporation.
Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights to use th ese compo nent s in an I2C system, provided
that the system conforms to the I2C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors.
All products and company names mentioned in this document may be the trademarks of their respective holders.
CY8C28243, CY8C28403, CY8C28413
CY8C28433, CY8C28445, CY8C28452
CY8C28513, CY8C28533, CY8C28545
CY8C28623, CY8C28643, CY8C28645
© Cypress Semico nducto r Co rpor ation , 20 08-2 011. The info rmati on con ta ined herei n is subje ct to cha nge wi thou t noti ce. C ypress S emiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypre ss prod uc ts are n ot war r ant ed no r inte nd ed to be used fo r
medical, life supp or t, l if e savin g, cr it ical control or saf ety ap pl ic at io ns, unless pursuant to a n express written ag re em en t with Cypress. Furthermor e, Cyp ress doe s not author iz e its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protect ion (Unit ed States and fore ign),
United S t ates copyright laws and international treaty provis ions. Cyp ress he reby gr ant s to l icense e a pers onal, no n-excl usive , non-tr ansfer able license to copy, use, modify, create derivative works of,
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee prod uct to be used only in conjunction with a Cyp ress
integrated circui t as specified in the applicab le agreement. Any r eproduction, mod ification, translati on, compilatio n, or represent ation of this Sour ce Code except a s specified abo ve is prohibit ed without
the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTAB ILITY AND FITNESS FOR A PA RTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials describ ed herein. Cyp ress does not
assume any liabil ity ar ising ou t of the a pplic ation or use o f any pr oduct or circ uit descri bed herein . Cypress d oes not a uthor ize its p roducts fo r use as critical componen ts in life-su pport systems whe re
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office
closest to you, visit us at Cypress Locations.
Products
Automotive cypress.com/go/automotive
Clocks & Buffers cypress.com/go/clocks
Interface cypress.com/go/interface
Lighting & Power Control cypress.com/go/powerpsoc
cypress.com/go/plc
Memory cypress.com/go/memory
Optical & Image Sensing cypress.com/go/image
PSoC cypress.com/go/psoc
Touch Sensi ng cypress.com/go/touch
USB Controllers cypress.com/go/USB
Wireless/RF cypress.com/go/wireless
PSoC Solutions
psoc.cypress.com/solutions
PSoC 1 | PSoC 3 | PSoC 5