Document Number: 001-54469 Rev. *H Page 5 of 25
Device Operation
The CY14B104NA nvSRAM is made up of two functional
components paired in the same physical cell. They are a SRAM
memory cell and a nonvolatile QuantumTrap cell. The SRAM
memory cell operates as a standard fast static RAM. Data in the
SRAM is transferred to the nonvolatile cell (the STORE
operation), or from the nonvolatile cell to the SRAM (the RECALL
operation). Using this unique architecture, all cells are stored and
recalled in parallel. During the STORE and RECALL operations,
SRAM read and write operations are inhibited. The
CY14B104NA supports infinite reads and writes similar to a
typical SRAM. In addition, it provides infinite RECALL operations
from the non-volatile cells. Refer to the Truth Table For SRAM
Operations on page 19 for a complete description of read and
write modes.
SRAM Read
The CY14B104NA pe rforms a read cycle when CE and OE are
LOW and WE and HSB are HIGH. The address specified on pins
A0–17 determines which of the 262,144 words of 16 bits each are
accessed. Byte enables (BH E, BLE) determine which bytes are
enabled to the output, in the case of 16-bit words. When the read
is initiated by an address transition, the o utputs are valid after a
delay of tAA (read cycle 1). If the read is initiated by CE or OE,
the outputs are valid at tACE or at tDOE, whichever is later (read
cycle 2). The data output repeatedly responds to address
changes within the t AA access time without the need for transi-
tions on any control inp ut pins. This remains valid until another
address change or until CE or OE is brought HIGH, or WE or
HSB is brought LOW.
SRAM Write
A write cycle is performed when CE and WE are LOW and HSB
is HIGH. The address inputs must be stable before entering the
write cycle and must remain stable until CE or WE goes HIGH at
the end of the cycle. The data on the common I/O pins DQ0–15
are written into the memo ry if the data is valid (tSD time) before
the end of a WE controlled write or before the end of an CE
controlled write. The Byte Enable inputs (BHE, BLE) determine
which bytes are written, in the ca se of 16-bi t words. It is re co m-
mended that OE be kept HIGH during the entire write cycle to
avoid data bus contention on common I/O lines. If OE is left LOW,
internal circuitry turns off the output buffers tHZWE after WE goes
LOW.
AutoS tore Operation
The CY14B104NA stores data to the nvSRAM using one of the
following three storage ope rations: Hardware STORE activated
by the HSB; Software STORE activated by an address
sequence; AutoStore on device power-down. The AutoStore
operation is a unique feature of QuantumTrap technology and is
enabled by default on the CY14B104 NA.
During a normal operation, the device draws current from VCC to
charge a capacitor connected to the VCAP pin. This stored
charge is used by the chip to perform a single STORE operation.
If the voltage on the VCC pin drops below VSWITCH, the part
automatically disconnects the VCAP pin from VCC. A STORE
operation is initiated with power provided by the VCAP capacitor.
Note If the capacitor is not connected to VCAP pin, AutoStore
must be disabled using the soft sequence specified in Preventing
AutoStore on page 8. In case AutoStore is enabled without a
capacitor on VCAP pin, the device attempts an AutoStore
operation without sufficient charge to complete the Store. This
corrupts the data stored in nvSRAM.
Figure 3 shows the proper connection of the storage capacitor
(VCAP) for automatic store operation. Refer to DC Electrical
Characteristics on page 9 for the size of VCAP. The voltage on
the VCAP pin is driven to VCC by a regulator on the chip. A pull-up
should be placed on WE to hold it inactive during power-up. This
pull-up is effective only if the WE signal is tristate during
power-up. Many MPUs tristate their controls on power-up. This
should be verified when using the pull-up. When the nvSRAM
comes out of power-on-RECALL, the MPU must be active or the
WE held inactive until the MPU comes out of reset.
To reduce unnecessary non-volatile stores, AutoStore and
hardware STORE operations are ignored unless at least one
write operation has taken place since the most recent STORE or
RECALL cycle. Software initiated STORE cycles are performed
regardless of whether a write operation has taken place. The
HSB signal is monitored by the system to detect if an AutoStore
cycle is in progress.
Figure 3. AutoSt ore Mo de
Hardware STORE Operation
The CY14B104NA provides the HSB pin to control and
acknowledge the STORE operations. The HSB pin is used to
request a hardware STORE cycle. When the HSB pin is driven
LOW, the CY14B104NA conditionally initiates a STORE
operation after tDELAY. An actual STORE cycle only begins if a
write to the SRAM has taken place since the last STORE or
RECALL cycle. The HSB pin also acts as an open drain driver
(internal 100 k weak pull-up resistor) that is internally driven
LOW to indicate a busy condition when the STORE (initiated by
any means) is in progress.
Note Af ter each Hardware and Software STORE operation HSB
is driven HIGH for a short time (tHHHD) with standard output high
current and then remains HIGH by internal 100 k pull-up
resistor.
SRAM write operations that are in progress when HSB is driven
LOW by any means are given time (tDELAY) to complete before
the STORE operation is initiated. However, any SRAM write
cycles requested after HSB goes LOW are inhibited until HSB
returns HIGH. In case the write latch is not set, HSB is not driven
LOW by the CY14B104NA. But any SRAM read and write cycles
0.1 uF
VCC
10 kOhm
VCAP
WE VCAP
VSS
VCC