1
Precision Edge®
SY100S815
Micrel, Inc.
M9999-032406
hbwhelp@micrel.com or (408) 955-1690
BLOCK DIAGRAM
FEATURES
DESCRIPTION
Rev.: G Amendment: /0
Issue Date: March 2006
The SY100S815 is a low skew 1-to-4 PECL differential
driver designed for clock distribution in new, high-
performance PECL systems. It accepts either a PECL
clock input or a TTL input by using the TTL enable pin TEN.
When the TTL enable pin is HIGH, the TTL input is enabled
and the PECL input is disabled. When the enable pin is set
LOW, the TTL input is disabled and the PECL input is
enabled.
The device is specifically designed and produced for low
skew. The interconnect scheme and metal layout are
carefully optimized for minimal gate-to-gate skew within
the device. Wafer characterization and process control
ensure consistent distribution of propagation delay from lot
to lot. Since the S815 shares a common set of “basic”
processing with the other members of the ECLinPS family,
wafer characterization at the point of device personalization
allows for tighter control of parameters, including
propagation delay.
To ensure that the skew specification is met, it is
necessary that both sides of the differential output are
terminated into 50, even if only one side is being used. In
most applications, all nine differential pairs will be used
and, therefore, terminated. In the case where fewer than
nine pairs are used, it is necessary to terminate at least the
output pairs on the same package side (i.e. sharing the
same VCCO as the pair(s) being used on that side) in order
to maintain minimum skew.
Quad PECL version of popular ECLinPS E111
Low skew
Guaranteed skew spec
TTL enable input
Selectable TTL or PECL clock input
Single +5V supply
Differential internal design
PECL I/O fully compatible with industry standard
Internal 75k PECL input pull-down resistors
Available in 16-pin SOIC package
Precision Edge®
SY100S815
SINGLE SUPPLY QUAD
PECL/TTL-TO-PECL
Pin Function
EIN, EIN Differential PECL Input Pair
TIN TTL Input
TEN TTL Input Enable
Q0, Q0 – Q3, Q3Differential PECL Outputs
VCC PECL VCC (+5.0V)
VEE PECL Ground (0V)
PIN NAMES
Q0
Q0
Q1
Q1
Q2
Q2
Q3
Q3
EIN
EIN 0
1
TIN
TEN
Precision Edge is a registered trademark of Micrel, Inc.
Precision Edge®
2
Precision Edge®
SY100S815
Micrel, Inc.
M9999-032406
hbwhelp@micrel.com or (408) 955-1690
PACKAGE/ORDERING INFORMATION
16-Pin SOIC (Z16-1)
Ordering Information
Package Operating Package Lead
Part Number Type Range Marking Finish
SY100S815ZC Z16-1 Commercial SY100S815ZC Sn-Pb
SY100S815ZCTR(1) Z16-1 Commercial SY100S815ZC Sn-Pb
SY100S815ZG(2) Z16-1 Industrial SY100S815ZG with NiPdAu
Pb-Free bar-line indicator Pb-Free
SY100S815ZGTR(1, 2) Z16-1 Industrial SY100S815ZG with NiPdAu
Pb-Free bar-line indicator Pb-Free
Notes:
1. Tape and Reel.
2. Pb-Free package is recommended for new designs.
1
2
3
4
5
6
7
8
15
16
14
13
12
11
10
9
VCC
TIN
Q3
Q2
Q2
VCCO
EIN
TEN
VEE
Q0
Q0
Q1
VCCO
TOP VIEW
SOIC
Z16-1
Q3
EIN
Q1
3
Precision Edge®
SY100S815
Micrel, Inc.
M9999-032406
hbwhelp@micrel.com or (408) 955-1690
VCC = VCCO = +5.0V ± 5%
TA = 0°CTA = +25°CTA = +85°C
Symbol Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit
IIH Input HIGH Current ——150 ——150 ——150 µA
IIL Input LOW Current 0.5 ——0.5 ——0.5 ——µA
VIH Input HIGH Voltage(1) 3.835 4.120 3.835 4.120 3.835 4.120 V
VIL Input LOW Voltage(1) 3.190 3.525 3.190 3.525 3.190 3.525 V
VOH Output HIGH Voltage(2) VCC 1025 VCC 955 VCC 870 VCC 1025 VCC 955 VCC 870 VCC 1025 VCC 955 VCC 870 mV
VOL Output LOW Voltage(2) VCC 1890 VCC 1705 VCC 1620 VCC 1890 VCC 1705 VCC 1620 VCC 1890 VCC 1705VCC 1620 mV
ICC Power Supply(3) 53 65 53 65 60 74 mA
Current
PECL DC ELECTRICAL CHARACTERISTICS
Notes:
1. VCC = VCCO = 5.0V
2. VIN = VIH (Max.) or VIL (Min.) Loading with 50 to VCC 2V.
3. All inputs and outputs open.
TRUTH TABLE
TEN EIN TIN Q
LLXL
LHXH
HXLL
HXHH
TTL DC ELECTRICAL CHARACTERISTICS
VCC = VCCO = +5.0V ± 5%
TA = 0°CTA = +25°CTA = +85°C
Symbol Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit Condition
VIH Input HIGH Voltage 2.0 ——2.0 ——2.0 ——V
VIL Input LOW Voltage —— 0.8 ——0.8 ——0.8 V
IIH Input HIGH Current(1, 2) —— 20 ——20 ——20 µA
——100 ——100 ——100
IIL Input LOW Current(3) ——0.6 ——0.6 ——0.6 mA
VIK Input Clamp Voltage(4) ——1.2 ——1.2 ——1.2 V
Notes:
1. VIN=2.7V
2. VIN=5.0V
3. VIN=0.5V
4. IIN=-18mA
4
Precision Edge®
SY100S815
Micrel, Inc.
M9999-032406
hbwhelp@micrel.com or (408) 955-1690
AC ELECTRICAL CHARACTERISTICS(1–6)
Notes:
1. Part-to-part skew is defined as Max. Min. value at the given temperature.
2. The differential propagation delay is defined as the delay from the crossing points of the differential input signals to the crossing point of the
differential output signals.
3. The single-ended propagation delay is defined as the delay from the 50% point of the input signal to the 50% point of the output signal.
4. The within-device skew is defined as the worst case difference between any two similar delay paths within a single device.
5. VPP (min.) is defined as the minimum input differential voltage which will cause no increase in the propagation delay. The VPP (min.) is AC limited for
the S815, as a differential input as low as 50mV will still produce full PECL levels at the output.
6. VCMR is defined as the range within which the VIH level may vary, with the device still meeting the propagation delay specification. The VIL level must
be such that the peak-to-peak voltage is less than 1.0V and greater than or equal to VPP (min.).
VCC = VCCO = +5.0V ± 5%
TA = 0°CTA = +25°CTA = +85°C
Symbol Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Unit
tPLH Propagation Delay to Output(1) ps
tPHL EIN (differential)(2) 430 630 430 630 430 630
EIN (single-ended)(3) 330 730 330 730 330 730
TIN 350 950 350 950 350 950
tskew Within-Device skew(4) 25 50 25 50 25 50 ps
VPP Minimum PECL(5) 250 ——250 ——250 ——mV
Input Swing
VCMR PECL Common(6) 1.6 —–0.4 1.6 —–0.4 1.6 —–0.4 V
Mode Range
trOutput Rise/Fall Times 275 375 600 275 375 600 275 375 600 ps
tf20% to 80%
5
Precision Edge®
SY100S815
Micrel, Inc.
M9999-032406
hbwhelp@micrel.com or (408) 955-1690
16-PIN SOIC .300" WIDE (Z16-1)
Rev. 03
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com
The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchasers
use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchasers own risk and Purchaser agrees to fully indemnify
Micrel for any damages resulting from such use or sale.
© 2006 Micrel, Incorporated.